JP6811379B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP6811379B2
JP6811379B2 JP2018009865A JP2018009865A JP6811379B2 JP 6811379 B2 JP6811379 B2 JP 6811379B2 JP 2018009865 A JP2018009865 A JP 2018009865A JP 2018009865 A JP2018009865 A JP 2018009865A JP 6811379 B2 JP6811379 B2 JP 6811379B2
Authority
JP
Japan
Prior art keywords
refrigerant
gas
liquid
pipe
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018009865A
Other languages
Japanese (ja)
Other versions
JP2019128094A (en
Inventor
誠之 飯高
誠之 飯高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018009865A priority Critical patent/JP6811379B2/en
Priority to EP18189439.5A priority patent/EP3517859B1/en
Publication of JP2019128094A publication Critical patent/JP2019128094A/en
Application granted granted Critical
Publication of JP6811379B2 publication Critical patent/JP6811379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0417Refrigeration circuit bypassing means for the subcooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、室内機と圧縮機を備え、圧縮機は吸入した冷媒を圧縮し吐出する過程で中間圧の冷媒をインジェクションする機構を備えた冷凍サイクル装置に関するものである。 The present invention relates to a refrigeration cycle apparatus including an indoor unit and a compressor, and the compressor is provided with a mechanism for injecting an intermediate pressure refrigerant in the process of compressing and discharging the sucked refrigerant.

従来から、冷凍サイクル装置において、中間圧となる冷媒配管部に気液分離器およびインジェクション配管を備え、インジェクション配管は圧縮機のインジェクション孔に連通し、ガスバイパス配管によって気液分離器とインジェクション配管とを接続したインジェクション回路が提案されている(特許文献1参照)。 Conventionally, in a refrigeration cycle device, a gas-liquid separator and an injection pipe are provided in the refrigerant pipe portion which is an intermediate pressure, the injection pipe is communicated with the injection hole of the compressor, and the gas-liquid separator and the injection pipe are connected by a gas bypass pipe. An injection circuit has been proposed (see Patent Document 1).

図7に特許文献1に記載の冷凍サイクル装置の構成図を示す。冷凍サイクル装置の構成において、絞り装置26aおよび絞り装置26bと絞り装置27とによって中間圧となる冷媒配管部を形成し、インジェクション配管29と、インジェクション配管29を流れる冷媒流量を調整する流量調整装置30と、中間圧となる冷媒配管部に配置された気液分離器31と、インジェクション配管29と気液分離器31とを接続するガスバイパス配管32と、ガスバイパス配管32を流れる冷媒流量を調整する開閉弁33を備え、圧縮機23を運転する時に流量調整装置30と開閉弁33とを開とするように構成されている。 FIG. 7 shows a configuration diagram of the refrigeration cycle apparatus described in Patent Document 1. In the configuration of the refrigeration cycle device, the throttle device 26a, the throttle device 26b, and the throttle device 27 form a refrigerant piping portion that serves as an intermediate pressure, and the injection piping 29 and the flow rate adjusting device 30 that adjusts the flow rate of the refrigerant flowing through the injection piping 29. And, the gas-liquid separator 31 arranged in the refrigerant pipe portion which becomes the intermediate pressure, the gas bypass pipe 32 connecting the injection pipe 29 and the gas-liquid separator 31, and the refrigerant flow rate flowing through the gas bypass pipe 32 are adjusted. The on-off valve 33 is provided, and the flow rate adjusting device 30 and the on-off valve 33 are opened when the compressor 23 is operated.

これにより、室内機が暖房運転する際に、開閉弁33を通じてガスバイパス配管32を気相冷媒が流れ圧縮機23のインジェクション孔から流入することで冷凍サイクル装置の運転効率を高めるとともに、流量調整装置30を通じてインジェクション配管29を気液二相状態の冷媒が流れ圧縮機23のインジェクション孔から流入することで圧縮機23から吐出する冷媒の温度の過昇を抑制する効果が期待できる。 As a result, when the indoor unit is in heating operation, the gas phase refrigerant flows through the gas bypass pipe 32 through the on-off valve 33 and flows in from the injection hole of the compressor 23, thereby improving the operating efficiency of the refrigeration cycle device and the flow rate adjusting device. A gas-liquid two-phase state refrigerant flows through the injection pipe 29 through 30, and flows in through the injection holes of the compressor 23, so that an effect of suppressing an excessive rise in the temperature of the refrigerant discharged from the compressor 23 can be expected.

特開2011−52883号公報Japanese Unexamined Patent Publication No. 2011-52883

しかしながら、従来技術に記載の構成では、室内機が暖房運転する際のインジェクション配管を流れる冷媒は気液二相状態であり、また、インジェクション配管とガスバイパス管との合流部とインジェクション配管の分岐部は圧力差が小さい。これらのことから、外気温度が低く圧縮比が大きくなることで圧縮機から吐出する冷媒の温度が高くなり温度低減効果のある液相冷媒の割合を増やしたい場合に、気相冷媒のみがインジェクション配管内を吹き抜けることでインジェクション配管内の液相冷媒の流れが滞り、温度低減効果のある液相冷媒が圧縮機に供給されず、圧縮機から吐出する冷媒の温度が過度に上昇するという課題があった。これにより、モーター巻線温度が過度に上昇してモーター効率が低下したり、冷凍機油が劣化して潤滑性能が低下し摺動部の摩擦損失が増加したりすることで、冷凍サイクル装置の性能が低下する。 However, in the configuration described in the prior art, the refrigerant flowing through the injection pipe during the heating operation of the indoor unit is in a gas-liquid two-phase state, and the confluence portion between the injection pipe and the gas bypass pipe and the branch portion of the injection pipe. Has a small pressure difference. From these facts, when the temperature of the refrigerant discharged from the compressor rises due to the low outside air temperature and the large compression ratio, and it is desired to increase the proportion of the liquid-phase refrigerant that has the effect of reducing the temperature, only the vapor-phase refrigerant is the injection piping. There is a problem that the flow of the liquid-phase refrigerant in the injection pipe is blocked by blowing through the inside, the liquid-phase refrigerant having a temperature reducing effect is not supplied to the compressor, and the temperature of the refrigerant discharged from the compressor rises excessively. It was. As a result, the motor winding temperature rises excessively and the motor efficiency decreases, or the refrigerating machine oil deteriorates and the lubrication performance decreases and the friction loss of the sliding part increases, resulting in the performance of the refrigeration cycle device. Decreases.

本発明は、上記課題を解決するものであり、室内機が暖房運転し、圧縮機から吐出する冷媒の温度が高くなる時に、圧縮機に流入する液相冷媒の量が不足するのを防止する冷凍サイクル装置を提供することを目的とする。 The present invention solves the above problems and prevents the amount of liquid phase refrigerant flowing into the compressor from becoming insufficient when the indoor unit is heated and the temperature of the refrigerant discharged from the compressor rises. It is an object of the present invention to provide a refrigeration cycle device.

上記課題を解決するために、本発明の冷凍サイクル装置は、圧縮機と室内熱交換器と第
1圧力調整装置と第2圧力調整装置と室外熱交換器とインジェクション配管とを備え、圧縮機と室内熱交換器と第1圧力調整装置と第2圧力調整装置と室外熱交換器が順に接続され、第1圧力調整装置と第2圧力調整装置とを接続する中間圧冷媒配管に配置された第1分岐部と圧縮機の圧縮部とがインジェクション配管で接続されている冷凍サイクル装置において、第1圧力調整装置と第2圧力調整装置との間に気液分離器を備え、気液分離器とインジェクション配管とを接続し気液分離器で分離されたガス冷媒が流れるガスバイパス配管を備え、インジェクション配管とガスバイパス配管とが合流する合流部と第1分岐部との間に流量調整装置を備える冷凍サイクル装置であり、第1分岐部は、合流部より鉛直方向上側に設置していることを特徴とする冷凍サイクル装置である。
In order to solve the above problems, the refrigeration cycle apparatus of the present invention includes a compressor, an indoor heat exchanger, a first pressure regulator, a second pressure regulator, an outdoor heat exchanger, and an injection pipe, and includes a compressor. The indoor heat exchanger, the first pressure regulator, the second pressure regulator, and the outdoor heat exchanger are connected in order, and are arranged in the intermediate pressure refrigerant pipe connecting the first pressure regulator and the second pressure regulator. In a refrigeration cycle device in which one branch portion and a compressor section of a compressor are connected by an injection pipe, a gas-liquid separator is provided between the first pressure regulator and the second pressure regulator to form a gas-liquid separator. It is equipped with a gas bypass pipe that connects to the injection pipe and allows the gas refrigerant separated by the gas-liquid separator to flow, and is equipped with a flow rate adjusting device between the confluence and the first branch where the injection pipe and the gas bypass pipe merge. It is a refrigeration cycle apparatus, and the first branch portion is a refrigeration cycle apparatus characterized in that it is installed on the upper side in the vertical direction from the confluence portion.

これによって、第1分岐部からインジェクション配管を流れる気液二相状態の冷媒は、密度の高い液相冷媒が重力によって滞りなく流れるため、気相冷媒のみが吹き抜けることがなく、鉛直方向下側に配置された合流部まで気液二相状態のまま滞りなく流れるようになる。 As a result, the gas-liquid two-phase state refrigerant flowing from the first branch to the injection pipe flows smoothly due to gravity, so that only the gas-phase refrigerant does not blow through and moves downward in the vertical direction. It will flow smoothly to the arranged confluence in a gas-liquid two-phase state.

また、本発明の冷凍サイクル装置は、第1分岐部と室外機接続部との間に立ち上がり配管を備え、立ち上がり配管部または立ち上がり配管部と室外機接続部との間に低圧冷媒と熱交換する第1過冷却熱交換器を設置していることを特徴とする冷凍サイクル装置である。 Further, the refrigerating cycle apparatus of the present invention is provided with a rising pipe between the first branch portion and the outdoor unit connection portion, and exchanges heat with a low-pressure refrigerant between the rising pipe portion or the rising pipe portion and the outdoor unit connecting portion. It is a refrigeration cycle apparatus characterized in that a first supercooling heat exchanger is installed.

これによって、乾き度が0.2〜0.4の気液二相状態で立ち上がり配管に流入した冷媒は、第1過冷却熱交換器内で低温冷媒に放熱し乾き度が0.2以下となる。 As a result, the refrigerant that has flowed into the rising pipe in a gas-liquid two-phase state with a dryness of 0.2 to 0.4 is dissipated to the low-temperature refrigerant in the first supercooling heat exchanger, and the dryness is 0.2 or less. Become.

乾き度が0.2〜0.4の気液二相状態で立ち上がり配管を流れると、流動様式が環状流となるため、気相冷媒が吹き抜けることで液相冷媒が立ち上がり配管の内部で滞ることがあるが、第1過冷却熱交換器内で乾き度が0.2以下となって立ち上がり配管を流れるため、流動様式がチャーン流となり気液が混ざり合って流れるため、第1分岐部に液相冷媒が安定的に供給される。 When the gas-liquid two-phase state with a dryness of 0.2 to 0.4 flows through the rising pipe, the flow mode becomes a cyclic flow, so that the gas-phase refrigerant blows through and the liquid-phase refrigerant rises and stays inside the pipe. However, since the dryness becomes 0.2 or less in the first supercooling heat exchanger and flows through the rising pipe, the flow mode becomes a churn flow and gas and liquid are mixed and flow, so the liquid flows in the first branch part. The phase refrigerant is stably supplied.

また、本発明の冷凍サイクル装置は、第1分岐部と流量調整弁との間に低圧冷媒と熱交換する第2過冷却熱交換器を設置していることを特徴とする冷凍サイクル装置である。 Further, the refrigeration cycle apparatus of the present invention is a refrigeration cycle apparatus characterized in that a second supercooling heat exchanger that exchanges heat with a low-pressure refrigerant is installed between the first branch portion and the flow rate adjusting valve. ..

これによって、第1分岐部からインジェクション配管に気液二相状態で流入した冷媒は、第2過冷却熱交換器内で低温冷媒に放熱し過冷却液状態となる。乾き度が0.1以下の気液二相状態で流量調整装置を流れる場合、室内空調運転の負荷変動によって飽和液状態と気液二相状態との間で状態変化が生じやすく、液単相から気液二相に変化する際の体積膨張により、流量調整装置を流れる冷媒流量の急激な低下が発生するが、第2過冷却熱交換器で放熱し過冷却状態となることで、冷媒流量の急激な低下が発生することなく、流量調整装置を流れる液相冷媒の流量が安定する。 As a result, the refrigerant that has flowed into the injection pipe from the first branch portion in a gas-liquid two-phase state dissipates heat to the low-temperature refrigerant in the second supercooling heat exchanger and becomes a supercooled liquid state. When flowing through the flow control device in a gas-liquid two-phase state with a dryness of 0.1 or less, the state change is likely to occur between the saturated liquid state and the gas-liquid two-phase state due to load fluctuations in indoor air conditioning operation, and the liquid single phase. Due to the volume expansion when changing from gas to liquid two-phase, the flow rate of the refrigerant flowing through the flow rate regulator suddenly drops, but the second supercooling heat exchanger dissipates heat and the refrigerant flows into an overcooled state. The flow rate of the liquid phase refrigerant flowing through the flow rate adjusting device is stable without a sudden decrease in the flow rate.

本発明の冷凍サイクル装置は、室内機が暖房運転し、第1圧力調整弁で中間圧まで減圧された気液二相状態の冷媒が第1分岐部からインジェクション配管に流入する場合において、気液二相状態のまま合流部に到達し、ガスバイパス管からインジェクション配管に流入する気相冷媒とともに圧縮機の圧縮部に流れるため、圧縮機の圧縮部に冷却効果の大きい液相冷媒が十分に供給され、圧縮機から吐出される冷媒の温度の過昇を抑制できる。 In the refrigeration cycle device of the present invention, when the indoor unit is heated and the refrigerant in the gas-liquid two-phase state decompressed to the intermediate pressure by the first pressure regulating valve flows into the injection pipe from the first branch, the gas-liquid Since it reaches the confluence in a two-phase state and flows to the compressor's compressor together with the gas-phase refrigerant that flows from the gas bypass pipe into the injection pipe, the liquid-phase refrigerant with a large cooling effect is sufficiently supplied to the compressor's compressor. Therefore, it is possible to suppress an excessive rise in the temperature of the refrigerant discharged from the compressor.

本発明の実施の形態1における冷凍サイクル装置の構成図Configuration diagram of the refrigeration cycle device according to the first embodiment of the present invention. 本発明の実施の形態1におけるインジェクション回路の水平方向から見た立面図Elevation view of the injection circuit according to the first embodiment of the present invention as viewed from the horizontal direction. 高低差と気液二相状態の冷媒の質量流量比率の関係図Relationship between height difference and mass flow rate ratio of refrigerant in gas-liquid two-phase state 本発明の実施の形態2における冷凍サイクル装置の構成図Configuration diagram of the refrigeration cycle device according to the second embodiment of the present invention. 本発明の実施の形態2におけるインジェクション回路の水平方向から見た立面図Elevation view of the injection circuit according to the second embodiment of the present invention as viewed from the horizontal direction. 本発明の実施の形態3における冷凍サイクル装置の構成図Configuration diagram of the refrigeration cycle device according to the third embodiment of the present invention. 特許文献1に記載の冷凍サイクル装置の構成図Configuration diagram of the refrigeration cycle apparatus described in Patent Document 1.

第1の発明は、圧縮機と室内熱交換器と第1圧力調整装置と第2圧力調整装置と室外熱交換器とインジェクション配管とを備え、圧縮機と室内熱交換器と第1圧力調整装置と第2圧力調整装置と室外熱交換器が順に接続され、第1圧力調整装置と第2圧力調整装置とを接続する中間圧冷媒配管に配置された第1分岐部と圧縮機の圧縮部とがインジェクション配管で接続されている冷凍サイクル装置において、第1圧力調整装置と第2圧力調整装置との間に気液分離器を備え、気液分離器とインジェクション配管とを接続し気液分離器で分離されたガス冷媒が流れるガスバイパス配管を備え、インジェクション配管とガスバイパス配管とが合流する合流部と第1分岐部との間に流量調整装置を備え、第1分岐部は、合流部より鉛直方向上側に設置していることを特徴とする冷凍サイクル装置である。 The first invention includes a compressor, an indoor heat exchanger, a first pressure regulator, a second pressure regulator, an outdoor heat exchanger, and an injection pipe, and includes a compressor, an indoor heat exchanger, and a first pressure regulator. The second pressure regulator and the outdoor heat exchanger are connected in order, and the first branch and the compressor compressor arranged in the intermediate pressure refrigerant pipe connecting the first pressure regulator and the second pressure regulator. Is provided with a gas-liquid separator between the first pressure regulator and the second pressure regulator in the refrigeration cycle device connected by the injection pipe, and the gas-liquid separator and the injection pipe are connected to the gas-liquid separator. It is equipped with a gas bypass pipe through which the gas refrigerant separated in is flowed, and is equipped with a flow rate adjusting device between the confluence part where the injection pipe and the gas bypass pipe merge and the first branch part, and the first branch part is from the confluence part. It is a refrigeration cycle device characterized by being installed on the upper side in the vertical direction.

これによって、第1分岐部からインジェクション配管を流れる気液二相状態の冷媒は、液相冷媒の流れが滞り気相冷媒のみが吹き抜けることなく、密度の高い液相冷媒が重力によって、鉛直方向下側に配置された合流部まで気液二相状態のまま滞りなく流れるようになる。 As a result, in the gas-liquid two-phase state refrigerant flowing from the first branch to the injection pipe, the flow of the liquid-phase refrigerant is blocked and only the gas-phase refrigerant does not blow through, and the high-density liquid-phase refrigerant is moved downward in the vertical direction by gravity. It will flow smoothly to the confluence located on the side in a gas-liquid two-phase state.

したがって、本発明の冷凍サイクル装置は、第1圧力調整装置で中間圧まで減圧された気液二相状態の冷媒が第1分岐部からインジェクション配管に流入する場合において、気液二相状態のまま合流部に到達し、圧縮機の圧縮部に冷却効果の大きい液相冷媒が十分に供給されるため、圧縮機から吐出される冷媒の温度の過昇を抑制できる。 Therefore, the refrigerating cycle apparatus of the present invention remains in the gas-liquid two-phase state when the refrigerant in the gas-liquid two-phase state decompressed to the intermediate pressure by the first pressure regulator flows into the injection pipe from the first branch portion. Since the liquid phase refrigerant having a large cooling effect is sufficiently supplied to the confluence portion and the compression portion of the compressor, it is possible to suppress an excessive rise in the temperature of the refrigerant discharged from the compressor.

第2の発明は、第1の発明に記載の冷凍サイクル装置において、第1分岐部と室外機接続部との間に立ち上がり配管を備え、立ち上がり配管部または立ち上がり配管部と室外機接続部との間に低圧冷媒と熱交換する第1過冷却熱交換器を設置していることを特徴とする冷凍サイクル装置である。 According to the second invention, in the refrigeration cycle apparatus according to the first invention, a rising pipe is provided between the first branch portion and the outdoor unit connecting portion, and the rising piping portion or the rising piping portion and the outdoor unit connecting portion are provided. It is a refrigeration cycle apparatus characterized in that a first supercooling heat exchanger that exchanges heat with a low-pressure refrigerant is installed between them.

これによって、乾き度が0.2〜0.4の気液二相状態で立ち上がり配管に流入した冷媒は、第1過冷却熱交換器内で低温冷媒に放熱し乾き度が0.2以下となる。乾き度が0.2〜0.4の気液二相状態で立ち上がり配管を流れると、流動様式が環状流となるため、気相冷媒が吹き抜けることで液相冷媒が立ち上がり配管の内部で滞ることがあるが、第1過冷却熱交換器内で乾き度が0.2以下となって立ち上がり配管を流れるため、流動様式がチャーン流となり気液が混ざり合って流れるため、第1分岐部に液相冷媒が安定的に供給される。 As a result, the refrigerant that has flowed into the rising pipe in a gas-liquid two-phase state with a dryness of 0.2 to 0.4 is dissipated to the low-temperature refrigerant in the first supercooling heat exchanger, and the dryness is 0.2 or less. Become. When the gas-liquid two-phase state with a dryness of 0.2 to 0.4 flows through the rising pipe, the flow mode becomes a cyclic flow, so that the gas-phase refrigerant blows through and the liquid-phase refrigerant rises and stays inside the pipe. However, since the dryness becomes 0.2 or less in the first supercooling heat exchanger and flows through the rising pipe, the flow mode becomes a churn flow and gas and liquid are mixed and flow, so the liquid flows in the first branch part. The phase refrigerant is stably supplied.

したがって、室内温度が高く、室内熱交換器で過冷却度が取れず、中間圧の冷媒の乾き度が高くなる場合において、立ち上がり配管部を液相冷媒が安定的に流れるため、圧縮機の圧縮部に冷却効果の大きい液相冷媒が十分に供給され、吐出温度の過昇を抑制できる。 Therefore, when the room temperature is high, the degree of supercooling cannot be obtained by the room heat exchanger, and the degree of dryness of the intermediate pressure refrigerant becomes high, the liquid phase refrigerant flows stably through the rising pipe portion, so that the compressor is compressed. A liquid-phase refrigerant having a large cooling effect is sufficiently supplied to the portion, and excessive rise in discharge temperature can be suppressed.

第3の発明は、第1の発明または第2の発明に記載の冷凍サイクル装置において、第1分岐部と流量調整弁との間に低圧冷媒と熱交換する第2過冷却熱交換器を設置していることを特徴とする冷凍サイクル装置である。 In the third invention, in the refrigeration cycle apparatus according to the first invention or the second invention, a second supercooling heat exchanger that exchanges heat with a low-pressure refrigerant is installed between the first branch portion and the flow control valve. It is a refrigeration cycle device characterized by the fact that it is used.

これによって、第1分岐部からインジェクション配管に気液二相状態で流入した冷媒は、第2過冷却熱交換器内で低温冷媒に放熱し過冷却液状態となる。乾き度が0.1以下の
気液二相状態で流量調整装置を流れる場合、室内空調運転の負荷変動によって飽和液状態と気液二相状態との間で状態変化が生じやすく、液単相から気液二相に変化する際の体積膨張により、流量調整装置を流れる冷媒流量の急激な低下が発生するが、第2過冷却熱交換器で放熱し過冷却状態となることで、冷媒流量の急激な低下が発生することなく、流量調整装置を流れる液相冷媒の流量が安定する。
As a result, the refrigerant that has flowed into the injection pipe from the first branch portion in a gas-liquid two-phase state dissipates heat to the low-temperature refrigerant in the second supercooling heat exchanger and becomes a supercooled liquid state. When flowing through the flow control device in a gas-liquid two-phase state with a dryness of 0.1 or less, a state change is likely to occur between the saturated liquid state and the gas-liquid two-phase state due to load fluctuations in indoor air conditioning operation, and the liquid single phase. Due to the volume expansion when changing from gas to liquid two-phase, the flow rate of the refrigerant flowing through the flow rate regulator suddenly drops, but the second supercooling heat exchanger dissipates heat and the refrigerant flows into an overcooled state. The flow rate of the liquid phase refrigerant flowing through the flow rate adjusting device is stable without a sudden decrease in the flow rate.

したがって、室内機の運転台数が減少し、第1圧力調整弁で中間圧まで減圧された冷媒が乾き度0.1以下の気液二相状態で第1分岐部からインジェクション配管に流入する場合において、流量調整装置を通過する前に過冷却液状態となるため、流量調整装置を流れる冷媒流量の急激な低下が発生せずに、圧縮機の圧縮部に冷却効果の大きい液相冷媒が十分に供給され、吐出温度の過昇を抑制できる。 Therefore, when the number of indoor units in operation decreases and the refrigerant decompressed to the intermediate pressure by the first pressure regulating valve flows into the injection pipe from the first branch in a gas-liquid two-phase state with a dryness of 0.1 or less. Since the state of the supercooled liquid is reached before passing through the flow rate adjusting device, the liquid phase refrigerant having a large cooling effect is sufficiently applied to the compression part of the compressor without a sudden decrease in the flow rate of the refrigerant flowing through the flow rate adjusting device. It is supplied and can suppress the excessive rise of the discharge temperature.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施形態によって、本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to this embodiment.

(実施の形態1)
図1に本発明の実施の形態1における冷凍サイクル装置の構成図を示す。
(Embodiment 1)
FIG. 1 shows a configuration diagram of a refrigeration cycle device according to a first embodiment of the present invention.

図1の冷凍サイクル装置の構成は、室外空調ユニット1台に対し、室内空調ユニットが1台接続した構成となっている。なお、冷凍サイクル装置の構成に関しては、図1に示したものに限定されない。例えば、室外空調ユニットは2台以上、室内空調ユニットも2台以上、並列に接続可能である。 The configuration of the refrigeration cycle device shown in FIG. 1 is such that one indoor air conditioning unit is connected to one outdoor air conditioning unit. The configuration of the refrigeration cycle device is not limited to that shown in FIG. For example, two or more outdoor air conditioning units and two or more indoor air conditioning units can be connected in parallel.

室外空調ユニット101において、インジェクション圧縮機111は冷媒を圧縮する圧縮機で、インジェクション圧縮機111で圧縮された冷媒は吐出管112に吐出される。室外熱交換器117は周囲の空気と空調用冷媒とが熱交換する熱交換器で、一般的には、フィン&チューブ型やマイクロチューブ型の熱交換器が利用される。 In the outdoor air conditioning unit 101, the injection compressor 111 is a compressor that compresses the refrigerant, and the refrigerant compressed by the injection compressor 111 is discharged to the discharge pipe 112. The outdoor heat exchanger 117 is a heat exchanger that exchanges heat between the ambient air and the air-conditioning refrigerant, and generally, a fin & tube type or microtube type heat exchanger is used.

室外空調ユニット101において、インジェクション配管118は冷凍サイクル装置から冷媒の一部をインジェクション圧縮機111にインジェクションする際に冷媒が流通する配管であり、流量調整装置119によりインジェクション配管118を流れる冷媒の流量を調整する。中間圧冷媒配管115は中間圧の冷媒が流れる配管であり、第1分岐部120でインジェクション配管118と中間圧冷媒配管115とが分岐する。気液分離器121は液冷媒およびガス冷媒を溜める耐圧容器であり、中間圧冷媒配管115に接続される。ガスバイパス管122はインジェクション配管118と気液分離器121とを接続する配管であり、インジェクション配管118と合流部123で接続している。図1で第1分岐部120は第1圧力調整装置114と気液分離器121との間に配置されているが、第2圧力調整装置116と気液分離器121との間に配置されても良い。 In the outdoor air conditioning unit 101, the injection pipe 118 is a pipe through which the refrigerant flows when a part of the refrigerant is injected from the refrigeration cycle device into the injection compressor 111, and the flow rate adjusting device 119 measures the flow rate of the refrigerant flowing through the injection pipe 118. adjust. The intermediate pressure refrigerant pipe 115 is a pipe through which an intermediate pressure refrigerant flows, and the injection pipe 118 and the intermediate pressure refrigerant pipe 115 are branched at the first branch portion 120. The gas-liquid separator 121 is a pressure-resistant container for storing the liquid refrigerant and the gas refrigerant, and is connected to the intermediate pressure refrigerant pipe 115. The gas bypass pipe 122 is a pipe that connects the injection pipe 118 and the gas-liquid separator 121, and is connected to the injection pipe 118 by a merging portion 123. In FIG. 1, the first branch portion 120 is arranged between the first pressure regulator 114 and the gas-liquid separator 121, but is arranged between the second pressure regulator 116 and the gas-liquid separator 121. Is also good.

室内空調ユニット102において、室内熱交換器113は周囲の空気と冷凍サイクル装置を循環する冷媒とが熱交換する熱交換器であり、第1圧力調整装置114により室内熱交換器113を流れる冷媒流量を調整する。室内熱交換器113として、一般的には、フィン&チューブ型やマイクロチューブ型の熱交換器が利用される。 In the indoor air conditioning unit 102, the indoor heat exchanger 113 is a heat exchanger in which the ambient air and the refrigerant circulating in the refrigeration cycle device exchange heat, and the flow rate of the refrigerant flowing through the indoor heat exchanger 113 by the first pressure regulator 114. To adjust. As the indoor heat exchanger 113, a fin & tube type or microtube type heat exchanger is generally used.

図2に本発明の実施の形態1におけるインジェクション回路の水平方向から見た立面図を示す。 FIG. 2 shows an elevational view of the injection circuit according to the first embodiment of the present invention as viewed from the horizontal direction.

図2において、第1分岐部120は合流部123に対して鉛直方向上側に設置されている。 In FIG. 2, the first branch portion 120 is installed on the upper side in the vertical direction with respect to the merging portion 123.

次に、本実施の形態における冷凍サイクル装置の動作を説明する。 Next, the operation of the refrigeration cycle apparatus according to the present embodiment will be described.

図1において、インジェクション圧縮機111で圧縮されて高圧になった冷媒はインジェクション圧縮機111から吐出され、吐出管112を経て室外空調ユニット101から出た後、室内空調ユニット102に入る。室内空調ユニット102に入った冷媒は室内熱交換器113で周囲の空気に熱を放出して凝縮し、高圧の過冷却液状態となった後、第1圧力調整装置114で中間圧力まで膨張し気液二相状態となって室内空調ユニット102から出る。 In FIG. 1, the refrigerant compressed by the injection compressor 111 and having a high pressure is discharged from the injection compressor 111, exits from the outdoor air conditioning unit 101 via the discharge pipe 112, and then enters the indoor air conditioning unit 102. The refrigerant that has entered the indoor air conditioning unit 102 releases heat to the surrounding air by the indoor heat exchanger 113, condenses it, becomes a high-pressure supercooled liquid state, and then expands to an intermediate pressure by the first pressure regulator 114. It is in a gas-liquid two-phase state and exits from the indoor air conditioning unit 102.

室内空調ユニット102から出た後、室外空調ユニット101に戻った冷媒は第1分岐部120で分岐し、一部はインジェクション配管118に流入し、残りの冷媒は気液分離器121に流入する。気液分離器121に流入した気液二相状態の冷媒は気相冷媒と液相冷媒とに分離され、気相冷媒はガスバイパス管122に流入し、液相冷媒は気液分離器121から出た後、第2圧力調整装置116に流入する。第2圧力調整装置116に流入した冷媒は、第2圧力調整装置116で減圧された後、室外熱交換器117で周囲の空気から熱を奪われて蒸発し、低圧の過熱ガス状態となってインジェクション圧縮機111に吸入される。 The refrigerant that has returned from the indoor air conditioning unit 102 and then returned to the outdoor air conditioning unit 101 branches at the first branch 120, a part of the refrigerant flows into the injection pipe 118, and the remaining refrigerant flows into the gas-liquid separator 121. The gas-liquid two-phase state refrigerant flowing into the gas-liquid separator 121 is separated into a gas-phase refrigerant and a liquid-phase refrigerant, the gas-phase refrigerant flows into the gas bypass pipe 122, and the liquid-phase refrigerant flows from the gas-liquid separator 121. After exiting, it flows into the second pressure adjusting device 116. The refrigerant flowing into the second pressure regulator 116 is decompressed by the second pressure regulator 116, and then heat is taken from the surrounding air by the outdoor heat exchanger 117 and evaporated, resulting in a low-pressure superheated gas state. It is sucked into the injection compressor 111.

インジェクション圧縮機111から吐出される冷媒の温度が高くなったときなどは、流量調整装置119を開とすることで、インジェクション配管118に気液二相状態の冷媒が流入し、インジェクション配管118に流入した冷媒は、開状態の流量調整装置119を通過した後、合流部123を通って、ガスバイパス管122を流れる気相冷媒と合流した後、インジェクション圧縮機111に供給される。 When the temperature of the refrigerant discharged from the injection compressor 111 becomes high, the flow rate adjusting device 119 is opened so that the refrigerant in a gas-liquid two-phase state flows into the injection pipe 118 and flows into the injection pipe 118. The resulting refrigerant passes through the open flow rate adjusting device 119, passes through the merging portion 123, merges with the gas phase refrigerant flowing through the gas bypass pipe 122, and is then supplied to the injection compressor 111.

ここで、第1分岐部120は合流部123に対して鉛直方向上側に設置されているため、第1分岐部120からインジェクション配管118に気液二相状態で流入した冷媒は、合流部123まで鉛直方向下側に向かって流れる。 Here, since the first branch portion 120 is installed on the upper side in the vertical direction with respect to the merging portion 123, the refrigerant flowing from the first branch portion 120 into the injection pipe 118 in a gas-liquid two-phase state reaches the merging portion 123. It flows downward in the vertical direction.

以上のように、本実施の形態においては、第1分岐部120を合流部123に対して鉛直方向上側に設置していることにより、第1分岐部120からインジェクション配管118に流入した気液二相状態の冷媒のうち、液相冷媒の流れが重力によって滞り、気相冷媒のみが吹き抜ける現象が生じず、鉛直方向下側に向かって、合流部123まで気液二相状態のまま滞りなく流れるようになる。 As described above, in the present embodiment, since the first branch portion 120 is installed on the upper side in the vertical direction with respect to the merging portion 123, the gas and liquid that has flowed into the injection pipe 118 from the first branch portion 120. Of the refrigerants in the phase state, the flow of the liquid-phase refrigerant is blocked by gravity, and only the gas-phase refrigerant does not blow through, and flows downward in the vertical direction to the confluence 123 in the gas-liquid two-phase state without interruption. Will be.

したがって、本発明の冷凍サイクル装置は、第1圧力調整装置114で中間圧まで減圧された気液二相状態の冷媒が第1分岐部120からインジェクション配管118に流入する場合において、気液二相状態のまま合流部123に到達し、インジェクション圧縮機111の圧縮部に冷却効果の大きい液相冷媒が十分に供給されるため、吐出温度の過昇を抑制できる。 Therefore, in the refrigerating cycle apparatus of the present invention, when the refrigerant in the gas-liquid two-phase state decompressed to the intermediate pressure by the first pressure adjusting device 114 flows into the injection pipe 118 from the first branch portion 120, the gas-liquid two-phase state Since the liquid phase refrigerant having a large cooling effect is sufficiently supplied to the confluence portion 123 in this state and to the compression portion of the injection compressor 111, it is possible to suppress an excessive rise in the discharge temperature.

なお、第1分岐部120と合流部123との高低差をhとすると、高低差hは第1分岐部120を流れる気液二相状態の冷媒とガスバイパス管122を流れる気相冷媒との混合割合に影響し、気液二相状態の冷媒の混合割合はインジェクション圧縮機111から吐出する冷媒の吐出温度低減効果ΔTに影響する。このとき、インジェクション圧縮機111から吐出する冷媒の吐出温度低減効果ΔTを必要量得るための高低差hは以下のようにして求めることができる。 Assuming that the height difference between the first branch portion 120 and the confluence portion 123 is h, the height difference h is the gas-liquid two-phase state refrigerant flowing through the first branch portion 120 and the gas-phase refrigerant flowing through the gas bypass pipe 122. The mixing ratio affects the mixing ratio, and the mixing ratio of the refrigerant in the gas-liquid two-phase state affects the discharge temperature reducing effect ΔT of the refrigerant discharged from the injection compressor 111. At this time, the height difference h for obtaining the required amount of the discharge temperature reducing effect ΔT of the refrigerant discharged from the injection compressor 111 can be obtained as follows.

第1分岐部120を流れる気液二相状態の冷媒の密度をρ’、流速をv’とし、ガスバイパス管122を流れる気相冷媒の密度をρ”、流速をv”とし、合流部123からインジェクション圧縮機111に流れる気液二相状態の冷媒の密度をρ、流速をvとし、重力
加速度をgとすると、合流部123の高さを基準とした第1分岐部120を流れる冷媒の位置エネルギーはρ’gh、第1分岐部120からインジェクション配管118に流れる冷媒の運動エネルギーは0.5×ρ’v’^2と表すことができ、ガスバイパス管122を流れる冷媒の運動エネルギーは0.5×ρ”v”^2と表すことができる。
The density of the gas-liquid two-phase state refrigerant flowing through the first branch 120 is ρ', the flow velocity is v', the density of the gas-phase refrigerant flowing through the gas bypass pipe 122 is ρ', the flow velocity is v', and the confluence 123 When the density of the gas-liquid two-phase state refrigerant flowing from the injection compressor 111 is ρ, the flow velocity is v, and the kinetic acceleration is g, the refrigerant flowing through the first branch 120 based on the height of the confluence 123 The potential energy can be expressed as ρ'gh, the kinetic energy of the refrigerant flowing from the first branch 120 to the injection pipe 118 can be expressed as 0.5 × ρ'v'^ 2, and the kinetic energy of the refrigerant flowing through the gas bypass pipe 122 can be expressed. It can be expressed as 0.5 × ρ “v” ^ 2.

合流部123で2つの流れが合流することを考慮すると、第1分岐部120を流れる気液二相状態の冷媒は合流部123における運動エネルギーに変換される分、合流部123の手前における静圧が下がり、ガスバイパス管122を流れる気相冷媒も合流部123における運動エネルギーに変換される分、合流部123の手前における静圧が下がる。 Considering that the two flows merge at the merging section 123, the gas-liquid two-phase state refrigerant flowing through the first branching section 120 is converted into kinetic energy at the merging section 123, so that the static pressure in front of the merging section 123 The gas phase refrigerant flowing through the gas bypass pipe 122 is also converted into kinetic energy at the merging portion 123, so that the static pressure in front of the merging portion 123 is lowered.

ここで、気液二相状態の冷媒の静圧の下がり幅が気相冷媒の静圧の下がり幅より大きいと、気液二相状態の冷媒は流れなくなるため、気液二相状態の冷媒の位置エネルギーで補うことで、気液二相状態の冷媒の合流部123の手前における静圧を高くする必要がある。すなわち、式(1)が成立する場合に気液二相状態の冷媒は合流部123に流入する。
ρ’gh≧0.5×ρ’v’^2−0.5×ρ”v”^2 ・・・式(1)
Here, if the amount of decrease in the static pressure of the refrigerant in the gas-liquid two-phase state is larger than the amount of decrease in the static pressure of the gas-phase refrigerant, the refrigerant in the gas-liquid two-phase state will not flow. It is necessary to increase the static pressure in front of the confluence portion 123 of the refrigerant in the gas-liquid two-phase state by supplementing with the position energy. That is, when the equation (1) is satisfied, the gas-liquid two-phase state refrigerant flows into the merging portion 123.
ρ'gh ≧ 0.5 × ρ'v' ^ 2-0.5 × ρ ”v” ^ 2 ・ ・ ・ Equation (1)

ここで、合流部123における気液二相状態の冷媒の質量流量比率をmとすると、気液二相状態の冷媒の質量流量比率mが大きいとv’は大きくなり、v”が小さくなるため、高低差hが大きくなることが明らかである。 Here, assuming that the mass flow rate ratio of the refrigerant in the gas-liquid two-phase state at the merging portion 123 is m, v'becomes large and v'is small when the mass flow rate ratio m of the refrigerant in the gas-liquid two-phase state is large. It is clear that the height difference h becomes large.

図3に高低差と気液二相状態の冷媒の質量流量比率の関係図を示す。図3は、式(1)に基づき高低差hと気液二相状態の冷媒の質量流量比率mとの関係を示したグラフである。冷却効果が得られる気液二相状態の冷媒の質量流量比率mが大きいほど、吐出温度低減効果ΔTが大きくなるため、図3から必要な吐出温度低減効果ΔTが得られる高低差hを求め、それ以上の高低差となるように第1分岐部120と合流部123を設置するのが良い。 FIG. 3 shows a relationship diagram between the height difference and the mass flow rate ratio of the refrigerant in the gas-liquid two-phase state. FIG. 3 is a graph showing the relationship between the height difference h and the mass flow rate ratio m of the refrigerant in the gas-liquid two-phase state based on the equation (1). The larger the mass flow rate ratio m of the refrigerant in the gas-liquid two-phase state where the cooling effect can be obtained, the larger the discharge temperature reduction effect ΔT. Therefore, the height difference h at which the required discharge temperature reduction effect ΔT can be obtained is obtained from FIG. It is preferable to install the first branch portion 120 and the confluence portion 123 so that the height difference is more than that.

このとき、合流部123からインジェクション圧縮機111に流れる気液二相冷媒の流量は、インジェクション機構部の構造により体積流量に大きく依存することから、体積流量が一定となると仮定して算出している。 At this time, the flow rate of the gas-liquid two-phase refrigerant flowing from the confluence unit 123 to the injection compressor 111 is calculated on the assumption that the volume flow rate is constant because it greatly depends on the volume flow rate due to the structure of the injection mechanism unit. ..

さらに、第1分岐部120から気液分離器121までの配管内の圧力損失をΔPとし、圧力損失ΔPを考慮して、式(2)で高低差hを求めても良い。
ρ’gh≧0.5×ρ’v’^2−0.5×ρ”v”^2+ΔP ・・・式(2)
Further, the pressure loss in the pipe from the first branch portion 120 to the gas-liquid separator 121 may be set to ΔP, and the height difference h may be obtained by the equation (2) in consideration of the pressure loss ΔP.
ρ'gh ≧ 0.5 × ρ'v' ^ 2-0.5 × ρ ”v” ^ 2 + ΔP ・ ・ ・ Equation (2)

(実施の形態2)
図4に本発明の実施の形態2における冷凍サイクル装置の構成図を示す。
(Embodiment 2)
FIG. 4 shows a configuration diagram of the refrigeration cycle apparatus according to the second embodiment of the present invention.

図4の冷凍サイクル装置の構成において、吸入バイパス管126は第1分岐部120と室外機接続部125との間から分岐し、吸入管128と接続する冷媒配管である。吸入バイパス流量調整装置127は吸入バイパス管126を流れる冷媒の流量を調整する装置で、第1過冷却熱交換器124はインジェクション配管118を流れる冷媒と熱交換が可能な熱交換器であり、吸入バイパス管126を流れる冷媒とインジェクション配管118を流れる冷媒の両方がそれぞれ仕切られた流路を流通する構造となっており、一般的には、プレート式熱交換器や二重管式熱交換器が利用される。 In the configuration of the refrigeration cycle device of FIG. 4, the suction bypass pipe 126 is a refrigerant pipe that branches from between the first branch portion 120 and the outdoor unit connection portion 125 and connects to the suction pipe 128. The suction bypass flow rate adjusting device 127 is a device that adjusts the flow rate of the refrigerant flowing through the suction bypass pipe 126, and the first supercooling heat exchanger 124 is a heat exchanger capable of heat exchange with the refrigerant flowing through the injection pipe 118. Both the refrigerant flowing through the bypass pipe 126 and the refrigerant flowing through the injection pipe 118 flow through the partitioned flow paths, and in general, plate heat exchangers and double pipe heat exchangers are used. Used.

図5に本発明の実施の形態2におけるインジェクション回路の水平方向から見た立面図を示す。 FIG. 5 shows an elevational view of the injection circuit according to the second embodiment of the present invention as viewed from the horizontal direction.

図5において、立ち上がり配管部129は室外機接続部125が合流部123より鉛直
方向下側に設置されている場合に、第1分岐部120が合流部123より鉛直方向上側となるように、室外機接続部125から第1分岐部120との間に設けられた冷媒配管である。また、第1過冷却熱交換器124は、立ち上がり配管部129または立ち上がり配管部129と室外機接続部125との間に設置されている。
In FIG. 5, the rising pipe portion 129 is outdoors so that when the outdoor unit connection portion 125 is installed vertically below the merging portion 123, the first branch portion 120 is vertically above the merging portion 123. It is a refrigerant pipe provided between the machine connection portion 125 and the first branch portion 120. Further, the first supercooling heat exchanger 124 is installed between the rising pipe portion 129 or the rising piping portion 129 and the outdoor unit connecting portion 125.

次に、本実施の形態における冷凍サイクル装置の動作を図4、図5を用いて説明する。 Next, the operation of the refrigeration cycle apparatus according to the present embodiment will be described with reference to FIGS. 4 and 5.

インジェクション圧縮機111で圧縮されて高圧になった冷媒はインジェクション圧縮機111から吐出され、吐出管112を経て室外空調ユニット101から出た後、室内空調ユニット102に入る。室内空調ユニット102に入った冷媒は室内熱交換器113で周囲の空気に熱を放出して凝縮し、高圧の過冷却液状態となった後、第1圧力調整装置114で中間圧力まで膨張し気液二相状態となって室内空調ユニット102から出る。 The refrigerant compressed by the injection compressor 111 and having a high pressure is discharged from the injection compressor 111, exits from the outdoor air conditioning unit 101 via the discharge pipe 112, and then enters the indoor air conditioning unit 102. The refrigerant that has entered the indoor air conditioning unit 102 releases heat to the surrounding air by the indoor heat exchanger 113, condenses it, becomes a high-pressure supercooled liquid state, and then expands to an intermediate pressure by the first pressure regulator 114. It is in a gas-liquid two-phase state and exits from the indoor air conditioning unit 102.

室内空調ユニット102から出た後、室外空調ユニット101に戻った冷媒の一部は、吸入バイパス管126に流入し、吸入バイパス流量調整装置127で減圧された後、第1過冷却熱交換器124で吸熱し過熱ガス状態となって吸入管128を流れる冷媒と合流する。室外空調ユニット101に戻った冷媒の残りは、立ち上がり配管部129に流入し、第1過冷却熱交換器124で放熱し第1過冷却熱交換器124から出る。第1過冷却熱交換器124から出た冷媒は第1分岐部120で分岐し、一部はインジェクション配管118に流入し、残りの冷媒は気液分離器121に流入する。気液分離器121に流入した気液二相状態の冷媒は気相冷媒と液相冷媒とに分離され、気相冷媒はガスバイパス管122に流入し、液相冷媒は気液分離器121から出た後、第2圧力調整装置116に流入する。第2圧力調整装置116に流入した冷媒は、第2圧力調整装置116で減圧された後、室外熱交換器117で周囲の空気から熱を奪われて蒸発し、低圧の過熱ガス状態となってインジェクション圧縮機111に吸入される。 A part of the refrigerant that has returned from the indoor air conditioning unit 102 and then returned to the outdoor air conditioning unit 101 flows into the suction bypass pipe 126, is depressurized by the suction bypass flow rate adjusting device 127, and then the first supercooling heat exchanger 124. It absorbs heat and becomes an overheated gas state, and merges with the refrigerant flowing through the suction pipe 128. The rest of the refrigerant returned to the outdoor air conditioning unit 101 flows into the rising pipe portion 129, dissipates heat in the first supercooling heat exchanger 124, and exits from the first supercooling heat exchanger 124. The refrigerant discharged from the first supercooling heat exchanger 124 branches at the first branch portion 120, a part of the refrigerant flows into the injection pipe 118, and the remaining refrigerant flows into the gas-liquid separator 121. The gas-liquid two-phase state refrigerant flowing into the gas-liquid separator 121 is separated into a gas-phase refrigerant and a liquid-phase refrigerant, the gas-phase refrigerant flows into the gas bypass pipe 122, and the liquid-phase refrigerant flows from the gas-liquid separator 121. After exiting, it flows into the second pressure adjusting device 116. The refrigerant flowing into the second pressure regulator 116 is decompressed by the second pressure regulator 116, and then heat is taken from the surrounding air by the outdoor heat exchanger 117 and evaporated, resulting in a low-pressure superheated gas state. It is sucked into the injection compressor 111.

インジェクション圧縮機111から吐出される冷媒の温度が高くなったときなどは、流量調整装置119を開とすることで、インジェクション配管118に気液二相状態の冷媒が流入し、インジェクション配管118に流入した冷媒は、開状態の流量調整装置119を通過した後、合流部123を通って、ガスバイパス管122を流れる気相冷媒と合流した後、インジェクション圧縮機111に供給される。 When the temperature of the refrigerant discharged from the injection compressor 111 becomes high, the flow rate adjusting device 119 is opened so that the refrigerant in a gas-liquid two-phase state flows into the injection pipe 118 and flows into the injection pipe 118. The resulting refrigerant passes through the open flow rate adjusting device 119, passes through the merging portion 123, merges with the gas phase refrigerant flowing through the gas bypass pipe 122, and is then supplied to the injection compressor 111.

以上のように、本実施の形態においては、第1分岐部120と室外機接続部125との間に立ち上がり配管部129を備え、立ち上がり配管部129または立ち上がり配管部129と室外機接続部125との間に吸入バイパス管126を流れる冷媒と熱交換する第1過冷却熱交換器124を設置しているため、乾き度が0.2〜0.4の気液二相状態で室外空調ユニット101に戻ってきた冷媒は、第1過冷却熱交換器124で吸入バイパス管126を流れる冷媒に放熱し乾き度が0.2以下となる。 As described above, in the present embodiment, the rising piping section 129 is provided between the first branching section 120 and the outdoor unit connecting section 125, and the rising piping section 129 or the rising piping section 129 and the outdoor unit connecting section 125 are provided. Since the first supercooling heat exchanger 124 that exchanges heat with the refrigerant flowing through the suction bypass pipe 126 is installed between the two, the outdoor air conditioner unit 101 is in a gas-liquid two-phase state with a dryness of 0.2 to 0.4. The refrigerant returned to is radiated to the refrigerant flowing through the suction bypass pipe 126 in the first supercooling heat exchanger 124, and the degree of dryness becomes 0.2 or less.

乾き度が0.2〜0.4の気液二相状態のまま立ち上がり配管部129を流れると、流動様式が環状流となるため、気相冷媒が配管内壁面に張り付いた液相冷媒の間を吹き抜けることで液相冷媒が立ち上がり配管部129の内部に滞ることがあるが、本実施の形態においては、第1過冷却熱交換器124で放熱し乾き度が0.2以下となって立ち上がり配管部129を流れることで、流動様式がチャーン流となり気液が混ざり合った流れとなるため、第1分岐部120に液相冷媒が安定的に供給される。 When the gas-liquid two-phase state with a dryness of 0.2 to 0.4 is maintained and flows through the piping section 129, the flow mode becomes a circular flow, so that the gas-phase refrigerant sticks to the inner wall surface of the pipe. The liquid-phase refrigerant may rise and stay inside the piping section 129 by blowing through the space, but in the present embodiment, heat is dissipated by the first supercooling heat exchanger 124 and the dryness becomes 0.2 or less. By flowing through the rising pipe portion 129, the flow mode becomes a churn flow and the flow is a mixture of gas and liquid, so that the liquid phase refrigerant is stably supplied to the first branch portion 120.

したがって、室内温度が高く、室内熱交換器113で過冷却度が取れず、中間圧の冷媒の乾き度が高くなる場合において、立ち上がり配管部129を液相冷媒が安定的に流れるため、インジェクション圧縮機111の圧縮部に冷却効果の大きい液相冷媒が十分に供給され、吐出温度の過昇を抑制できる。 Therefore, when the indoor temperature is high, the degree of supercooling cannot be obtained by the indoor heat exchanger 113, and the degree of dryness of the intermediate pressure refrigerant becomes high, the liquid phase refrigerant flows stably through the rising pipe portion 129, so that injection compression is performed. A liquid-phase refrigerant having a large cooling effect is sufficiently supplied to the compressed portion of the machine 111, and excessive rise in the discharge temperature can be suppressed.

(実施の形態3)
図6に本発明の実施の形態3における冷凍サイクル装置の構成図を示す。
(Embodiment 3)
FIG. 6 shows a configuration diagram of the refrigeration cycle apparatus according to the third embodiment of the present invention.

図6の冷凍サイクル装置の構成において、第2過冷却熱交換器130は第1分岐部120から分岐した冷媒と吸入管128を流れる冷媒とで熱交換する熱交換器で、流量調整装置119と第1分岐部120との間に設置されている。 In the configuration of the refrigeration cycle device of FIG. 6, the second supercooling heat exchanger 130 is a heat exchanger that exchanges heat between the refrigerant branched from the first branch portion 120 and the refrigerant flowing through the suction pipe 128, and is the same as the flow rate adjusting device 119. It is installed between the first branch portion 120 and the first branch portion 120.

次に、本実施の形態における冷凍サイクル装置の動作を説明する。 Next, the operation of the refrigeration cycle apparatus according to the present embodiment will be described.

図6において、インジェクション圧縮機111で圧縮されて高圧になった冷媒はインジェクション圧縮機111から吐出され、吐出管112を経て室外空調ユニット101から出た後、室内空調ユニット102に入る。室内空調ユニット102に入った冷媒は室内熱交換器113で周囲の空気に熱を放出して凝縮し、高圧の過冷却液状態となった後、第1圧力調整装置114で中間圧力まで膨張し気液二相状態となって室内空調ユニット102から出る。 In FIG. 6, the refrigerant compressed by the injection compressor 111 and having a high pressure is discharged from the injection compressor 111, exits from the outdoor air conditioning unit 101 via the discharge pipe 112, and then enters the indoor air conditioning unit 102. The refrigerant that has entered the indoor air conditioning unit 102 releases heat to the surrounding air by the indoor heat exchanger 113, condenses it, becomes a high-pressure supercooled liquid state, and then expands to an intermediate pressure by the first pressure regulator 114. It is in a gas-liquid two-phase state and exits from the indoor air conditioning unit 102.

室外空調ユニット101に戻った冷媒は第1分岐部120で分岐し、一部はインジェクション配管118に流入し、第2過冷却熱交換器130で吸入管128を流れる冷媒に放熱した後、流量調整装置119を経て合流部123でガスバイパス管122を流れる冷媒と合流し、インジェクション圧縮機111に流入する。室外空調ユニット101に戻った冷媒の残りは気液分離器121に流入する。 The refrigerant returned to the outdoor air conditioning unit 101 branches at the first branch 120, a part of the refrigerant flows into the injection pipe 118, and the second supercooling heat exchanger 130 dissipates heat to the refrigerant flowing through the suction pipe 128, and then adjusts the flow rate. It merges with the refrigerant flowing through the gas bypass pipe 122 at the merging portion 123 via the device 119 and flows into the injection compressor 111. The rest of the refrigerant returned to the outdoor air conditioning unit 101 flows into the gas-liquid separator 121.

気液分離器121に流入した気液二相状態の冷媒は気相冷媒と液相冷媒とに分離され、気相冷媒はガスバイパス管122に流入し、液相冷媒は気液分離器121から出た後、第2圧力調整装置116に流入する。第2圧力調整装置116に流入した冷媒は、第2圧力調整装置116で減圧された後、室外熱交換器117で周囲の空気から熱を奪われて蒸発し、低圧の過熱ガス状態となってインジェクション圧縮機111に吸入される。 The gas-liquid two-phase state refrigerant flowing into the gas-liquid separator 121 is separated into a gas-phase refrigerant and a liquid-phase refrigerant, the gas-phase refrigerant flows into the gas bypass pipe 122, and the liquid-phase refrigerant flows from the gas-liquid separator 121. After exiting, it flows into the second pressure adjusting device 116. The refrigerant flowing into the second pressure regulator 116 is decompressed by the second pressure regulator 116, and then heat is taken from the surrounding air by the outdoor heat exchanger 117 and evaporated, resulting in a low-pressure overheated gas state. It is sucked into the injection compressor 111.

インジェクション圧縮機111から吐出される冷媒の温度が高くなったときなどは、流量調整装置119を開とすることで、インジェクション配管118に気液二相状態の冷媒が流入し、インジェクション配管118に流入した冷媒は、開状態の流量調整装置119を通過した後、合流部123を通って、ガスバイパス管122を流れる気相冷媒と合流した後、インジェクション圧縮機111に供給される。 When the temperature of the refrigerant discharged from the injection compressor 111 becomes high, the flow rate adjusting device 119 is opened so that the refrigerant in a gas-liquid two-phase state flows into the injection pipe 118 and flows into the injection pipe 118. The resulting refrigerant passes through the open flow rate adjusting device 119, passes through the merging portion 123, merges with the gas phase refrigerant flowing through the gas bypass pipe 122, and is then supplied to the injection compressor 111.

以上のように、本実施の形態においては、流量調整装置119と第1分岐部120との間に第2過冷却熱交換器130を備えているため、気液二相状態で室外空調ユニット101に戻ってきた冷媒は、第2過冷却熱交換器130で吸入管128を流れる冷媒に放熱し過冷却液状態となる。 As described above, in the present embodiment, since the second supercooling heat exchanger 130 is provided between the flow rate adjusting device 119 and the first branching portion 120, the outdoor air conditioning unit 101 is in a gas-liquid two-phase state. The refrigerant returned to the above heat is radiated to the refrigerant flowing through the suction pipe 128 in the second supercooling heat exchanger 130, and becomes a supercooled liquid state.

飽和液状態に近い乾き度0.1以下の気液二相状態で流量調整装置119を流れる場合、室内空調運転の負荷変動によって飽和液状態と気液二相状態との間で状態変化が生じやすく、液単相から気液二相に変化する際の体積膨張により、流量調整装置119を流れる冷媒流量の急激な低下が発生する。しかし、本実施の形態においては、第2過冷却熱交換器130で吸入管128を流れる冷媒に放熱し過冷却液状態となった後に流量調整装置119を流れるため、冷媒流量の急激な低下は発生せずに流量が安定し、第1分岐部120に液相冷媒が安定的に供給される。 When flowing through the flow rate adjusting device 119 in a gas-liquid two-phase state with a dryness of 0.1 or less, which is close to the saturated liquid state, a state change occurs between the saturated liquid state and the gas-liquid two-phase state due to the load fluctuation of the indoor air conditioning operation. It is easy, and the volumetric expansion when changing from a liquid single phase to a gas-liquid two phase causes a sharp decrease in the flow rate of the refrigerant flowing through the flow rate adjusting device 119. However, in the present embodiment, since the second supercooling heat exchanger 130 dissipates heat to the refrigerant flowing through the suction pipe 128 and flows through the flow rate adjusting device 119 after becoming a supercooled liquid state, the sudden drop in the refrigerant flow rate does not occur. The flow rate is stable without being generated, and the liquid phase refrigerant is stably supplied to the first branch portion 120.

したがって、第1分岐部120からインジェクション配管118に流入する冷媒の乾き度が小さく、室内機の空調負荷が変動に伴って、飽和液状態と気液二相状態との間で状態
変化が生じる場合において、液相冷媒を合流部123に安定的に供給できるため、圧縮機の圧縮部に冷却効果の大きい液相冷媒が十分に供給され、吐出温度の過昇を抑制できる。
Therefore, when the dryness of the refrigerant flowing from the first branch 120 to the injection pipe 118 is small and the air conditioning load of the indoor unit fluctuates, a state change occurs between the saturated liquid state and the gas-liquid two-phase state. Since the liquid-phase refrigerant can be stably supplied to the merging portion 123, the liquid-phase refrigerant having a large cooling effect can be sufficiently supplied to the compression portion of the compressor, and excessive rise in the discharge temperature can be suppressed.

以上のように、本発明にかかる冷凍サイクル装置は、第1圧力調整装置114で中間圧まで減圧された気液二相状態の冷媒が第1分岐部120からインジェクション配管118に流入する場合において、液相冷媒の流れが滞り、インジェクション圧縮機111に液相冷媒が供給されなくなるのを抑制することが可能となるので、室内機が空調運転する際に、圧縮機の吐出ガス冷媒の温度が過度に上昇し、モーター巻線温度が上昇してモーター効率が低下するのを抑制し、高効率に運転できるものとして好適に利用することができる。 As described above, in the refrigerating cycle apparatus according to the present invention, when the refrigerant in the gas-liquid two-phase state decompressed to the intermediate pressure by the first pressure adjusting device 114 flows into the injection pipe 118 from the first branch portion 120, Since it is possible to prevent the flow of the liquid phase refrigerant from being blocked and the liquid phase refrigerant from being supplied to the injection compressor 111, the temperature of the discharge gas refrigerant of the compressor becomes excessive when the indoor unit operates in air conditioning. It can be suitably used as a device capable of operating with high efficiency by suppressing the increase in the motor winding temperature and the decrease in the motor efficiency.

101 室外空調ユニット
102 室内空調ユニット
111 インジェクション圧縮機
112 吐出管
113 室内熱交換器
114 第1圧力調整装置
115 中間圧冷媒配管
116 第2圧力調整装置
117 室外熱交換器
118 インジェクション配管
119 流量調整装置
120 第1分岐部
121 気液分離器
122 ガスバイパス管
123 合流部
124 第1過冷却熱交換器
125 室外機接続部
126 吸入バイパス管
127 吸入バイパス流量調整装置
128 吸入管
129 立ち上がり配管部
130 第2過冷却熱交換器
101 Outdoor air conditioning unit 102 Indoor air conditioning unit 111 Injection compressor 112 Discharge pipe 113 Indoor heat exchanger 114 First pressure regulator 115 Intermediate pressure refrigerant pipe 116 Second pressure regulator 117 Outdoor heat exchanger 118 Injection pipe 119 Flow control device 120 1st branch 121 Gas-liquid separator 122 Gas bypass pipe 123 Confluence part 124 1st overcooling heat exchanger 125 Outdoor unit connection part 126 Suction bypass pipe 127 Suction bypass flow control device 128 Suction pipe 129 Rising pipe part 130 2nd excess Cooling heat exchanger

Claims (3)

圧縮機と室内熱交換器と第1圧力調整装置と第2圧力調整装置と室外熱交換器とインジェクション配管とを備え、前記圧縮機と前記室内熱交換器と前記第1圧力調整装置と前記第2圧力調整装置と前記室外熱交換器とが環状に接続されている冷凍サイクル装置において、前記第1圧力調整装置と前記第2圧力調整装置とを接続する中間圧冷媒配管に第1分岐部と気液分離器とを備え、前記第1分岐部と前記圧縮機の圧縮部とが前記インジェクション配管で接続され、前記気液分離器は前記気液分離器で分離されたガス冷媒が流れるガスバイパス配管を備え、前記ガスバイパス配管は前記インジェクション配管とは合流部で接続され、前記第1分岐部は、前記合流部より鉛直方向上側に設置していることを特徴とする冷凍サイクル装置。 It is provided with a compressor, an indoor heat exchanger, a first pressure regulator, a second pressure regulator, an outdoor heat exchanger, and an injection pipe, and includes the compressor, the indoor heat exchanger, the first pressure regulator, and the first. 2 In a refrigeration cycle device in which the pressure regulator and the outdoor heat exchanger are connected in a ring shape, a first branch portion is provided in an intermediate pressure refrigerant pipe connecting the first pressure regulator and the second pressure regulator. A gas-liquid separator is provided, the first branch portion and the compression portion of the compressor are connected by the injection pipe, and the gas-liquid separator is a gas bypass through which the gas refrigerant separated by the gas-liquid separator flows. A refrigeration cycle apparatus including a pipe, the gas bypass pipe is connected to the injection pipe at a confluence, and the first branch is installed vertically above the confluence. 前記第1分岐部と前記第1圧力調整装置との間に室外機接続部を備え、前記第1分岐部と前記室外機接続部との間に立ち上がり配管部を備え、前記立ち上がり配管部と前記室外機接続部との間に低圧冷媒と熱交換する第1過冷却熱交換器を設置していることを特徴とする請求項1に記載の冷凍サイクル装置。 An outdoor unit connecting portion is provided between the first branch portion and the first pressure adjusting device, a rising piping portion is provided between the first branch portion and the outdoor unit connecting portion, and the rising piping portion and the above are described. The refrigeration cycle apparatus according to claim 1, wherein a first supercooling heat exchanger that exchanges heat with a low-pressure refrigerant is installed between the outdoor unit connection portion. 前記合流部と前記第1分岐部との間に流量調整装置を備え、前記第1分岐部と前記流量調整装置との間に低圧冷媒と熱交換する第2過冷却熱交換器を設置していることを特徴とする請求項1または請求項2に記載の冷凍サイクル装置。 A flow rate adjusting device is provided between the merging portion and the first branching portion, and a second overcooling heat exchanger that exchanges heat with a low-pressure refrigerant is installed between the first branching portion and the flow rate adjusting device. The refrigeration cycle apparatus according to claim 1 or 2, wherein the refrigeration cycle apparatus is provided.
JP2018009865A 2018-01-24 2018-01-24 Refrigeration cycle equipment Active JP6811379B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018009865A JP6811379B2 (en) 2018-01-24 2018-01-24 Refrigeration cycle equipment
EP18189439.5A EP3517859B1 (en) 2018-01-24 2018-08-17 Refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018009865A JP6811379B2 (en) 2018-01-24 2018-01-24 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2019128094A JP2019128094A (en) 2019-08-01
JP6811379B2 true JP6811379B2 (en) 2021-01-13

Family

ID=63294126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018009865A Active JP6811379B2 (en) 2018-01-24 2018-01-24 Refrigeration cycle equipment

Country Status (2)

Country Link
EP (1) EP3517859B1 (en)
JP (1) JP6811379B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023605A (en) * 2019-12-20 2020-04-17 北京工业大学 High-pressure-ratio refrigeration compressor flow-dividing gas-liquid co-inlet gas supplementing port cooperative cooling method
CN115183404B (en) * 2022-07-11 2024-06-07 青岛海尔空调电子有限公司 Control method of air conditioning system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2558581Y2 (en) * 1990-09-12 1997-12-24 日本建鐵株式会社 Refrigeration equipment
JPH1019392A (en) * 1996-07-05 1998-01-23 Sanyo Electric Co Ltd Refrigerating equipment
JP4459776B2 (en) * 2004-10-18 2010-04-28 三菱電機株式会社 Heat pump device and outdoor unit of heat pump device
JP5213817B2 (en) * 2009-09-01 2013-06-19 三菱電機株式会社 Air conditioner
US10088202B2 (en) * 2009-10-23 2018-10-02 Carrier Corporation Refrigerant vapor compression system operation
JP6134477B2 (en) * 2012-01-10 2017-05-24 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Refrigeration equipment and refrigerator unit
JP5516712B2 (en) * 2012-05-28 2014-06-11 ダイキン工業株式会社 Refrigeration equipment
WO2014128831A1 (en) * 2013-02-19 2014-08-28 三菱電機株式会社 Air conditioning device
CN106705508A (en) * 2015-08-07 2017-05-24 丹佛斯(天津)有限公司 Flash tank and refrigerating system

Also Published As

Publication number Publication date
JP2019128094A (en) 2019-08-01
EP3517859B1 (en) 2021-09-29
EP3517859A1 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
JP4626531B2 (en) Ejector refrigeration cycle
US7721569B2 (en) Method and apparatus for control of carbon dioxide gas cooler pressure by use of a capillary tube
CN102301189B (en) Air Conditioner And Method Of Returning Refrigerating Machine Oil
JP2007521456A (en) Refrigeration system
EP3217123A1 (en) Air-conditioning/hot water-supply system
JP6811379B2 (en) Refrigeration cycle equipment
JP3125778B2 (en) Air conditioner
JP4899641B2 (en) Mixed fluid separator
JP4952830B2 (en) Ejector refrigeration cycle
JP6087610B2 (en) Air conditioner
JP2018004093A (en) Accumulator of refrigeration cycle device
WO2012147290A1 (en) Gas-liquid separator and refrigerating cycle apparatus equipped with gas-liquid separator
JP6273838B2 (en) Heat exchanger
JP2018059673A (en) Heat exchanger and heat pump device using the same
JP2013092293A (en) Refrigerating device
US20240230167A9 (en) Refrigeration cycle apparatus
JP2010203733A (en) Air conditioning device
EP3217117A1 (en) Air-conditioning/hot-water supply system
JP6391832B2 (en) Air conditioner and heat source machine
JP4082317B2 (en) Air conditioner and heat source unit of air conditioner
JP5908177B1 (en) Refrigeration cycle apparatus, air conditioner, and control method for refrigeration cycle apparatus
JPWO2021038852A1 (en) Refrigeration cycle device
JP2013092292A (en) Refrigerating device
JP5393623B2 (en) Gas-liquid separator and refrigeration cycle apparatus equipped with the same
WO2022054418A1 (en) Air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R151 Written notification of patent or utility model registration

Ref document number: 6811379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151