JP6463793B2 - 入力電流を測定するためのシステム - Google Patents

入力電流を測定するためのシステム Download PDF

Info

Publication number
JP6463793B2
JP6463793B2 JP2017082981A JP2017082981A JP6463793B2 JP 6463793 B2 JP6463793 B2 JP 6463793B2 JP 2017082981 A JP2017082981 A JP 2017082981A JP 2017082981 A JP2017082981 A JP 2017082981A JP 6463793 B2 JP6463793 B2 JP 6463793B2
Authority
JP
Japan
Prior art keywords
current
voltage
circuit
input terminal
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017082981A
Other languages
English (en)
Other versions
JP2017201306A (ja
Inventor
コー・ベルブルク
ロベルト・モッセル
カウストゥーブ・ブラボード・パディー
エリク・デ・コク
ウィム・ビス
Original Assignee
マッパー・リソグラフィー・アイピー・ビー.ブイ.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マッパー・リソグラフィー・アイピー・ビー.ブイ. filed Critical マッパー・リソグラフィー・アイピー・ビー.ブイ.
Publication of JP2017201306A publication Critical patent/JP2017201306A/ja
Application granted granted Critical
Publication of JP6463793B2 publication Critical patent/JP6463793B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/14Measuring arrangements characterised by the use of electric or magnetic techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/2403Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by moving plates, not forming part of the capacitor itself, e.g. shields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric
    • G03F9/7053Non-optical, e.g. mechanical, capacitive, using an electron beam, acoustic or thermal waves

Description

本発明は、距離を測定するための容量センサに関し、詳細には、リソグラフィ装置においてターゲットまでの距離を測定するための容量センサに関する。
多くの用途において、電流を非常に正確に測定することが重要である。例えば、荷電粒子および光学的なリソグラフィマシンならびに検査機械では、例えば通常は機械の最終レンズ素子から、露出または検査されるべきウェハまたは他のターゲットの表面までの距離の高度に精密な測定が必要である。これらおよびその他の可動部を有する機では、しばしば、様々な部分の正確なアラインメントが必要であり、これは可動部から基準点までの距離を測定することによって達成することができる。微細な位置または距離の測定を必要とするこのような用途には、容量センサを用いることができる。容量センサにエネルギー供給されたときは、センサ素子と対向する表面との間の距離に応じて変化する電流がセンサを通って流れる。この電流の正確な測定は、測定される距離を精密に求めるために用いることができる。
電流を測定するのに、入力として測定されるべき電流を有し、しばしばデジタル信号へとさらに処理および変換可能な電圧の形で、出力として測定信号を供給する測定回路を用いることができる。このような測定回路における誤差の一因となるいくつかの要因がある。これらには、測定回路の入力回路での浮遊インピーダンス、入力回路の制約されたコモンモード除去比(CMRR)、およびコモンモードには依存しない測定回路の伝達関数の不正確さが含まれる。このような浮遊インピーダンスの値は、例えば温度などの要因に応じて変化する場合があり、また、入力上の外乱(disturbance)も時間と共に変化し得る。このため、これらの影響を補償することが難しくなる。
容量センサを駆動し所望の測定信号を生成するために用いられる電子測定回路をセンサからある距離に配置することがしばしば必要であり、これは、センサが厳しい環境に置かれること、またはセンサの近くにこれらの回路を配置するのに適当な場所がないことに起因する。EUVおよび荷電粒子システムなどの最新のリソグラフィ用途では、通常、センサは汚染および外部からの外乱の影響を非常に受けやすい真空環境内に置かれ、これは電子回路が真空環境に置かれた場合は電子回路からの放熱の問題を生じ、このような回路の保守のためのアクセスを妨げる。
センサと、離れて配置された駆動および測定回路との間の配線接続により、寄生容量がシステムに導入され、この寄生容量はセンサの読取り値に影響を与える。測定回路がセンサプローブのところに配置可能であり得るならば、センサ電流は直接にかつ精密に測定可能になり得る。ケーブルシステムによって導入されるこれらの並列寄生容量のために、離れて配置された測定回路を有するシステムでは、センサ内の電流の流れを測定することは、しばしば、避けられる。従来の解決策では、通常はセンサと配線の組み合わさった設備を較正することによって、考慮に入れる必要がある測定誤差が導入されている。配線接続が長くなるほど、これらの問題はより厳しくなる。
センサをセンサ配線との組合せで較正するという要件により、センサシステムの設計および構築における融通性が低下し、コストが上昇し、さらにセンサまたはその配線が交換されるたびに再較正するという要件が加わり、これにより、このような交換を複雑で時間のかかる、かつ費用のかかるものとしている。
本発明は、上記の弱点を解決または軽減して、電流源からの入力電流を測定し、電流測定信号を生成する改善された測定システムを提供することを目的とし、この測定システムは、電流源に接続された第1の入力端子と、電流測定信号を供給するための出力端子とを有する、電流測定回路を備える。電流測定回路はさらに、電流測定回路に電力供給するための電源から1つまたは複数の電圧を受け取るように構成された1つまたは複数の電源端子を備える。電流測定回路はまた、1つまたは複数の電源端子に結合された第1の電圧源であって、1つまたは複数の電源端子に外乱電圧を供給し、外乱電圧は第1の入力端子における電圧を表す、第1の電圧源を備える。
測定システムはさらに、電流測定信号を生成するために、電流測定回路の出力端子における信号から、第1の電圧源によって生成された電圧を減算するように構成された差分回路を備える。
第1の電圧源は、電流源を形成するように負荷を駆動するために、電流測定回路の第1の入力端子に接続することができる。負荷は、容量センサとターゲットの間の距離に応じて変化する電流を生成するための容量センサを備えることができる。負荷は、センサワイヤとシールド導体とを備えるケーブルによって電流測定回路の第1の入力端子に接続することができ、センサワイヤは負荷と第1の入力端子の間に直列に接続され、シールド導体は第1の電圧源に接続される。
第1の電圧源の出力端子は、1つまたは複数のコンデンサを通じて電流測定回路の1つまたは複数の電源端子に結合することができる。電流測定回路は電流電圧変換器を備えることができる。
電流測定回路は演算増幅器を備えることができ、演算増幅器の負入力端子は電流測定回路の第1の入力端子として働き、演算増幅器の出力端子は電流測定回路の出力端子として働き、演算増幅器はさらに正入力端子と1つまたは複数の電源端子とをさらに備え、演算増幅器の正入力端子は演算増幅器の1つまたは複数の電源端子に電気的に接続される。演算増幅器の正入力端子は、1つまたは複数のコンデンサを通じて、演算増幅器の1つまたは複数の電源端子に電気的に接続することができる。
第1の電圧源は三角波形を有する電圧を生成するために用いることができ、電流源は実質的に矩形の波形を有する電流を生成することができる。
他の態様では本発明は、電流源からの入力電流を測定し、電流測定信号を生成する方法に関する。方法は、電流測定回路の第1の入力端子に入力電流を供給するステップであって、測定回路は、電流測定回路に電力供給するために電源から1つまたは複数の電圧を受け取るように構成された1つまたは複数の電源端子を有する、ステップと、外乱電圧を1つまたは複数の電源端子に供給するステップであって、外乱電圧は第1の入力端子における電圧を表す、ステップと、電流測定回路の第1の入力端子における入力電流を表す出力信号を、電流測定回路の出力端子に生成するステップとを含む。
方法はさらに、電流測定信号を生成するために、電流測定回路の出力端子における出力信号から外乱電圧を減算することを含むことができる。方法はまた、電流測定回路の第1の入力端子において入力電流を生成するように、電圧を用いて負荷を駆動することを含むことができ、負荷は、容量センサであって、容量センサとターゲットの間の距離に応じて変化する電流を生成するための、容量センサを備えることができる。
方法はさらに、センサワイヤとシールド導体とを備えるケーブルによって、負荷を電流測定回路の第1の入力端子に接続することを含むことができ、センサワイヤは負荷と第1の入力端子の間に直列に接続され、シールド導体は負荷を駆動するために用いられるのと実質的に同じ電圧でエネルギー供給される。
外乱電圧は、1つまたは複数のコンデンサを通じて1つまたは複数の電源端子に供給することができ、1つまたは複数のインダクタによって電源電圧から分離することができる。
本発明の様々な態様について、図面に示される実施形態を参照してさらに説明する。
容量センサプローブおよび接地された導電性ターゲットの図。 接地されていないターゲットの場合の差動測定構成における2つの容量センサプローブの図。 電圧源および電流測定回路を組み合わせた、アクティブ保護回路および同軸ケーブルの図。 差動センサ対構成において電圧源、およびセンサワイヤとシールド導体の両方を駆動するシールドドライバ有する測定回路の図。 電圧源内に一体化されたシールドドライバを有する、図4の測定回路の変形形態の図。 図4または図5の測定回路のために用いられる三軸ケーブルの図。 図7Aは、容量センサを駆動するための三角AC電圧波形の図。図7Bは、図7Aの三角電圧波形から結果として生じる理想的なAC電流波形の図。図7Cは、図7Aの三角電圧波形から結果として実際に生じるAC電流波形の図。 三軸センサケーブルに接続された薄膜容量センサの断面図。 薄膜容量センサ対の断面図。 図9Aの薄膜容量センサ対の上面図。 荷電粒子リソグラフィマシンにおける距離測定のために実現された容量センサおよび測定回路の簡略図。 可動部の位置測定のための複数の組の薄膜容量センサを有するモジュール型リソグラフィシステムの簡略図。 電源内に供給された入力電圧外乱を有する電流測定回路の簡略化した機能図。 負荷を電圧源によって駆動する、図12の電流測定回路の簡略図。 演算増幅器を用いて実現された電流測定回路の簡略図。 容量センサからの電流を測定するための図14の電流測定回路の簡略図。 図13〜15の電流測定回路に対する信号の波形図である。 電流測定システムの一実施形態の簡略化した回路図である。 図17の回路において生成される波形の例である。 電流測定システムのための電子回路のレイアウトの簡略化したブロック図である。
詳細な説明
以下は、図面を参照して例のみとして示される、本発明の様々な実施形態の説明である。
容量センサは、2つの導電性表面間に確立された一様な電界を用いる。短い距離に対しては、印加される電圧は表面間の距離に比例する。単一プレートセンサは、単一のセンサプレートと導電性ターゲット表面との間の距離を測定する。
図1は、接地された導電性ターゲット2の位置、またはそれまでの分離距離を測定する単一の容量センサプローブ1を示す。AC電流が供給されたときは、電流は、経路3に沿ってセンサからセンサ−ターゲット間容量4を通ってターゲットに、そしてターゲットからターゲット−接地間インピーダンス5を通って接地に流れることになる。センサの両端の電圧は、センサプローブとターゲットの表面とを隔てる距離に応じて変化することになり、この電圧を測定することでターゲット位置、またはセンサプローブからターゲットまでの距離の測定値がもたらされる。測定の精度は、センサがいかに精密にセンサ−ターゲット間容量4を測定できるかに依存する。
図2は、ターゲット2の位置またはそれまでの分離距離の差動測定のための、2つの容量センサプローブ1aおよび1bの構成を示す。センサには180°の位相オフセットを有するAC電流が供給され、それにより経路6に沿って一方のセンサからセンサ−ターゲット間容量4aを通ってターゲットに、そしてターゲットから他方のセンサ−ターゲット間容量4bを通って他方のセンサに電流が流れることになる。位相の異なる信号を用いて2つのセンサを駆動するこの構成は、ターゲットから接地を通る電流の流れを避けるために効果的であり、ターゲット−接地間インピーダンスの影響を最小にする。これはまた、接地された戻り経路を必要とせずに一方のセンサから他方のセンサに電流が流れることを可能にするので、接地されていないターゲットの場合に有用である。
容量センサは、AC電圧源またはAC電流源によってエネルギー供給することができ、結果としてのセンサの両端の電圧またはセンサを通る電流が測定される。生成される測定信号は、センサのセンサ−ターゲット間容量に依存する。システムは、測定コンデンサに対して、および電流/電圧を測定するように較正することができる。
容量センサが通常、工業用途に応用される環境はしばしば、容量センサを駆動するための電流または電圧源、およびセンサからの信号を処理するための測定回路のためには適さない場所である。結果として駆動源および測定回路は通常はセンサから離れて配置され、センサへのケーブル接続を必要とする。センサと、離れた回路との間のケーブル接続は、ケーブルが短いときでさえも、追加の望ましくない容量をシステムに導入することになる。
図3はこのようなケーブル接続、およびケーブルによってセンサシステムに導入される容量を示す図である。センサ−ターゲット間容量4は、測定すべき容量であり(センサ容量とも呼ばれる)、これはセンサとターゲットの間の距離に依存する。ケーブル30は、中心導体31と同軸シールド導体32とを備え、ケーブルによりセンサワイヤ31とシールド32の間にケーブル容量と呼ばれる浮遊容量36、およびシールド32と接地の間に浮遊接地容量37が導入される。
電圧源20は電流測定回路21を通してセンサワイヤ31の一方の端部に接続され、容量センサの測定電極はセンサワイヤの他方の端部に接続される。電圧源20は容量センサ1にエネルギー供給するためにAC電圧を供給し、電流測定回路21は容量センサ1を通るセンサワイヤ31を流れる電流を測定する。センサワイヤ31を通って流れる電流はセンサ容量4に応じて変化し、センサ容量4はセンサによって測定される距離に応じて変化する。
センサワイヤ31を流れる電流は、センサ容量4を通って流れる電流による成分と、またケーブル容量36を通って流れる電流による成分とを含むことになる。大きな浮遊容量は、測定されることが望まれるセンサ容量を通って流れる電流と比較して、浮遊容量通って流れる電流の割合を増加させ、測定の感度を低下させるので、ケーブル容量36はセンサ容量4と比較して小さくするべきである。しかし通常はケーブル容量は大きく、センサシステム感度に悪影響を及ぼす。
ケーブル容量の影響を最小にするためにアクティブ保護を用いることができる。図3は、入力端がセンサワイヤ31の端部に接続され、出力端がシールド32に接続された、単位利得増幅器/バッファを備えるシールドドライバ24を有する従来型の構成を示す。シールドドライバ24は、センサワイヤ31上に存在するのと(本質的に)同じ電圧でシールド32にエネルギー供給する。センサワイヤ31およびシールド導体32は、それらの上にほとんど同じ電圧を有するので、それらの間には小さな電圧差だけがあり、ケーブル容量36を通る小さな電流の流れがあるだけで、導体間のケーブル容量36の影響は低減される。実際にはシールドドライバの利得は1.0の利得に近付くだけであり、いくらかの利得の偏移を予期しなければならない。このような利得の偏移は結果として、シールド32とセンサワイヤ31の間に小さな電圧差を生じ、それによりケーブル容量36の両端に電圧を生じる。これは容量36を通る電流の流れを引き起こし、センサシステムの感度を低下させる。長いケーブル(大きなケーブル容量を有する)および高い測定周波数の場合は、この構成はなお一層効果的でなくなる。
ケーブル−接地間の浮遊容量37を通る電流の流れは、シールドドライバ24によって供給される。シールドドライバ24への入力電流は、電流測定回路21によって測定される電流に寄与することになり結果として誤差を生じるが、シールドドライバは高い入力インピーダンスを有しその入力電流は比較的小さいので、結果としての誤差は小さい。しかし長いケーブルおよび高い測定周波数の場合は、この構成は実現するのが難しい。シールドドライバはまたいくらかの入力容量を有し、これは追加の電流を引き出すことになる。測定される容量はセンサ容量4と、これらの追加の誤差容量、すなわちシールドドライバ24の単位利得からの偏移に浮遊容量36を乗算したもの、およびシールドドライバ24の入力容量との合計である。
測定誤差は、図4に示されるように回路を構成し直すことによって低減することができる。この構成は、2つの容量センサを差動対構成において駆動するためのものである。ターゲット(またはターゲットの一部)が導体でない、あるいは接地から絶縁されている位置測定システムの場合は、第2のセンサ、および反転されたドライバを有する第2の測定回路を、図4に示されるような差動対構成において用いることができる。
電圧源20aの出力はシールドドライバ24aの入力端に接続され、シールドドライバ24aの出力端は電流測定回路21aの一方の端子に接続され、測定回路21aの他方の端子はセンサワイヤ31aに接続される。同じ構成が、電圧源20b、シールドドライバ24b、電流測定回路21b、およびセンサワイヤ31bに対して用いられる。電圧源20aおよび20bは、互いに180°だけ位相オフセットされたAC電圧波形を生成する。ターゲットは2つのセンサ容量4aおよび4bを通して、2つのセンサ1aおよび1bの間で交流を導通する。ターゲットは2つの測定システムに対して仮想接地のように振る舞い、これはセンサ容量4aと4bが等しい場合に最適となる。ターゲットの電位は、2つの電流測定値22aおよび22bの差が計算されるときに、コモンモード外乱として取り除かれることになる。
シールドドライバの入力端を電流測定の「前に」移動することによって、容量測定値からシールドドライバの入力容量が省かれ、したがって測定値からこの誤差の成分が除去される。これはまた、シールド導体に対するシールドドライバ出力のフィードフォワードと見なすことができる。電圧源出力は依然としてセンサワイヤに伝達され、またシールド導体の負荷となるようにセンサワイヤ電圧をバッファする代わりに、直接接続されてシールド導体を駆動する。シールドドライバを電圧源と測定回路の間に直列に接続することは、シールドドライバの単位利得からの偏移によって引き起こされる誤差を取り除くという追加の利点を有し、なぜならシールドドライバ出力はセンサワイヤ(測定回路を通して)とシールド導体の両方に接続されるからである。
図5は、図4と同じ構成を有するが、別々のシールドドライバ24a/24bが省かれ、この機能はシステム内のすべての容量を駆動するように電圧源20a/20bと一体化された、さらに改良されたものを示す。この構成は、センサワイヤとシールド導体の両方に対して同じドライバを用い、センサワイヤを流れる電流を測定する。結果としてのシステムは、従来型の構成に存在する測定誤差の発生源を除去しながら、簡潔性が得られる。
図4および図5の構成は、センサワイヤ31とシールド導体32の間の電圧差を事実上除去し、それによりケーブル容量36の両端には無視し得る程度の電圧があるだけとなる。これはケーブル容量36を通る電流を事実上除去し、回路21によって測定される電流は事実上センサ容量1を通る電流のみとなる。電流測定回路の入力インピーダンスは十分に低くなるので、センサワイヤおよびシールド導体に供給される電圧はほぼ等しくなる。
シールド32と接地の間の容量37を通る電流は、電圧源20または別々のシールドドライバ24から供給され、この電流は測定電流の一部とはならず、電圧源の出力における電圧に対して2次の効果を有するだけである。シールドドライバの単位利得からの偏移、およびシールドドライバの入力容量の影響は、この構成では共に除去される。
実際において図4および図5の構成は、結果としてシールド導体32を駆動し、シールドをセンサワイヤ31に結合し、それによりセンサワイヤ上の電圧はシールド上の電圧に追従する。これは、センサワイヤが駆動され、センサワイヤ上の電圧がシールド導体上に複製される、従来型の構成の逆である。この設計では、寄生容量による電流リークを考慮しながらセンサを通る電流を測定すること(ならびにそれによってセンサ容量および距離の値を測定すること)に主に焦点を向けることから、シールド導体電圧を操作することによって精密なセンサ電流測定のための適切な環境をもたらすことに主に焦点が変えられ、これが主要な問題であってセンサ電流を測定することはより小さな問題であることが認識される。
図4および図5の構成にはまた、近くのノイズの発生源からの干渉を低減するために、接地された外側シールド導体を追加することができる。図6は(内側)シールド導体32aの周りに配置された、接地された外側シールド導体33aを有するケーブル30aを示す。この実施形態でのケーブルは三軸ケーブルであり、接地されたシールド33aは最も外側の導体を形成する。接地されたシールドは好ましくは、例えば測定回路21aの近くのケーブルの離れた端部において別の接地に接続される。この接地はシールド接地であり、センサにおけるどの接地にも接続されないことが好ましい。他の近くのシステムとの干渉は、上述のような各ケーブルの周りの接地されたシールドを用いて、またはケーブル30aと30bの両方の周りに単一の接地されたシールドを配置することによって低減することができる。
従来型の容量検出システムはしばしば、電流源を用いてセンサを駆動し、センサ容量の両端に結果として生じる電圧を測定する。本発明は、例えば図4〜図6に示される構成において電圧源および電流測定を用いる。電圧源は、他の波形を用いることもできるが、図7Aに示されるような一定のピーク振幅、一定の周波数、および一定の傾斜の交番する正および負の傾斜を有する、AC三角電圧波形を生成することが好ましい。5Vピークツーピークの振幅、および500kHzの周波数が典型的な値である。電圧源は変化する負荷条件の下で一定振幅の出力を得るために低出力インピーダンスを有することが好ましく、例えば大電流オペアンプを用いて実現することができる。
シールドドライバは、好ましくは低出力インピーダンスを有する、オペアンプとして実現することができる。シールドドライバは、上述のようにセンサワイヤとシールド導体の両方を駆動するように電圧源内に一体化することができる。
三角電圧源波形の例は図7Aに示され、これは理想的には図7Bに示されるような矩形波電流波形を生じ、電流波形の振幅は測定される容量に応じて変化する。実際には三角電圧波形は、図7Cに示されるような波形により近い、不完全な電流波形を結果として生じる。電流測定回路21は、電流波形におけるこのような変化する不完全性の影響を低減するために、振幅が安定した波形の部分での各半サイクルの終わり近くの電流波形の振幅を測定するように構成することができる。電流測定回路21は、好ましくは低入力インピーダンス、高精度、および低歪みを有する、電流電圧変換器とすることができる。
容量センサは従来型の容量センサ、または参照によりその全体が本明細書に組み込まれる米国特許出願第12/977,240号で述べられている薄膜構造体とすることができる。図8は容量センサへの三軸ケーブル30の接続を示し、容量センサはこの例では介在する薄膜絶縁層45を有する薄膜導電層から形成された電極41、42、43を備える薄膜センサ40である。センサワイヤ31はセンサの検出電極41に接続され、シールド導体32は背面保護電極42に接続され、接地された外側シールド導体はシールド電極43に接続される。同様な接続方式を同軸ケーブルと共に、および他のタイプのセンサと共に用いることができる。
図9Aおよび図9Bは、単一の一体化ユニットとして構築されたセンサ対の例示の実施形態を示し、これは差動センサとして用いることができる。これらの実施形態では、一体化ユニットは2つのセンサ40aと40bとを含み、それぞれは個別の検出電極41a、41bと、個別の背面保護電極42a、42bとを有する。センサ対の2つのセンサはセンサ対と一体化された単一シールド電極43を共有し、または代替としてセンサ対がその上に固定された導電プレート46がシールド電極として働き得る。2つのセンサ40a、40bは好ましくは上述のように差動対として動作し、各センサは対のうちの他方のセンサとは位相の異なる、好ましくは180°位相の異なる電圧または電流によって駆動され、コモンモード誤差を相殺するように差動測定が行われる。
図9Bはセンサ対の上面図を示す。背面保護および検出電極は、例えばリソグラフィマシンの最終レンズ素子の周りの隅部位置に適合するように、丸みを帯びた四辺形形状に設計される。電極はまた、大きな面積の検出電極を生成するように円形形状に形成することもできる。
上記の構成に対して多くの代替形態が可能である。例えば同軸、三軸、または4つ以上導体を有するケーブルを用いることができる。例えば両側にシールド導体を有した中心センサワイヤを有する平坦な構成に配置された導体を用いた、非同軸構成での1つまたは複数のシールド導体を有するケーブルを用いることもできる。シールドドライバは、電圧源から隔てられてもよく、電圧源に一体化されてもよい。複数のセンサを駆動するために単一の電圧源を用いることができる。これは電圧源と一体化されたシールドドライバを有する構成において特に有利であり、センサシステムに用いられる個別の構成要素の数を大幅に低減することができる。
本発明の性能の改善を示すために、いくつかの例示の計算を用いることができる。0.1mmの公称測定距離において4mmの検出面直径を有するセンサの場合は、結果として約1pFの公称センサ容量を生じる。タイプRG178で長さが5mのケーブルは、心線とシールド導体の間に約500pFのケーブル容量を結果として生じる。100MHzの利得帯域幅積を有するシールドドライバ増幅器、および1MHzの測定周波数は、0.99の利得、すなわち単位利得からの0.01の偏移を結果として生じる。これらの例の値を用いて上述の構成の定常状態の性能を推定することができる。図3に示されるような従来型のアクティブシールド構成は、1pF+(1−0.99)×500pF=6pFの容量測定値を結果として生じる。この大きな誤差は通常は、センサとケーブルを組み合わせたシステムの較正によって補償される。図4〜図6に示されるようなセンサワイヤとシールド導体の両方に対して組み合わされたドライバを用いた構成は、1pF+(1−1)×500pF=1pFの容量測定値を結果として生じる。この例では、組み合わされたセンサ/ケーブルシステムの較正を必要とせずに、500%の測定誤差が除去される。
外部からの外乱がシールド導体内の電流の変化を引き起こすときも、上述の構成の性能を推定することができる。例えばシールド導体内の電流の変化が、シールドドライバにおいて追加の1%の利得誤差を引き起こすと仮定すると、図3に示されるような従来型のアクティブシールド構成は、1pF+(1−0.98)×500pF=11pFの容量測定値を結果として生じる。シールド/線ドライバにおいて同じ1%の利得誤差を仮定すると、図4〜図6に示されるような組み合わされたドライバを有する構成は、0.99×(1pF)+(1−1)×500pF=0.99pFの容量測定値を結果として生じる。これは0.01pFの誤差偏移を表し、これはわずか1%である。ケーブル長/負荷に対する感度は約1%に低減される。
図10は、荷電粒子リソグラフィマシンにおける距離測定のために実現された容量センサ1および測定回路103の簡略図である。リソグラフィマシンは、水平および垂直方向に移動可能なステージ100上に取り付けられた、シリコンウェハなどのターゲット2を露出するための荷電粒子ビームを生成する。容量センサは、リソグラフィマシンの投影レンズ102の最終素子の近くのプレート上に取り付けられ、投影レンズ素子から露出されるべきウェハの表面までの距離を測定するように配置される。センサはケーブル30を通じて測定システム103に接続され、測定システム103は本明細書で述べられるいずれかの構成における電圧源20および電流測定回路21を含むことができる。測定システム103は、制御システム104に通信される電流測定信号を生成し、制御システム104は測定信号に基づいて、リソグラフィマシンの投影レンズからの所望の距離にターゲット2をもたらすように、ステージ100の動きを制御する。
図11は、モジュール型リソグラフィ装置500の主要な素子を示す簡略化したブロック図を示す。リソグラフィ装置500は、保守を容易にできるようにモジュール型に設計されることが好ましい。主なサブシステムは独立した取外し可能なモジュールにて構築されることが好ましく、それにより他のサブシステムへの擾乱をできるだけ小さくしてリソグラフィ装置からそれらを取り外すことができる。これは機械へのアクセスが制限される真空チャンバ内に閉じ込められたリソグラフィマシンの場合に特に有利である。したがって不必要に切断、または他のシステムへ擾乱を及ぼさずに、故障したサブシステムを取り外し、迅速に交換することができる。
図11に示される実施形態ではこれらのモジュール型サブシステムは、荷電粒子ビーム源301およびビームコリメートシステム302を含む照明光学モジュール501と、開口アレイ303および集光レンズアレイ304を含む開口アレイおよび集光レンズモジュール502と、複数開口アレイ305およびビームレットブランカアレイ306を含むビーム切り換えモジュール503と、ビーム停止アレイ308、ビーム偏向器アレイ309、および投影レンズアレイ310を含む投影光学モジュール504とを含む。モジュールは、アラインメントフレームに滑り込ませ、かつ滑り出させるように設計される。図11に示される実施形態ではアラインメントフレームは、アラインメント外側サブフレーム506から制振マウント530を通じて懸架された、アラインメント内側サブフレーム505を備える。フレーム508は、制振マウント507を通じてアラインメントサブフレーム506を支持する。ターゲットまたはウェハ330は基板支持構造体509上に置かれ、基板支持構造体509はチャック510上に配置される。チャック510は、様々な水平および垂直方向にステージを移動するように構成された短ストロークステージ511および長ストロークステージ512上にある。リソグラフィマシンは真空チャンバ335内に閉じ込められ、真空チャンバ335はミューメタルシールド層すなわち層515を含むことができ、フレーム部材521によって支持されたベースプレート520上に置かれる。
図11に示される実施形態では、リソグラフィマシン内の様々な素子の位置または距離を測定するために、5組の容量センサが用いられる。センサの組401は例えば図10に示されるように、最終レンズ素子とターゲット330の間の距離を測定するように構成される。センサの組402は、ターゲットとステージのアラインメントのためのアラインメントセンサビームの焦点合わせを容易にするために、最終レンズ素子近くに取り付けられた光学アラインメントセンサとターゲット330またはチャック510と間の距離を測定するように構成される。センサの組403は、長ストロークステージ512に対する距離を測定することによって、水平(X、Y軸)および垂直(Z軸)位置における短ストロークステージ511の位置を測定するように構成される。センサの組404は、サブフレーム505に対する測定によって、水平および垂直位置での懸架されたサブフレーム505のアラインメントサブフレーム506に対する位置を測定するように構成される。センサの組405は、サブフレーム505に対する測定によって、水平および垂直位置での照明光学モジュール501の位置を測定するように構成される。
図10および図11に示される応用例のいずれかに用いられる容量センサは、薄膜センサであることが好ましく、また差動動作のために対に構成することができる。センサは図8に示されるタイプのものとすることができ、図8に示される構成を用いてケーブル30に接続されることが好ましい。センサはまた図9A、図9Bに示されるセンサ対など、信号基板上の複数の検出電極によって構築することができる。薄膜構造を用いることによりセンサを低コストで構築することが可能になり、センサを狭い空間内に、および寸法の大きな従来型のセンサには適さないリソグラフィマシンの諸部分上に、配置することが可能になる。センサを差動モードで動作することにより、接地されていない対向する表面までの距離の測定にセンサを用いることが可能になり、対向する表面から測定システムへの戻りの電気接続が必要でなくなる。後者の素子は、検出システムのための可動部への電気接続を行うことが難しいまたは不利な、可動部までの距離を測定するようにセンサが構成された用途において有利となる。
これらのセンサの組は、3軸、すなわち水平X、Y軸、および垂直Z軸における測定のために、3つの差動センサ対を形成するように6個のセンサの組に構成することができる。これは、各方向に適当な対向する表面までの距離を測定するように方向付けられた、差動センサ対を取り付けることによって達成することができる。センサからの測定信号は、例えばシステム内の部分の適切なアラインメントを得るために小さな動きを生じるように圧電モータを用いて、リソグラフィマシンの可動部の位置を調整するのに用いることができる。
センサの各組はケーブル30を通じて、真空チャンバの外部でリソグラフィマシンから隔てられたキャビネット内に配置された、対応する電流測定回路に接続される。図19は、回路基板601を収容するキャビネット600の一実施形態を示す。各回路基板601は容量センサ40のために電流測定回路を形成し、1対の回路基板602は差動センサ対のための電流測定回路を形成する。信号発生器605は、本明細書で述べられるように電圧源20から、容量センサにエネルギー供給するためのAC電圧信号、例えば三角電圧波形を供給する。各回路基板は、コネクタ612およびケーブル30を通じて薄膜容量センサ40に接続される。電流測定出力信号は、リソグラフィマシンを制御するのに用いるためのデジタル信号に変換するように、別のコネクタを通じてアナログデジタル変換器613に出力される。電源610は、電源コネクタ611を通じて回路基板に電力を供給する。
電流測定回路21、21a、21bは、例えば電流電圧変換器または電流電圧変換器として実現することができる。このような測定回路における誤差の一因となるいくつかの要因がある。これらには、測定回路の入力回路での浮遊インピーダンス、入力回路の制約されたコモンモード除去比(CMRR)、およびコモンモードには依存しない測定回路の伝達関数の不正確さが含まれる。
図12は電流測定回路70の機能概略図である。入力端子72におけるACまたはDC電流源CSからの入力電流ICSが、回路によって測定されることになる。電流ICSの一部分は測定回路の入力回路内で迂回され、この部分は電流ICMによって表される。回路の電源電圧に対する入力端子72上の電圧外乱は、内部インピーダンスZCMを通って流れる電流ICMの変化を引き起こす。結果として、回路によって実際に測定される電流Imeasは測定することが望まれる入力電流ICSよりわずかに小さくなり、測定における小さな誤差となる。電流ICMは、入力回路内の浮遊インピーダンスおよび入力信号のコモンモード外乱から結果として生じる。定常状態誤差は補正することができるが、電流の流れICMを補償するのは非常に難しく、なぜなら浮遊インピーダンスの値は温度などの要因に応じて変化し、入力上のコモンモード外乱も時間と共に変化するからである。
これらの測定誤差は、測定回路の入力端子に存在するのと同じ電圧で、供給電圧を駆動することによって低減することができる。このようにして、入力信号と測定回路内の内部回路との間の変化する電圧差によって引き起こされる、測定回路内を流れる電流を低減または除去するように、入力での外乱が供給電圧に伝達される。
電流測定回路の電圧供給端子75および76は、電圧源77a、77bを備える電源に接続される。入力端子において電源に電圧外乱を供給するために電圧源VDが供給され、それに対して、入力信号と測定回路供給電圧との間の電圧差は一定のままとなる。電圧源VDは、電源電圧が測定回路の入力端子に存在する電圧によっても駆動されるように、測定回路電源に接続される。電圧源VDは、回路内での適当なフィードバックまたはフィードフォワードによって供給することができる。
図13は、負荷71にエネルギー供給するために電圧源VDが用いられる、図12の電流測定回路を示す機能概略図である。負荷71を電圧源VDで駆動することによって結果として電流ICSを生じ、これは回路の入力端子72において測定される電流である。したがって電流測定回路の電源に結合された外乱電圧VDは、測定されるべき電流ICSを生じるように負荷71を駆動する電圧である。外乱電圧を電流測定回路の電源に供給することにより結果として、外乱電圧によって引き起こされる電流測定回路内の変化する電圧差が取り除かれる。これにより電流測定における誤差の発生源が取り除かれる。
図13に示される実施形態では、外乱電圧VDはまた、差分回路79によって電流測定回路70の出力から減算される。電流測定回路70の出力端子74における出力信号は、入力電流ICSの測定から結果として生じる信号に重畳された外乱電圧VDを有することになる。したがって外乱電圧VDを減算することは、入力電流測定値を表す出力信号の部分を分離するために用いることができる。
図13の実施形態は、典型的には正および負のDC電圧を正および負の電源端子に供給する、2つの電圧源77a、77bによって電力供給される2つの電源端子を示す。代わりに単一の電源端子および/または単一の電源電圧源を用いることもできる。この実施形態では、外乱電圧はコンデンサ78a、78bを通じて電源端子に供給され、それにより外乱電圧のAC成分は電源端子に供給され、しかし一方、電源電圧のDC成分は入力端子72および電圧源VDから分離される。電源電圧から外乱電圧のAC成分を分離するために、図15の実施形態に示されるインダクタ95、96などのインダクタを用いることもできる。
図14は、演算増幅器80(オペアンプと呼ばれる)を用いて実現された電流測定回路の一実施形態を示す図である。電流源CSはオペアンプ80の負端子82に接続され、オペアンプの正入力端子83はコモンに接続される。オペアンプ80は2つの電源端子85および86を有し、それらを通して2つの電圧源91および92により演算増幅器80にエネルギー供給することができる。
電流源CSは測定されるべき電流Icsを生じる。入力端子82と出力端子84の間に接続されたインピーダンス87は負帰還を形成し、オペアンプ80は2つの入力端子82と83の間の電圧差をほぼゼロに維持するように動作する。オペアンプ80は非常に高い入力インピーダンスを有し、それにより電流Icsはオペアンプ内へは非常にわずかしか流れず、代わりにインピーダンス87を通って流れる。しかしオペアンプ80の入力回路内の浮遊インピーダンスおよびオペアンプの制約されたCMRRにより、オペアンプ80は入力でのコモンモード電圧の影響を完全に除去することはできない。
図示の実施形態では、入力端子83を駆動するためにAC電圧供給VGが用いられる。オペアンプ80は2つの入力端子82および83をほとんど同じ電圧に維持するように構成されるので、電圧VDは事実上、入力端子上のコモンモード外乱を表す。入力端子83に接続された電圧源VDの出力はまた、コモンモード外乱電圧をオペアンプ80の電源電圧内にフィードフォワードするように、オペアンプ電源回路に接続される。この実施形態では電圧源VDの出力は、入力端子83での電圧を電源端子85、86への電圧供給に結合するように、コンデンサ93、94を通じて接続される。このようにしてDC電圧源91、92はDC電圧を電源端子85、86に供給し、一方、入力端子83において存在するAC電圧も電源端子85、86に供給される。またフィードフォワード入力端子電圧のAC成分とDC電圧源77、78との間にある程度の分離をもたらすために、図15の実施形態に示されるように電源内にインダクタ95、96を含むことができる。
図15は、図3〜図6のいずれかに示されるような容量センサシステムにおいて電流を測定するために用いられる図14の実施形態の一例を示す。電流測定回路21は通常は容量センサから離れて配置されるので、測定されるべき電流はケーブル30を通じて電流測定回路21に伝達される。容量センサは図8または図9に示されるものなどの薄膜容量センサとすることができる。ケーブル30はセンサワイヤ31とシールド導体32とを備え、離れた端部と近くの端部とを有する。センサワイヤ31はケーブル30の近くの端部において容量センサ電極41に電気的に接続され、シールド導体32はケーブル30の近くの端部において容量センサ保護電極42に電気的に接続される。
電圧源20は、保護電極42にエネルギー供給するように、ケーブル30の離れた端部においてシールド導体32にエネルギー供給する。電圧源20はまた、容量センサの検出電極41にエネルギー供給するように、オペアンプ80を通じてセンサワイヤ31にエネルギー供給する。オペアンプは、その入力端子82、83における電圧を本質的に同じ電圧に維持するので、センサワイヤ31およびシールド導体32も本質的に同じ電圧でエネルギー供給され、それらの間の容量性リーク電流を実際上除去する。
電圧源20の出力端子は、入力端子83、シールド導体32に接続され、また前述のようにオペアンプ80のための電源にも接続され、かつオペアンプ80の出力信号から、電圧源20からの信号を減算するように差分回路88に接続される。
電圧源は、前述のように容量センサを駆動するために三角形電圧信号を供給することが好ましい。前述のようにこれは結果として(理想的には)図16Aに示される矩形波電流信号を生じる。電圧源20によって出力される三角形電圧は、図16Bに示されるようにオペアンプ80の入力端子83および82上に存在する。オペアンプ80の出力端子84における出力電圧Voutは、図16Cに示されるように、入力端子に存在する三角形電圧に、帰還インピーダンス87を通って流れる矩形波電流による矩形波が重畳されたものを含むことになる。容量センサにおいて生成された電流と同じ矩形波波形を有する測定信号を得るために、差分回路88によって出力端子84における信号から、電圧源20からの三角電圧波形が減算される。
図17は本明細書で述べられるような差動対検出システムのための電圧源および電流測定回路の一実施形態を示す。この回路はまた、差動対としては動作しない単一のセンサのために用いることもできる。回路はアナログ信号処理部分50と、例えばフィールドプログラマブルゲートアレイにて実現することができるデジタル信号処理部分63とに分けられる。
周波数基準FSYNCは、生成され(例えば2MHzにて)、分周器回路51において、より低い周波数においてある所定の位相オフセットを有する、複数の別々の矩形波信号を生成するように分周される。この実施形態では、90°の位相オフセットを有する4つの別々の500KHz矩形波信号が生成される。図18Aは矩形波周波数基準信号の一例を示し、図18B〜図18Eは0°、90°、180°、および270°の位相シフトを有する、より低い周波数の信号の例示の波形を示す。
積分回路52は矩形波信号の1つから三角電圧波形を生成し、これから増幅器回路53aおよび53bは180°位相の異なる2つの三角電圧波形を生成する。例えばこれら2つの位相の異なる三角電圧波形は、単一の容量センサまたは負荷、あるいは差動対にて動作する2つのセンサ/負荷を駆動するための、図3〜図6、図13、図14、または図16のいずれかに示される電圧源(例えば20、20a、20b、VD)の出力に対応することができる。図18Fおよび図18Gは、増幅器回路53aおよび53bからの三角波形出力の一例を示す。三角形電圧信号は、図3〜図6、図13、図14、または図16に示されるように、シールド導体32、32a、32bにエネルギー供給するように、およびまた容量センサまたは負荷40、40a、40b、71にエネルギー供給するために電流電圧変換器54aおよび54bを通じてセンサワイヤ31、31a、31bに接続することができる。
電流電圧変換器54aおよび54bは、それらの入力における電流信号の測定値を表す電圧信号をそれらの出力に生成する(すなわち図3〜図6、図13、図14、または図16の出力信号22、22a、22b、74、84)。増幅器回路53a、53bからの三角電圧波形は、電流電圧変換器出力信号から三角形電圧信号を取り除くため、測定された入力電流信号を分離するために、差分回路55a、55bによって電流電圧変換器54a、54bの出力における測定された電流信号から減算される。図18Hおよび図18Iは、差分回路55a、55bの出力における、結果としての測定された電流信号波形の例を示す。
セレクタ56a、56bは、図18Hおよび図18Iに示される測定された電流信号の各サイクルの一部分をサンプルするために、分周器回路51によって生成された位相シフトされた基準信号の1つまたは複数、例えば図18Dおよび図18Eに示される180°および270°シフトされた基準信号を使用する。測定された電流信号の各サイクルの第2の半分は、最大振幅値において全体的に定常状態にあるときに、そのサイクルのその部分に対する振幅を得るためにサンプルされる。
回路が、差動モードで動作するセンサ対と共に用いられるときは、サンプリングは、一方の信号(図18J)における正の振幅、および他方の信号(図18K)における負の振幅を蓄積するように、2つの測定された電流信号間で切り換えるように行うことができる。ローパスフィルタ57a、57bは、測定された電流信号波形のサンプルされた部分の振幅によって決まる傾斜を有する、コンデンサ充電回路と等価なものを実現するように、サンプルされた測定された電流信号をフィルタする。
増幅器58a、58bの出力での例示の波形は図18Jおよび図18Kに示される。波形はそれぞれのサンプルされた期間の間に上昇(または下降)し、終了値は測定された電流信号の振幅によって決まる。増幅器58a、58bからの出力は互いに減算され、結果としての信号はアナログデジタル変換器59によってデジタル信号に変換される。結果としてのデジタル信号は、センサ容量を表す使用可能な測定値を結果として得るために、較正調整およびスケーリングなどのさらなる処理のために、デジタル信号処理回路63に出力される。加算器61およびウィンドウコンパレータ62は、ケーブル短絡または開放障害などの状況の場合にデジタル信号処理回路63内で用いるためのエラー信号を生成する。
本発明について上述のいくつかの実施形態を参照して述べてきた。様々な構成および代替形態について述べられ、これらは当業者には理解されるように、本明細書で述べられたいずれの実施形態と共に用いることができることに留意されるべきである。具体的には、図12〜図14に関連して述べられた電流測定回路は電流の正確な測定を必要とする任意の用途に用いることができ、図17に関連して述べられた信号処理回路は交番信号における振幅信号の分離を必要とする任意の用途に用いることができる。さらに、これらの実施形態は、本発明の趣旨および範囲から逸脱せずに当業者にはよく知られた様々な変更形態および変形形態を受け入れられることが認識されるであろう。したがって、特定の実施形態について述べてきたが、これらは例示のみであり、添付の特許請求の範囲において定義される本発明の範囲を限定するものではない。
以下に、本願出願時の特許請求の範囲に記載された発明を付記する。
[C1]
電流源(CS)からの入力電流(Ics)を測定し、電流測定信号を生成するための測定システムであって、前記電流源に接続された第1の入力端子(72)と、前記電流測定信号を供給するための出力端子(74)とを有する電流測定回路(70)を備え、
前記電流測定回路は、前記電流測定回路に電力供給するための電源(77a、77b)から1つまたは複数の電圧を受け取るように構成された1つまたは複数の電源端子(75、76)をさらに備え、
前記電流測定回路は、前記1つまたは複数の電源端子に結合された第1の電圧源(VD)であって、前記1つまたは複数の電源端子に外乱電圧を供給し、前記外乱電圧は前記第1の入力端子における電圧を表す、第1の電圧源をさらに備える、測定システム。
[C2]
前記電流測定信号を生成するために、前記電流測定回路の前記出力端子(74)における信号から、前記第1の電圧源(VD)によって生成された電圧を減算するように構成された差分回路(79)をさらに備える、[C1]に記載の測定システム。
[C3]
前記第1の電圧源(VD)が、前記電流源(CS)を形成するように負荷(71)を駆動するために、前記電流測定回路(70)の前記第1の入力端子(72)に接続された、[C1]または[C2]に記載の測定システム。
[C4]
前記負荷(71)が、容量センサ(40)を備え、前記容量センサが、前記容量センサとターゲット(2)の間の距離に応じて変化する電流(Ics)を生成する、[C3]に記載の測定システム。
[C5]
前記負荷(71)が、センサワイヤ(31)とシールド導体(32)とを備えるケーブル(30)によって前記電流測定回路(70)の前記第1の入力端子(72)に接続され、
前記センサワイヤは、前記負荷(71)と前記第1の入力端子の間に直列に接続され、前記シールド導体は、前記第1の電圧源(VD、20)に接続される、[C3]または[C4]に記載の測定システム。
[C6]
前記第1の電圧源(VD)の出力端子が、1つまたは複数のコンデンサ(78a、78b)を通して、前記電流測定回路(70)の前記1つまたは複数の電源端子(75、76)に結合される、[C1]から[C5]のいずれか一項に記載の測定システム。
[C7]
前記電流測定回路(70)は電流電圧変換器を備える、[C1]から[C6]のいずれか一項に記載の測定システム。
[C8]
前記電流測定回路(70)が演算増幅器(80)を備え、
前記演算増幅器の負入力端子(82)は前記電流測定回路の第1の入力端子(72)として働き、
前記演算増幅器の出力端子(84)は前記電流測定回路の出力端子(74)として働き、
前記演算増幅器は、正入力端子(83)と1つまたは複数の電源端子(85、86)とをさらに備え、
前記演算増幅器の前記正入力端子は、前記演算増幅器の前記1つまたは複数の電源端子に電気的に接続される、
[C1]から[C7]のいずれか一項に記載の測定システム。
[C9]
前記演算増幅器の前記正入力端子が、1つまたは複数のコンデンサ(93、94)を通して前記演算増幅器の前記1つまたは複数の電源端子に電気的に接続される、[C8]に記載の測定システム。
[C10]
前記第1の電圧源が三角波形を有する電圧を生成する、[C1]から[C9]のいずれか一項に記載の測定システム。
[C11]
前記電流源が実質的に矩形波形を有する電流を生成する、[C1]から[C10]のいずれか一項に記載の測定システム。
[C12]
電流源(CS)からの入力電流(Ics)を測定し、電流測定信号を生成する方法であって、
電流測定回路(70)の第1の入力端子(72)に前記入力電流を供給することであって、前記電流測定回路は、前記電流測定回路に電力供給するために電源(77a、77b)から1つまたは複数の電源電圧を受け取るように構成された1つまたは複数の電源端子(75、76)を有する、供給することと、
外乱電圧(VD)を前記1つまたは複数の電源端子に供給することであって、前記外乱電圧は前記第1の入力端子における電圧を表す、供給することと、
前記電流測定回路(70)の前記第1の入力端子(72)における前記入力電流を表す出力信号を、前記電流測定回路の出力端子(74)において生成することと、
を備える方法。
[C13]
前記電流測定信号を生成するために、前記電流測定回路の前記出力端子(74)における前記出力信号から前記外乱電圧(VD)を減算することをさらに備える、[C12]に記載の方法。
[C14]
前記電流測定回路(70)の前記第1の入力端子(72)において前記入力電流(Ics)を生成するように、電圧を用いて負荷(71)を駆動することをさらに備える、[C12]または[C13]に記載の方法。
[C15]
前記負荷(71)が、容量センサ(40)を備え、
前記容量センサ(40)は、前記容量センサとターゲット(2)の間の距離に応じて変化する電流(Ics)を生成するためにある、[C14]に記載の方法。
[C16]
センサワイヤ(31)とシールド導体(32)とを備えるケーブル(30)によって、前記負荷(71)を前記電流測定回路(70)の前記第1の入力端子(72)に接続することをさらに備え、
前記センサワイヤは、前記負荷(71)と前記第1の入力端子の間に直列に接続され、
前記シールド導体は前記負荷を駆動するために用いられるのと実質的に同じ電圧でエネルギー供給される、
[C14]または[C15]に記載の方法。
[C17]
前記外乱電圧(VD)が、1つまたは複数のコンデンサ(78a、78b)を通して前記1つまたは複数の電源端子に供給される、[C12]から[C16]のいずれか一項に記載の方法。
[C18]
前記外乱電圧(VD)が、1つまたは複数のインダクタ(95、96)によって前記電源電圧(77a、77b)から分離される、[C12]から[C17]のいずれか一項に記載の方法。

Claims (24)

  1. 電流源(CS)からの入力電流(Ics)を測定し、電流測定信号を生成するための測定システムであって、前記電流源から前記入力電流(Ics)を受けるために前記電流源に接続された第1の入力端子(72、82)と、前記電流測定信号を供給するための出力端子(74、84)とを有する電流測定回路(70)を備え、
    前記電流測定回路は、前記電流測定回路の動作のために前記電流測定回路に電力供給するための電源(77a、77b、91、92)から1つまたは複数の電源電圧を受け取るように構成された1つまたは複数の電源端子(75、76、85、86)をさらに備え、
    前記電流測定回路は、前記1つまたは複数の電源端子に結合された第1の電圧源(VD、VG、20)をさらに備え、前記第1の電圧源は、前記1つまたは複数の電源電圧に加え、前記1つまたは複数の電源端子に外乱電圧のAC成分を供給し、前記外乱電圧は、前記入力電流(Ics)と共に同じ前記第1の入力端子に与えられる電圧を表し、
    前記第1の入力端子、前記出力端子、および、前記1つまたは複数の電源端子は別々であり、
    前記電流源、前記電源、および、前記第1の電圧源は別々である、
    定システム。
  2. 前記電流測定信号を生成するために、前記電流測定回路の前記出力端子(74)における信号から、前記第1の電圧源(VD)によって生成された電圧を減算するように構成された差分回路(79)をさらに備える、請求項1に記載の測定システム。
  3. 前記第1の電圧源(VD)が、前記電流源(CS)を形成するように負荷(71)を駆動するために、前記電流測定回路(70)の前記第1の入力端子(72)に接続された、請求項1または2に記載の測定システム。
  4. 前記負荷(71)が、容量センサ(40)を備え、前記容量センサが、前記容量センサとターゲット(2)の間の距離に応じて変化する電流(Ics)を生成する、請求項3に記載の測定システム。
  5. 前記負荷(71)が、センサワイヤ(31)とシールド導体(32)とを備えるケーブル(30)によって前記電流測定回路(70)の前記第1の入力端子(72)に接続され、
    前記センサワイヤは、前記負荷(71)と前記第1の入力端子の間に直列に接続され、前記シールド導体は、前記第1の電圧源(VD、20)に接続される、請求項3または4に記載の測定システム。
  6. 前記第1の電圧源(VD)の出力端子が、1つまたは複数のコンデンサ(78a、78b)を通して、前記電流測定回路(70)の前記1つまたは複数の電源端子(75、76)に結合される、請求項1から5のいずれか一項に記載の測定システム。
  7. 1つまたは複数のインダクタ(95、95)は、前記電源(77a、77b、91、92)によって供給された前記1つまたは複数の電源電圧から前記外乱電圧(VD、VG、20)を分離するために与えられる、請求項1から6のいずれか一項に記載の測定システム。
  8. 前記外乱電圧は、前記電流測定回路の前記第1の入力端子に存在する電圧である、請求項1から7のいずれか一項に記載の測定システム。
  9. 前記外乱電圧は、前記電流測定回路の内部インピーダンスを通して流れる電流における変化を引き起こし、
    前記外乱電圧は、前記第1の入力端子と前記電流測定回路における内部回路との間の電圧差を変化させることによって引き起こされる前記電流測定回路において流れる電流を低減する、または、除去するために、前記1つまたは複数の電源端子に供給される、
    請求項1から8のいずれか一項に記載の測定システム。
  10. 前記電流測定回路(70)は電流電圧変換器を備える、請求項1から9のいずれか一項に記載の測定システム。
  11. 前記電流測定回路(70)が演算増幅器(80)を備え、
    前記演算増幅器の負入力端子(82)は前記電流測定回路の第1の入力端子(72)として働き、
    前記演算増幅器の出力端子(84)は前記電流測定回路の出力端子(74)として働き、
    前記演算増幅器は、正入力端子(83)と1つまたは複数の電源端子(85、86)とをさらに備え、
    前記演算増幅器の前記正入力端子は、前記演算増幅器(80)の前記1つまたは複数の電源端子(85、86)に接続される、
    請求項1から10のいずれか一項に記載の測定システム。
  12. 前記演算増幅器(80)の前記正入力端子(83)が、1つまたは複数のコンデンサ(93、94)を通して前記演算増幅器(80)の前記1つまたは複数の電源端子(85、86)に接続される、請求項11に記載の測定システム。
  13. 前記第1の電圧源(VD、20)が三角波形を有する電圧を生成する、請求項1から12のいずれか一項に記載の測定システム。
  14. 前記電流源が実質的に矩形波形を有する電流を生成する、請求項1から13のいずれか一項に記載の測定システム。
  15. 電流源(CS)からの入力電流(Ics)を測定し、電流測定信号を生成する方法であって、
    前記電流源から電流測定回路(70)の第1の入力端子(72)に前記入力電流(Ics)を供給することであって、前記電流測定回路は、電流測定回路の動作のために前記電流測定回路に電力供給するため電源(77a、77b、91、92)から1つまたは複数の電源電圧を受け取るように構成された1つまたは複数の電源端子(75、76、85、86)を有する、供給することと、
    第1の電圧源(VD、VG、20)によって、前記1つまたは複数の電源電圧に加えて外乱電圧のAC成分を前記1つまたは複数の電源端子に供給することであって、前記外乱電圧は、前記入力電流(Ics)と共に同じ前記第1の入力端子に与えられる電圧を表し、供給することと、
    前記電流測定回路(70)の前記第1の入力端子(72)における前記入力電流を表す出力信号を、前記電流測定回路(70)の出力端子(74)において生成することと、を備え、
    前記第1の入力端子、前記出力端子、および、前記1つまたは複数の電源端子は別々であり、
    前記電流源、前記電源、および、前記第1の電圧源は別々である、
    方法。
  16. 前記電流測定信号を生成するために、前記電流測定回路の前記出力端子(74)における前記出力信号から前記外乱電圧を減算することをさらに備える、請求項15に記載の方法。
  17. 前記電流測定回路(70)の前記第1の入力端子(72)において前記入力電流(Ics)を生成するように、前記第1の電圧源によって供給される電圧を用いて負荷(71)を駆動することをさらに含む、請求項15または16に記載の方法。
  18. 前記第1の電圧源によって供給される電圧は前記外乱電圧である、請求項17に記載の方法。
  19. 前記負荷(71)が、容量センサ(40)を備え、
    前記容量センサ(40)は、前記容量センサとターゲット(2)の間の距離に応じて変化する電流(Ics)を生成するためにある、請求項17または18に記載の方法。
  20. センサワイヤ(31)とシールド導体(32)とを備えるケーブル(30)によって、前記負荷(71)を前記電流測定回路(70)の前記第1の入力端子(72)に接続することをさらに備え、
    前記センサワイヤは、前記負荷(71)と前記第1の入力端子の間に直列に接続され、
    前記シールド導体は、前記負荷を駆動するために用いられるのと実質的に同じ電圧でエネルギー供給される、
    請求項17から19のいずれか一項に記載の方法。
  21. 前記外乱電圧が、1つまたは複数のコンデンサ(78a、78b)を通して前記1つまたは複数の電源端子に供給される、請求項15から20のいずれか一項に記載の方法。
  22. 前記外乱電圧が、1つまたは複数のインダクタ(95、96)によって前記電源電圧から分離される、請求項15から21のいずれか一項に記載の方法。
  23. 前記外乱電圧は、前記電流測定回路の前記第1の入力端子に存在する電圧である、請求項15から22のいずれか一項に記載の方法。
  24. 前記外乱電圧は、前記電流測定回路の内部インピーダンスを通して流れる電流における変化を引き起こし、したがって、前記第1の入力端子と前記電流測定回路における内部回路との間の電圧差を変化させることによって引き起こされる前記電流測定回路において流れる電流を低減する、または、除去するために、前記第1の入力端子に存在するのと同じ電圧を用いて、前記1つまたは複数の電源電圧を駆動する、
    請求項15から23のいずれか一項に記載の方法。
JP2017082981A 2011-06-30 2017-04-19 入力電流を測定するためのシステム Active JP6463793B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161503555P 2011-06-30 2011-06-30
US61/503,555 2011-06-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014517764A Division JP2014527616A (ja) 2011-06-30 2012-07-02 入力電流を測定するためのシステム

Publications (2)

Publication Number Publication Date
JP2017201306A JP2017201306A (ja) 2017-11-09
JP6463793B2 true JP6463793B2 (ja) 2019-02-06

Family

ID=46420210

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014517764A Withdrawn JP2014527616A (ja) 2011-06-30 2012-07-02 入力電流を測定するためのシステム
JP2017082981A Active JP6463793B2 (ja) 2011-06-30 2017-04-19 入力電流を測定するためのシステム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014517764A Withdrawn JP2014527616A (ja) 2011-06-30 2012-07-02 入力電流を測定するためのシステム

Country Status (8)

Country Link
US (3) US9644995B2 (ja)
EP (2) EP2726822B1 (ja)
JP (2) JP2014527616A (ja)
KR (3) KR101875415B1 (ja)
CN (2) CN103635780A (ja)
RU (1) RU2610221C2 (ja)
TW (2) TWI564543B (ja)
WO (2) WO2013001100A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2735868B1 (en) * 2012-11-26 2015-11-25 University College Cork Nanowire electrode sensor
US9423418B2 (en) * 2013-02-25 2016-08-23 Google Technology Holdings LLC Capacitive sensor
EP2781234A1 (en) * 2013-03-20 2014-09-24 Fresenius Medical Care Deutschland GmbH Tube for extra-corporeal circuit with double connector
US20140292354A1 (en) * 2013-03-27 2014-10-02 Texas Instruments Incorporated Capacitive sensor
US9739816B2 (en) 2013-11-27 2017-08-22 Analog Devices, Inc. Capacitive sensor with differential shield
CN103884901B (zh) * 2014-04-04 2016-06-08 哈尔滨理工大学 一种基于fp电压传感器的高电压测量系统及测量方法
US9983228B2 (en) * 2014-09-24 2018-05-29 Keithley Instruments, Llc Triaxial DC-AC connection system
WO2017207037A1 (en) * 2016-05-31 2017-12-07 Telecom Italia S.P.A. Meter apparatus for measuring parameters of electrical quantity
US10139435B2 (en) * 2016-11-11 2018-11-27 Fluke Corporation Non-contact voltage measurement system using reference signal
CN108195490B (zh) * 2018-01-31 2019-10-11 北京他山科技有限公司 具有分时、分区域屏蔽功能的传感器、电子皮肤和机器人
CN108808685B (zh) * 2018-03-26 2020-12-11 北京航天发射技术研究所 一种电源电压数字式补偿系统及方法
US11493394B2 (en) * 2018-03-30 2022-11-08 Panasonic Intellectual Property Management Co., Ltd. Capacitance detection device
JP7122686B2 (ja) * 2018-03-30 2022-08-22 パナソニックIpマネジメント株式会社 静電容量検出装置
DE102018003268A1 (de) * 2018-04-19 2019-11-07 Technische Universität Chemnitz Einrichtung zur Bestimmung der elektrischen Kapazität
US10551416B2 (en) * 2018-05-09 2020-02-04 Fluke Corporation Multi-sensor configuration for non-contact voltage measurement devices
US11141767B2 (en) * 2018-07-30 2021-10-12 Raytheon Technologies Corporation Forging assembly having capacitance sensors
US10837803B2 (en) * 2019-04-12 2020-11-17 Kla Corporation Inspection system with grounded capacitive sample proximity sensor
JP7281124B2 (ja) * 2019-07-29 2023-05-25 国立研究開発法人量子科学技術研究開発機構 角度センサ、マウント装置、及び測定方法
US11874423B2 (en) 2019-10-25 2024-01-16 Witricity Corporation Circuit for object detection and vehicle position determination
CN114121374B (zh) * 2020-08-27 2023-01-13 华为技术有限公司 一种同轴电缆和终端
US11784482B2 (en) * 2020-10-20 2023-10-10 Apple Inc. Electrical connection monitoring using cable shielding
EP4285462A1 (en) * 2021-01-26 2023-12-06 WiTricity Corporation Wire-wound structures for electromagnetic sensing of objects
US11750041B2 (en) * 2021-01-26 2023-09-05 Witricity Corporation Wire-wound structures for electromagnetic sensing of objects
EP4050353A1 (en) 2021-02-25 2022-08-31 Infineon Technologies AG An apparatus and a method for measuring a device current of a device under test
CN114812618B (zh) * 2021-12-24 2023-03-07 中国科学院长春光学精密机械与物理研究所 频点噪声抑制系统
CN116338142B (zh) * 2023-02-28 2024-02-27 浙江大学 一种超重力实验中水合物储层表面变形测量装置和方法

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3101024A (en) 1959-10-05 1963-08-20 Lanston Ind Inc All-purpose photographic mechanical reproduction camera
US3713022A (en) 1971-12-17 1973-01-23 Systomation Inc Capacitance measurement by phase-controlled sampling
JPS5728266A (en) 1980-07-28 1982-02-15 Hitachi Ltd Digital ammeter
SU1160321A1 (ru) 1982-03-05 1985-06-07 Гомельский Государственный Университет Устройство дл измерени амплитудных значений переменных электрических сигналов
US4538069A (en) * 1983-10-28 1985-08-27 Control Data Corporation Capacitance height gage applied in reticle position detection system for electron beam lithography apparatus
US5489888A (en) 1990-11-07 1996-02-06 Precitec Gmbh Sensor system for contactless distance measuring
US5539323A (en) * 1993-05-07 1996-07-23 Brooks Automation, Inc. Sensor for articles such as wafers on end effector
CH689190A5 (fr) 1993-10-19 1998-11-30 Hans Ulrich Meyer Instrument de mesure de longueurs ou d'angles.
DE9421121U1 (de) * 1994-11-10 1995-04-27 Siedle Horst Kg Vorrichtung zur Bestimmung einer jeweiligen örtlichen Position eines Körpers durch kapazitive Abtastung
US5730165A (en) 1995-12-26 1998-03-24 Philipp; Harald Time domain capacitive field detector
AU1608497A (en) 1996-02-02 1997-08-22 Bicc Public Limited Company Capacitance transducer apparatus and cables
US6014030A (en) * 1996-05-03 2000-01-11 National Semiconductor Corp. Current-level monitor with hierarchical precision
JP3158063B2 (ja) * 1997-01-21 2001-04-23 北斗電子工業株式会社 非接触電圧計測方法及び装置
WO1999028756A1 (fr) 1997-12-02 1999-06-10 Advantest Corporation Procede permettant de mesurer une intensite en appliquant une tension, et dispositif a cet effet
US5963023A (en) * 1998-03-21 1999-10-05 Advanced Micro Devices, Inc. Power surge management for high performance integrated circuit
DE19836054A1 (de) 1998-08-10 2000-02-17 Bosch Gmbh Robert Meßschaltung
FR2790095B1 (fr) 1999-02-18 2001-04-06 Siemens Automotive Sa Dispositif de mesure de courant et procede correspondant
DE19916915B4 (de) * 1999-04-14 2005-08-11 Infineon Technologies Ag Schaltnetzteil und Verfahren zur Ermittlung der Versorgungsspannung in einem Schaltnetzteil
ATE399327T1 (de) 2001-09-06 2008-07-15 Tokyo Electron Ltd Vorrichtung und verfahren zur messung der sensorkapazität
US7005864B2 (en) * 2002-10-21 2006-02-28 Synchrony, Inc. Capacitive position sensing system with resonant amplification
TWI304158B (en) * 2003-01-15 2008-12-11 Asml Netherlands Bv Detection assembly and lithographic projection apparatus provided with such a detection assembly
JP4067053B2 (ja) * 2003-03-13 2008-03-26 キヤノン株式会社 静電容量センサ式計測装置
DE60308161T2 (de) * 2003-06-27 2007-08-09 Asml Netherlands B.V. Lithographischer Apparat und Verfahren zur Herstellung eines Artikels
US7141988B2 (en) * 2003-07-01 2006-11-28 Tiax Llc Capacitive position sensor and sensing methodology
CA2542325A1 (en) * 2003-10-10 2005-04-21 That Corporation Low-power integrated-circuit signal processor with wide dynamic range
JP2005156492A (ja) * 2003-11-28 2005-06-16 Agilent Technol Inc 可動機構、測定装置、静電容量式距離測定装置、および、位置決め装置
US6989679B2 (en) 2004-06-03 2006-01-24 General Electric Company Non-contact capacitive sensor and cable with dual layer active shield
JP4613523B2 (ja) 2004-06-16 2011-01-19 ダイキン工業株式会社 電流測定装置
US7746048B2 (en) * 2005-11-11 2010-06-29 L&L Engineering, Llc Non-linear PWM controller for DC-to-DC converters
GB2436619B (en) 2005-12-19 2010-10-06 Toumaz Technology Ltd Sensor circuits
US8063886B2 (en) 2006-07-18 2011-11-22 Iee International Electronics & Engineering S.A. Data input device
CN101490642A (zh) 2006-07-18 2009-07-22 Iee国际电子工程股份公司 输入设备
US7764067B2 (en) * 2007-12-27 2010-07-27 Caterpillar Inc High voltage cable testing method
US20090295366A1 (en) * 2008-03-20 2009-12-03 Cehelnik Thomas G E-field sensor arrays for interactive gaming, computer interfaces, machine vision, medical imaging, and geological exploration
US8212546B2 (en) * 2008-03-20 2012-07-03 Entropic Communications, Inc. Wideband CMOS RMS power detection scheme
NL1036623A1 (nl) 2008-03-26 2009-09-29 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
JP2011053201A (ja) * 2009-04-30 2011-03-17 Hioki Ee Corp 電圧検出装置および線間電圧検出装置
CN101881791B (zh) 2009-04-30 2015-08-05 日置电机株式会社 电压检测装置
JP5340817B2 (ja) * 2009-06-11 2013-11-13 日置電機株式会社 電圧検出装置
CN101762736A (zh) 2009-11-09 2010-06-30 天津南大强芯半导体芯片设计有限公司 一种镜像电流检测电路
US8513959B2 (en) 2009-12-31 2013-08-20 Mapper Lithography Ip B.V. Integrated sensor system

Also Published As

Publication number Publication date
CN103635780A (zh) 2014-03-12
KR102236200B1 (ko) 2021-04-06
JP2014527616A (ja) 2014-10-16
JP2017201306A (ja) 2017-11-09
TW201319523A (zh) 2013-05-16
KR20200105964A (ko) 2020-09-09
RU2610221C2 (ru) 2017-02-08
WO2013001098A2 (en) 2013-01-03
KR20180081155A (ko) 2018-07-13
WO2013001098A3 (en) 2013-03-07
TW201307804A (zh) 2013-02-16
US9400195B2 (en) 2016-07-26
WO2013001100A4 (en) 2013-02-14
CN103649688B (zh) 2017-02-22
EP2726822A2 (en) 2014-05-07
TWI564543B (zh) 2017-01-01
US20130003034A1 (en) 2013-01-03
RU2014102968A (ru) 2015-08-10
US9644995B2 (en) 2017-05-09
EP2726823A1 (en) 2014-05-07
USRE48901E1 (en) 2022-01-25
KR20140058525A (ko) 2014-05-14
KR102152297B1 (ko) 2020-09-07
EP2726822B1 (en) 2016-11-09
EP2726823B1 (en) 2017-06-21
WO2013001098A4 (en) 2013-05-02
TWI568990B (zh) 2017-02-01
CN103649688A (zh) 2014-03-19
KR101875415B1 (ko) 2018-07-06
US20130009626A1 (en) 2013-01-10
WO2013001100A1 (en) 2013-01-03

Similar Documents

Publication Publication Date Title
JP6463793B2 (ja) 入力電流を測定するためのシステム
KR101436947B1 (ko) 통합 센서 시스템
NL2004055C2 (en) Method for measuring target surface topology and lithography system.
NL2004052C2 (en) Capacitive sensing system.
NL2004051C2 (en) Capacitive sensor.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190104

R150 Certificate of patent or registration of utility model

Ref document number: 6463793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250