JP6458344B2 - Method of manufacturing gallium nitride film and laminated substrate - Google Patents
Method of manufacturing gallium nitride film and laminated substrate Download PDFInfo
- Publication number
- JP6458344B2 JP6458344B2 JP2014037470A JP2014037470A JP6458344B2 JP 6458344 B2 JP6458344 B2 JP 6458344B2 JP 2014037470 A JP2014037470 A JP 2014037470A JP 2014037470 A JP2014037470 A JP 2014037470A JP 6458344 B2 JP6458344 B2 JP 6458344B2
- Authority
- JP
- Japan
- Prior art keywords
- gallium nitride
- film
- nitride film
- less
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Description
窒化ガリウムは、青色発光ダイオード(LED)の発光層や青色レーザーダイオード(LD)の原料として注目され、近年では薄膜や基板の形態にて白色LEDや青色LDなどの様々な用途に用いられており、また将来的にはパワーデバイスなどの用途の材料としても注目されている。現在、窒化ガリウム薄膜は有機金属化学気相成長(MOCVD)法によって製造されることが一般的である。MOCVD法は、キャリアガスに原料の蒸気を含ませて基板表面に運搬し、加熱された基板との反応で原料を分解させることにより、結晶を成長させる方法である。 Gallium nitride is attracting attention as a light emitting layer for blue light emitting diodes (LEDs) and a raw material for blue laser diodes (LDs). In recent years, gallium nitride is used in various applications such as white LEDs and blue LDs in the form of thin films and substrates. In the future, it is also attracting attention as a material for applications such as power devices. At present, gallium nitride thin films are generally manufactured by metal organic chemical vapor deposition (MOCVD). The MOCVD method is a method in which a vapor of a raw material is contained in a carrier gas and transported to the substrate surface, and the raw material is decomposed by reaction with a heated substrate to grow crystals.
MOCVD法以外の薄膜の作製製法としてスパッタ法が挙げられる。このスパッタリング法は陰極に設置したターゲットにArイオンなどの正イオンを物理的に衝突させ、その衝突エネルギーでターゲットを構成する材料を放出させて、対面に設置した基板上にターゲット材料とほぼ同組成の膜を堆積する方法であり、直流スパッタリング法(DCスパッタリング法)と高周波スパッタリング法(RFスパッタリング法)がある。 A sputtering method is an example of a method for producing a thin film other than the MOCVD method. In this sputtering method, positive ions such as Ar ions are physically collided with a target placed on the cathode, the material constituting the target is released by the collision energy, and the composition is almost the same as the target material on the substrate placed on the opposite side. There are two methods of depositing a film, such as a direct current sputtering method (DC sputtering method) and a high frequency sputtering method (RF sputtering method).
これまで、スパッタ法にて窒化ガリウム薄膜を製膜する方法として、金属ガリウムターゲットが用いられてきた(例えば、特許文献1参照)。しかし、金属ガリウムターゲットを用いる場合では、金属ガリウムの融点が約29.8℃であることから、スパッタ時に溶解するため、結晶性や透過性といった特性を高度に安定化させた窒化ガリウム膜を得ることが困難であり、それを防止するために高価な冷却装置を取り付け、さらに低パワーで製膜する手法が提案されているが、生産性が低下するとともに膜中への酸素の取り込みも多くなりやすいという課題があった。 Until now, a metal gallium target has been used as a method of forming a gallium nitride thin film by sputtering (see, for example, Patent Document 1). However, when a metal gallium target is used, since the melting point of metal gallium is about 29.8 ° C., the metal gallium target melts at the time of sputtering, so that a gallium nitride film having highly stabilized characteristics such as crystallinity and permeability is obtained. In order to prevent this, an expensive cooling device is attached and a method of forming a film with low power has been proposed. However, productivity is reduced and oxygen is incorporated into the film. There was a problem that it was easy.
また、窒化ガリウムを主成分とするスパッタリングターゲットを用いた窒化ガリウム膜(例えば、特許文献2参照)が提案されているが、窒化ガリウムターゲットの密度や物性については詳細な記載は無く、またTbを添加した窒化ガリウムターゲットを用いて作製しており、窒化ガリウム単体のターゲットでの検討は行われてない。すなわち、窒化ガリウム単体の膜は得られていない。 Further, although a gallium nitride film using a sputtering target containing gallium nitride as a main component has been proposed (see, for example, Patent Document 2), there is no detailed description of the density and physical properties of the gallium nitride target, and Tb The gallium nitride target is manufactured using an added gallium nitride target, and a study using a gallium nitride simple substance target is not performed. That is, a film of gallium nitride alone has not been obtained.
さらに、窒化ガリウムの高密度の焼結体(例えば、特許文献3参照)が提案されている。この実施例によると、58Kbar(5.8GPa)という非常に高圧条件下では緻密化しているが、このような圧力をかける装置は非常に高価な装置であり、大型の焼結体を作製するには不向きである。そのため、スパッタ法で用いるスパッタリングターゲット自体が非常に高価となり、かつ大型化が困難なことから均質性に劣る膜となりやすいという課題を有していた。 Furthermore, a high-density sintered body of gallium nitride (for example, see Patent Document 3) has been proposed. According to this example, it is densified under a very high pressure condition of 58 Kbar (5.8 GPa), but the device for applying such a pressure is a very expensive device, and it is necessary to produce a large sintered body. Is unsuitable. For this reason, the sputtering target itself used in the sputtering method is very expensive and it is difficult to increase the size of the sputtering target.
本発明の目的は、窒化ガリウムターゲットを用いたスパッタ法により低酸素量であり、結晶性及び透過性の高い窒化ガリウム膜とその膜の製造方法を提供することである。 An object of the present invention is to provide a gallium nitride film having a low oxygen content and high crystallinity and permeability by a sputtering method using a gallium nitride target, and a method for manufacturing the film.
このような背景に鑑み、本発明者らは鋭意検討を重ねた。その結果、酸素含有量の少ない窒化ガリウム焼結体をスパッタリングターゲットとして用いたスパッタリング法において形成される窒化ガリウム膜は非常に低酸素含有量であり、高結晶性及び高透過性という優れた特性を発現し、かつ、素子等に好適に用いることができることを見出し、本発明を完成するに至った。 In view of such a background, the present inventors made extensive studies. As a result, the gallium nitride film formed by the sputtering method using a gallium nitride sintered body with a low oxygen content as a sputtering target has a very low oxygen content, and has excellent characteristics such as high crystallinity and high permeability. The inventors have found that it is expressed and can be suitably used for an element and the like, and have completed the present invention.
すなわち、本発明の態様は以下の通りである。
(1)酸素含有量が10atm%以下であり、X線回折測定における(002)面の半価幅が0.4°以下であることを特徴とする、スパッタ法により作製した窒化ガリウム膜。
(2)X線回折測定における(002)面の強度と(101)面の強度をそれぞれI(002)、I(101)としたときに、その強度比I(002)/I(101)が3以上であることを特徴とする(1)に記載の窒化ガリウム膜。
(3)窒化ガリウムを主成分として含む、酸素含有量が10atm%以下であるスパッタリングターゲットを用いてスパッタ法で製膜する製膜工程と、形成された窒化ガリウム膜を800℃以上1200℃以下で加熱する加熱処理工程とを有することを特徴とする(1)又は(2)に記載の窒化ガリウム膜の製造方法。
(4)製膜工程において基板加熱温度を100℃以上800℃以下とすることを特徴とする(3)に記載の窒化ガリウム膜の製造方法。
(5)加熱処理工程における温度が、製膜工程の際の基板加熱温度よりも高いことを特徴とする(3)又は(4)に記載の窒化ガリウム膜の製造方法。
(6)加熱処理工程の際の雰囲気ガスにアンモニアを含有させること特徴とする(3)〜(5)のいずれかに記載の窒化ガリウム膜の製造方法。
(7)(1)又は(2)に記載の窒化ガリウム膜と基板により構成されることを特徴とする窒化ガリウム膜を含む積層基材。
(8)(7)に記載の積層基材を用いることを特徴とする半導体素子。
(9)(8)の半導体素子を含むことを特徴とする電子機器。
That is, the aspects of the present invention are as follows.
(1) A gallium nitride film produced by a sputtering method, wherein the oxygen content is 10 atm% or less, and the half width of the (002) plane in X-ray diffraction measurement is 0.4 ° or less.
(2) When the intensity of the (002) plane and the intensity of the (101) plane in the X-ray diffraction measurement are I (002) and I (101), the intensity ratio I (002) / I (101) is 3. The gallium nitride film according to (1), which is 3 or more.
(3) A film forming step of forming a film by a sputtering method using a sputtering target containing gallium nitride as a main component and having an oxygen content of 10 atm% or less, and the formed gallium nitride film at 800 ° C. to 1200 ° C. The method for producing a gallium nitride film according to (1) or (2), further comprising a heat treatment step of heating.
(4) The method for producing a gallium nitride film according to (3), wherein the substrate heating temperature is set to 100 ° C. or higher and 800 ° C. or lower in the film forming step.
(5) The method for producing a gallium nitride film according to (3) or (4), wherein the temperature in the heat treatment step is higher than the substrate heating temperature in the film forming step.
(6) The method for producing a gallium nitride film according to any one of (3) to (5), wherein ammonia is contained in the atmospheric gas during the heat treatment step.
(7) A laminated base material including a gallium nitride film, characterized by comprising the gallium nitride film according to (1) or (2) and a substrate.
(8) A semiconductor element using the laminated base material according to (7).
(9) An electronic device comprising the semiconductor element of (8).
以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではない。 Hereinafter, although the present invention is explained in detail, the present invention is not limited to the following embodiments.
本発明の窒化ガリウム膜は、酸素含有量が10atm%以下であり、X線回折測定における(002)面の半価幅が0.4°以下であり、スパッタ法により作製されたものである。 The gallium nitride film of the present invention has an oxygen content of 10 atm% or less, a half width of the (002) plane in X-ray diffraction measurement is 0.4 ° or less, and is manufactured by a sputtering method.
酸素含有量が10atm%を上回ると膜の結晶構造中に酸素が多く含まれる原因となるため、X線回折測定における(002)面の半価幅が0.4°以下の、結晶性が高く波長400nmにおける透過率が40%以上となるような透過性に優れた膜が得られない。 If the oxygen content exceeds 10 atm%, a large amount of oxygen is contained in the crystal structure of the film. Therefore, the half width of the (002) plane in X-ray diffraction measurement is 0.4 ° or less, and the crystallinity is high. A film with excellent transparency such that the transmittance at a wavelength of 400 nm is 40% or more cannot be obtained.
本発明の窒化ガリウム膜は、X線回折測定における(002)面の強度と(101)面の強度をそれぞれI(002)、I(101)としたときに、その強度比I(002)/I(101)が3以上であることが好ましい。 The gallium nitride film of the present invention has an intensity ratio of I (002) / I when the intensity of the (002) plane and the intensity of the (101) plane in the X-ray diffraction measurement are I (002) and I (101), respectively. I (101) is preferably 3 or more.
酸素含有量が少なく、結晶性と透過性の高い窒化ガリウム膜において、このような配向性の高い膜とすることで耐熱性が高くなるとともにMOCVD法などにより窒化ガリウムのエピタキシャル成長をさせることが可能となる。 In a gallium nitride film having a low oxygen content and high crystallinity and permeability, such a highly oriented film increases heat resistance and enables epitaxial growth of gallium nitride by MOCVD or the like. Become.
本発明における窒化ガリウム薄膜は、スパッタリング法を用いて作製されることにより、大面積に均質性が高く、かつ酸素含有量が抑制され、高い結晶性と透過性を兼ね備えた膜を容易に得ることが可能となる。 The gallium nitride thin film according to the present invention can be easily obtained by producing a film having high crystallinity and transparency, with high homogeneity over a large area and low oxygen content by being produced using a sputtering method. Is possible.
以下に本発明の窒化ガリウム薄膜の製造方法について説明する。 The method for producing a gallium nitride thin film of the present invention will be described below.
本発明の窒化ガリウム膜は、窒化ガリウムを主成分として含む、酸素含有量が10atm%以下であるスパッタリングターゲットを用いてスパッタ法で製膜する製膜工程と、形成された窒化ガリウム膜を800℃以上1200℃以下で加熱する加熱処理工程とを有する方法で製造される。 The gallium nitride film of the present invention is formed by a sputtering process using a sputtering target containing gallium nitride as a main component and having an oxygen content of 10 atm% or less, and the formed gallium nitride film at 800 ° C. And a heat treatment step of heating at 1200 ° C. or lower.
スパッタリングターゲットは、窒化ガリウムを主成分として含む、酸素含有量が10atm%以下であることが必要であり、純度についてもなるべく高い方が望ましい。 The sputtering target needs to contain gallium nitride as a main component and have an oxygen content of 10 atm% or less, and the purity is preferably as high as possible.
スパッタリング法としては、DCスパッタリング法、RFスパッタリング法、ACスパッタリング法、DCマグネトロンスパッタリング法、RFマグネトロンスパッタリング法、イオンビームスパッタリング法等を適宜選択することができ、これらの中、大面積に均一に、かつ高速製膜可能な点でDCマグネトロンスパッタリング法、RFマグネトロンスパッタリング法が好ましい。 As the sputtering method, a DC sputtering method, an RF sputtering method, an AC sputtering method, a DC magnetron sputtering method, an RF magnetron sputtering method, an ion beam sputtering method, and the like can be selected as appropriate. In addition, the DC magnetron sputtering method and the RF magnetron sputtering method are preferable in that high-speed film formation is possible.
製膜工程では、基板を加熱した状態で製膜することが好ましい。基板を加熱した状態で製膜することで、スパッタされた粒子にエネルギーを与え、より安定な結晶状態となることが可能だからであり、さらに言えば、高温で加熱処理するためには、その際の熱膨張率差等による割れを防止するため、製膜時に加熱しておくことが好ましいからである。製膜工程における基板加熱温度(以下、製膜温度と言うことがある。)は100℃以上800℃以下が好ましく、200℃以上800℃以下がより好ましく、400℃以上800℃以下が特に好ましい。100℃未満の温度では、粒子移動や製膜後に加熱処理する際の割れの防止効果が薄くなる。また、800℃より高い温度ではスパッタ装置が高価となり、スパッタ法を用いるメリットが小さくなる。製膜時のガスは窒素を含んでいることが望ましい。そうすることで窒素欠陥の少ない膜を作製可能となる。そのガス圧は0.05〜0.5Paであることが好ましい。 In the film forming step, it is preferable to form the film while the substrate is heated. This is because it is possible to give energy to the sputtered particles and form a more stable crystal state by forming the film while the substrate is heated. This is because it is preferable to heat at the time of film formation in order to prevent cracking due to a difference in thermal expansion coefficient. The substrate heating temperature in the film forming step (hereinafter sometimes referred to as film forming temperature) is preferably 100 ° C. or higher and 800 ° C. or lower, more preferably 200 ° C. or higher and 800 ° C. or lower, and particularly preferably 400 ° C. or higher and 800 ° C. or lower. When the temperature is lower than 100 ° C., the effect of preventing cracking during heat treatment after particle movement or film formation becomes thin. Further, when the temperature is higher than 800 ° C., the sputtering apparatus becomes expensive, and the merit of using the sputtering method is reduced. It is desirable that the gas during film formation contains nitrogen. By doing so, a film with few nitrogen defects can be manufactured. The gas pressure is preferably 0.05 to 0.5 Pa.
加熱処理工程の際の温度は800℃以上1200℃以下である必要がある。なお、加熱処理工程における温度は、製膜工程における製膜温度よりも高いことが好ましい。製膜時に基板を加熱し、更に高温で加熱処理することによって、配向性、結晶性及び透過率を兼ね備えた膜を作製することができる。また、加熱処理工程の際の雰囲気ガスはアンモニアを含有していることが好ましい。 The temperature in the heat treatment step needs to be 800 ° C. or higher and 1200 ° C. or lower. In addition, it is preferable that the temperature in a heat treatment process is higher than the film forming temperature in a film forming process. A film having orientation, crystallinity, and transmittance can be manufactured by heating the substrate at the time of film formation and further performing heat treatment at a high temperature. Moreover, it is preferable that the atmospheric gas in the heat treatment process contains ammonia.
本発明の窒化ガリウム膜は、基材と構成される窒化ガリウム膜を含む積層基材として好適に用いることができる。 The gallium nitride film of the present invention can be suitably used as a laminated substrate including a gallium nitride film configured as a substrate.
ここで、基材とは無アルカリガラスや石英等を含むガラス基材、樹脂製の高分子フィルム基材、セラミックスや金属の基材等が挙げられる。特に表示素子向けの場合は視認性が極めて重要であるため、無アルカリガラスや石英等を含むガラス基材、樹脂製の高分子フィルム基材が好適である。 Here, the base material includes a glass base material containing alkali-free glass or quartz, a resin-made polymer film base material, a ceramic or metal base material, and the like. In particular, in the case of a display element, visibility is very important, and therefore, a glass substrate containing non-alkali glass or quartz, or a resin polymer film substrate is preferable.
このような積層基材は複数の機能部品と構成された素子として好適に用いられる。例えば、太陽電池等の光学素子、FPDやタッチパネル等の表示素子に好適である。特に上述の表示素子は電子機器内に組み込まれて好適に用いられ、モバイル機器のように小型高性能電子機器には特に好適である。 Such a laminated substrate is suitably used as an element configured with a plurality of functional parts. For example, it is suitable for optical elements such as solar cells and display elements such as FPDs and touch panels. In particular, the display element described above is preferably used by being incorporated in an electronic device, and is particularly suitable for a small high-performance electronic device such as a mobile device.
本発明の窒化ガリウム膜は低酸素量であり、結晶性及び透過性の高く、太陽電池等の光学素子、FPDやタッチパネル等の表示素子に好適に用いることができる。 The gallium nitride film of the present invention has a low oxygen content, high crystallinity and transparency, and can be suitably used for optical elements such as solar cells and display elements such as FPDs and touch panels.
本発明を以下の実施例を参照してより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(透過率の測定方法)
基板の透過率を測定後、窒化ガリウム膜付き基板の透過率を測定し下記の式にて波長400nmにおける膜の透過率を算出する。
窒化ガリウム膜の透過率=窒化ガリウム膜付き基板の透過率/基板の透過率
(結晶面の確認、半値幅、強度比の測定方法)
XRD装置にて2θ―θにて20°から80°まで測定し、JCPDSNo.00−050−0792を参考として窒化ガリウム結晶面を確認し、(002)面についてその半値幅を測定し、強度比はI(002)とI(101)について下記の式を用いて算出する。
強度比=I(002)/I(101)
(酸素含有量測定)
膜中の酸素含有量はESCA(X線光電子分光法)を用いて表面から20nmの部分を測定した。
The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to these examples.
(Measurement method of transmittance)
After measuring the transmittance of the substrate, the transmittance of the substrate with the gallium nitride film is measured, and the transmittance of the film at a wavelength of 400 nm is calculated by the following formula.
Transmittance of gallium nitride film = Transmittance of substrate with gallium nitride film / Transmittance of substrate (crystal plane confirmation, half width, intensity ratio measurement method)
Measured from 20 ° to 80 ° at 2θ-θ with an XRD apparatus. The gallium nitride crystal plane is confirmed with reference to 00-050-0792, the half width of the (002) plane is measured, and the intensity ratio is calculated using the following formula for I (002) and I (101).
Intensity ratio = I (002) / I (101)
(Oxygen content measurement)
The oxygen content in the film was measured at 20 nm from the surface using ESCA (X-ray photoelectron spectroscopy).
(実施例1)
窒化ガリウムスパッタリングターゲットを用いて、下記の条件にてスパッタ製膜試験を実施した。
(スパッタ条件)
放電方式 :RFスパッタ
製膜装置 :マグネトロンスパッタ装置
ターゲット材料 :窒化ガリウム(酸素含有量7atm%)
ターゲットサイズ :120mmφ
ターゲット―基板間距離:150mm
製膜圧力 :0.3Pa
導入ガス :窒素
放電パワー :250W
基板 :10mm角サファイア(0001)面
製膜温度 :200℃
膜厚 :1000nm
加熱処理温度 :900℃
以上の条件にて製膜を行なった結果、透過率55%、酸素量7atm%、半値幅0.28°、強度比2の窒化ガリウム薄膜の作製に成功した。
Example 1
Using a gallium nitride sputtering target, a sputtering film formation test was performed under the following conditions.
(Sputtering conditions)
Discharge method: RF sputtering Film forming device: Magnetron sputtering device Target material: Gallium nitride (oxygen content: 7 atm%)
Target size: 120mmφ
Target-to-board distance: 150mm
Film forming pressure: 0.3 Pa
Introduced gas: Nitrogen Discharge power: 250W
Substrate: 10 mm square sapphire (0001) surface Film forming temperature: 200 ° C.
Film thickness: 1000nm
Heat treatment temperature: 900 ° C
As a result of film formation under the above conditions, a gallium nitride thin film having a transmittance of 55%, an oxygen content of 7 atm%, a half-value width of 0.28 °, and an intensity ratio of 2 was successfully produced.
(実施例2)
窒化ガリウムスパッタリングターゲットを用いて、下記の条件にてスパッタ製膜試験を実施した。
(スパッタ条件)
放電方式 :RFスパッタ
製膜装置 :マグネトロンスパッタ装置
ターゲット材料 :窒化ガリウム(酸素含有量7atm%)
ターゲットサイズ :76mmφ
ターゲット―基板間距離:90mm
製膜圧力 :0.3Pa
導入ガス :窒素
放電パワー :100W
基板 :50mm角サファイア(0001)面
製膜温度 :100℃
膜厚 :1000nm
加熱処理温度 :900℃
以上の条件にて製膜を行なった結果、透過率55%、酸素量7atm%、半値幅0.32°、強度比106の窒化ガリウム薄膜の作製に成功した。
(Example 2)
Using a gallium nitride sputtering target, a sputtering film formation test was performed under the following conditions.
(Sputtering conditions)
Discharge method: RF sputtering Film forming device: Magnetron sputtering device Target material: Gallium nitride (oxygen content: 7 atm%)
Target size: 76mmφ
Target-substrate distance: 90mm
Film forming pressure: 0.3 Pa
Introduced gas: Nitrogen Discharge power: 100W
Substrate: 50 mm square sapphire (0001) surface Film forming temperature: 100 ° C.
Film thickness: 1000nm
Heat treatment temperature: 900 ° C
As a result of film formation under the above conditions, a gallium nitride thin film having a transmittance of 55%, an oxygen content of 7 atm%, a half-value width of 0.32 °, and an intensity ratio of 106 was successfully produced.
(実施例3)
製膜温度を500℃とした以外は実施例1と同様の条件にて製膜を行った結果、透過率60%、酸素量6atm%、半値幅0.28°、強度比3の窒化ガリウム薄膜の作製に成功した。
(Example 3)
As a result of film formation under the same conditions as in Example 1 except that the film formation temperature was 500 ° C., a gallium nitride thin film having a transmittance of 60%, an oxygen content of 6 atm%, a half-value width of 0.28 °, and an intensity ratio of 3 Was successfully produced.
(実施例4)
製膜温度を800℃、加熱温度1000℃とした以外は実施例1と同様の条件にて製膜を行った結果、透過率63%、半値幅0.26°、強度比3.5の窒化ガリウム薄膜の作製に成功した。
(Example 4)
As a result of film formation under the same conditions as in Example 1 except that the film formation temperature was 800 ° C. and the heating temperature was 1000 ° C., nitriding with a transmittance of 63%, a half-value width of 0.26 °, and an intensity ratio of 3.5 Successful fabrication of gallium thin film.
(比較例1)
窒化ガリウムスパッタリングターゲットを酸素含有量30atm%のものに変えた以外は実施例2と同様の条件にて製膜を行ったところ、透過率20%、酸素量23atm%、結晶の存在しない窒化ガリウム薄膜となり、所望のものを得られなかった。
(Comparative Example 1)
A film was formed under the same conditions as in Example 2 except that the gallium nitride sputtering target was changed to one having an oxygen content of 30 atm%. As a result, the transmittance was 20%, the oxygen content was 23 atm%, and no gallium nitride thin film was present. Thus, the desired product could not be obtained.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014037470A JP6458344B2 (en) | 2014-02-27 | 2014-02-27 | Method of manufacturing gallium nitride film and laminated substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014037470A JP6458344B2 (en) | 2014-02-27 | 2014-02-27 | Method of manufacturing gallium nitride film and laminated substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015162606A JP2015162606A (en) | 2015-09-07 |
JP6458344B2 true JP6458344B2 (en) | 2019-01-30 |
Family
ID=54185497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014037470A Active JP6458344B2 (en) | 2014-02-27 | 2014-02-27 | Method of manufacturing gallium nitride film and laminated substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6458344B2 (en) |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10163114A (en) * | 1996-11-29 | 1998-06-19 | Matsushita Electron Corp | Semiconductor device and manufacturing method thereof |
JP4183787B2 (en) * | 1997-11-28 | 2008-11-19 | Tdk株式会社 | Manufacturing method of substrate for electronic device |
JPH11172424A (en) * | 1997-12-12 | 1999-06-29 | Minolta Co Ltd | Production of gallium compound |
JP4586160B2 (en) * | 2003-07-02 | 2010-11-24 | 独立行政法人産業技術総合研究所 | Method for producing p-type semiconductor crystal thin film of gallium nitride by duel pulse laser deposition technique and thin film produced by the same method |
JP2008047762A (en) * | 2006-08-18 | 2008-02-28 | Showa Denko Kk | Group iii nitride compound semiconductor light emitting element, process for fabricating the same, and lamp |
JP2008235878A (en) * | 2007-02-19 | 2008-10-02 | Showa Denko Kk | Solar cell and manufacturing method therefor |
JP4979442B2 (en) * | 2007-04-10 | 2012-07-18 | 昭和電工株式会社 | Method for producing Ga sputter target |
JP5386747B2 (en) * | 2008-02-21 | 2014-01-15 | 公益財団法人神奈川科学技術アカデミー | Semiconductor substrate, semiconductor element, light emitting element, and electronic element |
JP5451280B2 (en) * | 2008-10-09 | 2014-03-26 | キヤノン株式会社 | Wurtzite crystal growth substrate, manufacturing method thereof, and semiconductor device |
JP2012119569A (en) * | 2010-12-02 | 2012-06-21 | Ulvac Japan Ltd | Nitride semiconductor element |
KR101935755B1 (en) * | 2010-12-20 | 2019-01-04 | 토소가부시키가이샤 | Gallium nitride molded article, and method for producing same |
JP2012222004A (en) * | 2011-04-04 | 2012-11-12 | Ulvac Japan Ltd | Semiconductor layer formation device, semiconductor layer manufacturing method |
JP5946248B2 (en) * | 2011-04-12 | 2016-07-06 | 株式会社高純度化学研究所 | Manufacturing method of sputtering target |
-
2014
- 2014-02-27 JP JP2014037470A patent/JP6458344B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015162606A (en) | 2015-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Photoluminescence of ZnO films prepared by rf sputtering on different substrates | |
JP6947232B2 (en) | Gallium nitride based film and its manufacturing method | |
KR102679764B1 (en) | Gallium nitride-based sintered compact and method for manufacturing same | |
Shi et al. | Room temperature preparation of high performance AZO films by MF sputtering | |
Teng et al. | Photoluminescence of ZnO thin films on Si substrate with and without ITO buffer layer | |
JP2022105014A (en) | System and method for growing iiia group nitride | |
CN114059165B (en) | Light-emitting device, aluminum nitride product, aluminum nitride single crystal, and manufacturing method and application thereof | |
Wang et al. | Effect of substrate temperature and bias voltage on the properties in DC magnetron sputtered AlN films on glass substrates | |
JP2018046277A (en) | Gallium nitride based film and manufacturing method of the same | |
US20180350922A1 (en) | High mobility doped metal oxide thin films and reactive physical vapor deposition methods of fabricating the same | |
Crovetto et al. | Boron phosphide films by reactive sputtering: searching for a P‐type transparent conductor | |
Hong et al. | Control and characterization of structural and optical properties of ZnO thin films fabricated by thermal oxidation Zn metallic films | |
JP6458344B2 (en) | Method of manufacturing gallium nitride film and laminated substrate | |
WO2012026599A1 (en) | Method for producing zno film, method for producing transparent conductive film, zno film, and transparent conductive film | |
Ahn et al. | Dependency of oxygen partial pressure on the characteristics of ZnO films grown by radio frequency magnetron sputtering | |
Kim et al. | ZnO wurtzite single crystals prepared by nanorod-assisted epitaxial lateral overgrowth | |
Kang et al. | The role of a ZnO buffer layer in the growth of ZnO thin film on Al2O3 substrate | |
Lee et al. | Effects of O2 plasma pre-treatment on ZnO thin films grown on polyethersulfone substrates at various deposition temperatures by atomic layer deposition | |
CN103774098A (en) | Thin film with stannous oxide texture and preparation method thereof | |
KR102312535B1 (en) | Method of manufacturing aluminum nitride thin film using pulse laser method | |
KR101484770B1 (en) | Method for preparing graphene using cover and method for fabricating electronic device comprising the same | |
CN101748366B (en) | Ultra-fine grain metal membrane or ultra-fine grain alloy membrane and preparation method thereof | |
Ding et al. | Enhanced blue emission of ZnO films deposited on AlN substrates | |
KR20140120663A (en) | Preparation method of ZnO:Al thin film | |
WO2015037462A1 (en) | Production method for silicon oxide sintered body, and silicon oxide sintered body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171023 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171031 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180417 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180618 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181127 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181210 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6458344 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |