JP4586160B2 - Method for producing p-type semiconductor crystal thin film of gallium nitride by duel pulse laser deposition technique and thin film produced by the same method - Google Patents

Method for producing p-type semiconductor crystal thin film of gallium nitride by duel pulse laser deposition technique and thin film produced by the same method Download PDF

Info

Publication number
JP4586160B2
JP4586160B2 JP2003270401A JP2003270401A JP4586160B2 JP 4586160 B2 JP4586160 B2 JP 4586160B2 JP 2003270401 A JP2003270401 A JP 2003270401A JP 2003270401 A JP2003270401 A JP 2003270401A JP 4586160 B2 JP4586160 B2 JP 4586160B2
Authority
JP
Japan
Prior art keywords
thin film
gan
substrate
type
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003270401A
Other languages
Japanese (ja)
Other versions
JP2005022940A (en
Inventor
八三 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003270401A priority Critical patent/JP4586160B2/en
Publication of JP2005022940A publication Critical patent/JP2005022940A/en
Application granted granted Critical
Publication of JP4586160B2 publication Critical patent/JP4586160B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、窒化ガリウムのp型半導体の結晶薄膜の作製方法及び同法で作製した薄膜に関するものであり、更に詳しくは、p型半導体化したGaのエピタキシャル薄膜と一軸配向及び多結晶等の結晶性薄膜(全体を結晶薄膜と称す)、p型とn型のGaの薄膜間、p型Gaの薄膜と他のn型半導体薄膜や基板との間のp−n半導体接合素子の作製方法と、それにより得られる該薄膜、及び該薄膜と基板及び他の薄膜との積層によるp−n半導体接合素子に関するものである。本発明は、特に、ワイドバンドギャップ半導体のエレクトロニクスとオプトエレクトロニクスの基礎となるGaのp型半導体化結晶薄膜、該p型化薄膜とn型化したGaN又はGaNと他のn型半導体との積層薄膜と、それらを得るためのパルスレーザ蒸着成膜方法に関する新しい技術を提供するものとして有用である。 The present invention relates to a thin film manufactured by the manufacturing method and the law of p-type semiconductor crystal thin film of gallium nitride, and more particularly, p-type semiconductor of the Ga N epitaxial thin film and the like uniaxially oriented and polycrystalline crystalline thin film (whole referred to as crystal thin film), between the thin film of p-type and n-type Ga n, the p-n semiconductor junction element between the thin film and the other n-type semiconductor thin film and the substrate of p-type Ga n The present invention relates to a manufacturing method, the thin film obtained thereby, and a pn semiconductor junction element formed by stacking the thin film with a substrate and another thin film. The present invention is particularly, p-type semiconducting crystal thin film of Ga N underlying wide bandgap semiconductor electronics and optoelectronics, said p-type thin film and the n-type was Ga N or GaN and other n-type semiconductor The present invention is useful for providing a new technique relating to a laminated thin film and a pulse laser deposition film forming method for obtaining them.

GaNは、青色や紫外線域の発光ダイオード(LED)やレーザ等のオプトエレクトロニクス分野における重要な半導体である。今後、次世代のエネルギー、情報通信やエレクトロニクスの分野では、高出力、高温、高周波や高耐放射線性の電子デバイス、及び高性能短波長域レーザや安価な白色発光ダイオードになると期待されている。しかし、その実現には高品質な単結晶薄膜や積層薄膜の作製技術の他、特に、簡易なGaNのp型半導体化技術の開発が必要である。従来、これらの電子や光学デバイス等の製造や研究開発では、主にCVD成膜法を用いてGaNの成膜と素子化がなされている(非特許文献1、2参照)。そこにおいて、最も重要で、かつ難しい技術であるGaNのp型半導体化は、有機Mg化合物又は有機Zn化合物を用いたMO−CVDやMO−VPEによるド−ピング法を使って行われている。しかし、同方法では、MgやZnが水素と結合した状態でGaN膜中に入り(添加されるが)、そのままではホールドーピング(活性化)されない。特にMgは反応性が高いのでZnより取り扱いと半導体化が難しい。   GaN is an important semiconductor in the field of optoelectronics such as light emitting diodes (LEDs) and lasers in the blue and ultraviolet range. In the future, in the fields of next-generation energy, information communication, and electronics, high-power, high-temperature, high-frequency, and radiation-resistant electronic devices, high-performance short-wavelength lasers, and inexpensive white light-emitting diodes are expected. However, in order to realize this, it is necessary to develop a simple GaN p-type semiconductor technology, in addition to a technique for producing high-quality single crystal thin films and laminated thin films. Conventionally, in the manufacture and research and development of these electronic and optical devices, GaN film formation and element formation have been performed mainly using a CVD film formation method (see Non-Patent Documents 1 and 2). Therefore, the most important and difficult technology of making GaN into a p-type semiconductor is performed using a doping method by MO-CVD or MO-VPE using an organic Mg compound or an organic Zn compound. However, in this method, Mg or Zn enters (adds to) the GaN film in a state of being bonded to hydrogen, and is not hole-doped (activated) as it is. In particular, Mg is more reactive, so it is more difficult to handle and semiconductorize than Zn.

これらのために、成膜後に真空下で電子線照射又は高温熱処理が行われ、金属−水素間の結合を切断し、水素を追い出して添加金属が格子内で欠陥を生ぜずにGaと正確に置換してホールドーピング材として働くように活性化がなされている。しかし、これらは高度技術を要し、かつ制御が難しい行程である上、コストもかかる。そのために、GaNの成膜時に同時ドーピングと活性化が達成され、後処理が不必要となるような、従来法よりも簡便なp型半導体化技術の開発が望まれている。特に、次世代電子デバイスや安価な短波長域LEDやレーザ及び白色発光ダイオード等の次世代半導体素子を開発するためには、簡易なGaNのp型半導体化やp−n素子化技術と同薄膜や素子が必要となる。   For these reasons, electron beam irradiation or high-temperature heat treatment is performed under vacuum after film formation, breaking the bond between metal and hydrogen, expelling hydrogen, and the added metal does not cause defects in the lattice, so that it is exactly Ga. It is activated to replace it and serve as a hole doping material. However, these require high technology, are difficult to control, and costly. Therefore, there is a demand for the development of a p-type semiconductor technology that is simpler than the conventional method so that simultaneous doping and activation can be achieved at the time of GaN film formation, and post-processing is unnecessary. In particular, in order to develop next-generation semiconductor devices such as next-generation electronic devices, inexpensive short-wavelength LEDs, lasers, and white light-emitting diodes, the same thin film as that of a simple GaN p-type semiconductor or pn device technology And elements are required.

なお、基板としては、従来、主にサファイア(Al)が用いられている(非特許文献3参照)。サファイアはGaNと結晶格子長の整合性が良くないが(同一配向での不整合性は約33%、酸素のサブ格子とGaN間の不整合性は18%)、他に適当な基板がないことに加えて、GaN結晶と同一の対称性(六方晶系)を有し、かつ窒化のために、用いられるアンモニアや窒素ラジカル等と反応しないという理由から用いられている。その大きな格子不整合性を緩和するために、GaNと同一の結晶構造(六方晶系)を有し、結晶が成長し易い窒化アルミニウム(AlN)等の単結晶薄膜をまず低温でサファイア上に作製し、それを緩衝層として、その上に高温でGaNのヘテロエピタキシャル薄膜を作製する方法等が取られている(非特許文献4参照)。その他、成膜速度は遅いが、ガスソースMBE法によるGaN単結晶性薄膜のサファイア上への直接的な成膜に関する報告がある。更に、フェライト(Fe)の(111)、サファイア上のAlN又はInNとGaNとの混合物の(0001)緩衝層(非特許文献6参照)、α−炭化ケイ素(α−SiC)の(0001)やβ−SiCの(111)、Si上のアルミナ(γ−Al)の(111)緩衝層(非特許文献7、9参照)、又はサファイア(0001)あるいは立方晶系結晶の(111)面上のZnO(111)緩衝層、更にZrB2基板やYSZ基板の他、溶融石英(非晶質)基板等の多くの基板や結晶面へのGaN成膜の報告がある(非特許文献5、8、10参照)。 Conventionally, sapphire (Al 2 O 3 ) is mainly used as the substrate (see Non-Patent Document 3). Sapphire has poor crystal lattice length consistency with GaN (about 33% mismatch in the same orientation, 18% mismatch between oxygen sublattice and GaN), but no other suitable substrate In addition, it is used because it has the same symmetry (hexagonal system) as a GaN crystal and does not react with ammonia or nitrogen radicals used for nitriding. In order to alleviate the large lattice mismatch, a single crystal thin film such as aluminum nitride (AlN) that has the same crystal structure (hexagonal system) as GaN and is easy to grow is first formed on sapphire at low temperature. In addition, a method of forming a GaN heteroepitaxial thin film at a high temperature on it as a buffer layer is used (see Non-Patent Document 4). In addition, although the deposition rate is slow, there is a report on direct deposition of GaN single crystal thin film on sapphire by gas source MBE method. Further, (111) of ferrite (Fe 2 O 4 ), (0001) buffer layer of AlN on sapphire or a mixture of InN and GaN (see Non-patent Document 6), α-silicon carbide (α-SiC) ( (0001) or β-SiC (111), (111) buffer layer of alumina (γ-Al 2 O 3 ) on Si (see Non-Patent Documents 7 and 9), sapphire (0001) or cubic crystal In addition to ZnO (111) buffer layer on (111) plane, ZrB2 substrate and YSZ substrate, there are reports of GaN film formation on many substrates and crystal planes such as fused silica (amorphous) substrates (non-patent) (Ref. 5, 8, 10).

また、GaNは、他のIII族金属窒化物AlN、InN、BNと同じ六方晶系構造を有するので任意の組成で混合した単結晶薄膜の作製が可能であり、その組成比によりエネルギーバンドギャップ幅が変化するので、発光波長を制御したp−n接合発光素子が作製できることも知られている。更に、前記のような種々の基板上にGaNの結晶性薄膜が作製可能なことも分かっている。
以上の理由から、GaNへのMg添加に関して従来と異なる後処理の要らない簡便なp型半導体化技術を開発し、かついくつかの基板上にp−型GaN薄膜を作製できることを実証すれば、GaN薄膜の作製が可能なことが分かっている上記の各基板上にp−型GaN及びp−n接合素子を作製できることになる。また、反応性が高いMgに関してドーピングによるp型化を達成すれば、反応性が低いZnによるp型化も可能となり、更にGaNに加えて他のIII族金属窒化物AlN、InN、BN及び、GaNと他のIII族金属窒化物との混合物のp型薄膜及びp−n接合素子の作製が可能となり、エレクトロニクスやオプトニクス分野に新たな技術を提供できる。
GaN has the same hexagonal structure as other Group III metal nitrides AlN, InN, and BN, so it is possible to produce a single crystal thin film mixed with any composition. The energy band gap width depends on the composition ratio. It is also known that a pn junction light emitting device with a controlled emission wavelength can be produced. It has also been found that GaN crystalline thin films can be fabricated on various substrates as described above.
For these reasons, if we developed a simple p-type semiconductor technology that does not require post-processing different from conventional methods for adding Mg to GaN, and demonstrated that p-type GaN thin films can be fabricated on several substrates, It will be possible to produce p-type GaN and pn junction elements on each of the above-mentioned substrates that are known to be capable of producing GaN thin films. Further, if p-type conversion by doping is achieved with respect to highly reactive Mg, p-type conversion using low-reactivity Zn is also possible, and in addition to GaN, other group III metal nitrides AlN, InN, BN, and A p-type thin film of a mixture of GaN and another group III metal nitride and a pn junction element can be manufactured, and a new technology can be provided in the electronics and optonic fields.

S. Nakamura,T. Mukai and M. Senoh, Appl. Phys. Lett., 64 (1994) 1687S. Nakamura, T. Mukai and M. Senoh, Appl. Phys. Lett., 64 (1994) 1687 M. Inamori,H. Sakai, T. Tanaka, H. Amano and I. Akasaki, Jpn.J.Phys. 34, (1995) 1190M. Inamori, H. Sakai, T. Tanaka, H. Amano and I. Akasaki, Jpn. J. Phys. 34, (1995) 1190 R. D. Vispute, V. Talyansky, R. P.Sharma, S. Choopun, M. Downes,K. A. Jones, A. A. Liadis, M. AsifKhan and J. W. Yang, Appl. Phys. Lett.71 (1997) 102R. D. Vispute, V. Talyansky, R. P. Sharma, S. Choopun, M. Downes, K. A. Jones, A. A. Liadis, M. AsifKhan and J. W. Yang, Appl. Phys. Lett. 71 (1997) 102 R. D. Vispute, H. Wu and J. Narayan, Appl. Phys. Lett. 67, (1995) 1549R. D. Vispute, H. Wu and J. Narayan, Appl. Phys. Lett. 67, (1995) 1549 R. -F. Xiao,X. W. Sun, H. B. Liao, n. Cue and H. S. Kwok, J. Appl. Phys. 80, (1996) 4224R. -F.Xiao, X.W.Sun, H. B. Liao, n. Cue and H. S. Kwok, J. Appl. Phys. 80, (1996) 4224 太田実雄、藤岡 洋、尾嶋正治、題8回応用物理学関係連合会 講演要旨集 31a-L-7 、(2002)、P.421Mitsuo Ota, Hiroshi Fujioka, Shoji Ojima, Abstracts of the 8th Association of Applied Physics 31a-L-7, (2002), P.421 越智法彦、松浦由幸、大塚康二、桑原憲弘、角谷正友、福家俊郎、第50回応用物理学関係連合会 講演要旨集 29a-T-10、(2003)、P.411Norihiko Ochi, Yoshiyuki Matsuura, Koji Otsuka, Norihiro Kuwahara, Masatomo Kakutani, Toshiro Fukuya, The 50th Japan Federation of Applied Physics 29a-T-10, (2003), P.411 岩谷素顕、飯田一喜、川島毅士、福井伸次、宮崎敦嗣、高浪俊、富田仁人、新田州吾、上山智、天野浩、赤崎勇、第50回応用物理学関係連合会 講演要旨集 29a-T-4 、(2003)、P.409Motoaki Iwatani, Kazuki Iida, Atsushi Kawashima, Shinji Fukui, Satoshi Miyazaki, Toshi Takanami, Hitoshi Tomita, Satoshi Nitta, Satoshi Ueyama, Hiroshi Amano, Isamu Akasaki, 50th Japan Federation of Applied Physics 29a-T-4, (2003), P.409 原田昌史、永野孝幸、柴田典義、第50回応用物理学関係連合会 講演要旨集 27a-V-2 、(2003)、P.382Masafumi Harada, Takayuki Nagano, Noriyoshi Shibata, Proceedings of the 50th Federation of Applied Physics 27a-V-2 (2003), P.382 本家尚志、伊藤真吾、太田実雄、藤岡洋、尾嶋正治、第50回応用物理学関係連合会 講演要旨集 29a-T-7 、(2003)、P.410Naoshi Honke, Shingo Ito, Mio Ota, Hiroshi Fujioka, Masaharu Ojima, Abstracts of the 50th Association of Applied Physics 29a-T-7, (2003), P.410

このような状況の中で、本発明者らは、上記従来技術に鑑みて、前記の従来のMg又はZnの有機金属化合物を用いたMO−CVDによる方法と異なり、PLAD法を使い、高温でのGaのエピタキシャル薄膜の成膜時に同時にホール添加用の金属Mgをドーピングし、後処理無しにp型半導体化を達成することができる方法と同p型薄膜を開発することを目標として、創意工夫と研究を積み重ねた結果、膜用のGaNターゲットと添加材Mgを含むターゲットを交互ないし同時にアブレーションさせか、あるいはGaNとMgNの混合ターゲットをアブレーションさせるデュエルパルスレーザ蒸着(デュエルPLAD)手法を用い、アンモニアないし窒素ラジカル雰囲気において、700℃以上の高温に温度制御した種々の単結晶や非晶質の基板上にホール添加用の金属を含むGaN薄膜を成膜することにより目的を達成し得ることを見いだし、本発明を完成するに至った。
本発明の目的は、前記従来の問題点を解決し、電子線照射や高度な高温熱処理等の後処理無しで、p−n接合に特有なV−I整流特性を具備するGaのp型半導体化エピタキシャル薄膜及び結晶性薄膜を得る方法と、本方法により得られる同薄膜及びp−n薄膜素子を提供することにある。
In such a situation, the present inventors, in view of the above-mentioned prior art, use the PLAD method at a high temperature, unlike the conventional method by MO-CVD using the organometallic compound of Mg or Zn. the goal of the doping metal Mg for added holes simultaneously with the deposition of the epitaxial thin film of Ga N, to develop the p-type thin film and method capable of achieving a p-type semiconducting without aftertreatment, creative As a result of a lot of ingenuity and research, the GaN target for the film and the target containing the additive Mg are alternately or simultaneously ablated, or a dual pulse laser deposition (duel PLAD) method is used in which the mixed target of GaN and MgN is ablated. in the ammonia to nitrogen radicals atmosphere, various single crystal and non was temperature-controlled at a high temperature of 7 00 ° C. or higher It found that can achieve the object by forming a GaN thin film containing a metal for added holes on the substrate quality, and have completed the present invention.
An object of the present invention is to solve the above-mentioned conventional problems, and to perform Ga N p-type having a VI rectification characteristic peculiar to a pn junction without post-treatment such as electron beam irradiation or advanced high-temperature heat treatment. The object is to provide a method for obtaining a semiconducting epitaxial thin film and a crystalline thin film, and the same thin film and pn thin film element obtained by this method.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(a)パルスレーザをターゲット物質に照射し、瞬間・パルス的にイオン、原子やクラスター等の微粒子に分解・剥離(アブレーション)させて、低くとも700℃の高温に温度制御した基板上にターゲット物質の薄膜を作製するパルスレーザアブレーション堆積(PLAD)手段を用いて、アンモニア又は窒素ラジカル雰囲気中において、膜材料として、GaNのターゲットと、ホールドーピングするための添加材料として、Mgのターゲットとを使用し、これらを交互又は同時にアブレーションさせるか、又は該膜材料と該添加材料の両材料物質を混合したターゲットをアブレーションさせるデュエルパルスレーザ蒸着(デュエルPLAD)手法により、基板上に、p型半導体化したGaNのエピタキシャル(単結晶)薄膜又は結晶性薄膜であり、p−n接合に特有な電圧−電流(V−I)特性(V−I整流特性)を具備する薄膜を作製することを特徴とする薄膜の作製方法。
(b)700℃又はそれより高温に温度制御した基板上にターゲット物質の薄膜を作製することを特徴とする前記(a)に記載の薄膜の作製方法。
(c)700℃以上750℃未満の高温に温度制御した基板上にターゲット物質の薄膜を作製することを特徴とする前記(a)に記載の薄膜の作製方法。
(d)基板として、(1)サファイア、Si、SiC、又はGaN自身の単結晶、(2)Si、サファイア又はSiCの単結晶上に作製したn型GaNのエピタキシャル薄膜あるいは結晶性薄膜、又は、(3)Si又はサファイアの単結晶上に作製したZnOのエピタキシャル薄膜を使用することを特徴とする前記(a)から(c)のいずれかに記載の薄膜の作製方法。
(e)基板の結晶面として、(1)サファイア、α−SiC又はZnOの(0001)面、(2)サファイア(0001)面上に作製した、AlN緩衝層、他のIII族金属窒化物の緩衝層、あるいはGaNと他のIII族金属窒化物との混合物の緩衝層の(0001)面、(3)サファイア(0001)面上に作製した、α−SiCの(0001)面、又はβ−SiCの(111)面、(4)サファイアのc面、a面又はR面上に作製したZnOの(0001)面、(5)Siの(111)面、(6)フェライトの(111)、(7)Si上のアルミナの緩衝層の(111)面、又は、(8)非晶質(ガラス)基板の面、を使用することを特徴とする前記(a)から(d)のいずれかに記載の薄膜の作製方法。
(f)前記(a)から(e)のいずれかに記載の薄膜の作製方法によりSi基板上に作製された、p型半導体化したp型GaN薄膜と、該p型GaN薄膜の上に作製されたn型半導体化したn型GaN薄膜からなる、n型GaN薄膜−p型GaN薄膜−n型Si(111)基板間接合構造を有し、p型GaN薄膜と基板間、及びp型GaNとn型半導体間の測定においてp−n接合に特有なV−I整流特性を具備することを特徴とするp−n接合素子。
The present invention for solving the above-described problems comprises the following technical means.
(A) A target material is irradiated onto a target material by irradiating the target material with a pulse laser, and instantaneously and pulse-decomposing and separating (ablating) fine particles such as ions, atoms and clusters, and controlling the temperature to a high temperature of at least 700 ° C. Using a pulsed laser ablation deposition (PLAD) means for producing a thin film of GaN, a GaN target is used as a film material and an Mg target is used as an additive material for hole doping in an ammonia or nitrogen radical atmosphere. GaN that is made into a p-type semiconductor on the substrate by a duel pulse laser deposition (duel PLAD) technique in which these are alternately or simultaneously ablated, or a target in which both the film material and the additive material are mixed is ablated. Epitaxial (single crystal) thin film or crystalline thin film , And the specific voltage to p-n junction - current (V-I) characteristics method for manufacturing a thin film, which comprises preparing a (V-I rectifying characteristics) thin film having a.
(B) A method for producing a thin film as described in (a) above, wherein a thin film of a target material is produced on a substrate whose temperature is controlled to 700 ° C. or higher.
(C) The method for producing a thin film according to (a), wherein a thin film of a target material is produced on a substrate whose temperature is controlled to a high temperature of 700 ° C. or more and less than 750 ° C.
(D) As a substrate, (1) a single crystal of sapphire, Si, SiC, or GaN itself, (2) an epitaxial thin film or crystalline thin film of n-type GaN produced on a single crystal of Si, sapphire, or SiC, or (3) The method for producing a thin film according to any one of (a) to (c), wherein an epitaxial thin film of ZnO produced on a single crystal of Si or sapphire is used.
(E) As the crystal plane of the substrate, (1) an AlN buffer layer formed on the (0001) plane of sapphire, α-SiC or ZnO, (2) the sapphire (0001) plane, other group III metal nitrides Α-SiC (0001) plane, or β-, produced on the (0001) plane, (3) sapphire (0001) plane of the buffer layer, or a buffer layer of a mixture of GaN and other group III metal nitrides (111) plane of SiC, (4) ZnO (0001) plane, (5) Si (111) plane, (6) (111) ferrite, (7) Any one of (a) to (d) above, wherein the (111) surface of an alumina buffer layer on Si or (8) the surface of an amorphous (glass) substrate is used. A method for producing the thin film according to 1.
(F) A p-type GaN thin film made into a p-type semiconductor produced on a Si substrate by the method for producing a thin film according to any one of (a) to (e) , and produced on the p-type GaN thin film. An n-type GaN thin film-p-type GaN thin film-n-type Si (111) inter-substrate junction structure comprising n-type GaN thin film formed into an n-type semiconductor, and between p-type GaN thin film and substrate, and p-type GaN A pn junction element characterized by having a VI rectification characteristic peculiar to a pn junction in measurement between an n-type semiconductor and an n-type semiconductor.

次に、本発明について更に詳細に説明する。
本発明においては、デュエルPLAD手法により、SiC、Si及びサファイアの単結晶基板上にp型のGaの結晶薄膜とp−n接合素子構造を作製する。まず、SiC単結晶基板上へのp型半導体化したGaN(p−GaNと略記する)のエピタキシャル薄膜の作製と、薄膜のX線回折(XRD)及び反射高速電子線回折(RHEED)による解析結果、及び電圧―電流(V−I)特性の測定から薄膜−基板間にp−GaN/n−SiC接合が作製されていることの実証、について説明する。次ぎに、n型とp型のSi単結晶基板上に作製したp型GaN薄膜について、そのV−I特性から薄膜−基板間にn−Si/p−GaN接合とp−Si/p−GaN接合が作製されていること、即ち、p型GaN薄膜の成膜及びp−n接合構造の作製が可能であることの実証、について説明する。次いで、Si及びSiC及びサファイア上に作製したp−GaN/n−GaN2層薄膜接合について説明する。更に、サファイア単結晶基板に成膜したZnO/GaNエピタキシャル薄膜、及びn−Si基板上に作製したp−GaNの多結晶薄膜について説明する。
Next, the present invention will be described in more detail.
In the present invention, the Duel PLAD technique, SiC, to prepare a crystal thin film with p-n junction element structure of a p-type Ga N to Si and sapphire single crystal substrate. First, p-type semiconducting GaN (abbreviated as p-GaN) epitaxial thin film on SiC single crystal substrate and analysis result of thin film by X-ray diffraction (XRD) and reflection high-energy electron diffraction (RHEED) , And the demonstration that a p-GaN / n-SiC junction is formed between the thin film and the substrate from measurement of voltage-current (V-I) characteristics. Next, regarding the p-type GaN thin film produced on the n-type and p-type Si single crystal substrates, the n-Si / p-GaN junction and the p-Si / p-GaN junction between the thin film and the substrate are obtained due to the VI characteristics thereof. A description will be given of the fact that a junction has been produced, that is, the formation of a p-type GaN thin film and the production of a pn junction structure. Next, a p-GaN / n-GaN two-layer thin film junction fabricated on Si, SiC, and sapphire will be described. Further, a ZnO / GaN epitaxial thin film formed on a sapphire single crystal substrate and a p-GaN polycrystalline thin film formed on an n-Si substrate will be described.

p−型Gaの作製に関して、例として、ターゲット材料とホールドーピング材料に、各々、GaNの焼結体とMg金属を用い、デュエルPLAD手法によりp型半導体化したGaNのエピタキシャル薄膜を作製する。これを図を用いて説明する。なお、基板としてはGaNが六方晶であるので、同じ六方晶であり6回回転軸(C対称性)を有する6H−SiCとサファイアの各単結晶の(0001)面と、立方晶であるSi単結晶のC6対称性を有するSi(111)面等を用いて例証する。 for the production of p- type Ga N, as an example, the target material and a hole doping material, respectively, using a sintered body of Mg metal GaN, to produce an epitaxial thin film of p-type semiconductor of the GaN by Duel PLAD technique. This will be described with reference to the drawings. In addition, since GaN is a hexagonal crystal as a substrate, it is the same hexagonal crystal and has a (0001) plane of each single crystal of 6H—SiC and sapphire having a 6-fold rotation axis (C 6 symmetry), and a cubic crystal. This will be illustrated using a Si (111) plane having C6 symmetry of a Si single crystal.

図1に、デュエルPLAD手法の一例を示す。真空容器中に膜用と添加物用の2つのターゲット(ターゲット1,2)をセットでき、外部から2つの別々のパルスレーザ光線(レーザ1,2)をレーザのパルス周波数f、照射エネルギーEの他、レンズ(1,2)等の集光手段によりフルーエンスFを変える等をして両ターゲットに照射することにより、GaNの成膜時に添加材も同時にアブレーションさせ、かつその濃度を制御すると共に、基板の温度制御を行うことで成膜時に添加材のドーピングと活性化ができる装置を構築して、用いた。なお、両ターゲットはモータ駆動によるターゲット回転機構(1,2)付きの2つのターゲットホルダー(1,2)にセットしてあり、レーザで均一にアブレ−ションされるように回転している。また、基板はヒータ付きの基板ホルダーにセットし、その温度を制御する。パルスレーザ照射に伴うGaNの分解により一部の窒素が欠如するのを補償するためと、Mg等の添加材を窒化し、MgN等にするための窒素源となる雰囲気ガスとして、アンモニアを用いた。   FIG. 1 shows an example of the duel PLAD technique. Two targets (targets 1 and 2) for film and additive can be set in the vacuum vessel, and two separate pulse laser beams (lasers 1 and 2) from the outside are set at the laser pulse frequency f and irradiation energy E. In addition, by irradiating both targets by changing the fluence F by a condensing means such as a lens (1, 2) or the like, the additive is also ablated at the time of GaN film formation, and its concentration is controlled, A device capable of doping and activating the additive during film formation by controlling the temperature of the substrate was constructed and used. Both targets are set in two target holders (1, 2) with a target rotation mechanism (1, 2) driven by a motor, and are rotated so as to be uniformly ablated by a laser. The substrate is set in a substrate holder with a heater, and its temperature is controlled. Ammonia was used as an atmospheric gas to serve as a nitrogen source to compensate for the lack of some nitrogen due to decomposition of GaN accompanying pulse laser irradiation and to nitride an additive such as Mg to form MgN or the like. .

本発明におけるデュエルPLAD手法を用いたp型半導体化Gaの結晶性薄膜の作製では、基板は該結晶性薄膜を作製できる基板であればよいので、Si、炭化ケイ素(SiC)、サファイア、フェライト(Fe)やMnとZnをドープしたフェライト、等の単結晶あるいはSi上に作製したアルミナ(Al)、サファイア上に作製したAlNやSiC、更にサファイアや非晶質基板上に作製したZnO結晶膜等が例示されるが、コストとGa及びp型化した該窒化物の結晶性薄膜と該窒化物のp−n素子の品質に応じて使い分ければよく、それら基板の種類に依らない。 In the production of crystalline thin film of p-type semiconductor of Ga N with duel PLAD method in the present invention, since the substrate may be any substrate which can be made the crystalline thin film, Si, silicon carbide (SiC), sapphire, ferrite (Fe 2 O 3 ), ferrites doped with Mn and Zn, etc., or alumina (Al 2 O 3 ) produced on Si, AlN or SiC produced on sapphire, further on sapphire or amorphous substrate Although ZnO crystal film or the like prepared is illustrated in, it may be selectively used depending on the quality of the p-n elements of the crystalline thin film and the nitride of costs and Ga n and p-type was the nitride, those substrate It does not depend on the type.

また、Gaの素子に係わる膜の材料物質はGaNであるが、必要に応じて、GaN自身の外、GaとAl、In、B等の同族金属ないしその窒化物又はGaNにそれらの同族の窒化物を添加したGa系窒化混合物、ターゲットとしては、デュエルPLAD手法に必要なターゲットが作製可能であれば、いずれでもよいので、それらの種類に依らない。即ち、対象となる膜物質はいずれの化合物又は元素を含んでもGaNと同じ六方晶系の結晶構造さえ保持すればよいので、ターゲットとしてはGaNの他、同族のAlNないしInNないしBN等の窒化物、また、GaNとこれら同族窒化物との混合物が例示される。更に、これらに限らず、六方晶系物質となるいずれの金属窒化物又はそれらの混合物でも用いることができる。更に、チャンバー内をアンモニア又は窒素ラジカル雰囲気にすることで窒化できるので、Ga、Al,In、及びB金属、ないしGaとこれらの金属との混合物、ないしGaとこれら金属との混合物をターゲットとして用いることもできる。また、Gaのp型半導体化に用いるホールドーピング材としては、2価の金属であり、かつ0.62Åのイオン半径を有するGa3+と近いイオン半径を持つ元素であればよいので、0.65Åのイオン半径を持つMgを用いることができる。更に、p−n接合の作製に必要なn型半導体化Gaの結晶薄膜は、IV族元素Si、Ti、Ge、Zr、Sn、PbないしはV族元素V、As、Sb、Bi等を微量添加することにより作製することができる。 Although the material substance film according to the elements of Ga N is GaN, optionally, of GaN itself outside, Ga and Al, In, etc. cognate metal or its nitride or GaN on their cognate B nitride Ga-based nitrided mixture was added, and examples of the target, Duel PLAD approach targets prepared if necessary, so may be any, not depending on their type. That is, the target film material only needs to retain the same hexagonal crystal structure as GaN regardless of which compound or element is contained. Therefore, in addition to GaN, nitrides such as AlN, InN, BN, etc. In addition, a mixture of GaN and these homologous nitrides is exemplified. Furthermore, not limited to these, any metal nitride that becomes a hexagonal material or a mixture thereof can be used. Furthermore, since it nitrided by that the chamber has a ammonia or nitrogen radical atmosphere, Ga, Al, an In, and B metals, to Ga and mixtures of these metals, as a target a mixture of Ga N and these metals to free It can also be used. As the hole doping material used in the p-type semiconductor of Ga N, a divalent metal, and so may be a element with Ga 3+ and close ionic radius having an ionic radius of 0.62Å, 0. it can be used M g with ionic radius of 65 Å. Furthermore, the crystal thin film of n-type semiconductor of Ga N required to produce the p-n junction, trace IV element Si, Ti, Ge, Zr, Sn, Pb or V group element V, As, Sb, and Bi, It can produce by adding.

次に、本発明によるデュエルPLAD手法とp型半導体化GaNの(0001)配向エピタキシャル薄膜や結晶性薄膜及びp−n接合構造に関する実施形態を図面により詳細に説明する。
図1に、基板上にGaの結晶薄膜を作製するための方法の概略図を示す。
GaNターゲットと、Mg金属ターゲットを図1の真空容器中の2つのターゲットホルダー(1,2)にセットしておき、α−SiC又はサファイアの(0001)基板又はSi(111)基板ないしC対称性を有する基板あるいは非晶質基板等をヒータ付きの基板ホルダーにセットしておけば、同基板上にp型半導体化GaNの(0001)配向エピタキシャル薄膜や結晶性薄膜を作製することができる。
Next, embodiments of the Duel PLAD method according to the present invention and a (0001) -oriented epitaxial thin film, a crystalline thin film, and a pn junction structure of p-type semiconducting GaN will be described in detail with reference to the drawings.
Figure 1 shows a schematic diagram of a method for making the crystal thin film of Ga N on the substrate.
A GaN target and an Mg metal target are set in the two target holders (1, 2) in the vacuum vessel shown in FIG. 1, and an α-SiC or sapphire (0001) substrate or Si (111) substrate or C 6 symmetry. If a substrate having properties, an amorphous substrate, or the like is set in a substrate holder with a heater, a (0001) -oriented epitaxial thin film or a crystalline thin film of p-type semiconducting GaN can be produced on the same substrate.

本発明の実施形態として、PLAD法を用いて、1)n型の6H−SiC基板上にp型とn型半導体特性を持つGaNのエピタキシャル薄膜の作製を行う例、2)n型とp型Si単結晶基板上にp型GaNのエピタキシャル薄膜の作製を行う例、また、3)Si基板上に作製したp−GaN/n−GaN2層膜、更に、4)SiC上に作製したn−GaN/p−GaN2層膜、及びサファイア上に作製した、5)n−SiC/p−GaN2層膜と、6)ZnO/GaN2層膜、更に、7)n−Si基板上に作製したp−GaNの多結晶薄膜についての例を示す。該デュエルPLAD手法では、上記のように、また、図1に示すように、GaNと金属Mgの2つのターゲット(1,2)を真空容器中の2つのターゲットホルダーにセットしておき、必要なガス雰囲気下で、外部からレーザ光照射用の光学窓を通して2つのパルスレーザ光(1,2)を各々のターゲットに集光照射して同時に、又は一定周期の比でターゲット物質をパルス的にアブレーションさせて、それを対向する位置にあり電気ヒータ等により一定温度に制御されたヒータ付き基板ホルダー上にセットしてある基板に衝突させて、その物質の薄膜を作製する。 As an embodiment of the present invention, 1) an example in which an epitaxial thin film of GaN having p-type and n-type semiconductor characteristics is formed on an n-type 6H—SiC substrate using the PLAD method, and 2) n-type and p-type An example of producing an epitaxial thin film of p-type GaN on a Si single crystal substrate, 3) p-GaN / n-GaN bilayer film produced on a Si substrate, and 4) n-GaN produced on SiC. 5) n-SiC / p-GaN bilayer film, 6) ZnO / GaN bilayer film, and 7) p-GaN produced on an n-Si substrate. An example of the polycrystalline thin film is shown. In the Duel PLAD technique, as described above, also, as shown in Figure 1, advance to set the two targets (1,2) of GaN and metal Mg on the two target holder in the vacuum vessel, must In a simple gas atmosphere, two target laser beams (1, 2) are focused and irradiated on each target through an optical window for laser beam irradiation from the outside, and the target material is pulsed at the same time or at a constant cycle ratio. A thin film of the material is produced by ablating and colliding it with a substrate set on a substrate holder with a heater at a position opposed to the substrate and controlled at a constant temperature by an electric heater or the like.

ここでは、膜材料と添加材料をアブレーションさせるための2つのパルスレーザ光として、2台のNd:YAGパルスレーザ装置からの第4高調波(波長266nm)レーザを使用した。なお、レーザ光はGaと添加材料のターゲット物質をアブレーションできればよいので、レーザの種類及び波長は問わない。但し、膜の品質はレーザ波長等に依存するので、目的とする膜や品質によりレーザを選択すればよい。図1に示すように、外部からこの別々のパルスレーザ光をレーザのfとEの他、レンズ(1,2)等の集光手段によりフルーエンスFを変えて両ターゲットに照射することにより、GaNの成膜時に添加材も同時にアブレーションさせ、かつ濃度を制御し、更に、基板の温度を変える等のPLADの条件を最適化することで添加材のドーピングと活性化ができる。 Here, fourth harmonic (wavelength 266 nm) lasers from two Nd: YAG pulse laser devices were used as two pulse laser beams for ablating the film material and the additive material. The laser beam is only able to be ablated target material additive material and Ga N, regardless laser type and wavelength. However, since the quality of the film depends on the laser wavelength and the like, the laser may be selected depending on the target film and quality. As shown in FIG. 1, by irradiating both targets with this separate pulsed laser light from the outside by changing the fluence F by condensing means such as lenses (1, 2) in addition to laser f and E, GaN The additive can be doped and activated by simultaneously ablating the additive during film formation, controlling the concentration, and optimizing the PLAD conditions such as changing the temperature of the substrate.

該デュエルPLAD手法では膜材料と添加材料の2つを同時又はほぼ同時あるいは交互にアブレーションできればよいので、2台のレーザ装置からの2つのビームを用いる方法の他、一台のパルスレーザ装置から出たレーザをハーフミラーでエネルギーの異な2つのビームに分離し、更に、パルスに同期したシャッターやフィルター及びレンズ等を用い、f、E、Fを変えて照射する方法、即ち、ハーフミラービーム分離による照射方法や、パルスに同期した回転ミラーやプリズムを用いビーム方向を変えて2つのターゲットへ一定のパルス数の比だけ交互にレーザが当たるようするパルス同期ミラーによるビーム掃引方法等の方法が例示されるが、2ビームあればよいのでその方法は問わない。   In the duel PLAD method, it is only necessary to ablate the film material and the additive material simultaneously, almost simultaneously or alternately. Therefore, in addition to the method using two beams from two laser devices, the film material and additive material can be emitted from one pulse laser device. The laser beam is split into two beams with different energies using a half mirror, and further, the shutter, filter and lens synchronized with the pulse are used to irradiate with changing f, E and F, that is, by half mirror beam separation. Examples include irradiation methods and beam sweeping methods using pulse-synchronized mirrors that use a rotating mirror or prism synchronized with pulses to change the beam direction so that the laser strikes two targets alternately at a fixed pulse number ratio. However, since there are only two beams, the method is not limited.

更には、ディスク等の形状のターゲットをセットできる一個の回転機構付きのターゲットホルダーに、膜材料と添加材料が一定の比率になり、かつ該ホルダーにセットできる様に扇型ないし円弧状と狭い帯状等に切りそれらを合わせて一個のディスク状のターゲットを作りセットするか、ディスク型の膜材料ターゲットの上に狭い帯状に切った添加材料を取り付ける等をしたターゲットをセットするか、あるいは膜材料と添加材料を一定の割合で混合した1個のターゲットをセットし、一本の周期的パルスレーザ光を照射しアブレーション(広義のデュエルPLAD)することにより、膜材料に対する添加材の濃度を制御して成膜する方法等が例示されるが、膜材料と添加材料の両者が一定の割合でアブレーションされればよいので、その方法を問わない。
該デュエルPLAD手法により、アンモニア雰囲気下でGaNとMgとの2つのターゲットをアブレーションし、6H−SiC(0001)、サファイア(0001)、Si(111)基板面等の上にMgを含むGaNを成膜するための最適化実験を行うことにより、p型半導体化したGaNのヘテロエピタキシャル薄膜とp−n素子構造を作製することができる。
Furthermore, in a target holder with a rotating mechanism that can set a target such as a disk, the film material and the additive material have a certain ratio, and a fan-shaped or arc-shaped narrow band shape so that it can be set in the holder. Cut and match them to make a single disk-shaped target, set a target that has a disk-shaped film material target with an additive material cut into a narrow band, or set the film material and By setting one target in which additive materials are mixed at a certain ratio, and irradiating one periodic pulse laser beam to perform ablation (dual PLAD in a broad sense), the concentration of the additive with respect to the film material is controlled. The method of forming a film is exemplified, but both the film material and the additive material only need to be ablated at a constant rate. It does not matter.
By this duel PLAD method, two targets of GaN and Mg are ablated in an ammonia atmosphere, and GaN containing Mg is formed on the 6H—SiC (0001), sapphire (0001), Si (111) substrate surface or the like. By conducting an optimization experiment for forming a film, a GaN heteroepitaxial thin film and a pn device structure made into a p-type semiconductor can be produced.

なお、本発明では、Gaの結晶薄膜が生成すればよいので、前項の基板の他、六方晶系である4H−SiC等の他のα−SiCないしGaN自身の(0001)基板、また、立方晶系であるβ−SiCのC対称性を有する(111)基板、ないし非晶質の基板等を基板ホルダーにセットしておけば、その上にp型半導体化したGaのヘテロエピタキシャル薄膜や結晶性薄膜及びp−n素子構造を作製することができる。 In the present invention, it is sufficient to produce the crystal thin film of Ga N, the other preceding substrate, (0001) other alpha-SiC to GaN own 4H-SiC or the like is hexagonal substrate also, If a (111) substrate having β 6 -SiC C 6 symmetry, or an amorphous substrate, which is a cubic system, is set in a substrate holder, a hetero-epitaxial layer of Ga N formed into a p-type semiconductor on the substrate holder Thin films, crystalline thin films, and pn device structures can be fabricated.

以上詳述したように、本発明は、窒化ガリウムのp型半導体の結晶薄膜の作製方法及び同法で作製した薄膜に係わるものであり、本発明により、(1)GaNのターゲットとホールドーピング用の添加材Mgを含むターゲットを交互ないし同時にアブレーションさせて、700℃以上の高温に温度制御した基板上にターゲット物質の薄膜を作製する等の該デュエルPLAD手法を用いる方法により、アンモニアないし窒素ラジカル雰囲気下で、種々の単結晶や非晶質の基板上に、p−n接合に特有なV−I整流特性を具備するp型半導体化したGaN薄膜、及びn型の同Ga薄膜、ないし他のn型の半導体薄膜や基板とのp−n接合の作製が可能となる、(2)また、本発明では、ホールドーピング用の添加材であるMgをGaNの成膜時にin−situで添加しかつ活性化できるので、従来の活性化するための成膜後の電子線照射や精密な高温熱処理等の行程を必要とする問題もブレークスルーできる、(3)また、種々の多くの基板や他のエピタキシャル薄膜上への成膜が可能であるので、GaNに関わる高温や高出力及び高周波素子や短波長LED等のエレクトロニクスとオプトニクスのおける電子素子化が可能となる、等の効果が奏される。 As described above in detail, the present invention relates to a method for producing a crystalline thin film of a gallium nitride p-type semiconductor and a thin film produced by the same method. According to the present invention, (1) a Ga N target and hole doping a target containing additive Mg of use of alternating or simultaneously ablation, by a method of using the Duel PLAD method such that a thin film of the target material to temperature-controlled substrate to a high temperature of 7 00 ° C. or higher, ammonia or nitrogen under radical atmosphere, a variety of single-crystal or amorphous substrate, p-type semiconductor of the Ga n thin film comprising a specific V-I rectifying characteristics in p-n junction, and n-type of the same Ga n It is possible to produce a thin film or a pn junction with another n-type semiconductor thin film or substrate. (2) In the present invention, Mg, which is an additive for hole doping, is formed into a GaN film. Sometimes it can be added and activated in-situ, so that it is possible to break through the problems that require processes such as electron beam irradiation after film formation and precise high-temperature heat treatment for conventional activation, (3) Since it is possible to form films on many different substrates and other epitaxial thin films, it becomes possible to make high-temperature and high-power related to GaN, electronic devices such as high-frequency devices and short-wavelength LEDs, and optoelectronics. , Etc. are produced.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

本実施例では、n型の6H−SiC基板上へのp型GaNヘテロエピタキシャル薄膜の作製について述べる。X線回折(XRD)及び反射高速電子線回折(RHEED)の測定による膜の結晶特性について説明し、次いで、作製したn−6HSiC基板/p−GaN薄膜間接合が電圧―電流(V−I)特性の測定からp−n結合に特徴的な整流特性を示すこと、即ち、該PLAD法によりp型GaNヘテロエピタキシャル薄膜が作製されることの実証について説明する。加えて、比較し、確認するために、n型6H−SiC(0001)単結晶基板上にn−型GaNヘテロエピタキシャル薄膜を作製し、該接合はp−n特性を有しないことを示す。   In this example, preparation of a p-type GaN heteroepitaxial thin film on an n-type 6H—SiC substrate is described. The crystal characteristics of the film measured by X-ray diffraction (XRD) and reflection high-energy electron diffraction (RHEED) will be described, and then the fabricated n-6HSiC substrate / p-GaN thin film junction is voltage-current (V-I). A demonstration of showing a rectifying characteristic peculiar to a pn bond from measurement of characteristics, that is, that a p-type GaN heteroepitaxial thin film is produced by the PLAD method will be described. In addition, for comparison and confirmation, an n-type GaN heteroepitaxial thin film is fabricated on an n-type 6H-SiC (0001) single crystal substrate, and the junction does not have pn characteristics.

デュエルPLAD手法によるSiC上へのp−型GaN薄膜の作製では、膜用ターゲットにGaN焼結体を、添加材用ターゲットに金属Mgを用い、基板にn型の6H−SiC(0001)単結晶を使用し、窒化にはアンモニア(NH)を用いた。PLAD成膜条件は、以下のようである。ヒータ温度Th:800℃、NH圧:3×10−3Torr、レーザ周波数ν:4Hz、GaNとMgターゲット共に照射レーザエネルギーE:10mJ/パルス、GaNとMg両ターゲット上へのレーザの照射エネルギー密度Fは1.3J/cm/パルス、単位時間当たりのGaNとMgへレーザ照射パルス数の比:R=n(Mg)/m(GaN)は1/20である。この条件は、ν=4Hz及びR=1/20の場合においてある程度最適化した値であるがPLAD条件の各因子の最適値はお互い他の因子に関連しており、T、νを変えた時には、EやFの最適値にはある程度幅がある。 In the preparation of a p-type GaN thin film on SiC by the duel PLAD method, a GaN sintered body is used as a film target, a metal Mg is used as an additive target, and an n-type 6H-SiC (0001) single crystal is used as a substrate. And ammonia (NH 3 ) was used for nitriding. The PLAD film forming conditions are as follows. Heater temperature Th: 800 ° C., NH 3 pressure: 3 × 10 −3 Torr, laser frequency ν: 4 Hz, irradiating laser energy for both GaN and Mg targets E: 10 mJ / pulse, laser irradiation energy on both GaN and Mg targets The density F is 1.3 J / cm 2 / pulse, the ratio of the number of laser irradiation pulses to GaN and Mg per unit time: R = n (Mg) / m (GaN) is 1/20. This condition is a value optimized to some extent in the case of ν = 4 Hz and R = 1/20, but the optimum value of each factor of the PLAD condition is related to other factors, and T h and ν are changed. Sometimes the optimum values of E and F vary to some extent.

なお、雰囲気として窒素のRFプラズマを用いてもNH雰囲気の場合より膜の結晶特性は少し落ちるが、p型GaNの成膜はできた。しかし、単なる窒素ガス雰囲気ではp型GaNの薄膜はできなかった。NHないし窒素プラズマが必要なのはMgとレーザで分解したGaがNHないし窒素ラジカルとの反応により再結合し、MgNとGaNになる必要があるためである。窒素ラジカルに関しては同ラジカルが発生すればよいので、RFプラズマ、DCプラズマないし窒素ラジカル銃等その発生の仕方には依らない。 Even when nitrogen RF plasma was used as the atmosphere, the crystal characteristics of the film were slightly lower than in the NH 3 atmosphere, but p-type GaN could be formed. However, a p-type GaN thin film could not be formed in a simple nitrogen gas atmosphere. NH 3 or nitrogen plasma is necessary because Mg and laser-decomposed Ga must be recombined by reaction with NH 3 or nitrogen radicals to become MgN and GaN. Since nitrogen radicals need only be generated, they do not depend on how they are generated, such as RF plasma, DC plasma or nitrogen radical gun.

本発明は、当該実施例と条件によって何ら制限されるものではないが、多くの実施例をあげ、各薄膜の作製、結晶性、及びV−I特性等について説明する。ヒータ温度に関しては、600−800℃の範囲で変えて成膜したところ、その中では800℃で最も結晶の品質が良好であった。この結果から、更に温度を900−1100℃に上げれば、結晶性の向上を図れることが分かったが、ここでは、用いたヒータの制約から、成膜は800℃に固定して行った。ただし、別のヒータを用いた800℃以上の高温域でのGaNの成膜実験から、高温では堆積中のGaN薄膜の蒸発が激しいので、それを抑制するために、NH3 圧をあげ、かつ照射レーザエネルギーE等を上げて堆積速度を増やす必要があることが分かった。しかし、ここでは、p型化が本来の目的であり、膜質は、使用目的の薄膜や素子の品質に合わせてPLAD条件を設定すればよく、当該実施例の条件に制約されるものではない。   The present invention is not limited in any way by the examples and conditions, but many examples are given to describe the fabrication, crystallinity, VI characteristics, etc. of each thin film. Regarding the heater temperature, the film was formed by changing the temperature in the range of 600 to 800 ° C. Among them, the crystal quality was the best at 800 ° C. From this result, it was found that the crystallinity could be improved by further raising the temperature to 900-1100 ° C. However, here, the film formation was fixed at 800 ° C. due to the limitation of the heater used. However, from the GaN film formation experiment at a high temperature range of 800 ° C or higher using another heater, the evaporation of the GaN thin film during deposition is intense at high temperatures. To suppress this, the NH3 pressure is increased and irradiation is performed. It has been found that it is necessary to increase the deposition rate by increasing the laser energy E and the like. However, here, p-type conversion is the original purpose, and the film quality may be set according to the quality of the intended thin film or element, and the PLAD conditions are not limited by the conditions of the embodiment.

図2に、1例(例1)として、n−6HSiC(0001)基板上に作製したp−GaN薄膜について測定したXRDパターンを示す。基板の(0006)と(00012)回折線以外には、GaNの(0002)回折線のみが観測されており、GaNの(0001)薄膜、即ち、c軸配向薄膜が生成していることが分かる。次に、図3に、この薄膜のRHEED像を示す。(b)と(d)は6H−SiC基板の[ 1−100] と[ 10−10] 方向の像であり、(a)と(b)はその上に作製したGaN薄膜の両方向のRHEED像である。RHEEDパターンは結晶の逆格子像を示している。それぞれの像は、膜試料を膜垂直軸の回りに回転して測定したところ、60°周期で観測されたことから、この膜がC対称性を示すこと、即ち、六方晶系GaNの(0001)配向を持つエピタキシャル薄膜が作製されていることが明確になった。 FIG. 2 shows an XRD pattern measured for a p-GaN thin film formed on an n-6HSiC (0001) substrate as an example (Example 1). In addition to the (0006) and (00012) diffraction lines of the substrate, only the (0002) diffraction line of GaN is observed, indicating that a (0001) thin film of GaN, that is, a c-axis oriented thin film is formed. . Next, FIG. 3 shows an RHEED image of this thin film. (B) and (d) are images in the [1-100] and [10-10] directions of the 6H—SiC substrate, and (a) and (b) are RHEED images in both directions of the GaN thin film fabricated thereon. It is. The RHEED pattern shows a reciprocal lattice image of the crystal. Each image was measured by rotating the film sample around the vertical axis of the film, and was observed at a period of 60 °. Therefore, the film showed C 6 symmetry, that is, hexagonal GaN ( It became clear that an epitaxial thin film having a (0001) orientation was produced.

なお、縦線(ストリーク線)ないし点を含む縦線(ドットストリーク線)の間の間隔はそれぞれの方向での格子の面間隔の逆数に比例する。観測されているように、SiCとGaNのストリーク線の間隔がほぼ同じであるのは、両者のc軸垂直面内(膜面)での結晶格子長(a=b)が、3.07Å及び3.186Åと極めて近いためである。斯くして、6H−SiCと同じc軸配向を持つばかりでなく、膜面内(ab面内)でも同一配向を持ったGaNの単結晶薄膜、即ち、エピタキシャル薄膜が作製されていることが完全に実証された。   The interval between vertical lines (streak lines) or vertical lines including dots (dot streak lines) is proportional to the reciprocal of the lattice spacing in each direction. As observed, the spacing between the streak lines of SiC and GaN is almost the same because the crystal lattice length (a = b) in the c-axis vertical plane (film surface) of both is 3.07 mm and This is because it is very close to 3.186cm. Thus, a GaN single crystal thin film, that is, an epitaxial thin film having not only the same c-axis orientation as 6H-SiC but also the same orientation in the film plane (ab plane) is completely produced. Proven in

該GaN(0001)膜/n−6HSiC(0001)基板間で測定したV−I特性を図4に示す。逆バイアス側では(−)20V付近で少し漏洩電流があるが、ほとんど電流が流れず、順(+)バイアス方向で急速に電流が立ち上がる性質、即ち、p−n接合に特徴的な特性が観測されており、p−半導体化したGaN薄膜が作製されたことを示している。なお、ここでInないしAg金属を用いて端子をとり、V−I測定を行なった。順バイアス方向で電流が立ち上がるまでに不感電圧があるのはn−SiCと金属端子間でオーミックコンタクトが充分に取れていないためである。他方、Mgを添加せずにGaNターゲットのみをアブレーションするとn型のGaN薄膜が生成する。   FIG. 4 shows VI characteristics measured between the GaN (0001) film / n-6HSiC (0001) substrate. On the reverse bias side, there is a little leakage current in the vicinity of (-) 20 V, but almost no current flows, and the characteristic that current rapidly rises in the forward (+) bias direction, that is, a characteristic characteristic of a pn junction is observed. This shows that a p-semiconductor GaN thin film was produced. Here, a terminal was taken using In or Ag metal, and VI measurement was performed. The dead voltage is present before the current rises in the forward bias direction because the ohmic contact between the n-SiC and the metal terminal is not sufficiently obtained. On the other hand, when only the GaN target is ablated without adding Mg, an n-type GaN thin film is generated.

こうして、n−6HSiC(0001)基板上にn型GaN薄膜を成膜し、そのn−GaN/n−SiC接合について測定したV−I特性を図5に示す。金属端子とn−SiC等との間でオーミックコンタクトができていないために、順逆両バイアスの3−4V付近の低電圧の領域まで非線形を示すショットキー接合に特徴的な曲線を示すが、明らかに前記のp−GaN/n−SiCのような−20Vの逆バイアスまで電流がほぼ0を示すような整流特性は示さない。以上の結果は、in−situでMg添加を行なう該デュエルPLAD手法によりMg添加されp−型半導体化されたGaNのエピタキシャル薄膜が作製できることを明確に示している。   Thus, FIG. 5 shows the VI characteristics measured for the n-GaN / n-SiC junction after forming an n-type GaN thin film on an n-6HSiC (0001) substrate. Since no ohmic contact is made between the metal terminal and n-SiC or the like, a characteristic curve is shown in the Schottky junction that shows non-linearity up to the low voltage region near 3-4V of both forward and reverse biases. In addition, no rectification characteristic such that the current shows almost 0 until a reverse bias of −20 V like the p-GaN / n-SiC is shown. The above results clearly show that an epitaxial thin film of GaN doped with Mg and made into a p-type semiconductor can be fabricated by the duel PLAD method in which Mg is added in-situ.

次に、他の実施例として、n型とp型Si基板上に作製したp型GaNの(0001)配向エピタキシャル薄膜の作製とそのV−I特性について説明する。図6に、該デュエルPLAD手法によりMgを添加して、n型Si(111)単結晶基板上に作製したp型GaN薄膜のXRDパターンを示す。なお、PLAD成膜条件は基板温度が750℃であることを除くと、前記のSiC基板上への成膜とほぼ同様である。Si(hhh)h=1−3以外に、2θ=34.6°にGaNの(0002)回折線が観測されている。他に、36.80°にGaN(101)回折線等が観測されているが強度が弱いことから、ほぼGaNの(0001)配向膜ができていることが分かる。また、図7に、該薄膜のSi基板とGaN薄膜のRHEED像を示す。多結晶による完全な同心円のパターンではなくドットパターンが観測されており、配向性が落ちるが、GaNの(0001)配向エピタキシャル薄膜ができていること分かる。該GaN薄膜/n−Si基板間で測定したV−I特性と、Mgを添加せずにGaNのみをn−Si(111)基板上に成膜して作製したn−GaN/n−Si接合のV−I特性を図8と図9に示す。明らかに、前例のp−GaN/n−SiC及びn−GaN/n−SiC接合と同じく、各々p−n接合、n−n接合ができていること、従って、該デュエルPLAD手法を用いMgを添加することにより、Si基板上にp型GaN薄膜を作製できることを示している。   Next, as another example, the production of a (0001) -oriented epitaxial thin film of p-type GaN produced on n-type and p-type Si substrates and its VI characteristic will be described. FIG. 6 shows an XRD pattern of a p-type GaN thin film formed on an n-type Si (111) single crystal substrate by adding Mg by the duel PLAD technique. The PLAD film forming conditions are substantially the same as the film formation on the SiC substrate except that the substrate temperature is 750 ° C. In addition to Si (hhh) h = 1-3, a (0002) diffraction line of GaN is observed at 2θ = 34.6 °. In addition, although a GaN (101) diffraction line or the like is observed at 36.80 °, the intensity is weak, which indicates that a (0001) oriented film of GaN is almost formed. FIG. 7 shows RHEED images of the Si substrate of the thin film and the GaN thin film. A dot pattern is observed instead of a perfect concentric pattern of polycrystals, and the orientation deteriorates, but it can be seen that a (0001) oriented epitaxial thin film of GaN is formed. V-I characteristics measured between the GaN thin film / n-Si substrate and an n-GaN / n-Si junction formed by depositing only GaN on an n-Si (111) substrate without adding Mg The V-I characteristics are shown in FIGS. Obviously, pn junctions and nn junctions are formed as in the previous examples of p-GaN / n-SiC and n-GaN / n-SiC junctions. Therefore, Mg is used by using the duel PLAD technique. It shows that a p-type GaN thin film can be produced on a Si substrate by adding.

次に、他の実施例として、上記のn型Si基板上に作製したp型GaNの上に、更にn型GaN薄膜を作製し、そのn−Si(111)基板/p−GaN/n−GaN薄膜(2重積層薄膜)についてV−I特性を測定した。その結果を図10に示す。Si基板/p−GaN間とp−GaN/n−GaN間は共にp−n接合に特有な整流特性を示している。なお、両端のSi基板とn−GaN間はショットキー的挙動を示すもののn−n接合に特徴的な特性を示した。これらの結果は、該デュエルPLAD手法でGaNのp−n接合薄膜の作製が可能であることを例証している。   Next, as another embodiment, an n-type GaN thin film is further produced on the p-type GaN produced on the n-type Si substrate, and the n-Si (111) substrate / p-GaN / n- The VI characteristics of the GaN thin film (double laminated thin film) were measured. The result is shown in FIG. Both the Si substrate / p-GaN and p-GaN / n-GaN exhibit rectifying characteristics peculiar to a pn junction. In addition, although the Si substrate and n-GaN of both ends showed Schottky behavior, the characteristic characteristic to the nn junction was shown. These results illustrate that GaN pn junction thin films can be produced by the duel PLAD technique.

斯くして、XRDやRHEED測定等によりGaNのエピタキシャル薄膜の作製や積層化が達成されていることが確認でき、p−n接合が作製されていることが明らかになった。   Thus, it was confirmed by XRD or RHEED measurement that the production and lamination of the GaN epitaxial thin film were achieved, and it was revealed that a pn junction was produced.

更に、デュエルPLAD手法の実施例を示す。PLAD成膜条件は、実施例1とほぼ同様である。実施例4として、n−6HSiC(0001)基板上に作製したn−GaN/p−GaN2層膜のRHEEDパターンを図11に示す。   Furthermore, an example of the duel PLAD technique is shown. The PLAD film forming conditions are substantially the same as those in the first embodiment. As Example 4, an RHEED pattern of an n-GaN / p-GaN bilayer film fabricated on an n-6HSiC (0001) substrate is shown in FIG.

また、実施例5として、サファイア(0001)面上に作製したn−GaN/p−GaN2層膜のRHEEDパターンを図12に示す。 Further, as Example 5, an RHEED pattern of an n-GaN / p-GaN bilayer film produced on a sapphire (0001) surface is shown in FIG.

更に、実施例6として、サファイア(0001)面上に作製したn−ZnO/p―GaN膜ついて測定したRHEEDパターンを図13に示す。なお、図14に、実施例4で作製したn−6HSiC(0001)基板上のn−GaN/p−GaN2層膜間で測定したV−I曲線を示す。RHEEDから判断すると結晶性が良好でないのでV−I特性は良くないが、明らかにp−n特性を示すGaN薄膜間結合が作製されている。   Furthermore, as Example 6, an RHEED pattern measured for an n-ZnO / p-GaN film formed on a sapphire (0001) surface is shown in FIG. FIG. 14 shows a VI curve measured between the n-GaN / p-GaN bilayer films on the n-6HSiC (0001) substrate produced in Example 4. Judging from RHEED, since the crystallinity is not good, the VI characteristic is not good, but a GaN thin film bond that clearly shows the pn characteristic is produced.

更に、該デュエルPLAD手法によれば、多結晶GaNのp型化薄膜も作製できる。先の実施例2はn−Si(111)基板上に基板温度T=750℃でp−GaNエピタキシャル薄膜を作製した例であるが、Tを下げ700℃で成膜すると同基板上にp型GaNの多結晶薄膜が作製される。図15に、その薄膜のRHEED像を示す。明らかに、配向性のない結晶性薄膜に特徴的な同心円状のパターンが観測されており、明確に多結晶薄膜が作製されていることが分かる。図16は該薄膜とn−Si基板間のV−I特性を示すものであり、先のSi基板上のp型GaNのエピタキシャル薄膜の例の図8より特性は少し低いが、明らかにp−n接合に特有な整流特性が観測されており、該多結晶薄膜でもp型半導体特性を有することを示している。他方、比較のために、同一PLAD条件でMg添加をせず、単にGaNのみをn−Si(111)基板上に薄膜を作製した。同じような多結晶薄膜が生成するが、V−I特性は先の実施例2の場合のn−GaNエピタキシャル薄膜/n−Si間接合と同様のn−n接合特性を示した。 Furthermore, according to the Duel PLAD method, a p-type thin film of polycrystalline GaN can also be produced. Example 2 above is an example of manufacturing the p-GaN epitaxial thin film at a substrate temperature T h = 750 ° C. in n-Si (111) substrate, the film formation is the on the same substrate at 700 ° C. lower the T h A polycrystalline thin film of p-type GaN is produced. FIG. 15 shows an RHEED image of the thin film. Obviously, a concentric pattern characteristic of a crystalline thin film having no orientation is observed, and it can be seen that a polycrystalline thin film is clearly produced. FIG. 16 shows the VI characteristics between the thin film and the n-Si substrate. Although the characteristics are slightly lower than those of FIG. 8 of the example of the epitaxial thin film of p-type GaN on the Si substrate, the p- Rectification characteristics peculiar to the n junction are observed, indicating that the polycrystalline thin film also has p-type semiconductor characteristics. On the other hand, for comparison, a thin film was formed on an n-Si (111) substrate by simply adding GaN without adding Mg under the same PLAD conditions. Although a similar polycrystalline thin film is formed, the VI characteristic shows the same nn junction characteristic as that of the n-GaN epitaxial thin film / n-Si junction in Example 2 above.

本発明は、窒化ガリウムのp型半導体の結晶薄膜の作製方法及び同法で作製した薄膜に係るものであり、本発明により、GaNのターゲットとホールドーピング用の添加材Mgを含むターゲットを交互ないし同時にアブレーションさせる等の該デュエルPLAD手法を用いる方法により、アンモニアないし窒素ラジカル雰囲気下で、種々の単結晶や非晶質の基板上にp型半導体化したGaN薄膜、及びn型の同Ga薄膜、ないし他のn型の半導体薄膜や基板とのp−n接合の作製が可能となる。また、本発明では、ホールドーピング用の添加材であるMgをGaNの成膜時にin−situで添加しかつ活性化できるので、従来の活性化するための成膜後の電子線照射や精密な高温熱処理等の行程を必要とする問題もブレークスルーできる。また、種々の多くの基板や他のエピタキシャル薄膜上への成膜が可能であるので、GaNに関わる高温や高出力及び高周波数素や短波長LED等のエレクトロニクスやオプトニクスにおける電子素子化が可能となる。 The present invention according to the thin film fabricated by the manufacturing method and the law of p-type semiconductor crystal thin film of gallium nitride, the present invention, a target containing additive M g for target and hole doping Ga N the method of using the Duel PLAD technique or the like for alternating or simultaneous ablation, under ammonia or nitrogen radicals atmosphere, p-type semiconductor of the Ga n thin film on various single crystal and amorphous on the substrate, and an n-type the Ga n film, or production of p-n junction with the other n-type semiconductor thin film and the substrate is possible. Further, in the present invention, since the M g is the additive for the hole doping can be added to and activated in-situ during GaN film formation, electron beam irradiation and precision after the film formation for conventional activated Problems that require a process such as high-temperature heat treatment can also be broken through. In addition, since it can be deposited on many different substrates and other epitaxial thin films, it is possible to make electronic elements in electronics and optonics such as high temperature, high output, high frequency element and short wavelength LED related to GaN. It becomes.

単結晶基板やガラス基板上にGa系III族金属窒化物のp−型半導体化した単結晶薄膜や結晶性薄膜を作製するための、デュエルPLAD手法による成膜の一方法を示す概略図である。It is the schematic which shows the method of the film-forming by the duel PLAD method for producing the single crystal thin film and crystalline thin film which made the p type semiconductor of Ga group III metal nitride on a single crystal substrate or a glass substrate. . デュエルPLAD手法によりn−6HSiC(0001)基板上に作製したp−GaN薄膜について測定したXRDパターンを示す。The XRD pattern measured about the p-GaN thin film produced on the n-6HSiC (0001) board | substrate by the duel PLAD technique is shown. n−6HSiC(0001)基板上に作製したp−GaNエピタキシャル薄膜について測定したRHEED像をに示す。The RHEED image measured about the p-GaN epitaxial thin film produced on the n-6HSiC (0001) board | substrate is shown. 作製したp−GaN(0001)エピタキシャル薄膜とn−6HSiC(0001)基板間で測定したV−I特性を示す。The VI characteristic measured between the produced p-GaN (0001) epitaxial thin film and the n-6HSiC (0001) substrate is shown. 作製したn−GaN(0001)エピタキシャル薄膜とn−6HSiC(0001)基板間で測定したV−I特性を示す。The VI characteristic measured between the produced n-GaN (0001) epitaxial thin film and the n-6HSiC (0001) substrate is shown. デュエルPLAD手法によりn型Si(111)単結晶基板上に作製したp型GaN薄膜のXRDパターンを示す。The XRD pattern of the p-type GaN thin film produced on the n-type Si (111) single crystal substrate by the duel PLAD technique is shown. n型Si(111)基板上に作製したp型GaNエピタキシャル薄膜のRHEED像を示す。The RHEED image of the p-type GaN epitaxial thin film produced on the n-type Si (111) substrate is shown. 作製したp−GaNエピタキシャル薄膜とn−Si基板間で測定したV−I特性を示す。The VI characteristic measured between the produced p-GaN epitaxial thin film and the n-Si substrate is shown. 作製したp−GaNエピタキシャル薄膜とp−Si基板間で測定したV−I特性を示す。The VI characteristic measured between the produced p-GaN epitaxial thin film and the p-Si substrate is shown. 作製した、n−Si(111)基板/p−GaN薄膜/n−GaN薄膜(2重エピタキシャル積層薄膜)の各接合間で測定したV−I特性を示す。The VI characteristic measured between each junction of produced n-Si (111) board | substrate / p-GaN thin film / n-GaN thin film (double epitaxial laminated thin film) is shown. n−6HSiC(0001)基板上に作製したn−GaN/p−GaN2層エピタキシャル薄膜のRHEEDパターンを示す。The RHEED pattern of the n-GaN / p-GaN bilayer epitaxial thin film produced on the n-6HSiC (0001) substrate is shown. サファイア(0001)面上に作製したn−GaN/p−GaN2層エピタキシャル薄膜のRHEEDパターンを示す。The RHEED pattern of the n-GaN / p-GaN bilayer epitaxial thin film produced on the sapphire (0001) surface is shown. サファイア(0001)面上に作製したn−ZnO/p―GaN2層エピタキシャル薄膜ついて測定したRHEEDパターンを示す。The RHEED pattern measured about the n-ZnO / p-GaN bilayer epitaxial thin film produced on the sapphire (0001) surface is shown. n−6HSiC(0001)基板上に作製したn−GaN/p−GaN2層エピタキシャル薄膜の間で測定したV−I曲線を示す。The VI curve measured between the n-GaN / p-GaN bilayer epitaxial thin films produced on the n-6HSiC (0001) board | substrate is shown. n−Si(111)基板上に作製したp−GaN多結晶薄膜のRHEEDパターンを示す。The RHEED pattern of the p-GaN polycrystalline thin film produced on the n-Si (111) substrate is shown. 作製したp−GaN多結晶薄膜とn−Si(111)基板間で測定したV−I特性を示す。The VI characteristic measured between the produced p-GaN polycrystalline thin film and an n-Si (111) board | substrate is shown.

Claims (6)

パルスレーザをターゲット物質に照射し、瞬間・パルス的にイオン、原子やクラスター等の微粒子に分解・剥離(アブレーション)させて、低くとも700℃の高温に温度制御した基板上にターゲット物質の薄膜を作製するパルスレーザアブレーション堆積(PLAD)手段を用いて、アンモニア又は窒素ラジカル雰囲気中において、膜材料として、GaNのターゲットと、ホールドーピングするための添加材料として、Mgのターゲットとを使用し、これらを交互又は同時にアブレーションさせるか、又は該膜材料と該添加材料の両材料物質を混合したターゲットをアブレーションさせるデュエルパルスレーザ蒸着(デュエルPLAD)手法により、基板上に、p型半導体化したGaNのエピタキシャル(単結晶)薄膜又は結晶性薄膜であり、p−n接合に特有な電圧−電流(V−I)特性(V−I整流特性)を具備する薄膜を作製することを特徴とする薄膜の作製方法。   The target material is irradiated with a pulse laser, and the target material thin film is formed on a substrate whose temperature is controlled to a high temperature of at least 700 ° C. by decomposing and peeling (ablation) fine particles such as ions, atoms and clusters instantaneously and in pulses. Using a pulsed laser ablation deposition (PLAD) means to be produced, using a GaN target as a film material and an Mg target as an additive material for hole doping in an ammonia or nitrogen radical atmosphere, A p-type semiconducting GaN epitaxial layer is formed on a substrate by a dual pulse laser deposition (duel PLAD) technique in which a target obtained by ablating alternately or simultaneously or a mixture of both the material of the film material and the additive material is ablated. Single crystal) thin film or crystalline thin film , Specific voltage to p-n junction - current (V-I) characteristics method for manufacturing a thin film, which comprises preparing a (V-I rectifying characteristics) thin film having a. 700℃又はそれより高温に温度制御した基板上にターゲット物質の薄膜を作製することを特徴とする請求項1に記載の薄膜の作製方法。   2. The method for producing a thin film according to claim 1, wherein a thin film of a target material is produced on a substrate whose temperature is controlled to 700 [deg.] C. or higher. 700℃以上750℃未満の高温に温度制御した基板上にターゲット物質の薄膜を作製することを特徴とする請求項1に記載の薄膜の作製方法。   2. The method for producing a thin film according to claim 1, wherein a thin film of a target material is produced on a substrate whose temperature is controlled to a high temperature of 700 ° C. or more and less than 750 ° C. 基板として、(1)サファイア、Si、SiC、又はGaN自身の単結晶、(2)Si、サファイア又はSiCの単結晶上に作製したn型GaNのエピタキシャル薄膜あるいは結晶性薄膜、又は、(3)Si又はサファイアの単結晶上に作製したZnOのエピタキシャル薄膜を使用することを特徴とする請求項1から3のいずれかに記載の薄膜の作製方法。   (1) single crystal of sapphire, Si, SiC, or GaN itself, (2) epitaxial thin film or crystalline thin film of n-type GaN formed on a single crystal of Si, sapphire, or SiC, or (3) The method for producing a thin film according to any one of claims 1 to 3, wherein an epitaxial thin film of ZnO produced on a single crystal of Si or sapphire is used. 基板の結晶面として、(1)サファイア、α−SiC又はZnOの(0001)面、(2)サファイア(0001)面上に作製した、AlN緩衝層、他のIII族金属窒化物の緩衝層、あるいはGaNと他のIII族金属窒化物との混合物の緩衝層の(0001)面、(3)サファイア(0001)面上に作製した、α−SiCの(0001)面、又はβ−SiCの(111)面、(4)サファイアのc面、a面又はR面上に作製したZnOの(0001)面、(5)Siの(111)面、(6)フェライトの(111)、(7)Si上のアルミナの緩衝層の(111)面、又は、(8)非晶質(ガラス)基板の面、を使用することを特徴とする請求項1から4のいずれかに記載の薄膜の作製方法。   As the crystal plane of the substrate, (1) the (0001) plane of sapphire, α-SiC or ZnO, (2) the AlN buffer layer produced on the sapphire (0001) plane, a buffer layer of another group III metal nitride, Alternatively, a (0001) plane of a buffer layer of a mixture of GaN and another group III metal nitride, (3) a (0001) plane of α-SiC, or β-SiC ( (111) plane, (4) ZnO (0001) plane, (5) Si (111) plane, (6) Ferrite (111), (7) 5. The production of a thin film according to claim 1, wherein the (111) surface of an alumina buffer layer on Si or (8) the surface of an amorphous (glass) substrate is used. Method. 請求項1からのいずれかに記載の薄膜の作製方法によりSi基板上に作製された、p型半導体化したp型GaN薄膜と、該p型GaN薄膜の上に作製されたn型半導体化したn型GaN薄膜からなる、n型GaN薄膜−p型GaN薄膜−n型Si(111)基板間接合構造を有し、p型GaN薄膜と基板間、及びp型GaNとn型半導体間の測定においてp−n接合に特有なV−I整流特性を具備することを特徴とするp−n接合素子。 The method for manufacturing a thin film according to any one of claims 1 to 5 fabricated on a Si substrate, a p-type semiconductive and the p-type GaN thin film, n-type semiconductor of which is fabricated on of the p-type GaN thin film The n-type GaN thin film has an n-type GaN thin film-p-type GaN thin film-n-type Si (111) substrate junction structure, and between the p-type GaN thin film and the substrate, and between the p-type GaN and the n-type semiconductor. A pn junction element having a VI rectification characteristic peculiar to a pn junction in measurement.
JP2003270401A 2003-07-02 2003-07-02 Method for producing p-type semiconductor crystal thin film of gallium nitride by duel pulse laser deposition technique and thin film produced by the same method Expired - Lifetime JP4586160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003270401A JP4586160B2 (en) 2003-07-02 2003-07-02 Method for producing p-type semiconductor crystal thin film of gallium nitride by duel pulse laser deposition technique and thin film produced by the same method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003270401A JP4586160B2 (en) 2003-07-02 2003-07-02 Method for producing p-type semiconductor crystal thin film of gallium nitride by duel pulse laser deposition technique and thin film produced by the same method

Publications (2)

Publication Number Publication Date
JP2005022940A JP2005022940A (en) 2005-01-27
JP4586160B2 true JP4586160B2 (en) 2010-11-24

Family

ID=34190358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003270401A Expired - Lifetime JP4586160B2 (en) 2003-07-02 2003-07-02 Method for producing p-type semiconductor crystal thin film of gallium nitride by duel pulse laser deposition technique and thin film produced by the same method

Country Status (1)

Country Link
JP (1) JP4586160B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007075196A1 (en) 2005-09-07 2007-07-05 Vidyo, Inc. System and method for a high reliability base layer trunk
JP5183904B2 (en) * 2006-11-01 2013-04-17 古河電気工業株式会社 Semiconductor manufacturing method
KR20130081956A (en) * 2012-01-10 2013-07-18 삼성전자주식회사 Method for growing nitride semiconductor
JP6458344B2 (en) * 2014-02-27 2019-01-30 東ソー株式会社 Method of manufacturing gallium nitride film and laminated substrate
JP6670497B2 (en) * 2016-03-02 2020-03-25 国立大学法人京都工芸繊維大学 Method and apparatus for manufacturing crystalline film and amorphous thin film
CN114875492B (en) * 2022-04-18 2023-08-22 华南理工大学 Grown in LaAlO 3 Nonpolar p-type GaN film epitaxial structure on substrate and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797300A (en) * 1993-09-27 1995-04-11 Hitachi Cable Ltd Heat-treatment of gallium nitride crystal
JPH07201745A (en) * 1993-12-28 1995-08-04 Hitachi Cable Ltd Semiconductor wafer and its manufacture
JPH08148718A (en) * 1994-09-19 1996-06-07 Toshiba Corp Compound semiconductor device
JPH1027924A (en) * 1997-03-24 1998-01-27 Toyoda Gosei Co Ltd Nitride-group-iii element compound light emitting element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797300A (en) * 1993-09-27 1995-04-11 Hitachi Cable Ltd Heat-treatment of gallium nitride crystal
JPH07201745A (en) * 1993-12-28 1995-08-04 Hitachi Cable Ltd Semiconductor wafer and its manufacture
JPH08148718A (en) * 1994-09-19 1996-06-07 Toshiba Corp Compound semiconductor device
JPH1027924A (en) * 1997-03-24 1998-01-27 Toyoda Gosei Co Ltd Nitride-group-iii element compound light emitting element

Also Published As

Publication number Publication date
JP2005022940A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
EP1349203B1 (en) ZnO-containing compound semiconductor device
JP3945782B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP4189386B2 (en) Method for growing nitride semiconductor crystal layer and method for producing nitride semiconductor light emitting device
JP4806475B2 (en) Substrate and manufacturing method thereof
JPH05343741A (en) Gallium nitride series semiconductor element and manufacture thereof
JPWO2008047907A1 (en) Sapphire substrate, nitride semiconductor light emitting device using the same, and method for manufacturing nitride semiconductor light emitting device
EP2009148A1 (en) Group iii-v nitride layer and method for producing the same
TW200901513A (en) Method for producing group III nitride semiconductor light emitting device, group III nitride semiconductor light emitting device, and lamp
Sun et al. Epitaxially grown n-ZnO∕ MgO∕ TiN∕ n+-Si (111) heterostructured light-emitting diode
JP2016145144A (en) Diamond laminated structure, substrate for forming diamond semiconductor, diamond semiconductor device, and production method of diamond laminated structure
JP6152548B2 (en) Gallium oxide substrate and manufacturing method thereof
JP2010073750A (en) Method for growing zinc-oxide-based semiconductor, and method for manufacturing semiconductor light emitting element
JP2004304166A (en) ZnO SEMICONDUCTOR DEVICE
JP4586160B2 (en) Method for producing p-type semiconductor crystal thin film of gallium nitride by duel pulse laser deposition technique and thin film produced by the same method
KR101458629B1 (en) MANUFACTURE METHOD FOR ZnO-CONTAINING COMPOUND SEMICONDUCTOR LAYER
JP5507234B2 (en) ZnO-based semiconductor device and manufacturing method thereof
JPH08264899A (en) Manufacture of gallium nitride semiconductor
JP2004189541A (en) ZnO-BASED p-TYPE SEMICONDUCTOR CRYSTAL, SEMICONDUCTOR COMPOSITE BODY OBTAINED BY USING THE SAME, LIGHT EMITTING ELEMENT OBTAINED BY USING THE SAME AND ITS MANUFACTURING METHOD
JP2007129271A (en) Semiconductor light emitting element and method of manufacturing same
JP3951013B2 (en) Method for producing GaN crystalline thin film by solid target pulsed laser deposition and thin film produced by the same method
JP4200215B2 (en) Preparation method of p-type semiconductor crystal thin film of silicon carbide by duel target simultaneous pulse laser deposition
JP2003104792A (en) Method of controlling doping concentration for semiconductor thin film and semiconductor device
JP2011091077A (en) Zinc oxide based compound semiconductor device
JP2012059874A (en) MANUFACTURING METHOD OF ZnO-BASED SEMICONDUCTOR LAYER AND MANUFACTURING METHOD OF ZnO-BASED SEMICONDUCTOR LIGHT-EMITTING ELEMENT
Vispute et al. Wide band gap ZnO And ZnMgO heterostructures for future optoelectronic devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4586160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term