JP2015162606A - Gallium nitride film, and method for manufacturing the same - Google Patents

Gallium nitride film, and method for manufacturing the same Download PDF

Info

Publication number
JP2015162606A
JP2015162606A JP2014037470A JP2014037470A JP2015162606A JP 2015162606 A JP2015162606 A JP 2015162606A JP 2014037470 A JP2014037470 A JP 2014037470A JP 2014037470 A JP2014037470 A JP 2014037470A JP 2015162606 A JP2015162606 A JP 2015162606A
Authority
JP
Japan
Prior art keywords
gallium nitride
nitride film
film
sputtering
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014037470A
Other languages
Japanese (ja)
Other versions
JP6458344B2 (en
Inventor
雅実 召田
Masami Meshida
雅実 召田
倉持 豪人
Toshihito Kuramochi
豪人 倉持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2014037470A priority Critical patent/JP6458344B2/en
Publication of JP2015162606A publication Critical patent/JP2015162606A/en
Application granted granted Critical
Publication of JP6458344B2 publication Critical patent/JP6458344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide: a gallium nitride film produced by a sputtering method using a gallium nitride target, which is low in quantity of oxygen, and high in crystallinity and permeability; and a method for manufacturing such a gallium nitride film.SOLUTION: A gallium nitride film is produced by a sputtering method, in which the content of oxygen is 10 atm% or less. According to an X-ray diffraction measurement on the gallium nitride film, the half-peak width of (002)plane is 0.4° or less. A method for manufacturing such a gallium nitride film comprises: a film-formation step for forming a gallium nitride film by a sputtering method using a sputtering target of which the oxygen content is 10 atm% or less; and a heat treatment step for heating the gallium nitride film thus formed at temperature of 800-1200°C.

Description

窒化ガリウムは、青色発光ダイオード(LED)の発光層や青色レーザーダイオード(LD)の原料として注目され、近年では薄膜や基板の形態にて白色LEDや青色LDなどの様々な用途に用いられており、また将来的にはパワーデバイスなどの用途の材料としても注目されている。現在、窒化ガリウム薄膜は有機金属化学気相成長(MOCVD)法によって製造されることが一般的である。MOCVD法は、キャリアガスに原料の蒸気を含ませて基板表面に運搬し、加熱された基板との反応で原料を分解させることにより、結晶を成長させる方法である。   Gallium nitride is attracting attention as a light emitting layer for blue light emitting diodes (LEDs) and a raw material for blue laser diodes (LDs). In the future, it is also attracting attention as a material for applications such as power devices. At present, gallium nitride thin films are generally manufactured by metal organic chemical vapor deposition (MOCVD). The MOCVD method is a method in which a vapor of a raw material is contained in a carrier gas and transported to the substrate surface, and the raw material is decomposed by reaction with a heated substrate to grow crystals.

MOCVD法以外の薄膜の作製製法としてスパッタ法が挙げられる。このスパッタリング法は陰極に設置したターゲットにArイオンなどの正イオンを物理的に衝突させ、その衝突エネルギーでターゲットを構成する材料を放出させて、対面に設置した基板上にターゲット材料とほぼ同組成の膜を堆積する方法であり、直流スパッタリング法(DCスパッタリング法)と高周波スパッタリング法(RFスパッタリング法)がある。   A sputtering method is an example of a method for producing a thin film other than the MOCVD method. In this sputtering method, positive ions such as Ar ions are physically collided with a target placed on the cathode, the material constituting the target is released by the collision energy, and the composition is almost the same as the target material on the substrate placed on the opposite side. There are two methods of depositing a film, such as a direct current sputtering method (DC sputtering method) and a high frequency sputtering method (RF sputtering method).

これまで、スパッタ法にて窒化ガリウム薄膜を製膜する方法として、金属ガリウムターゲットが用いられてきた(例えば、特許文献1参照)。しかし、金属ガリウムターゲットを用いる場合では、金属ガリウムの融点が約29.8℃であることから、スパッタ時に溶解するため、結晶性や透過性といった特性を高度に安定化させた窒化ガリウム膜を得ることが困難であり、それを防止するために高価な冷却装置を取り付け、さらに低パワーで製膜する手法が提案されているが、生産性が低下するとともに膜中への酸素の取り込みも多くなりやすいという課題があった。   Until now, a metal gallium target has been used as a method of forming a gallium nitride thin film by sputtering (see, for example, Patent Document 1). However, when a metal gallium target is used, since the melting point of metal gallium is about 29.8 ° C., the metal gallium target melts at the time of sputtering, so that a gallium nitride film having highly stabilized characteristics such as crystallinity and permeability is obtained. In order to prevent this, an expensive cooling device is attached and a method of forming a film with low power has been proposed. However, productivity is reduced and oxygen is incorporated into the film. There was a problem that it was easy.

また、窒化ガリウムを主成分とするスパッタリングターゲットを用いた窒化ガリウム膜(例えば、特許文献2参照)が提案されているが、窒化ガリウムターゲットの密度や物性については詳細な記載は無く、またTbを添加した窒化ガリウムターゲットを用いて作製しており、窒化ガリウム単体のターゲットでの検討は行われてない。すなわち、窒化ガリウム単体の膜は得られていない。   Further, although a gallium nitride film using a sputtering target containing gallium nitride as a main component has been proposed (see, for example, Patent Document 2), there is no detailed description of the density and physical properties of the gallium nitride target, and Tb The gallium nitride target is manufactured using an added gallium nitride target, and a study using a gallium nitride simple substance target is not performed. That is, a film of gallium nitride alone has not been obtained.

さらに、窒化ガリウムの高密度の焼結体(例えば、特許文献3参照)が提案されている。この実施例によると、58Kbar(5.8GPa)という非常に高圧条件下では緻密化しているが、このような圧力をかける装置は非常に高価な装置であり、大型の焼結体を作製するには不向きである。そのため、スパッタ法で用いるスパッタリングターゲット自体が非常に高価となり、かつ大型化が困難なことから均質性に劣る膜となりやすいという課題を有していた。   Furthermore, a high-density sintered body of gallium nitride (for example, see Patent Document 3) has been proposed. According to this example, it is densified under a very high pressure condition of 58 Kbar (5.8 GPa), but the device for applying such a pressure is a very expensive device, and it is necessary to produce a large sintered body. Is unsuitable. For this reason, the sputtering target itself used in the sputtering method is very expensive and it is difficult to increase the size of the sputtering target.

特開平11−172424号公報JP-A-11-172424 特開平01−301850号公報Japanese Patent Laid-Open No. 01-301850 特開2005−508822号公報JP 2005-508822 A

本発明の目的は、窒化ガリウムターゲットを用いたスパッタ法により低酸素量であり、結晶性及び透過性の高い窒化ガリウム膜とその膜の製造方法を提供することである。   An object of the present invention is to provide a gallium nitride film having a low oxygen content and high crystallinity and permeability by a sputtering method using a gallium nitride target, and a method for manufacturing the film.

このような背景に鑑み、本発明者らは鋭意検討を重ねた。その結果、酸素含有量の少ない窒化ガリウム焼結体をスパッタリングターゲットとして用いたスパッタリング法において形成される窒化ガリウム膜は非常に低酸素含有量であり、高結晶性及び高透過性という優れた特性を発現し、かつ、素子等に好適に用いることができることを見出し、本発明を完成するに至った。   In view of such a background, the present inventors made extensive studies. As a result, the gallium nitride film formed by the sputtering method using a gallium nitride sintered body with a low oxygen content as a sputtering target has a very low oxygen content, and has excellent characteristics such as high crystallinity and high permeability. The inventors have found that it is expressed and can be suitably used for an element and the like, and have completed the present invention.

すなわち、本発明の態様は以下の通りである。
(1)酸素含有量が10atm%以下であり、X線回折測定における(002)面の半価幅が0.4°以下であることを特徴とする、スパッタ法により作製した窒化ガリウム膜。
(2)X線回折測定における(002)面の強度と(101)面の強度をそれぞれI(002)、I(101)としたときに、その強度比I(002)/I(101)が3以上であることを特徴とする(1)に記載の窒化ガリウム膜。
(3)窒化ガリウムを主成分として含む、酸素含有量が10atm%以下であるスパッタリングターゲットを用いてスパッタ法で製膜する製膜工程と、形成された窒化ガリウム膜を800℃以上1200℃以下で加熱する加熱処理工程とを有することを特徴とする(1)又は(2)に記載の窒化ガリウム膜の製造方法。
(4)製膜工程において基板加熱温度を100℃以上800℃以下とすることを特徴とする(3)に記載の窒化ガリウム膜の製造方法。
(5)加熱処理工程における温度が、製膜工程の際の基板加熱温度よりも高いことを特徴とする(3)又は(4)に記載の窒化ガリウム膜の製造方法。
(6)加熱処理工程の際の雰囲気ガスにアンモニアを含有させること特徴とする(3)〜(5)のいずれかに記載の窒化ガリウム膜の製造方法。
(7)(1)又は(2)に記載の窒化ガリウム膜と基板により構成されることを特徴とする窒化ガリウム膜を含む積層基材。
(8)(7)に記載の積層基材を用いることを特徴とする半導体素子。
(9)(8)の半導体素子を含むことを特徴とする電子機器。
That is, the aspects of the present invention are as follows.
(1) A gallium nitride film produced by a sputtering method, wherein the oxygen content is 10 atm% or less, and the half width of the (002) plane in X-ray diffraction measurement is 0.4 ° or less.
(2) When the intensity of the (002) plane and the intensity of the (101) plane in the X-ray diffraction measurement are I (002) and I (101), the intensity ratio I (002) / I (101) is 3. The gallium nitride film according to (1), which is 3 or more.
(3) A film forming step of forming a film by a sputtering method using a sputtering target containing gallium nitride as a main component and having an oxygen content of 10 atm% or less, and the formed gallium nitride film at 800 ° C. to 1200 ° C. The method for producing a gallium nitride film according to (1) or (2), further comprising a heat treatment step of heating.
(4) The method for producing a gallium nitride film according to (3), wherein the substrate heating temperature is set to 100 ° C. or higher and 800 ° C. or lower in the film forming step.
(5) The method for producing a gallium nitride film according to (3) or (4), wherein the temperature in the heat treatment step is higher than the substrate heating temperature in the film forming step.
(6) The method for producing a gallium nitride film according to any one of (3) to (5), wherein ammonia is contained in the atmospheric gas during the heat treatment step.
(7) A laminated base material including a gallium nitride film, characterized by comprising the gallium nitride film according to (1) or (2) and a substrate.
(8) A semiconductor element using the laminated base material according to (7).
(9) An electronic device comprising the semiconductor element of (8).

以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではない。   Hereinafter, although the present invention is explained in detail, the present invention is not limited to the following embodiments.

本発明の窒化ガリウム膜は、酸素含有量が10atm%以下であり、X線回折測定における(002)面の半価幅が0.4°以下であり、スパッタ法により作製されたものである。   The gallium nitride film of the present invention has an oxygen content of 10 atm% or less, a half width of the (002) plane in X-ray diffraction measurement is 0.4 ° or less, and is manufactured by a sputtering method.

酸素含有量が10atm%を上回ると膜の結晶構造中に酸素が多く含まれる原因となるため、X線回折測定における(002)面の半価幅が0.4°以下の、結晶性が高く波長400nmにおける透過率が40%以上となるような透過性に優れた膜が得られない。   If the oxygen content exceeds 10 atm%, the crystal structure of the film will contain a large amount of oxygen. Therefore, the half width of the (002) plane in X-ray diffraction measurement is 0.4 ° or less, and the crystallinity is high. A film with excellent transparency such that the transmittance at a wavelength of 400 nm is 40% or more cannot be obtained.

本発明の窒化ガリウム膜は、X線回折測定における(002)面の強度と(101)面の強度をそれぞれI(002)、I(101)としたときに、その強度比I(002)/I(101)が3以上であることが好ましい。   The gallium nitride film of the present invention has an intensity ratio of I (002) / I when the intensity of the (002) plane and the intensity of the (101) plane in the X-ray diffraction measurement are I (002) and I (101), respectively. I (101) is preferably 3 or more.

酸素含有量が少なく、結晶性と透過性の高い窒化ガリウム膜において、このような配向性の高い膜とすることで耐熱性が高くなるとともにMOCVD法などにより窒化ガリウムのエピタキシャル成長をさせることが可能となる。   In a gallium nitride film having a low oxygen content and high crystallinity and permeability, such a highly oriented film increases heat resistance and enables epitaxial growth of gallium nitride by MOCVD or the like. Become.

本発明における窒化ガリウム薄膜は、スパッタリング法を用いて作製されることにより、大面積に均質性が高く、かつ酸素含有量が抑制され、高い結晶性と透過性を兼ね備えた膜を容易に得ることが可能となる。   The gallium nitride thin film according to the present invention can be easily obtained by producing a film having high crystallinity and transparency, with high homogeneity over a large area and low oxygen content by being produced using a sputtering method. Is possible.

以下に本発明の窒化ガリウム薄膜の製造方法について説明する。   The method for producing a gallium nitride thin film of the present invention will be described below.

本発明の窒化ガリウム膜は、窒化ガリウムを主成分として含む、酸素含有量が10atm%以下であるスパッタリングターゲットを用いてスパッタ法で製膜する製膜工程と、形成された窒化ガリウム膜を800℃以上1200℃以下で加熱する加熱処理工程とを有する方法で製造される。   The gallium nitride film of the present invention is formed by a sputtering process using a sputtering target containing gallium nitride as a main component and having an oxygen content of 10 atm% or less, and the formed gallium nitride film at 800 ° C. And a heat treatment step of heating at 1200 ° C. or lower.

スパッタリングターゲットは、窒化ガリウムを主成分として含む、酸素含有量が10atm%以下であることが必要であり、純度についてもなるべく高い方が望ましい。   The sputtering target needs to contain gallium nitride as a main component and have an oxygen content of 10 atm% or less, and the purity is preferably as high as possible.

スパッタリング法としては、DCスパッタリング法、RFスパッタリング法、ACスパッタリング法、DCマグネトロンスパッタリング法、RFマグネトロンスパッタリング法、イオンビームスパッタリング法等を適宜選択することができ、これらの中、大面積に均一に、かつ高速製膜可能な点でDCマグネトロンスパッタリング法、RFマグネトロンスパッタリング法が好ましい。   As the sputtering method, a DC sputtering method, an RF sputtering method, an AC sputtering method, a DC magnetron sputtering method, an RF magnetron sputtering method, an ion beam sputtering method, and the like can be appropriately selected. In addition, the DC magnetron sputtering method and the RF magnetron sputtering method are preferable in that high-speed film formation is possible.

製膜工程では、基板を加熱した状態で製膜することが好ましい。基板を加熱した状態で製膜することで、スパッタされた粒子にエネルギーを与え、より安定な結晶状態となることが可能だからであり、さらに言えば、高温で加熱処理するためには、その際の熱膨張率差等による割れを防止するため、製膜時に加熱しておくことが好ましいからである。製膜工程における基板加熱温度(以下、製膜温度と言うことがある。)は100℃以上800℃以下が好ましく、200℃以上800℃以下がより好ましく、400℃以上800℃以下が特に好ましい。100℃未満の温度では、粒子移動や製膜後に加熱処理する際の割れの防止効果が薄くなる。また、800℃より高い温度ではスパッタ装置が高価となり、スパッタ法を用いるメリットが小さくなる。製膜時のガスは窒素を含んでいることが望ましい。そうすることで窒素欠陥の少ない膜を作製可能となる。そのガス圧は0.05〜0.5Paであることが好ましい。   In the film forming step, it is preferable to form the film while the substrate is heated. This is because it is possible to give energy to the sputtered particles and form a more stable crystal state by forming the film while the substrate is heated. This is because it is preferable to heat at the time of film formation in order to prevent cracking due to a difference in thermal expansion coefficient. The substrate heating temperature in the film forming step (hereinafter sometimes referred to as film forming temperature) is preferably 100 ° C. or higher and 800 ° C. or lower, more preferably 200 ° C. or higher and 800 ° C. or lower, and particularly preferably 400 ° C. or higher and 800 ° C. or lower. When the temperature is lower than 100 ° C., the effect of preventing cracking during heat treatment after particle movement or film formation becomes thin. Further, when the temperature is higher than 800 ° C., the sputtering apparatus becomes expensive, and the merit of using the sputtering method is reduced. It is desirable that the gas during film formation contains nitrogen. By doing so, a film with few nitrogen defects can be manufactured. The gas pressure is preferably 0.05 to 0.5 Pa.

加熱処理工程の際の温度は800℃以上1200℃以下である必要がある。なお、加熱処理工程における温度は、製膜工程における製膜温度よりも高いことが好ましい。製膜時に基板を加熱し、更に高温で加熱処理することによって、配向性、結晶性及び透過率を兼ね備えた膜を作製することができる。また、加熱処理工程の際の雰囲気ガスはアンモニアを含有していることが好ましい。   The temperature in the heat treatment step needs to be 800 ° C. or higher and 1200 ° C. or lower. In addition, it is preferable that the temperature in a heat treatment process is higher than the film forming temperature in a film forming process. A film having orientation, crystallinity, and transmittance can be manufactured by heating the substrate at the time of film formation and further heat-treating at a high temperature. Moreover, it is preferable that the atmospheric gas in the heat treatment process contains ammonia.

本発明の窒化ガリウム膜は、基材と構成される窒化ガリウム膜を含む積層基材として好適に用いることができる。   The gallium nitride film of the present invention can be suitably used as a laminated substrate including a gallium nitride film configured as a substrate.

ここで、基材とは無アルカリガラスや石英等を含むガラス基材、樹脂製の高分子フィルム基材、セラミックスや金属の基材等が挙げられる。特に表示素子向けの場合は視認性が極めて重要であるため、無アルカリガラスや石英等を含むガラス基材、樹脂製の高分子フィルム基材が好適である。   Here, the base material includes a glass base material containing alkali-free glass or quartz, a resin-made polymer film base material, a ceramic or metal base material, and the like. In particular, in the case of a display element, visibility is very important, and therefore, a glass substrate containing non-alkali glass or quartz, or a resin polymer film substrate is preferable.

このような積層基材は複数の機能部品と構成された素子として好適に用いられる。例えば、太陽電池等の光学素子、FPDやタッチパネル等の表示素子に好適である。特に上述の表示素子は電子機器内に組み込まれて好適に用いられ、モバイル機器のように小型高性能電子機器には特に好適である。   Such a laminated substrate is suitably used as an element configured with a plurality of functional parts. For example, it is suitable for optical elements such as solar cells and display elements such as FPDs and touch panels. In particular, the display element described above is preferably used by being incorporated in an electronic device, and is particularly suitable for a small high-performance electronic device such as a mobile device.

本発明の窒化ガリウム膜は低酸素量であり、結晶性及び透過性の高く、太陽電池等の光学素子、FPDやタッチパネル等の表示素子に好適に用いることができる。   The gallium nitride film of the present invention has a low oxygen content, high crystallinity and transparency, and can be suitably used for optical elements such as solar cells and display elements such as FPDs and touch panels.

本発明を以下の実施例を参照してより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(透過率の測定方法)
基板の透過率を測定後、窒化ガリウム膜付き基板の透過率を測定し下記の式にて波長400nmにおける膜の透過率を算出する。
窒化ガリウム膜の透過率=窒化ガリウム膜付き基板の透過率/基板の透過率
(結晶面の確認、半値幅、強度比の測定方法)
XRD装置にて2θ―θにて20°から80°まで測定し、JCPDSNo.00−050−0792を参考として窒化ガリウム結晶面を確認し、(002)面についてその半値幅を測定し、強度比はI(002)とI(101)について下記の式を用いて算出する。
強度比=I(002)/I(101)
(酸素含有量測定)
膜中の酸素含有量はESCA(X線光電子分光法)を用いて表面から20nmの部分を測定した。
The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to these examples.
(Measurement method of transmittance)
After measuring the transmittance of the substrate, the transmittance of the substrate with the gallium nitride film is measured, and the transmittance of the film at a wavelength of 400 nm is calculated by the following formula.
Transmittance of gallium nitride film = Transmittance of substrate with gallium nitride film / Transmittance of substrate (crystal plane confirmation, half width, intensity ratio measurement method)
Measured from 20 ° to 80 ° at 2θ-θ with an XRD apparatus. The gallium nitride crystal plane is confirmed with reference to 00-050-0792, the half width of the (002) plane is measured, and the intensity ratio is calculated using the following formula for I (002) and I (101).
Intensity ratio = I (002) / I (101)
(Oxygen content measurement)
The oxygen content in the film was measured at 20 nm from the surface using ESCA (X-ray photoelectron spectroscopy).

(実施例1)
窒化ガリウムスパッタリングターゲットを用いて、下記の条件にてスパッタ製膜試験を実施した。
(スパッタ条件)
放電方式 :RFスパッタ
製膜装置 :マグネトロンスパッタ装置
ターゲット材料 :窒化ガリウム(酸素含有量7atm%)
ターゲットサイズ :120mmφ
ターゲット―基板間距離:150mm
製膜圧力 :0.3Pa
導入ガス :窒素
放電パワー :250W
基板 :10mm角サファイア(0001)面
製膜温度 :200℃
膜厚 :1000nm
加熱処理温度 :900℃
以上の条件にて製膜を行なった結果、透過率55%、酸素量7atm%、半値幅0.28°、強度比2の窒化ガリウム薄膜の作製に成功した。
Example 1
Using a gallium nitride sputtering target, a sputtering film formation test was performed under the following conditions.
(Sputtering conditions)
Discharge method: RF sputtering Film forming device: Magnetron sputtering device Target material: Gallium nitride (oxygen content: 7 atm%)
Target size: 120mmφ
Target-to-board distance: 150mm
Film forming pressure: 0.3 Pa
Introduced gas: Nitrogen Discharge power: 250W
Substrate: 10 mm square sapphire (0001) surface Film forming temperature: 200 ° C.
Film thickness: 1000nm
Heat treatment temperature: 900 ° C
As a result of film formation under the above conditions, a gallium nitride thin film having a transmittance of 55%, an oxygen content of 7 atm%, a half-value width of 0.28 °, and an intensity ratio of 2 was successfully produced.

(実施例2)
窒化ガリウムスパッタリングターゲットを用いて、下記の条件にてスパッタ製膜試験を実施した。
(スパッタ条件)
放電方式 :RFスパッタ
製膜装置 :マグネトロンスパッタ装置
ターゲット材料 :窒化ガリウム(酸素含有量7atm%)
ターゲットサイズ :76mmφ
ターゲット―基板間距離:90mm
製膜圧力 :0.3Pa
導入ガス :窒素
放電パワー :100W
基板 :50mm角サファイア(0001)面
製膜温度 :100℃
膜厚 :1000nm
加熱処理温度 :900℃
以上の条件にて製膜を行なった結果、透過率55%、酸素量7atm%、半値幅0.32°、強度比106の窒化ガリウム薄膜の作製に成功した。
(Example 2)
Using a gallium nitride sputtering target, a sputtering film formation test was performed under the following conditions.
(Sputtering conditions)
Discharge method: RF sputtering Film forming device: Magnetron sputtering device Target material: Gallium nitride (oxygen content: 7 atm%)
Target size: 76mmφ
Target-substrate distance: 90mm
Film forming pressure: 0.3 Pa
Introduced gas: Nitrogen Discharge power: 100W
Substrate: 50 mm square sapphire (0001) surface Film forming temperature: 100 ° C.
Film thickness: 1000nm
Heat treatment temperature: 900 ° C
As a result of film formation under the above conditions, a gallium nitride thin film having a transmittance of 55%, an oxygen content of 7 atm%, a half-value width of 0.32 °, and an intensity ratio of 106 was successfully produced.

(実施例3)
製膜温度を500℃とした以外は実施例1と同様の条件にて製膜を行った結果、透過率60%、酸素量6atm%、半値幅0.28°、強度比3の窒化ガリウム薄膜の作製に成功した。
(Example 3)
As a result of film formation under the same conditions as in Example 1 except that the film formation temperature was 500 ° C., a gallium nitride thin film having a transmittance of 60%, an oxygen content of 6 atm%, a half-value width of 0.28 °, and an intensity ratio of 3 Was successfully produced.

(実施例4)
製膜温度を800℃、加熱温度1000℃とした以外は実施例1と同様の条件にて製膜を行った結果、透過率63%、半値幅0.26°、強度比3.5の窒化ガリウム薄膜の作製に成功した。
Example 4
As a result of film formation under the same conditions as in Example 1 except that the film formation temperature was 800 ° C. and the heating temperature was 1000 ° C., nitriding with a transmittance of 63%, a half-value width of 0.26 °, and an intensity ratio of 3.5 Successful fabrication of gallium thin film.

(比較例1)
窒化ガリウムスパッタリングターゲットを酸素含有量30atm%のものに変えた以外は実施例2と同様の条件にて製膜を行ったところ、透過率20%、酸素量23atm%、結晶の存在しない窒化ガリウム薄膜となり、所望のものを得られなかった。
(Comparative Example 1)
A film was formed under the same conditions as in Example 2 except that the gallium nitride sputtering target was changed to one having an oxygen content of 30 atm%. As a result, the transmittance was 20%, the oxygen content was 23 atm%, and no gallium nitride thin film was present. Thus, the desired product could not be obtained.

Claims (9)

酸素含有量が10atm%以下であり、X線回折測定における(002)面の半価幅が0.4°以下であることを特徴とする、スパッタ法により作製した窒化ガリウム膜。 A gallium nitride film produced by a sputtering method, wherein the oxygen content is 10 atm% or less and the half width of the (002) plane in X-ray diffraction measurement is 0.4 ° or less. X線回折測定における(002)面の強度と(101)面の強度をそれぞれI(002)、I(101)としたときに、その強度比I(002)/I(101)が3以上であることを特徴とする請求項1に記載の窒化ガリウム膜。 When the intensity of the (002) plane and the intensity of the (101) plane in the X-ray diffraction measurement is I (002) and I (101), the intensity ratio I (002) / I (101) is 3 or more. The gallium nitride film according to claim 1, wherein the gallium nitride film is provided. 窒化ガリウムを主成分として含む、酸素含有量が10atm%以下であるスパッタリングターゲットを用いてスパッタ法で製膜する製膜工程と、形成された窒化ガリウム膜を800℃以上1200℃以下で加熱する加熱処理工程とを有することを特徴とする請求項1又は2に記載の窒化ガリウム膜の製造方法。 A film forming step of forming a film by a sputtering method using a sputtering target containing gallium nitride as a main component and having an oxygen content of 10 atm% or less, and heating for heating the formed gallium nitride film at 800 ° C. or higher and 1200 ° C. or lower. The method for producing a gallium nitride film according to claim 1, further comprising a processing step. 製膜工程において基板加熱温度を100℃以上800℃以下とすることを特徴とする請求項3に記載の窒化ガリウム膜の製造方法。 4. The method for producing a gallium nitride film according to claim 3, wherein the substrate heating temperature is set to 100 ° C. or higher and 800 ° C. or lower in the film forming step. 加熱処理工程における温度が、製膜工程の際の基板加熱温度よりも高いことを特徴とする請求項3又は4に記載の窒化ガリウム膜の製造方法。 The method for producing a gallium nitride film according to claim 3 or 4, wherein the temperature in the heat treatment step is higher than the substrate heating temperature in the film forming step. 加熱処理工程の際の雰囲気ガスにアンモニアを含有させること特徴とする請求項3〜5のいずれかに記載の窒化ガリウム膜の製造方法。 The method for producing a gallium nitride film according to any one of claims 3 to 5, wherein ammonia is contained in the atmospheric gas during the heat treatment step. 請求項1又は2に記載の窒化ガリウム膜と基板により構成されることを特徴とする窒化ガリウム膜を含む積層基材。 A laminated base material comprising a gallium nitride film comprising the gallium nitride film according to claim 1 and a substrate. 請求項7に記載の積層基材を用いることを特徴とする半導体素子。 A semiconductor element comprising the laminated substrate according to claim 7. 請求項8の半導体素子を含むことを特徴とする電子機器。 An electronic device comprising the semiconductor element according to claim 8.
JP2014037470A 2014-02-27 2014-02-27 Method of manufacturing gallium nitride film and laminated substrate Active JP6458344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014037470A JP6458344B2 (en) 2014-02-27 2014-02-27 Method of manufacturing gallium nitride film and laminated substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014037470A JP6458344B2 (en) 2014-02-27 2014-02-27 Method of manufacturing gallium nitride film and laminated substrate

Publications (2)

Publication Number Publication Date
JP2015162606A true JP2015162606A (en) 2015-09-07
JP6458344B2 JP6458344B2 (en) 2019-01-30

Family

ID=54185497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014037470A Active JP6458344B2 (en) 2014-02-27 2014-02-27 Method of manufacturing gallium nitride film and laminated substrate

Country Status (1)

Country Link
JP (1) JP6458344B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163114A (en) * 1996-11-29 1998-06-19 Matsushita Electron Corp Semiconductor device and manufacturing method thereof
JPH11162852A (en) * 1997-11-28 1999-06-18 Tdk Corp Substrate for electronic device and manufacture thereof
JPH11172424A (en) * 1997-12-12 1999-06-29 Minolta Co Ltd Production of gallium compound
JP2005022940A (en) * 2003-07-02 2005-01-27 National Institute Of Advanced Industrial & Technology Method for preparing crystal thin film of p-type semiconductor of gallium nitride by dual pulsed laser vapor deposition procedure and thin film prepared by the same method
JP2008047762A (en) * 2006-08-18 2008-02-28 Showa Denko Kk Group iii nitride compound semiconductor light emitting element, process for fabricating the same, and lamp
JP2008235877A (en) * 2007-02-19 2008-10-02 Showa Denko Kk Solar cell and manufacturing method therefor
JP2008260974A (en) * 2007-04-10 2008-10-30 Showa Denko Kk METHOD FOR MANUFACTURING Ga SPUTTERING TARGET
JP2009200207A (en) * 2008-02-21 2009-09-03 Kanagawa Acad Of Sci & Technol Semiconductor substrate, semiconductor element, light-emitting element, and electronic element
JP2010114423A (en) * 2008-10-09 2010-05-20 Canon Inc Substrate for growing wurtzite type crystal and method for manufacturing the same and semiconductor device
JP2012119569A (en) * 2010-12-02 2012-06-21 Ulvac Japan Ltd Nitride semiconductor element
JP2012144424A (en) * 2010-12-20 2012-08-02 Tosoh Corp Gallium nitride sintered body or gallium nitride molded article, and method for producing them
JP2012222004A (en) * 2011-04-04 2012-11-12 Ulvac Japan Ltd Semiconductor layer formation device, semiconductor layer manufacturing method
JP2012219348A (en) * 2011-04-12 2012-11-12 Kojundo Chem Lab Co Ltd Sputtering target

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163114A (en) * 1996-11-29 1998-06-19 Matsushita Electron Corp Semiconductor device and manufacturing method thereof
JPH11162852A (en) * 1997-11-28 1999-06-18 Tdk Corp Substrate for electronic device and manufacture thereof
JPH11172424A (en) * 1997-12-12 1999-06-29 Minolta Co Ltd Production of gallium compound
JP2005022940A (en) * 2003-07-02 2005-01-27 National Institute Of Advanced Industrial & Technology Method for preparing crystal thin film of p-type semiconductor of gallium nitride by dual pulsed laser vapor deposition procedure and thin film prepared by the same method
JP2008047762A (en) * 2006-08-18 2008-02-28 Showa Denko Kk Group iii nitride compound semiconductor light emitting element, process for fabricating the same, and lamp
JP2008235877A (en) * 2007-02-19 2008-10-02 Showa Denko Kk Solar cell and manufacturing method therefor
JP2008260974A (en) * 2007-04-10 2008-10-30 Showa Denko Kk METHOD FOR MANUFACTURING Ga SPUTTERING TARGET
JP2009200207A (en) * 2008-02-21 2009-09-03 Kanagawa Acad Of Sci & Technol Semiconductor substrate, semiconductor element, light-emitting element, and electronic element
JP2010114423A (en) * 2008-10-09 2010-05-20 Canon Inc Substrate for growing wurtzite type crystal and method for manufacturing the same and semiconductor device
JP2012119569A (en) * 2010-12-02 2012-06-21 Ulvac Japan Ltd Nitride semiconductor element
JP2012144424A (en) * 2010-12-20 2012-08-02 Tosoh Corp Gallium nitride sintered body or gallium nitride molded article, and method for producing them
JP2012222004A (en) * 2011-04-04 2012-11-12 Ulvac Japan Ltd Semiconductor layer formation device, semiconductor layer manufacturing method
JP2012219348A (en) * 2011-04-12 2012-11-12 Kojundo Chem Lab Co Ltd Sputtering target

Also Published As

Publication number Publication date
JP6458344B2 (en) 2019-01-30

Similar Documents

Publication Publication Date Title
JP6947232B2 (en) Gallium nitride based film and its manufacturing method
WO2016158651A1 (en) Gallium nitride-based sintered compact and method for manufacturing same
Chen et al. Van Der Waals hybrid perovskite of high optical quality by chemical vapor deposition
JP2022105014A (en) System and method for growing iiia group nitride
CN114059165B (en) Light-emitting device, aluminum nitride product, aluminum nitride single crystal, and manufacturing method and application thereof
WO2007020729A1 (en) Process for producing zinc oxide thin-film and production apparatus
JP2018046277A (en) Gallium nitride based film and manufacturing method of the same
Wang et al. Effect of substrate temperature and bias voltage on the properties in DC magnetron sputtered AlN films on glass substrates
CN107492490A (en) Film build method, aluminium nitride film build method and the electronic installation of semiconductor equipment
Kim et al. Optical and electrical properties of ZnO films, codoped with Al and Ga deposited at room temperature by an RF sputtering method
Choi et al. Properties of ITO films on glass fabricated by pulsed laser deposition
Crovetto et al. Boron Phosphide Films by Reactive Sputtering: Searching for a P‐Type Transparent Conductor
Wang et al. Annealing temperature controlled crystallization mechanism and properties of gallium oxide film in forming gas atmosphere
JP6458344B2 (en) Method of manufacturing gallium nitride film and laminated substrate
Hong et al. Control and characterization of structural and optical properties of ZnO thin films fabricated by thermal oxidation Zn metallic films
Kim et al. ZnO wurtzite single crystals prepared by nanorod-assisted epitaxial lateral overgrowth
Lee et al. Effects of O2 plasma pre-treatment on ZnO thin films grown on polyethersulfone substrates at various deposition temperatures by atomic layer deposition
Kang et al. The role of a ZnO buffer layer in the growth of ZnO thin film on Al2O3 substrate
KR102312535B1 (en) Method of manufacturing aluminum nitride thin film using pulse laser method
CN109599470B (en) Method for reducing resistivity of magnesium-doped zinc oxide film
KR101484770B1 (en) Method for preparing graphene using cover and method for fabricating electronic device comprising the same
Potera et al. Optical properties of ZnCoO layers obtained by PLD method
Mandal et al. A Review on the effects of PVD RF sputtering parameters on rare earth oxide thin films and their applications
KR20140120663A (en) Preparation method of ZnO:Al thin film
Mazwan et al. Structural and optical properties of nickel-doped zinc oxide thin film on nickel seed layer deposited by RF magnetron sputtering technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181210

R151 Written notification of patent or utility model registration

Ref document number: 6458344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151