JP6457990B2 - 判定装置、判定方法及び学習装置 - Google Patents

判定装置、判定方法及び学習装置 Download PDF

Info

Publication number
JP6457990B2
JP6457990B2 JP2016218734A JP2016218734A JP6457990B2 JP 6457990 B2 JP6457990 B2 JP 6457990B2 JP 2016218734 A JP2016218734 A JP 2016218734A JP 2016218734 A JP2016218734 A JP 2016218734A JP 6457990 B2 JP6457990 B2 JP 6457990B2
Authority
JP
Japan
Prior art keywords
teacher data
determination
data
acoustic
feature vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016218734A
Other languages
English (en)
Other versions
JP2018077120A (ja
Inventor
淳一 赤埴
淳一 赤埴
広子 宮川
広子 宮川
信孝 酒匂
信孝 酒匂
孝昭 水野
孝昭 水野
裕亮 蔦木
裕亮 蔦木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Advanced Technology Corp
Original Assignee
NTT Advanced Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Advanced Technology Corp filed Critical NTT Advanced Technology Corp
Priority to JP2016218734A priority Critical patent/JP6457990B2/ja
Publication of JP2018077120A publication Critical patent/JP2018077120A/ja
Application granted granted Critical
Publication of JP6457990B2 publication Critical patent/JP6457990B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Description

本発明は、配管における漏水について判定する技術に関する。
わが国では高度成長期に敷設された社会インフラの老朽化が社会的問題になっている。例えば水道設備においては、今後急速に老朽化が進み、漏水問題が顕著化することが心配されている。現状の漏水検査では、人が巡回し聴覚によって判別を行っている。しかし、このような判別を困難にさせる要因も多くある。例えば、漏水音の特徴は管の材質、水圧、漏水量等によって変化する。また、車の通過音等の環境ノイズの混入も生じる。さらに、下水の流音など漏水音に似た音が混在する。そのため、人にとっても漏水音の聞き分けは難しく、経験が必要とされている。このような問題を解決するために、水道の漏水検知を行う際に、騒音の多い昼間の時間帯や場所でも雑音除去ができる装置がある(例えば、特許文献1参照)。
特開2014−238380号公報
しかしながら、このようにセンサを用いて漏水検知を行う装置も提案されているが、判別精度は未だ十分ではない。そのため、最終的には人間の聴覚による漏水判定を行っているのが現状である。このような問題は、配管における漏水に限った問題ではなく、管を流れる流体(例えばガス)の漏れを判定する技術全体に共通する問題である。
上記事情に鑑み、本発明は、配管における流体の漏れをより精度よく検知する技術の提供を目的としている。
本発明の一態様は、流体の配管に設けられた複数の音圧センサによって取得される音響データのうち、前記流体の漏れが生じていない時点で取得された音響データを教師データとして用いることで学習処理を行い識別器を生成する学習処理部と、前記学習処理部によって生成された識別器を用いて、新たに取得された音響データに基づいて前記配管において前記流体の漏れが生じているか否か判定する判定部と、を備える判定装置である。
本発明の一態様は、上記の判定装置であって、前記学習処理部は、前記流体の漏れが生じている時点で取得された音響データを教師データとしてさらに用いることで学習処理を行い識別器を生成する。
本発明の一態様は、上記の判定装置であって、前記音響データについて、前記流体の漏れに関する音の音圧が前記複数の音圧センサにおいて所定の範囲内の値となるようにレベル補正処理を行うデータ補正部をさらに備え、前記学習処理部及び前記判定部は前記データ補正部によって前記レベル補正処理が行われた音響データを用いる。
本発明の一態様は、流体の配管に設けられた複数の音圧センサによって取得される音響データのうち、前記流体の漏れが生じていない時点で取得された音響データを教師データとして用いることで学習処理を行い識別器を生成する学習処理ステップと、前記学習処理ステップにおいて生成された識別器を用いて、新たに取得された音響データに基づいて前記配管において前記流体の漏れが生じているか否か判定する判定ステップと、を有する判定方法である。
本発明の一態様は、流体の配管に設けられた複数の音圧センサによって取得される音響データのうち、前記流体の漏れが生じていない時点で取得された音響データを教師データとして用いることで学習処理を行い識別器を生成する学習処理部、を備える学習装置である。
本発明の一態様は、上記の学習装置によって生成された識別器を用いて、新たに取得された音響データに基づいて前記配管において前記流体の漏れが生じているか否か判定する判定部、を備える判定装置である。
本発明により、配管における流体の漏れをより精度よく検知することが可能となる。
判定装置10の機能を示す概略ブロック図である。 音響信号の音圧の相違の具体例を示す図である。 レベル補正処理に用いられる補正係数テーブルの具体例である。 ノイズを含む音響信号の具体例を示す図である。 分割信号の具体例を示す図である。 判定装置10の学習処理における処理の流れを示すフローチャートである。 判定装置10の判定処理における処理の流れを示すフローチャートである。 特徴ベクトルの変形例を説明するための示す図である。 特徴ベクトルの変形例を説明するための示す図である。 特徴ベクトルの変形例を説明するための示す図である。
以下、図面を参照して、本発明の一実施形態による判定装置10について説明する。なお、以下の説明においては水道管の漏水を例に説明するが、本発明は水に限らず配管を流れる流体れについて漏れを判定できる。例えば、本発明は、ガス管におけるガス漏れについて判定してもよい。
判定装置10は、配管において取得される音響信号に基づいて判定を行う。まず、判定装置10に対して与えられる音響信号について説明する。
判定装置10が判定処理の対象とする水道管は、地中に埋め込まれており、その中を水道の水が流れる。水道管には、水道の流量を調整したり流れを止めたりするバルブが設けられている。また、水道管には、消火に用いられる消火栓も設けられている。水道管の近くには、音響信号を取得するセンサが複数配置される。
水道管には、漏水が生じている箇所(以下「漏水点」という。)が生じてしまうことがある。漏水点は、水道管の老朽化等の原因によって生じる。ただし、漏水点において生じる水の漏れによって、漏水音が発生する。漏水音は、水道管の特性(管種、管口径)、漏水状況(水圧、漏水量、漏水点とセンサ位置との間の距離)に応じて異なる音を発する。水道管が敷設された地点の近くを車両が通行すると、センサによって走行音も検知される。このような走行音は、漏水音を検知するために障害となりうるノイズである。ノイズには、車両の走行音の他に、鳥獣の鳴き声、生活音、雨の音、自動販売機のモータ音等がある。ノイズの具体例には、非定常ノイズがある。
センサは、音圧を測定するセンサ(音圧センサ)を用いて構成される。センサは、例えば圧電素子を用いて構成されてもよい。音圧は、大きい音であれば振幅が大きくなり、小さい音であれば振幅が小さくなる。すなわち、センサの出力は音の大きさに比例した振幅の信号である。センサは、例えばマンホールがある箇所に取り付けられてもよい。より具体的には、バルブや消火栓の付近の水道管にセンサが取り付けてもよい。センサによって検知された音を示す信号(以下「音響信号」という。)は、他の装置によって取得される。例えば、センサに設けられた無線通信機能によって音響信号が他の装置に送信されてもよい。音響信号が送信される先である他の装置は、例えば判定装置10であってもよいし、判定装置10に対して音響信号を提供する情報処理装置であってもよい。
図1は、判定装置10の機能を示す概略ブロック図である。判定装置10は、取得部101、データ記憶部102、データ補正部103、教師データ生成部104、学習処理部105、識別器記憶部106、判定部107及び出力部108を備える。データ補正部103、教師データ生成部104、学習処理部105及び判定部107は、判定装置10の制御部がプログラムを実行することによって実現される機能部である。制御部は、例えばCPU(Central Processing Unit)やメモリ等のハードウェアを用いて構成される。以下、判定装置10が備える各機能部について説明する。
取得部101は、判定装置10に対して入力される音響信号のデータ(以下「音響データ」という。)を取得する。取得部101、例えばCD−ROMやUSBメモリ(Universal Serial Bus Memory)等の記録媒体に記録された音響データを読み出してもよい。また、取得部101は、センサから送信された音響データを受信してもよい。取得部101は、音響データを取得できる構成であれば、さらに異なる態様で構成されても良い。取得部101は、例えば所定の周期で新たな音響データを取得してもよい。すなわち、取得部101は、所定の周期でセンサから出力される新たな音響データを取得してもよい。例えば、取得部101は、1時間に1回の周期や、1日に1回の周期で新たな音響データを取得してもよい。
データ記憶部102は、磁気ハードディスク装置や半導体記憶装置等の記憶装置を用いて構成される。データ記憶部102は、取得部101によって取得された音響データを記憶する。
データ補正部103は、データ記憶部102に記憶されている音響データに対し補正処理を行う。補正処理の具体例として、レベル補正処理及びノイズ除去処理がある。以下、具体例の各処理について説明する。
(レベル補正処理)
レベル補正処理は、配管の漏水に関連する音響信号の音圧(振幅)が略一定となるように予め設定された補正係数を用いることによって音響信号を補正する処理である。言い換えると、レベル補正処理は、異なる複数地点において漏水がない状態において観測される音響信号の音圧(振幅)の範囲が等しくなるように音響信号を正規化する処理である。上述したように、センサは複数の位置に設けられる。センサによって感度が異なることや、センサの設置位置に応じた配管等の構造の違い等の理由で、同じレベルの漏水であっても、得られる音響信号の音圧が異なる場合がある。図2は、音響信号の音圧の相違の具体例を示す図である。図2(A)に示される音響信号と、図2(B)に示される音響信号とは、それぞれ同じ現象に起因する音が異なる設置位置で異なるセンサによって取得された音響信号である。このように、センサが異なることや設置位置などが異なることによって、同じ現象に起因する音であっても、異なる音圧(振幅)として取得される。
従来は、このような音圧の相違によって精度が低くなってしまうおそれがあった。これに対し、判定装置10は、センサに応じた補正処理を行うことによって、センサ毎の音圧の差を小さくする。このようなレベル補正処理によって、上記のような原因による音響信号の音圧の差を小さくし、判定処理の精度を向上させることが可能である。
レベル補正処理の具体例について説明する。図3は、レベル補正処理に用いられる補正係数テーブルの具体例である。補正係数テーブルは、不図示の記憶装置によって記憶される。補正係数テーブルは、複数の補正係数レコードを有する。補正係数レコードは、センサID及び補正係数を有する。センサIDは、音響信号を取得するセンサの識別情報である。補正係数は、レベル補正処理に用いられる値である。例えば、データ補正部103は、処理の対象となっている音響信号を取得したセンサIDに応じた補正係数を補正係数テーブルから取得する。そして、データ補正部103は、取得された補正係数を音響信号の振幅に対して乗算することによってレベル補正処理を行う。例えば、センサIDが“s1”のセンサによって取得された音響信号に対しては、補正係数“a1”が乗算される。
補正係数は、センサに応じた予め適切な値が取得される。上記の正規化が実現できるのであれば、補正係数はどのような処理によって取得されてもよい。例えば、漏水が生じていない状態で各センサによって取得された音響信号に基づいて、これらの振幅の平均値が一定値となるように補正係数が取得されてもよい。例えば、漏水が生じていない状態で各センサによって取得された音響信号に基づいて、これらの振幅の最大値が一定値となるように補正係数が取得されてもよい。例えば、漏水が生じていない状態で各センサによって取得された音響信号に基づいて、これらの振幅のパワー(二乗値)が一定値となるように補正係数が取得されてもよい。
(ノイズ除去処理)
ノイズ除去処理は、漏水に関係のない音の信号(ノイズ)を音響信号から除去する処理である。図4は、ノイズを含む音響信号の具体例を示す図である。図4の例では、時刻t1〜t2、時刻t3〜t4、時刻t5〜t6の各時間においてノイズが生じている。ノイズ除去処理では、これらのノイズが除去される。ノイズ除去処理は、どのように実現されてもよい。例えば、漏水音以外の周波数成分を除去するようなバンドパスフィルタを用いてノイズ除去処理が実現されてもよい。例えば、閾値以上の音圧の信号を除去するようにノイズ除去処理が実現されてもよい。また、ノイズ除去処理は以下のように行われてもよい。
漏水音の中にノイズが含まれる場合、ノイズが含まれない音響信号との音圧レベル等の特徴に相違が発生すると考えられる。その差に基づいてノイズ判定処理を行う。例えば、所定の時間区間毎に以下の4つ((1)〜(4))のいずれかの条件に基づいてノイズの判定処理を行う。
(1)音圧の平均値が一定のしきい値以上の値のデータをノイズとして判定する方法。
(2)音圧の分散値が一定のしきい値以上の値のデータをノイズとして判定する方法。
(3)音圧の分散の分散値が一定のしきい値以上の値のデータをノイズとして判定する方法。
(4)周波数成分に対する平均値、分散値等の定常性を示す統計値を計算し、一定の変動があったものをノイズとして除去する方法。
次に、前述の(1)〜(4)のノイズ判定方法を用いてノイズ判定を行う際のしきい値について説明する。以下の(a)、(b)のいずれかに基づいてしきい値が決定されてもよい。
(a)判定対象の音響信号全体の平均音圧、分散、分散の分散値それぞれについて最小値及び標準偏差を計算し、最小値に標準偏差の定数倍の値を加えた値をしきい値とする方法。
(b)水道管の管種、水圧、埋設深度等の設置条件に基づいた固定の値で判定する方法。
図1に戻って説明を続ける。教師データ生成部104は、データ補正部103によって補正処理が行われた音響データに基づいて教師データを生成する。教師データ生成部104によって使用される音響データは、予め漏水が生じているか否かが判明している音響データである。例えば、判定対象の配管が敷設されて直ぐに漏水が無いことが明らかな状態で取得された音響信号が用いられてもよい。例えば、判定対象の配管において経年劣化などにより漏水が生じていることが明らかな状態で取得された音響信号が用いられてもよい。例えば、判定対象ではない他の配管において、漏水が生じていることが明らかな状態で取得された音響信号が用いられてもよい。教師データ生成部104によって使用される音響データには、少なくとも漏水が無いことが明らかな状態で取得された音響信号と、漏水が発生していることが明らかな状態で取得された音響信号と、の双方が用いられることが望ましい。
教師データは、学習処理部105によって教師付学習処理の際に使用されるデータである。教師データは、複数次元の値として生成される。例えば、教師データ生成部104は、データ補正部103によって補正処理された音響信号を、所定の短時間(例えば1秒間、0.5秒間など)の複数の信号に分割する。このように分割された信号を「分割信号」という。図5は、分割信号の具体例を示す図である。図5に示されるように、ノイズが生じていない時間区間において所定の区間の信号が分割信号として取得されてもよい。一つの音響信号から複数の分割信号が取得されてもよい。例えば、図5の例では、時刻T1〜T2の分割信号、時刻T2〜T3の分割信号、時刻T4〜T5の分割信号、時刻T5〜T6の分割信号がそれぞれ取得されている。
教師データ生成部104は、一つの音響信号から取得される複数の分割信号に基づいて、音圧の分布を示すヒストグラムを生成する。教師データ生成部104は、例えば音圧をA種類の値に分け、各値が出現する頻度を示すヒストグラムを生成してもよい。教師データ生成部104は、このヒストグラムに基づいて、A次元の特徴ベクトルを教師データとして生成してもよい。
教師データ生成部104は、一つの音響信号から取得される複数の分割信号に基づいて、各周波数における音圧の値を有する特徴ベクトルを教師データとして生成してもよい。すなわち、周波数のパワースペクトルの分布に関する特徴ベクトルが教師データとして生成されてもよい。例えば、教師データ生成部104は、音響信号に対し高速フーリエ変換を行い、0HZ〜4kHzまでの周波数をB種類の値に分け、B次元の特徴ベクトルを教師データとして生成してもよい。
教師データ生成部104は、A次元の特徴ベクトルとB次元の特徴ベクトルとを組み合わせることによって(A+B)次元の特徴ベクトルを教師データとして生成してもよい。
学習処理部105は、教師データ生成部104によって生成された教師データを用いて機械学習処理を行う。学習処理部105には、教師付き学習によって識別器を生成又は更新するための機械学習技術が適用される。機械学習技術の具体例として、SVM(Support Vector Machine)やDL(Deep Learning)がある。学習処理部105は、教師データ生成部104によって生成された複数の教師データに基づいて機械学習処理を行うことによって、識別器を生成又は更新する。学習処理部105は、生成又は更新された識別器を表すパラメータ等のデータを識別器記憶部106に記録する。
識別器記憶部106は、磁気ハードディスク装置や半導体記憶装置等の記憶装置を用いて構成される。識別器記憶部106は、学習処理部105によって生成された識別器を表すパラメータ等のデータを記憶する。
判定部107は、データ補正部103によって補正処理が行われた音響データに基づいて判定処理を行う。判定部107が使用する音響データは、漏水が生じているか否か判明していない音響データである。判定部107は、教師データ生成部104が教師データを生成する際に行う処理と同様の処理を行うことによって、教師データと同じ次元数の特徴ベクトルを判定対象データとして生成する。判定部107は、判定対象データに対し識別器記憶部106に記憶されている識別器を用いた判定処理を行うことによって、漏水が生じているか否か判定する。
出力部108は、判定部107によって行われた判定処理の結果を出力する。出力部108は、判定装置10に接続された不図示の出力装置を介し、判定装置10のユーザに対してデータの出力を行ってもよい。出力装置は、例えば画像や文字を画面に出力する装置を用いて構成されても良い。例えば、出力装置は、CRT(Cathode Ray Tube)や液晶ディスプレイや有機EL(Electro-Luminescent)ディスプレイ等を用いて構成できる。また、出力装置は、画像や文字をシートに印刷(印字)する装置を用いて構成されても良い。例えば、出力装置は、インクジェットプリンタやレーザープリンタ等を用いて構成できる。また、出力装置は、文字を音声に変換して出力する装置を用いて構成されても良い。この場合、出力装置は、音声合成装置及び音声出力装置(スピーカー)を用いて構成できる。出力装置は、LED(Light Emitting Diode)等の発光装置を用いて構成されてもよい。この場合、出力装置は判定結果に対して予め対応付けられた態様で発光装置を発光させてもよいし、判定結果に対して予め対応付けられた位置の発光装置を発光させてもよい。出力部108は、判定装置10に設けられた通信装置を介して他の情報処理装置に対し判定結果を送信してもよい。
図6は、判定装置10の学習処理における処理の流れを示すフローチャートである。まず、取得部101が音響データを取得する(ステップS101)。ステップS101において取得される音響データは、漏水の有無が判明している音響データである。次に、データ補正部103が、取得された音響データに対して補正処理を実行する(ステップS102)。次に、教師データ生成部104が、補正処理された音響データに基づいて複数の教師データを生成する(ステップS103)。次に、学習処理部105が、複数の教師データに基づいて学習処理を実行する(ステップS104)。そして、学習処理部105が、学習処理によって得られた識別器に関するデータを識別器記憶部106に記録する(ステップS105)。このような処理によって、判定装置10による学習処理が実行される。なお、図6に示される処理は、判定部107によって判定処理が行われる前に少なくとも1度は実行されている必要がある。また、図6に示される処理は、漏水の有無が判明している音響データが新たに取得された後に実行されてもよい。この場合、識別器記憶部106に記録されている識別器がより精度のよいものに更新される。このように処理が行われることによって、判定装置10による判定処理の精度を向上させることが可能となる。
図7は、判定装置10の判定処理における処理の流れを示すフローチャートである。まず、取得部101が音響データを取得する(ステップS201)。ステップS201において取得される音響データは、漏水の有無が判明していない音響データである。すなわち、判定装置10によって漏水の有無の判定の対象となる音響データである。次に、データ補正部103が、取得された音響データに対して補正処理を実行する(ステップS202)。次に、判定部107が、補正処理された音響データに基づいて判定対象データを生成する(ステップS203)。次に、判定部107が、判定対象データを用いて判定処理を実行する(ステップS204)。そして、出力部108が、判定処理によって得られた判定結果を出力する(ステップS205)。
このように構成された判定装置10では、教師データとして、漏水が生じていないことが明らかな音響データが用いられる。一般的に、漏水が発生した際に取得される音響データには漏水が発生していないときに取得される音響データとの間で変化が生じる。そのため、このような教師データが用いられることによって、より精度よく判定可能な識別器を生成することが可能となる。その結果、より精度よく漏水を判定することが可能となる。
また、判定装置10の学習処理において音圧のヒストグラムに基づく特徴ベクトルと周波数分布に基づく特徴ベクトルとが用いられることによって、周波数と音圧のいずれか一方の特徴が漏水の有無にかかわらずほぼ共通していたとしても、他方の特徴ベクトルに基づいて精度よく判定可能な識別器を生成することが可能となる。
また、判定装置10では機械学習処理が実行され、その結果得られた識別器を用いて判定処理が行われる。そのため、漏水音の違いについての事前知識が必要とならない。したがって、経験が少ないユーザであってもより精度よく漏水の判定結果をより容易に取得することが可能となる。
また、判定装置10では、教師データ及び判定対象データとして音圧のヒストグラムに基づく特徴ベクトルが生成される際に、音圧に対して幅が与えられてもよい。言い換えると、音圧の値の種類であるAの値がより少ない値に設定されてもよい。このように構成されることにより、特徴ベクトルを生成する際の処理に要する計算コスト、音響データの記録に要する記憶容量、センサから他の装置への音響データの送信に要する電力などを削減することが可能となる。特に、電池で稼動するセンサが用いられる場合には、センサの駆動時間を長期化させることが可能となる。
また、判定装置10では、教師データ及び判定対象データとして周波数に関する特徴ベクトルが生成される際に、周波数のパワースペクトルの分布に対して幅が与えられてもよい。言い換えると、周波数の種類であるBの値がより少ない値に設定されてもよい。このように構成されることにより、特徴ベクトルを生成する際の処理に要する計算コスト、音響データの記録に要する記憶容量、センサから他の装置への音響データの送信に要する電力などを削減することが可能となる。特に、電池で稼動するセンサが用いられる場合には、センサの駆動時間を長期化させることが可能となる。
また、判定装置10では、レベル補正処理が実行される。そのため、上述したように、センサの特性などに起因した音響信号の音圧の差を小さくし、判定処理の精度を向上させることが可能となる。
(変形例)
判定部107は、所定の期間にわたって仮の判定処理を実行し、漏水が生じているという仮の判定結果が連続して得られた場合に、最終的に漏水が生じていると判定してもよい。このように構成されることによって、降雨や強風や生活活動などによって音響データに混入する音と漏水によって生じる音とを精度よく区別することが可能となる。すなわち、より精度よく漏水を判定することが可能となる。
図8〜図10は、特徴ベクトルの変形例を説明するための示す図である。以下、特徴ベクトルの変形例について説明する。図8は、時間的に連続する複数の音響データの具体例を示す。図9は、変形例の特徴ベクトルの具体例を示す図である。時間的に連続するn個の音響信号(d1,d2,d3,・・・,dn)に基づいて、音圧及び/又は周波数の特徴ベクトルD1,D2,D3,・・・,Dnが取得される。例えば、音響信号d1に基づいて、教師データ生成部104及び判定部107は、分割信号を取得し特徴ベクトルD1を生成する。各特徴ベクトルは、m次元の特徴ベクトルである。例えば、次元数1〜h(hは1以上m以下の値)の各成分が音圧に関する特徴ベクトルであり、次元数h+1〜mの各成分が周波数に関する特徴ベクトルであってもよい。各特徴ベクトルの同じ次元の成分の値(図9において同一の破線の矩形で囲まれている各値)の統計値が新たな特徴ベクトルDvの各次元の成分の値(xv1,xv2,xv3,・・・,xvm)として取得される。統計値の具体例として、分散、標準偏差、平均などがある。図10では、n=2であり、統計値の具体例として差分が用いられている。すなわち、Dvの各次元の成分の値は、D1の値とD2の値との差として得られている。
このような特徴ベクトルDvが教師データ及び判定対象データとして用いられることによって、特徴量の短時間の時間変化を捉えることで、漏水判定の精度を向上させることが可能となる。
また、漏水が発生していないことが明らかな時点で教師データを生成するために一定期間センサを配置し、その後所定期間が経過するまでの間はセンサがとりはずされてもよい。この場合、所定期間は、漏水が生じる可能性が非常に低い期間として予め取得された期間である。所定期間が経過した後、センサが再び配置されて判定部107による判定が行われる。その際、当初は位置されていた場所とセンサとの対応関係が同じであることが望ましい。このような作業は、複数の場所で同じセンサを使い回して実行されてもよい。このようにセンサの配置と判定装置10による判定処理とが行われることによって、1つのセンサを用いて複数の場所で巡回して漏水判定を行うことが可能となる。そのため、経済性を高めることが可能となる。
判定装置10は、学習処理を行う装置と判定処理を行う装置とに分けて構成されてもよい。例えば、取得部101、データ記憶部102、データ補正部103、教師データ生成部104及び学習処理部105を備える学習装置と、取得部101、データ記憶部102、データ補正部103、識別器記憶部106、判定部107及び出力部108を備える判定装置と、に分けて構成されてもよい。
上述した実施形態における判定装置10をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
10…判定装置, 101…取得部, 102…データ記憶部, 103…データ補正部, 104…教師データ生成部, 105…学習処理部, 106…識別器記憶部, 107…判定部, 108…出力部

Claims (6)

  1. 流体の配管に設けられた複数の音圧センサによって取得される音響データのうち、前記流体の漏れが生じていない時点で取得された音響データを、所定の短時間の複数の信号に分割することによって複数の分割信号を生成し、前記分割信号に基づいて、音圧の分布を示すヒストグラムに応じた第一特徴ベクトルと、各周波数における音圧の値を有する第二特徴ベクトルと、を組み合わせた特徴ベクトルを教師データとして生成する教師データ生成部と、
    前記教師データ生成部によって生成された前記教師データを用いることで学習処理を行い識別器を生成する学習処理部と、
    前記学習処理部によって生成された識別器を用いて、新たに取得された音響データに基づいて前記配管において前記流体の漏れが生じているか否か判定する判定部と、
    を備え
    前記教師データ生成部は、時間的に連続するn個(nは2以上の整数)の音響信号に基づいてn個の前記第一特徴ベクトル及び前記第二特徴ベクトルを生成し、n個の第一特徴ベクトル及び前記第二特徴ベクトルの同じ次元の成分毎のn個の値の統計値を各次元の成分の値として有する1つの第三特徴ベクトルを前記教師データとして生成する判定装置。
  2. 前記音響データにおいて、前記流体の漏れに関係の無い音の信号であるノイズを除去する第一データ補正部をさらに備え、
    前記教師データ生成部は、前記第一データ補正部によって前記ノイズが除去された後の音響データを用いて前記教師データを生成する、請求項1に記載の判定装置。
  3. 前記音響データについて、前記流体の漏れに関する音の音圧が前記複数の音圧センサにおいて所定の範囲内の値となるようにレベル補正処理を行う第二データ補正部をさらに備え、
    前記教師データ生成部、前記学習処理部及び前記判定部は前記第二データ補正部によって前記レベル補正処理が行われた音響データを用いる、請求項1又は2に記載の判定装置。
  4. 前記判定部は、前記配管において前記流体の漏れが生じているという判定結果が所定の期間にわたって連続して得られた場合に、漏れが生じていると最終的に判定する、請求項1からのいずれか一項に記載の判定装置。
  5. 流体の配管に設けられた複数の音圧センサによって取得される音響データのうち、前記流体の漏れが生じていない時点で取得された音響データを、所定の短時間の複数の信号に分割することによって複数の分割信号を生成し、前記分割信号に基づいて、音圧の分布を示すヒストグラムに応じた第一特徴ベクトルと、各周波数における音圧の値を有する第二特徴ベクトルと、を組み合わせた特徴ベクトルを教師データとして生成する教師データ生成ステップと、
    前記教師データ生成ステップにおいて生成された前記教師データを用いることで学習処理を行い識別器を生成する学習処理ステップと、
    前記学習処理ステップにおいて生成された識別器を用いて、新たに取得された音響データに基づいて前記配管において前記流体の漏れが生じているか否か判定する判定ステップと、
    を有し、
    前記教師データ生成ステップにおいて、時間的に連続するn個(nは2以上の整数)の音響信号に基づいてn個の前記第一特徴ベクトル及び前記第二特徴ベクトルを生成し、n個の第一特徴ベクトル及び前記第二特徴ベクトルの同じ次元の成分毎のn個の値の統計値を各次元の成分の値として有する1つの第三特徴ベクトルを前記教師データとして生成する、判定方法。
  6. 流体の配管に設けられた複数の音圧センサによって取得される音響データのうち、前記流体の漏れが生じていない時点で取得された音響データを、所定の短時間の複数の信号に分割することによって複数の分割信号を生成し、前記分割信号に基づいて、音圧の分布を示すヒストグラムに応じた第一特徴ベクトルと、各周波数における音圧の値を有する第二特徴ベクトルと、を組み合わせた特徴ベクトルを教師データとして生成する教師データ生成部と、
    前記教師データ生成部によって生成された前記教師データを用いることで学習処理を行い識別器を生成する学習処理部と、を備え、
    前記教師データ生成部は、時間的に連続するn個(nは2以上の整数)の音響信号に基づいてn個の前記第一特徴ベクトル及び前記第二特徴ベクトルを生成し、n個の第一特徴ベクトル及び前記第二特徴ベクトルの同じ次元の成分毎のn個の値の統計値を各次元の成分の値として有する1つの第三特徴ベクトルを前記教師データとして生成する、学習装置。
JP2016218734A 2016-11-09 2016-11-09 判定装置、判定方法及び学習装置 Active JP6457990B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016218734A JP6457990B2 (ja) 2016-11-09 2016-11-09 判定装置、判定方法及び学習装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016218734A JP6457990B2 (ja) 2016-11-09 2016-11-09 判定装置、判定方法及び学習装置

Publications (2)

Publication Number Publication Date
JP2018077120A JP2018077120A (ja) 2018-05-17
JP6457990B2 true JP6457990B2 (ja) 2019-01-23

Family

ID=62150209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016218734A Active JP6457990B2 (ja) 2016-11-09 2016-11-09 判定装置、判定方法及び学習装置

Country Status (1)

Country Link
JP (1) JP6457990B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019243633A1 (de) * 2018-06-22 2019-12-26 iNDTact GmbH Sensoranordnung, verwendung der sensoranordnung und verfahren zum erfassen von körperschall
EP3855151A4 (en) * 2018-09-19 2021-11-17 NEC Corporation FLUID LEAK DIAGNOSTIC DEVICE, FLUID LEAK DIAGNOSTIC SYSTEM, FLUID LEAK DIAGNOSTIC METHOD AND RECORDING MEDIUM WITH STORED FLUID LEAK DIAGNOSTIC PROGRAM
JP7232610B2 (ja) * 2018-10-16 2023-03-03 千代田化工建設株式会社 流体漏洩検知システム、流体漏洩検知装置、設計支援システム、設計支援装置、及び学習装置
JPWO2021010407A1 (ja) * 2019-07-16 2021-01-21

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355772A (ja) * 1991-06-03 1992-12-09 Canon Inc 画像形成装置
JP2887443B2 (ja) * 1994-10-24 1999-04-26 フジテコム株式会社 漏洩発生判別方法
JP3452817B2 (ja) * 1998-12-08 2003-10-06 沖電気工業株式会社 漏水音探知識別用信号検出装置
JP2002131170A (ja) * 2000-10-20 2002-05-09 Matsushita Electric Ind Co Ltd 漏水監視システム
JP5193714B2 (ja) * 2008-07-18 2013-05-08 Jx日鉱日石エネルギー株式会社 配管亀裂診断装置及び配管の亀裂診断方法
BRPI1002159A8 (pt) * 2010-04-15 2021-10-26 Asel Tech Tecnologia E Automacao Ltda Sistema integrado com a tecnologia acústica, balanço de massa e rede neural para detecção, localização e quantificação de vazamentos em dutos
JPWO2015146082A1 (ja) * 2014-03-26 2017-04-13 日本電気株式会社 漏洩検知装置、漏洩検知方法、およびプログラム

Also Published As

Publication number Publication date
JP2018077120A (ja) 2018-05-17

Similar Documents

Publication Publication Date Title
JP6457990B2 (ja) 判定装置、判定方法及び学習装置
US10665250B2 (en) Real-time feedback during audio recording, and related devices and systems
JP6366826B2 (ja) 構造物評価システム、構造物評価装置及び構造物評価方法
JPWO2015146082A1 (ja) 漏洩検知装置、漏洩検知方法、およびプログラム
WO2019167137A1 (ja) 構造物評価システム及び構造物評価方法
JP7021053B2 (ja) 監視システム、プログラム、及び記憶媒体
CN103874001B (zh) 听力仪器及识别听力仪器的输出变换器的方法
CN106124040A (zh) 噪声源可视化数据累积显示方法、数据处理装置及声学照相机系统
US20150308920A1 (en) Adaptive baseline damage detection system and method
US9240054B1 (en) Method for monitoring water level of a water body and system for implementing the method
US10458878B2 (en) Position determination device, leak detection system, position determination method, and computer-readable recording medium
CN114964650B (zh) 一种基于声学成像的气体泄漏报警方法及装置
JPWO2015174067A1 (ja) 情報処理装置、異常検出方法、及び、記録媒体
EP3310070A1 (en) Notification device and notification method
JP6862799B2 (ja) 信号処理装置、方位算出方法及び方位算出プログラム
CN104363554A (zh) 一种扬声器异常音检测方法
JP5807107B1 (ja) 分析データ作成方法、周波数フィルター作成方法、異常音発生位置の特定方法、分析データ作成装置、周波数フィルター作成装置および異常音発生位置の特定装置
KR101979652B1 (ko) 음파 통신 시스템 및 그의 음파 통신 방법
US10212529B1 (en) Holographic visualization of microphone polar pattern and range
JP6297081B2 (ja) 漏洩判定装置、漏洩判定方法及び漏洩判定プログラム
US11146900B2 (en) Inductive excursion sensing for audio transducers
JP2016148617A (ja) 分析データ作成方法、漏水位置検知装置および漏水位置特定方法
JP6370725B2 (ja) 漏水判定のための波形データ収集装置、漏水判定装置、漏水判定システム、およびプログラム
CN103869978A (zh) 一种用于确定屏幕元素显示大小的方法与设备
US20240016663A1 (en) Apparatuses, computer-implemented methods, and computer program products for monitoring audio protector fit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181221

R150 Certificate of patent or registration of utility model

Ref document number: 6457990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250