JP6452451B2 - 光集積素子およびその製造方法 - Google Patents

光集積素子およびその製造方法 Download PDF

Info

Publication number
JP6452451B2
JP6452451B2 JP2015001095A JP2015001095A JP6452451B2 JP 6452451 B2 JP6452451 B2 JP 6452451B2 JP 2015001095 A JP2015001095 A JP 2015001095A JP 2015001095 A JP2015001095 A JP 2015001095A JP 6452451 B2 JP6452451 B2 JP 6452451B2
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
waveguide layer
layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015001095A
Other languages
English (en)
Other versions
JP2016126216A (ja
Inventor
木本 竜也
竜也 木本
裕介 齋藤
裕介 齋藤
和明 清田
和明 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2015001095A priority Critical patent/JP6452451B2/ja
Publication of JP2016126216A publication Critical patent/JP2016126216A/ja
Application granted granted Critical
Publication of JP6452451B2 publication Critical patent/JP6452451B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は、光集積素子およびその製造方法に関するものである。
近年のインターネットトラフィックの増大に応えるために、デジタルコヒーレント通信の導入が長距離光通信において開始されており、通信の大容量化が進行している。デジタルコヒーレント通信の次のターゲットは中近距離の光通信であり、光送受信デバイスとしては、小型化、低消費電力化が強く求められてきている。現在のデジタルコヒーレント通信用送信機の変調器として、LN(ニオブ酸リチウム)変調器が使われているが、小型化を考える際に半導体変調器が候補に挙がる。例えば、InP(インジウムリン)を構成材料に用いたInP−MZ(マッハツェンダ)変調器は、LN変調器と比較して、チップサイズが小さく、駆動電圧が低く、変調可能な波長帯域が広いということが報告されている(非特許文献1参照)。また、InP−MZ光変調器と波長可変レーザとをマルチチップ実装した低消費電力かつコンパクトな波長可変レーザモジュールが近年開発されている。このような波長可変レーザモジュールは、光変調器と波長可変レーザという異なる機能を有する光機能素子を1つの基板上に集積した光集積素子を備えている。
光集積素子としては、同一の基板上に、それぞれ異なる光機能素子であるSOA(半導体光増幅素子)とMZ光変調器とが集積されたもの(特許文献1)や、同一の基板上に、それぞれ異なる光機能素子であるDFB(分布帰還型)レーザ素子とEA(電界吸収型)光変調器とが集積されたもの(特許文献2)が開示されている。
特開2009−198881号公報 特開2002−324936号公報
J.S.Barton, et al.,"A Widely Tunable High−Speed Transmitter Using an Integrated SGDBR Laser−Semiconductor Optical Amplifier and Mach−Zehnder Modulator,",IEEE J.Sel.Topics Quantum Electron.,Vol.9,No.5,pp.1113−1117,Sep./Oct.2003
ところで、特許文献1のようなSOAとMZ光変調器とを集積する場合、各素子の光導波路層である量子井戸層の合計厚さは、それぞれの特性に応じて最適化されることが望ましい。たとえば、MZ光変調器等の位相変調器については、電気容量を低減して応答特性を高速化するためには、量子井戸層の合計厚さを厚くすることが好ましい。一方SOAについては、その量子井戸層の合計厚さを厚くすると飽和出力が低下するため、ある程度の厚さ以下することが望ましい。このように各素子の量子井戸層の合計厚さを最適化すると、その合計厚さの差異が大きくなるため、素子の接合部分で接続損失が増大するという問題がある。
特許文献2では、EA光変調器を構成する合計厚さの厚い第1の量子井戸層を成長した後、DFBレーザ素子を構成する合計厚さの薄い第2の量子井戸層を成長し、その後、第1および第2の量子井戸層との間の部分をエッチング除去して、そこに、互いに厚さが異なる第1および第2の量子井戸層を接続する光導波路層の成長を行っている。このとき、導波路層を成長するときに選択成長マスクパターンを工夫し、導波路層の厚さを、第1の量子井戸層側と第2の量子井戸層側とで変化させ、接続損失を減少させるようにしている。
しかしながら、このような方法の場合、光導波路層形成のためのエッチング時に、互いに厚さが異なる第1および第2の量子井戸層の両方をエッチングするため、第1および第2の量子井戸層の両方を適切なエッチング量だけエッチングするのが困難である。特に、特許文献2では、EA光変調器を構成する第1の量子井戸層がAlGaInAs系の多重量子井戸層、DFBレーザ素子を構成する第2の量子井戸層がInGaAsP系の多重量子井戸層で構成されており、ドライエッチングとウェットエッチングとで光導波路層形成のためのエッチングを行っている。この場合、2つの量子井戸層は、材料系が異なるため、ウェットエッチングでそれぞれの量子井戸層を適切にエッチングすることが困難である。
各量子井戸層に適正にエッチングを行うためには、光の導波方向において、第1の量子井戸層、光導波路層、第2の量子井戸層をこの順番またはこれとは逆の順番に成長することが望ましい。具体的には、まず第1の量子井戸層を成長し、その一部をエッチング除去してそこに光導波路層を再成長する。さらに、光導波路層の一部をエッチング除去してそこに第2の量子井戸層を再成長する、またはこれとは逆の順番で工程を行う。このようにすることで、エッチングを行う際には、各量子井戸層又は、導波路層ごとにエッチングを行うことができる。しかしながら、光導波路層は、厚さが第1の量子井戸層から第2の量子井戸層に向かって連続して変化している。したがって、光導波路層の一部をエッチングして次の量子井戸層を成長するときに、光導波路層のエッチングのためのエッチングマスクの位置が、光の導波方向にばらついてしまうと、エッチングにより側部に露出したエッチング断面における光導波路層の厚さがばらついてしまう。その結果、光導波路層と、その後再成長により形成する量子井戸層との接合部分において、光導波路層と量子井戸層との厚さの差にもばらつきが発生するため、当該接合部分での接続損失がばらついてしまうという問題がある。このような接続損失のばらつきは、光集積素子における内部の接続損失のばらつきを発生させる。
本発明は、上記に鑑みてなされたものであって、内部の接続損失のばらつきが小さい光集積素子およびその製造方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明の一態様に係る光集積素子は、同一基板上に形成された、第1の光導波路層を有する第1の導波路型光機能素子と、前記第1の光導波路層とは厚さが異なる第2の光導波路層を有する第2の導波路型光機能素子と、前記第1の光導波路層と前記第2の光導波路層とを接続する受動型の接続光導波路層を有する接続光導波路と、を備え、前記接続光導波路層は、前記第1の光導波路層側に位置する第1端部と前記第2の光導波路層側に位置する第2端部とを有し、前記第1端部から前記第2端部に向かって前記第1の光導波路層の厚さから前記第2の光導波路層の厚さに近付くように厚さが変化する厚さ変化部と、前記第2端部に接続し、前記第2端部と同一の厚さでありかつ光の導波方向で一定の厚さを有する定厚さ部とを有することを特徴とする。
本発明の一態様に係る光集積素子は、前記第1の導波路型光機能素子は位相変調器であり、前記第2の導波路型光機能素子は発光素子または光増幅素子であることを特徴とする。
本発明の一態様に係る光集積素子は、前記第1の導波路型光機能素子はハイメサ構造を有し、前記第2の導波路型光機能素子は半導体埋込構造を有することを特徴とする。
本発明の一態様に係る光集積素子は、前記第1および第2の光導波路層は多重量子井戸構造を有することを特徴とする。
本発明の一態様に係る光集積素子は、前記第1の光導波路層はAlGaInAsまたはAlInAsで構成され、前記第2の光導波路層はInGaAsPで構成されていることを特徴とする。
本発明の一態様に係る光集積素子は、前記第1の光導波路層の合計厚さは前記第2の光導波路層の合計厚さの2倍以上であることを特徴とする。
本発明の一態様に係る光集積素子の製造方法は、同一基板上に形成された、第1の光導波路層を有する第1の導波路型光機能素子と、前記第1の光導波路層とは厚さが異なる第2の光導波路層を有する第2の導波路型光機能素子と、前記第1の光導波路層と前記第2の光導波路層とを接続する受動型の接続光導波路層を有する接続光導波路と、を備える光集積素子の製造方法であって、前記基板上に、前記第1の光導波路層を形成する第1工程と、前記第1の光導波路層の一部の領域を除去し、前記除去した領域に前記接続光導波路層を形成する第2工程と、前記接続光導波路層の一部の領域を除去し、前記除去した領域に第2の光導波路層を形成する第3工程と、を含み、前記第2工程では、前記第1の光導波路層側に位置する第1端部と前記第2の光導波路層側に位置する第2端部とを有し、前記第1端部から前記第2端部に向かって前記第1の光導波路層の厚さから前記第2の光導波路層の厚さに近付くように厚さが変化する厚さ変化部と、前記第2端部に接続し、前記第2端部と同一の厚さでありかつ光の導波方向で一定の厚さを有する定厚さ部とを有するように前記接続光導波路層を形成し、前記第3工程では、前記接続光導波路層の前記定厚さ部における一部の領域を除去することを特徴とする。
本発明によれば、内部の接続損失のばらつきが小さい光集積素子を実現できるという効果を奏する。
図1は、実施の形態1に係る光集積素子の模式的な平面図である。 図2は、図1に示すSOAの模式的な断面図である。 図3は、図1に示す光変調器の模式的な断面図である。 図4は、図1に示す光集積素子のX−X線断面図である。 図5は、図1に示す光集積素子の製造方法を説明する図である。 図6は、図1に示す光集積素子の製造方法を説明する図である。 図7は、図1に示す光集積素子の製造方法を説明する図である。 図8は、図1に示す光集積素子の製造方法を説明する図である。 図9は、図1に示す光集積素子の製造方法を説明する図である。 図10は、図1に示す光集積素子の製造方法を説明する図である。
以下に、図面を参照して本発明に係る光集積素子およびその製造方法の実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、各図面において、同一または対応する要素には適宜同一の符号を付している。さらに、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実のものとは異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
(実施の形態)
図1は、本実施の形態1に係る光集積素子の模式的な平面図である。光集積素子100は、基板上に形成され、光集積素子100の外部に設けられたレーザ発振部からシード光を受信してこれを位相変調し、変調後の信号光、および局所発振光(LO光)、およびモニタ光を出力する光変調器として機能する。光集積素子100は、図1に示すように、光入力部110と、光導波路120、121、122、123と、2つのSOA130、131と、光変調器140と、信号光出力部151、152と、モニタ光出力部151a、152aと、LO光出力部160と、を備えている。
光導波路120、121、122、123は、基板の表面に沿って延在するように、基板の内部または表面に形成される。光導波路120の一方の端部はシード光を入力するためのポートである光入力部110に接続している。光導波路120は分岐部120aにおいて分岐し、一方はSOA130に接続している。SOA130はさらに後述する接続光導波路を介して光変調器140に接続している。光変調器140はさらに光導波路121、122を介して、信号光を出力するためのポートである信号光出力部151、152と、光集積素子100の動作監視用のモニタ光を出力するためのポートであるモニタ光出力部151a、152aとに接続している。光導波路120の分岐した他方はSOA131に接続している。SOA131は光導波路123を介してLO光を出力するためのポートであるLO光出力部160に接続している。
光変調器140は、光導波路が複数の光カプラによって分岐および合流されることで形成される4つのマッハツェンダ干渉計(MZI)141と、光導波路142、143、144とを備える。光変調器140の入力側の光導波路142は、2段の導波路型光カプラによって4つに分岐され、4つのMZI141の入力側に接続される。4つのMZI141のうち、2つのMZI141の出力側には不図示の90度位相シフタが接続される。そして、90度位相シフタが接続されているMZI141と、90度位相シフタが接続されていないMZI141とがペアとして、それぞれ光導波路143,144の導波路型光カプラにより合流され、それぞれ光導波路121、122に接続される。光導波路121、122はそれぞれ分岐しており、分岐した一方は信号光出力部151または152に接続される。このような構成により、光変調器140によって所望の変調が行われて生成された信号光は、信号光出力部151、152から出力される。また、光導波路121、122の分岐した他方は、モニタ光出力部151a、152aに接続されている。
SOA130は、光導波路120の分岐部120aで分岐された一方のシード光を光増幅し、光変調器140に入力させる。SOA131は、光導波路120の分岐部120aで分岐された他方のシード光を光増幅し、LO光としてLO光出力部160から出力させる。
つぎに、第1の光機能素子である光変調器140と第2の光機能素子であるSOA130、131の構造について説明する。まず、SOA130について説明する。なお、SOA131もSOA130と同一の断面構造を有する。
図2は、図1に示すSOA130の、光の導波方向とは垂直の面における模式的な断面図である。SOA130は、光集積素子100の基板である、Feをドープした半絶縁性のInPで構成される基板100a上に、バッファ層としての役割も果たしているn−InPで構成される下部クラッド層130aと、InGaAsPで構成される多重量子井戸構造を有する、第2の光導波路層である活性層130bと、p−InPで構成される上部クラッド層130cとが順次積層した構造を有している。活性層130bは、互いに組成が異なるInGaAsPで構成された井戸層と障壁層とが交互に積層して構成されており、発光波長が1550nmとなるように井戸層のInGaAsPの組成が調整されている。下部クラッド層130aの一部から上部クラッド層130cまではメサ構造となっており、メサ構造の両側はFeドープの半絶縁性のp−InPで構成される下部電流阻止層130daとn−InPで構成される上部電流阻止層130dbとからなる電流阻止層130dによって埋め込まれている。したがって、SOA130は半導体埋込構造を有している。なお、電流阻止層130dは活性層130bに対して幅方向でのクラッド層としても機能する。
SOA130は、さらに、電流阻止層130dと上部クラッド層130cとの上部に順次積層された、p−InPで構成される上部クラッド層130eと、InGaAsで構成されるコンタクト層130fとを備えている。コンタクト層130f上にはp側電極130hが形成されている。また、コンタクト層130fから下部クラッド層130aに到る深さのリセスが形成されており、溝の底部の下部クラッド層130aの表面にはn側電極130iが形成されている。また、SOA130を構成する半導体層の表面は、SiNx等の絶縁体からなる保護膜130gで覆われている。なお、図1では図面の簡略化のためにp側電極130h、n側電極130i、およびこれらに電力を供給するための配線パターンは図示を省略している。
SOA130の動作について説明する。n側電極130iとp側電極130hとの間に電圧を印加して電流を注入した状態で、SOA130にたとえば波長が1550nmのシード光を入力すると、活性層130bはシード光を導波しながら増幅して出力する。このように、SOA130は、第2の光導波路層である活性層130bが光増幅機能を有する導波路型光機能素子である。
図3は、図1に示す光変調器140の、光の導波方向とは垂直の面における模式的な断面図である。なお、図1では、光変調器140を構成するMZI141の2本のアーム部のうち一方の断面を示しているが、他方のアーム部も同様の断面構造を有する。MZI141は、光集積素子100の基板でありSOA130と共通の基板100a上に、SOA130と共通の下部クラッド層130aと、互いに組成が異なるAlGaInAs(もしくはAlInAs)で構成された井戸層と障壁層、またはAlGaInAs井戸層/AlInAs障壁層で構成される多重量子井戸構造を有する、第1の光導波路層である光導波路層140bと、ノンドープのInPで構成される上部クラッド層140cと、p−InPで構成される上部クラッド層140eと、InGaAsで構成されるコンタクト層140fとが順次積層した構造を有している。光導波路層140bは、シード光を吸収しないように、たとえば発光波長が1430nmとなるようにその組成が調整されている。コンタクト層140f上には変調信号印加電極140hが形成されている。コンタクト層140fから下部クラッド層130aの一部まではハイメサ構造となっている。すなわち、光変調器140はハイメサ構造を有している。ハイメサ構造に隣接する下部クラッド層130aの表面にはグラウンド電極140iが形成されている。また、光変調器140を構成する半導体層の表面は、SiNx等の絶縁体からなる保護膜140gで覆われている。さらに、ハイメサ構造の両側はポリイミド140jで埋め込まれている。ポリイミド140jの表面も保護膜140gで覆われている。なお、光変調器140を構成する光導波路142、143、144は、コンタクト層140fに変調信号印加電極140hが形成されておらずに保護膜140gで覆われており、かつグラウンド電極140iが形成されていない以外は、図3に示すMZI141のアーム部と同様の断面構造を有する。
光変調器140の動作について説明する。変調信号印加電極140hに高周波変調電力を印加すると、量子閉じ込めシュタルク効果(QCSE)又はポッケルス効果によって、光導波路層140bの屈折率が変化する。そうすると、MZI141の2本のアーム部の光導波路層140bを通過する光の位相差が変化し、MZI141の出力側光カプラにおける干渉状態が変化する。このような構成において、変調信号印加電極140hへ印加する変調電力を制御することによって、MZI141からの光の出力の有無を切り替え、光の変調を行うことができる。
このように、光集積素子100は、同一の基板である基板100a上に、光変調機能を有する第1の導波路型光機能素子である光変調器140と、光増幅機能を有する第2の導波路型光機能素子であるSOA130、131とを集積したものである。
なお、図1に示す破線で区切られた領域AA、BAのそれぞれに含まれる光導波路は異なる導波路構造を有している。すなわち、領域AAに在る光導波路はSOA130と同様に半導体埋込構造を有しており、領域BAに在る光導波路は光変調器140と同様にハイメサ構造を有している。
図4は、図1に示す光集積素子のX−X線断面図である。なお、X−X線は、光の導波方向に沿った線である。図4に示すように、光変調器140とSOA130との間には、接続光導波路170が形成されており、光変調器140とSOA130とは接続光導波路170で接続されている。接続光導波路170は、光集積素子100の基板でありSOA130および光変調器140と共通の基板100a上に、SOA130と共通の下部クラッド層130aと、InGaAsPで構成されるバルク構造を有する、受動型の接続光導波路層である光導波路層170bと、ノンドープのInPからなる上部クラッド層170cと、p−InPで構成される上部クラッド層170eと、InGaAsで構成される不図示のコンタクト層とが順次積層した構造を有している。光導波路層170bは、シード光を吸収しないように、たとえば発光波長が1300nmとなるようにその組成が調整されている。
図4に示すように、第2の光導波路層である活性層130bの合計厚さは第1の光導波路層である光導波路層140bの合計厚さよりも薄く、両者は厚さがたとえば2倍以上異なる。これにより、光変調器140の応答特性が高速化されるように光導波路層140bの合計厚さが最適化されている。また、SOA130の飽和出力が低下しないように活性層130bの合計厚さが最適化されている。
さらに、光導波路層170bは活性層130bと光導波路層140bとを接続している。ここで、光導波路層170bは、厚さ変化部170baと定厚さ部170bbとを有する。厚さ変化部170baは、光導波路層140b側に位置する第1端部170ba1と活性層130b側に位置する第2端部170ba2とを有している。第1端部170ba1の厚さは光導波路層140bの厚さと同一または近い値を有しており、接続部における光のスポットサイズを勘案して接続損失が十分に許容できる範囲になっている。第2端部170ba2の厚さは活性層130bと同一または近い値を有しており、接続部における光のスポットサイズを勘案して接続損失が十分に許容できる範囲になっている。そして、厚さ変化部170baは、第1端部170ba1から第2端部170ba2に向かって、光導波路層140bの厚さから活性層130bの厚さに近付くように厚さが変化している。一方、定厚さ部170bbは、第2端部170ba2に接続し、第2端部170ba2と同一かつ、光の導波方向において一定の厚さを有する。これにより、光導波路層170bは、定厚さ部170bbにおいて活性層130bと接続し、厚さ変化部170baの第1端部170ba1において光導波路層140bと接続する。
ここで、光集積素子100を製造する際に、半導体層のエッチングと再成長とを繰り返して光導波路層140b、光導波路層170b、活性層130bを順番に成長させる場合を考える。仮に光導波路層170bが厚さ変化部170baのみで形成されていたとする。この場合、厚さ変化部170baの領域の一部をエッチング除去してその領域に活性層130bを再成長する時に、厚さ変化部170baのエッチングのためのエッチングマスクの位置が、光の導波方向にばらついてしまうと、エッチングにより側部に露出したエッチング断面における厚さ変化部170baの厚さがばらついてしまう。その結果、厚さ変化部170baと、その後再成長により形成する活性層130bとの接合部分において、厚さ変化部170baと活性層130bとの厚さの差にもばらつきが発生するため、当該接合部分での接続損失がばらついてしまう。また、厚さ変化部170baの厚さのばらつきによりエッチング深さのずれが生じ、接合部に上下方向のずれが生じる場合がある。これにより、接合部分での接合損失がばらついてしまう。
これに対して、本実施の形態では、光導波路層170bが定厚さ部170bbを有しているため、たとえエッチングマスクの位置が、光の導波方向にばらついてしまったとしても、エッチングにより側部に露出したエッチング断面における定厚さ部170bbの厚さのばらつきはほとんど無い。したがって、光導波路層170bとその後再成長により形成する活性層130bとの接合部分での接続損失のばらつきもほとんど無くなる。また、定厚さ部170bをエッチングする場合、厚さが一定であるためエッチング深さの制御性が著しく高くなり、接合部での上下方向のずれは生じない。したがって接合部分での接合損失のばらつきはほとんどなくなる。その結果、光集積素子100の内部の接続損失のばらつきも小さくなる。
なお、光導波路層140bの合計厚さをt1、光導波路層170bの厚さ変化部170baの第1端部170ba1の厚さをt2、第2端部170ba2および定厚さ部170bbの厚さをt3、活性層130bの合計厚さをt4とし、それぞれの値を例示すると、t1は500nm、t2は400nm、t3は200nm、t4は150nmである。すなわち、厚さ変化部170baは400nmから200nmまで厚さが変化している。なお、接続される部分の厚さ(たとえば光導波路層140bの合計厚さt1と、第1端部170ba1の厚さt2)は、かならずしも等しく無くても良く、接続部分における光のスポットサイズを勘案して、接続損失が許容される範囲内となる程度に差があってもよい。
また、定厚さ部170bbが一定の厚さを有するとは、光の導波方向においてその厚さt3の変化が5%以内程度の範囲であることを意味する。この程度の変化であれば、定厚さ部170bbを導波する光はその厚さの変化の影響を受けないので、上述した接続損失のばらつきを解消するために好ましい。また、光の導波方向における厚さ変化部170baの長さL1は、モードフィールド径が滑らかに変化するよう500μmとなっているが、特に限定はされない。また、光の導波方向における定厚さ部170bbの長さL2は、10μm以上であれば、上述したエッチングマスクの位置のばらつきの現実的な値よりも大きいので接続損失のばらつきを解消するために好ましい。また、L2は100μm以下程度で十分である。
なお、図4は、図1に示す光集積素子100のX−X線断面図であるが、図1に示すY−Y線断面についても、図4と同様に、SOA131の活性層と光導波路120の光導波層とが、厚さ変化部と定厚さ部とを有する接続光導波路で接続されていてもよい。
以上のように、この光集積素子100は、内部の接続損失のばらつきが小さいものとなる。
(製造方法)
つぎに、この光集積素子100の製造方法について説明する。図5〜図10は、図1に示す光集積素子100の製造方法の一例を説明する図である。
まず、図5(a)に示すように、MOCVD結晶成長装置を用い、基板100a上に、下部クラッド層130a、光導波路層140b、上部クラッド層140cを順次結晶成長する。つぎに、上部クラッド層140c上に、領域BAを保護するSiNxからなるマスクM1を形成する。つづいて、図5(b)に示すように、マスクM1をエッチングマスクとして、マスクM1を形成していない領域AA側の上部クラッド層140c、光導波路層140bをエッチングにより除去する。つづいて、図5(c)に示すように、マスクM1を成長マスクとして、エッチングにより除去した部分の領域に光導波路層170b、上部クラッド層170cをバットジョイント成長により形成する。ここで、マスクM1は、図5(d)に示すように、方向D1に延伸する開口Oを有しており、開口Oの両側でマスクM1の幅W1が変化している。なお、方向D1は、形成すべき光導波路の光の導波方向に合わせてある。これにより、開口Oの直下では、光導波路層170bおよび上部クラッド層170cを、幅W1が広い箇所から狭い箇所に向かって厚さが薄くなるように選択成長することができる。これにより、厚さ変化部170baと定厚さ部170bbとを有する光導波路層170bを形成することができる。
つづいて、図6(a)に示すように、マスクM1を除去した後、活性層130bを形成するためのSiNxからなるマスクM2を上部クラッド層140c、170c上に形成する。つづいて、図6(b)に示すように、マスクM2をエッチングマスクとして、マスクM2を形成していない領域の上部クラッド層170c、光導波路層170bをエッチングにより除去する。ここで、光導波路層170bは定厚さ部170bbを有するので、マスクM2の端部の位置がばらついたとしても、そのエッチング端面における光導波路層170bの厚さは定厚さ部170bbの厚さとなり、略一定である。つづいて、図6(c)に示すように、マスクM2を成長マスクとして、エッチングにより除去した領域に活性層130b、上部クラッド層130cをバットジョイント成長により形成する。
なお、このように、光導波路層140b、光導波路層170b、活性層130bをこの順番で形成することによって、互いに厚さが異なり、かつ互いに構成材料が異なる光導波路層140bと活性層130bとを両方同時にエッチングすることを回避できる。その結果、光導波路層140bと活性層130bと対してエッチング材やエッチング時間などを最適化した適切なエッチングを各層に対して行うことができる。
つづいて、図7に示すように、全面にSiNxからなるマスクM3を形成する。マスクM3は、領域AAに形成されるマスク部M3aと、領域BAに形成されるマスク部M3bとを有する。マスク部M3aは、領域AAに形成されるべき半導体埋込構造の光導波路のメサ構造を形成するためのものであり、形成すべき光導波路のパターンに形成される。なお、そのマスク幅は、半導体埋込構造における所定のメサ幅を実現するように、たとえばエッチング時のサイドエッチング量を考慮して設定される。たとえば、メサ幅を2.0μmにする場合、サイドエッチング量を片側0.5μmと仮定すると、マスク幅は約3.0μmに設定される。一方、マスク部M3bは、領域BAに形成されるべき光導波路のハイメサ構造を後工程で形成するために、ハイメサ構造を形成すべき部分を保護するためのものであり、形成すべき光導波路のパターンに形成される。マスク部M3bのマスク幅は、形成すべきハイメサ構造のメサ幅よりも広くしておくことが好ましい。
つづいて、図8に示すように、マスクM3をエッチングマスクとして、下部クラッド層130aに到る深さまでエッチングを行い、メサ構造を形成する。その後、メサ構造の両側に下部電流阻止層130daと上部電流阻止層130dbとを成長して電流阻止層130dを形成し、メサ構造を埋め込む。これにより、領域AAにおける半導体埋込構造が形成される。また電流阻止層に、半絶縁性の半導体を用いた場合は、一層構造の電流阻止層でもよい。なお、領域BAにおいても半導体埋込構造が形成されるが、後工程でハイメサ構造になるように加工される。その後、上部クラッド層130c、140c、170c、電流阻止層130dの上に上部クラッド層130e、170e、140eを成長し、さらにこれらの上にコンタクト層(コンタクト層130f、140f、および上部クラッド層170e上のコンタクト層)を成長する。
つづいて、図9に示すように、全面にSiNxからなるマスクM4を形成する。マスクM4は、領域AAに形成されるマスク部M4aと、領域BAに形成されるマスク部M4bとを有する。マスク部M4aは、後述するエッチングの際に領域AAに形成された半導体埋込構造の光導波路を保護するためのものであり、半導体埋込構造の光導波路のパターンに形成される。なお、そのマスク幅は、メサ構造の両側の埋込部である電流阻止層を所望の幅で覆うような幅に設定される。一方、マスク部M4bは、領域BAに形成されるべき光導波路のハイメサ構造を形成するためのものであり、形成すべき光導波路のパターンに形成される。なお、そのマスク幅は、所定のメサ幅を実現するように、たとえばエッチング時のサイドエッチング量を考慮して設定される。たとえば、ハイメサ構造のメサ幅を3.5μmにする場合、サイドエッチング量を片側0.1μmと仮定すると、マスク幅は約3.7μmに設定される。
つづいて、図10に示すように、マスクM4をエッチングマスクとして、下部クラッド層130aに到る深さまでエッチングを行う。これにより、領域BAにおけるハイメサ構造が形成される。また、このエッチングによって、領域AAにおいて下部クラッド層130aの表面にn側電極130iを形成するためのリセス構造も形成される。
つづいて、CVD法等により保護膜130g、140g等の保護膜を形成し、スピンコート等によりポリイミドなどの絶縁性樹脂層を141jを形成し、さらにCVD法等により保護膜140g等の保護膜を形成する。その後、保護膜130g、141gに開口を形成し、開口に金属膜を蒸着し、リフトオフすることによってp側電極130h、n側電極130i、変調信号印加電極140h、グラウンド電極140iを形成し、これらに対する配線パターンを形成することで、光集積素子100が完成する。
なお、上記実施の形態では、第1の導波路型光機能素子が位相変調器であり、第2の導波路型光機能素子が光増幅素子であるが、本発明はこれに限らず、第1および第2の導波路型光機能素子は、電圧の印加、電流の注入、加熱などにより所定の機能を発揮するように構成された光機能素子であればよい。たとえば第2の導波路型光機能素子が半導体レーザ素子などの発光素子であってもよい。
また、上記実施の形態では、第1の導波路型光機能素子はハイメサ構造を有し、第2の導波路型光機能素子は半導体埋込構造を有するが、第1および第2の導波路型光機能素子の導波路構造はこれらに限られず、たとえばローメサ構造でもよい。
また、上記実施の形態では、第1の導波路型光機能素子の第1の光導波路層の合計厚さが、第2の導波路型光機能素子の第2の光導波路層の合計厚さよりも厚くなっているが、第1の光導波路層の合計厚さが、第2の導波路型光機能素子の第2の光導波路層の合計厚さよりも薄くてもよい。この場合も、その厚さの比が2倍以上であれば、本発明の効果がより効果的となる。
また、上記実施の形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。
100 光集積素子
100a 基板
110 光入力部
120、121、122、123、142、143、144 光導波路
120a 分岐部
130、131 SOA
130a 下部クラッド層
130b 活性層
130c、130e、140c、140e、170c、170e 上部クラッド層
130d 電流阻止層
130da 下部電流阻止層
130db 上部電流阻止層
130f、140f コンタクト層
130g、140g 保護膜
130h p側電極
130i n側電極
140 光変調器
140b、170b 光導波路層
140h 変調信号印加電極
140i グラウンド電極
140j ポリイミド
141 MZI
151、152 信号光出力部
151a、152a モニタ光出力部
160 LO光出力部
170 接続光導波路
170ba 厚さ変化部
170ba1 第1端部
170ba2 第2端部
170bb 定厚さ部
AA、BA 領域
D1 方向
M1、M2、M3、M4 マスク
M3a、M3b、M4a、M4b マスク部
O 開口

Claims (6)

  1. 同一基板上に形成された、第1の光導波路層を有する第1の導波路型光機能素子と、前記第1の光導波路層とは厚さが異なる第2の光導波路層を有する第2の導波路型光機能素子と、前記第1の光導波路層と前記第2の光導波路層とを接続する受動型の接続光導波路層を有する接続光導波路と、を備える光集積素子の製造方法であって、
    前記基板上に、前記第1の光導波路層を形成する第1工程と、
    前記第1の光導波路層の一部の領域を除去し、前記除去した領域に前記接続光導波路層を形成する第2工程と、
    前記接続光導波路層の一部の領域を除去し、前記除去した領域に第2の光導波路層を形成する第3工程と、
    を含み、
    前記第2工程では、前記第1の光導波路層側に位置する第1端部と前記第2の光導波路層側に位置する第2端部とを有し、前記第1端部から前記第2端部に向かって前記第1の光導波路層の厚さから前記第2の光導波路層の厚さに近付くように厚さが変化する厚さ変化部と、前記第2端部に接続し、前記第2端部と同一の厚さでありかつ光の導波方向で一定の厚さを有する定厚さ部とを有するように前記接続光導波路層を形成し、
    前記第3工程では、前記接続光導波路層の前記定厚さ部における一部の領域を除去することを特徴とする光集積素子の製造方法。
  2. 前記第1の導波路型光機能素子は位相変調器であり、前記第2の導波路型光機能素子は発光素子または光増幅素子であることを特徴とする請求項1に記載の光集積素子の製造方法。
  3. 前記第1の導波路型光機能素子はハイメサ構造を有し、前記第2の導波路型光機能素子は半導体埋込構造を有することを特徴とする請求項1または2に記載の光集積素子の製造方法。
  4. 前記第1および第2の光導波路層は多重量子井戸構造を有することを特徴とする請求項1〜3のいずれか一つに記載の光集積素子の製造方法。
  5. 前記第1の光導波路層はAlGaInAsまたはAlInAsで構成され、前記第2の光導波路層はInGaAsPで構成されていることを特徴とする請求項4に記載の光集積素子の製造方法。
  6. 前記第1の光導波路層の合計厚さは前記第2の光導波路層の合計厚さの2倍以上であることを特徴とする請求項1〜5のいずれか一つに記載の光集積素子の製造方法。
JP2015001095A 2015-01-06 2015-01-06 光集積素子およびその製造方法 Active JP6452451B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015001095A JP6452451B2 (ja) 2015-01-06 2015-01-06 光集積素子およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015001095A JP6452451B2 (ja) 2015-01-06 2015-01-06 光集積素子およびその製造方法

Publications (2)

Publication Number Publication Date
JP2016126216A JP2016126216A (ja) 2016-07-11
JP6452451B2 true JP6452451B2 (ja) 2019-01-16

Family

ID=56359476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015001095A Active JP6452451B2 (ja) 2015-01-06 2015-01-06 光集積素子およびその製造方法

Country Status (1)

Country Link
JP (1) JP6452451B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6781371B2 (ja) * 2016-08-02 2020-11-04 ジャパンパイル株式会社 杭の施工管理方法、施工管理プログラム、及び、施工管理装置
CN110088995B (zh) * 2016-12-19 2021-06-04 古河电气工业株式会社 光集成元件以及光发送机模块
CN111684342B (zh) * 2018-02-08 2023-07-28 古河电气工业株式会社 光集成元件以及光模块

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330673A (ja) * 1995-06-02 1996-12-13 Fujitsu Ltd 光半導体装置
US6162655A (en) * 1999-01-11 2000-12-19 Lucent Technologies Inc. Method of fabricating an expanded beam optical waveguide device
JP4105403B2 (ja) * 2001-04-26 2008-06-25 日本オプネクスト株式会社 半導体光集積素子の製造方法
US7058246B2 (en) * 2001-10-09 2006-06-06 Infinera Corporation Transmitter photonic integrated circuit (TxPIC) chip with enhanced power and yield without on-chip amplification
JP5897414B2 (ja) * 2011-08-23 2016-03-30 日本オクラロ株式会社 光デバイスの製造方法

Also Published As

Publication number Publication date
JP2016126216A (ja) 2016-07-11

Similar Documents

Publication Publication Date Title
US10534131B2 (en) Semiconductor optical integrated device having buried hetero structure waveguide and deep ridge waveguide
JP6541898B2 (ja) 半導体光増幅器およびその製造方法、光位相変調器
US5799119A (en) Coupling of strongly and weakly guiding waveguides for compact integrated mach zehnder modulators
JP5104598B2 (ja) マッハツェンダ型光変調器
US9606380B2 (en) Method for manufacturing optical module
JP5212475B2 (ja) 波長可変光送信機
US9477013B2 (en) Reflective optical source device
US10031395B2 (en) Optical modulator
JP2012163876A (ja) 半導体光変調器
JP6452451B2 (ja) 光集積素子およびその製造方法
US8818142B2 (en) Optical semiconductor device
EP1191387B1 (en) Light-controlled light modulator
US9184568B2 (en) Wavelength variable light source and wavelength variable light source module
US9281661B2 (en) Integrated optoelectronic device comprising a Mach-Zehnder modulator and a vertical cavity surface emitting laser (VCSEL)
US11281029B2 (en) Optical integrated element and optical module
JP2013137360A (ja) 光合分波素子およびマッハツェンダ型光変調器
JP2011181789A (ja) 半導体光源
JP2016194655A (ja) 光導波路素子
JP6381507B2 (ja) 光結合器、波長可変光源及び波長可変光源モジュール
JP2013251424A (ja) 光集積素子
WO2022003937A1 (ja) 半導体光集積素子
JP5655412B2 (ja) 半導体光変調器、その製造方法、および光通信モジュール
JP4448651B2 (ja) 波長変換素子
JP2014075387A (ja) 光集積素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181211

R151 Written notification of patent or utility model registration

Ref document number: 6452451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350