JP6443627B2 - Transformer cooling system - Google Patents

Transformer cooling system Download PDF

Info

Publication number
JP6443627B2
JP6443627B2 JP2015105298A JP2015105298A JP6443627B2 JP 6443627 B2 JP6443627 B2 JP 6443627B2 JP 2015105298 A JP2015105298 A JP 2015105298A JP 2015105298 A JP2015105298 A JP 2015105298A JP 6443627 B2 JP6443627 B2 JP 6443627B2
Authority
JP
Japan
Prior art keywords
transformer
partition plate
vent
cooling device
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015105298A
Other languages
Japanese (ja)
Other versions
JP2016219688A (en
Inventor
健裕 中島
健裕 中島
貴悠 酒井
貴悠 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2015105298A priority Critical patent/JP6443627B2/en
Priority to CN201610142644.3A priority patent/CN106205963B/en
Publication of JP2016219688A publication Critical patent/JP2016219688A/en
Application granted granted Critical
Publication of JP6443627B2 publication Critical patent/JP6443627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/085Cooling by ambient air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2876Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Description

本発明は、筺体に収納された変圧器を強制的に空冷するための冷却装置に関するものである。   The present invention relates to a cooling device for forcibly air-cooling a transformer housed in a housing.

図9,図10は、筺体に変圧器が収納された変圧器盤の従来技術(第1の従来技術)を示しており、図9は筺体内部の構造を示す正面図、図10は図9のX−X断面図である。
これらの図において、101は筐体、102は三相の変圧器、103R,103S,103Tは各相の巻線部、104は一次巻線、105は二次巻線、106,107はヨークを示す。
9 and 10 show the prior art (first prior art) of the transformer panel in which the transformer is housed in the housing, FIG. 9 is a front view showing the internal structure of the housing, and FIG. It is XX sectional drawing of.
In these drawings, 101 is a housing, 102 is a three-phase transformer, 103R, 103S, and 103T are winding portions for each phase, 104 is a primary winding, 105 is a secondary winding, and 106 and 107 are yokes. Show.

この変圧器盤では、筐体101の上部に排気ファン108が配置され、筐体101の前面下方には吸気口109が設けられている。また、筐体101の内部上方には仕切板110が配置されていると共に、巻線部103R,103S,103Tの下端部近傍には、押し出し式の付属ファン111がそれぞれ前後に配置されている。   In this transformer panel, an exhaust fan 108 is disposed at the top of the housing 101, and an air inlet 109 is provided below the front surface of the housing 101. Further, a partition plate 110 is disposed above the inside of the casing 101, and push-type accessory fans 111 are disposed in the front and rear in the vicinity of the lower ends of the winding portions 103R, 103S, and 103T.

上記の構成により、図10に示すように、排気ファン108を運転して吸気口109から流入した冷却風は、巻線部103R,103S,103Tの周囲を上方に移動して排気ファン108から排気される。これと同時に、付属ファン111を運転して巻線部103R,103S,103Tにそれぞれ送風することにより、変圧器102の全体を下方から冷却する冷却風の気流が形成されることとなる。   With the above configuration, as shown in FIG. 10, the cooling air flowing from the intake port 109 by operating the exhaust fan 108 moves upward around the winding portions 103R, 103S, and 103T and is exhausted from the exhaust fan 108. Is done. At the same time, by operating the attached fan 111 and blowing air to the winding portions 103R, 103S, and 103T, an airflow of cooling air that cools the entire transformer 102 from below is formed.

また、特許文献1には、他の構造の冷却装置が記載されている。
図11は、特許文献1に記載された第2の従来技術を示し、図12は、同じく第3の従来技術を示す構成図である。
図11,図12において、201は変圧器盤の筐体、202は変圧器、202aは鉄芯の周囲に一次巻線及び二次巻線が巻かれた巻線部、203は吸気口、204は排気ファン、205,206,207は気流の方向を制御するための仕切板、205a,207aは開口部である。
Patent Document 1 describes a cooling device having another structure.
FIG. 11 shows the second prior art described in Patent Document 1, and FIG. 12 is a configuration diagram showing the third prior art.
11 and 12, 201 is a casing of a transformer panel, 202 is a transformer, 202a is a winding portion in which a primary winding and a secondary winding are wound around an iron core, 203 is an intake port, 204 Is an exhaust fan, 205, 206, and 207 are partition plates for controlling the direction of airflow, and 205a and 207a are openings.

図11に示した第2の従来技術では、排気ファン204を運転して吸気口203から流入した冷却風が、開口部207a、巻線部202aの周囲、開口部205a等を介して排気ファン204から排気される。
また、図12に示した第3の従来技術では、図11における仕切板205がないことに起因して、吸気口203から流入した冷却風の一部は変圧器202の周囲を経て直接的に排気ファン204方向に向かう。
上記の第2,第3の従来技術においては、変圧器202の周囲に仕切板205,206,207を配置することにより、変圧器202に供給される冷却風の風量、風速を最大化する気流の流路を形成して冷却能力を高めるように工夫している。
In the second prior art shown in FIG. 11, the cooling fan that has operated the exhaust fan 204 and has flowed in from the intake port 203 passes through the opening portion 207a, the winding portion 202a, the opening portion 205a, and the like. Exhausted from.
Further, in the third prior art shown in FIG. 12, due to the absence of the partition plate 205 in FIG. 11, a part of the cooling air flowing in from the intake port 203 is directly passed around the transformer 202. Heading toward the exhaust fan 204.
In the second and third prior arts described above, by arranging the partition plates 205, 206, and 207 around the transformer 202, the airflow that maximizes the amount and speed of the cooling air supplied to the transformer 202. It is devised to increase the cooling capacity by forming a flow path.

特開2013−4598号公報(図4,図6等)JP2013-4598A (FIGS. 4, 6, etc.)

図9,図10に示した第1の従来技術において、吸気口109から筐体101の内部に導入された冷却風の流路は、上部の排気ファン108の近傍で仕切板110により規制されているだけである。従って、筐体101の内部では冷却風の流路面積が広いため、変圧器102を集中的に冷却することが難しい。
また、変圧器102の鉄芯、一次巻線104、二次巻線105の相互間では、各部を固定、絶縁するために固定部材や絶縁部材が使用されており、これらの部材が冷却風の流路面積を減少させている。このため、変圧器102の内部における圧力損失が大きく、十分な冷却効果を得ることが困難である。
In the first prior art shown in FIGS. 9 and 10, the flow path of the cooling air introduced from the air inlet 109 into the housing 101 is regulated by the partition plate 110 in the vicinity of the upper exhaust fan 108. There is only. Accordingly, since the flow passage area of the cooling air is large inside the casing 101, it is difficult to cool the transformer 102 in a concentrated manner.
Further, between the iron core of the transformer 102, the primary winding 104, and the secondary winding 105, a fixing member and an insulating member are used to fix and insulate each part. The channel area is reduced. For this reason, the pressure loss inside the transformer 102 is large, and it is difficult to obtain a sufficient cooling effect.

そこで、第1の従来技術では、巻線部103R,103S,103Tの下端部近傍に付属ファン111をそれぞれ配置して巻線部103R,103S,103Tを個別に冷却しているが、多数の付属ファンが必要になり、コストの増加や変圧器盤の大型化、組立作業やメンテナンス作業の煩雑化を招くという問題がある。   Therefore, in the first prior art, the attached fans 111 are arranged near the lower ends of the winding portions 103R, 103S, and 103T to cool the winding portions 103R, 103S, and 103T individually. There is a problem that a fan is required, which increases costs, increases the size of the transformer panel, and complicates assembly work and maintenance work.

また、前述したように変圧器102内部の圧力損失が大きいと、変圧器102の内外を通過する風量に差が生じ、この風量の差によって変圧器102の内部温度は外部温度より高くなる。変圧器102に対する冷却能力は排気ファンのスペックや吸気口の面積等によって決定されるが、変圧器102の内外の温度が不均一であると、高温部の温度に基づいて冷却能力を設計せざるを得ず、結果的に排気ファン等の容量が大きくなってコスト高になるという問題があった。   Further, as described above, when the pressure loss inside the transformer 102 is large, a difference occurs in the air volume passing through the inside and outside of the transformer 102, and the internal temperature of the transformer 102 becomes higher than the external temperature due to the difference in the air volume. The cooling capacity for the transformer 102 is determined by the specifications of the exhaust fan, the area of the intake port, etc. If the temperature inside and outside the transformer 102 is uneven, the cooling capacity must be designed based on the temperature of the high temperature part. As a result, there has been a problem that the capacity of the exhaust fan or the like becomes large and the cost becomes high.

更に、図11,図12に示した第2,第3の従来技術においても、変圧器202の内外を通過する冷却風の風量に偏りが生じて変圧器202の内外に大幅な温度差が発生することがあり、鉄芯や一次巻線、二次巻線を均一に冷却することが困難であった。   Further, in the second and third prior arts shown in FIGS. 11 and 12, the airflow of the cooling air passing through the inside and outside of the transformer 202 is biased, and a large temperature difference occurs between the inside and outside of the transformer 202. In some cases, it was difficult to cool the iron core, the primary winding, and the secondary winding uniformly.

そこで、本発明の解決課題は、変圧器の内外をまんべんなく冷却して温度を均一にすることができ、しかも付属ファン等を不要にして変圧器盤の小型化、コストの低減、組立作業等の容易化を可能にした変圧器の冷却装置を提供することにある。   Therefore, the problem to be solved by the present invention is to uniformly cool the inside and outside of the transformer to make the temperature uniform, and to eliminate the need for an attached fan or the like, to reduce the size of the transformer panel, to reduce costs, assembly work, etc. It is an object of the present invention to provide a transformer cooling device that can be made easy.

上記課題を解決するため、請求項1に係る発明は、筺体に収納された変圧器を冷却風により強制的に冷却する冷却装置において、
前記変圧器を構成する巻線部の軸方向両端部にそれぞれ配置された上部仕切板と下部仕切板とを備え、かつ、前記筺体の上部近傍に排気ファンを配置すると共に、
前記筺体に主吸気口及び副吸気口をそれぞれ形成し、前記上部仕切板及び前記下部仕切板に開口部を設けて前記巻線部の鉄芯との間に上部仕切板内通気口と下部仕切板内通気口とをそれぞれ形成し、
前記排気ファンの運転により、
前記主吸気口から前記巻線部の周囲に流入した冷却風を、前記上部仕切板の端部と前記筺体の内面との間に形成された端部通気口を介して、前記排気ファン方向に通過させる第1の気流と、
前記副吸気口から流入した冷却風を、前記下部仕切板内通気口から前記巻線部の内部と前記上部仕切板内通気口とを介して、前記巻線部の軸方向に沿って前記排気ファン方向に通過させる第2の気流と、を形成したことを特徴とする。
In order to solve the above problems, the invention according to claim 1 is a cooling device for forcibly cooling a transformer housed in a housing with cooling air.
The upper partition plate and the lower partition plate respectively disposed at both axial ends of the winding portion constituting the transformer, and an exhaust fan disposed in the vicinity of the upper portion of the casing,
A main air inlet and a sub air inlet are formed in the housing, and openings are provided in the upper partition plate and the lower partition plate, and the upper partition plate vent and lower partition are formed between the winding core and the iron core. Each with a vent in the plate,
By operating the exhaust fan,
Cooling air that has flowed into the periphery of the winding portion from the main air intake port is directed toward the exhaust fan through an end air vent formed between an end portion of the upper partition plate and the inner surface of the housing. A first air stream to pass;
The cooling air flowing in from the auxiliary air inlet is exhausted along the axial direction of the winding portion from the lower partition plate vent through the inside of the winding portion and the upper partition plate vent. And a second air flow passing in the fan direction.

請求項2に係る発明は、請求項1に記載した変圧器の冷却装置において、前記主吸気口を前記筐体の前面に形成し、かつ、前記副吸気口を前記筐体の下端部近傍に形成したことを特徴とする。   According to a second aspect of the present invention, in the transformer cooling device according to the first aspect, the main air inlet is formed in the front surface of the housing, and the auxiliary air inlet is located near the lower end of the housing. It is formed.

請求項3に係る発明は、請求項2に記載した変圧器の冷却装置において、前記端部通気口を、前記上部仕切板の後端部と前記筐体の内面との間に形成したことを特徴とする。   According to a third aspect of the present invention, in the transformer cooling device according to the second aspect, the end vent is formed between the rear end of the upper partition plate and the inner surface of the housing. Features.

請求項4に係る発明は、請求項1〜3の何れか1項に記載した変圧器の冷却装置において、前記巻線部は、前記鉄芯に対して同心状に巻かれた一次巻線と二次巻線とを備え、前記鉄芯と前記一次巻線との間、及び、前記一次巻線と前記二次巻線との間にそれぞれ保有された隙間に前記第2の気流を通過させることを特徴とする。 According to a fourth aspect of the present invention, in the transformer cooling device according to any one of the first to third aspects, the winding portion includes a primary winding wound concentrically with respect to the iron core. A secondary winding, and the second airflow is passed through gaps respectively held between the iron core and the primary winding and between the primary winding and the secondary winding. It is characterized by that.

請求項5に係る発明は、請求項4に記載した変圧器の冷却装置において、前記上部仕切板内通気口及び前記下部仕切板内通気口の面積を変えて前記隙間を通過する前記第2の気流の量を調整することを特徴とする。 According to a fifth aspect of the invention, in the transformer cooling device according to the fourth aspect of the present invention, the area of the upper partition plate vent and the lower partition plate vent is changed to pass through the gap. It is characterized by adjusting the amount of airflow .

請求項6に係る発明は、請求項1〜の何れか1項に記載した変圧器の冷却装置において、前記端部通気口の面積を変えて前記端部通気口を通過する前記第の気流の量を調整することを特徴とする。 The invention according to claim 6, in transformer cooling apparatus according to any one of claim 1 to 5, wherein the first passing through the end vent by changing the area of the end vent It is characterized by adjusting the amount of airflow.

請求項7に係る発明は、請求項1〜6の何れか1項に記載した変圧器の冷却装置において、前記下部仕切板に、前記第2の気流を通過させるバイパス通気口を形成したことを特徴とする。 The invention which concerns on Claim 7 WHEREIN: In the cooling device of the transformer described in any one of Claims 1-6, the bypass ventilation hole which allows the said 2nd airflow to pass was formed in the said lower partition plate. Features.

本発明においては、筺体内部の上下に上部仕切板及び下部仕切板を配置し、これらの仕切板に仕切板内通気口や端部通気口を形成すると共に、変圧器の周囲及び変圧器の内部に第1の気流と第2の気流とをそれぞれ通過させるようにした。
これにより、上部仕切板及び下部仕切板によって区画された空間内で変圧器を内外から均等に冷却することが可能になり、筺体内温度の均一化、小型化、低コスト化、組立作業等の容易化を図ることができる。
In the present invention, the upper partition plate and the lower partition plate are arranged above and below the housing, and the partition plate vents and end vents are formed in these partition plates, and around the transformer and inside the transformer. The first air flow and the second air flow are allowed to pass through, respectively.
This makes it possible to cool the transformer evenly from inside and outside in the space defined by the upper partition plate and the lower partition plate, and makes the temperature inside the housing uniform, downsizing, cost reduction, assembly work, etc. Simplification can be achieved.

本発明の実施形態が適用される変圧器盤の内部構造等を示す図である。It is a figure which shows the internal structure etc. of the transformer panel to which embodiment of this invention is applied. 本発明の実施形態における第1,第2の気流の説明図である。It is explanatory drawing of the 1st, 2nd airflow in embodiment of this invention. 本発明の実施形態における巻線部の横断面図及び縦断面図である。It is the cross-sectional view and longitudinal cross-sectional view of the coil | winding part in embodiment of this invention. 本発明の他の実施形態における巻線部の縦断面図である。It is a longitudinal cross-sectional view of the coil | winding part in other embodiment of this invention. 図1(a),(b)における上部仕切板方向から見た主要部の平面図である。It is a top view of the principal part seen from the upper partition plate direction in Drawing 1 (a) and (b). 本発明の実施形態における下部仕切板にバイパス通気口を形成した場合の、主要部の底面図である。It is a bottom view of the principal part at the time of forming a bypass vent in the lower partition plate in the embodiment of the present invention. 本発明の他の実施形態における上部仕切板方向から見た主要部の平面図である。It is a top view of the principal part seen from the upper partition plate direction in other embodiments of the present invention. 本発明の他の実施形態における上部仕切板方向から見た主要部の平面図である。It is a top view of the principal part seen from the upper partition plate direction in other embodiments of the present invention. 第1の従来技術を示す正面図である。It is a front view which shows the 1st prior art. 図9のX−X断面図である。It is XX sectional drawing of FIG. 特許文献1に記載された第2の従来技術を示す構成図である。It is a block diagram which shows the 2nd prior art described in patent document 1. FIG. 特許文献1に記載された第3の従来技術を示す構成図である。It is a block diagram which shows the 3rd prior art described in patent document 1. FIG.

以下、図に沿って本発明の実施形態を説明する。
まず、図1は筺体内部に三相の変圧器が配置された変圧器盤を説明するための図であり、図1(a)は筺体内部の構造を示す正面図、図1(b)は図1(a)のA−A断面図、図1(c)は後述する上部仕切板4の上方から見た平面図、図1(d)は後述する第1の気流の説明図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, FIG. 1 is a view for explaining a transformer panel in which a three-phase transformer is arranged inside a housing. FIG. 1 (a) is a front view showing the structure inside the housing, and FIG. 1A is a cross-sectional view taken along line AA, FIG. 1C is a plan view seen from above an upper partition plate 4 described later, and FIG. 1D is an explanatory view of a first airflow described later.

図1(a),(b)において、筐体1の内部には変圧器2を構成する各相の巻線部3R,3S,3Tが並設され、巻線部3R,3S,3Tの軸方向両端部には、上部仕切板4、下部仕切板5がそれぞれ配置されている。なお、6,7はヨーク、8は鉄芯10(図1(d)参照)の外側に巻かれた一次巻線、9は一次巻線8の外側に巻かれた二次巻線である。
筺体1の上部には、排気ファン21が配置されている。また、図1(b)に示すごとく、筺体1の前面には主吸気口としての第1吸気口22が配置され、筺体1の下端部近傍には、前面に副吸気口としての第2吸気口23が、背面に副吸気口としての第3吸気口24がそれぞれ配置されている。
図示されていないが、図1(a)における筺体1の下端部近傍の左右に、副吸気口としての第4,第5吸気口を更に配置(つまり、筺体1の下端部近傍の四方に副吸気口を配置)しても良い。
1 (a) and 1 (b), windings 3R, 3S, and 3T of respective phases constituting the transformer 2 are arranged in parallel inside the casing 1, and the shafts of the windings 3R, 3S, and 3T are arranged in parallel. An upper partition plate 4 and a lower partition plate 5 are disposed at both ends in the direction. 6 and 7 are yokes, 8 is a primary winding wound around the iron core 10 (see FIG. 1D), and 9 is a secondary winding wound around the primary winding 8.
An exhaust fan 21 is disposed on the top of the housing 1. Further, as shown in FIG. 1B, a first intake port 22 as a main intake port is disposed on the front surface of the housing 1, and a second intake air as a sub intake port is provided on the front surface near the lower end of the housing 1. A third air intake port 24 as a sub air intake port is disposed on the back surface of the port 23, respectively.
Although not shown, fourth and fifth intake ports as auxiliary intake ports are further arranged on the left and right in the vicinity of the lower end portion of the housing 1 in FIG. An intake port may be arranged).

図1(b),(c)に示すように、上部仕切板4、下部仕切板5の内部には、巻線部3R,3S,3Tの鉄芯10との間に仕切板内通気口4a,5aが形成されるように、ほぼ円形の開口部4b,5bがそれぞれ設けられている。また、上部仕切板4の後端部と筺体1の内面との間には、巻線部3R,3S,3Tの周囲から排気ファン21方向に向かう第1の気流(白抜き矢印にて示す)S1を通過させる端部通気口4cが形成されている。   As shown in FIGS. 1B and 1C, the upper partition plate 4 and the lower partition plate 5 have a partition plate ventilation hole 4a between the winding cores 3R, 3S and 3T and the iron core 10. , 5a are formed with substantially circular openings 4b, 5b, respectively. In addition, a first air flow (indicated by a white arrow) between the rear end portion of the upper partition plate 4 and the inner surface of the casing 1 from the periphery of the winding portions 3R, 3S, 3T toward the exhaust fan 21. An end ventilation hole 4c through which S1 passes is formed.

図1(d)は、巻線部の断面構造を示している。なお、この断面構造は全ての巻線部3R,3S,3Tに共通している。
図1(d)において、鉄芯10と一次巻線8との間の隙間11には絶縁筒12が配置され、一次巻線8と二次巻線9との間の隙間13には絶縁筒14が配置されている。図示するように、図1(b)の第1の吸気口22から流入した冷却風は、第1の気流S1となって、主に二次巻線9の外周面を回り込み、前記端部通気口4cを介して排気ファン21方向に流れる。
一方、図1(b)の第2,第3の吸気口23,24から流入した冷却風は、第2の気流S2となって仕切板内通気口5aから主に巻線部内の隙間11,13を通過し、仕切板内通気口4aを介して排気ファン21方向に流れる。
FIG. 1D shows a cross-sectional structure of the winding part. This cross-sectional structure is common to all the winding portions 3R, 3S, 3T.
In FIG. 1 (d), an insulating cylinder 12 is disposed in the gap 11 between the iron core 10 and the primary winding 8, and an insulating cylinder is provided in the gap 13 between the primary winding 8 and the secondary winding 9. 14 is arranged. As shown in the figure, the cooling air flowing in from the first air inlet 22 in FIG. 1B becomes the first air flow S1, mainly wraps around the outer peripheral surface of the secondary winding 9, and the end ventilation. It flows in the direction of the exhaust fan 21 through the port 4c.
On the other hand, the cooling air flowing in from the second and third air inlets 23 and 24 in FIG. 1 (b) becomes the second air flow S2, and the gap 11 13 and flows in the direction of the exhaust fan 21 through the partition plate vent 4a.

ここで、図2は、第1,第2の気流S1,S2の作用を説明するための概念図である。
第1,第2の気流S1,S2を明確に分離することは難しいが、第1の気流S1は、二次巻線9の外周面や一次巻線8の外周面、二次巻線9同士の隙間等に沿って流れるため、主に、各巻線8,9を外側から冷却する作用を果たす。これに対して、第2の気流S2は、その大部分が前記隙間11,13を通過するので、主に、鉄芯10の外周面、一次巻線8の内外周面、二次巻線9の内周面等を効率良く冷却する作用を果たす。
これら第1,第2の気流S1,S2は、図1(b)の排気ファン21の手前で合流し、気流Sとして外部に排気されることになる。
Here, FIG. 2 is a conceptual diagram for explaining the operation of the first and second airflows S1 and S2.
Although it is difficult to clearly separate the first and second airflows S1 and S2, the first airflow S1 is generated from the outer peripheral surface of the secondary winding 9, the outer peripheral surface of the primary winding 8, and the secondary windings 9 to each other. Therefore, the windings 8 and 9 are mainly cooled from the outside. On the other hand, since most of the second air flow S2 passes through the gaps 11 and 13, the outer peripheral surface of the iron core 10, the inner and outer peripheral surfaces of the primary winding 8, and the secondary winding 9 are mainly used. It serves to cool the inner peripheral surface and the like efficiently.
The first and second airflows S1 and S2 merge before the exhaust fan 21 in FIG. 1B, and are exhausted to the outside as the airflow S.

図3(a)は巻線部の横断面図であり、図3(b)は縦断面図である。
前述した上部仕切板4の開口部4b及び下部仕切板5の開口部5bの直径を調整することにより、第2の気流S2が通過する隙間11,13の断面積を調整することができる。
図3(b)は、開口部4b,5bの直径を絶縁筒14の内径に等しくした例である。この例によれば、ヨーク6,7によって遮られる部分を除けば、隙間11の全部と隙間13の一部とが第2の気流S2の流路となり、主として鉄芯10及び一次巻線8を冷却することができる。
FIG. 3A is a transverse sectional view of the winding portion, and FIG. 3B is a longitudinal sectional view.
By adjusting the diameters of the opening 4b of the upper partition plate 4 and the opening 5b of the lower partition plate 5 described above, the cross-sectional areas of the gaps 11 and 13 through which the second airflow S2 passes can be adjusted.
FIG. 3B is an example in which the diameters of the openings 4 b and 5 b are equal to the inner diameter of the insulating cylinder 14. According to this example, except for the portion blocked by the yokes 6 and 7, the entire gap 11 and a part of the gap 13 become the flow path of the second air flow S <b> 2, and mainly the iron core 10 and the primary winding 8. Can be cooled.

また、図4(a)は、開口部4b,5bの直径を二次巻線9の内径に等しくした例である。この例によれば、ヨーク6,7によって遮られる部分を除けば、隙間11,13の全部が第2の気流S2の流路となり、主として鉄芯10及び一次巻線8、並びに二次巻線9の内周面を冷却することができる。
図4(b)は、開口部4b,5bの直径を一次巻線8の内径に等しくした例である。この場合、ヨーク6,7によって遮られる部分を除けば、隙間11の全部が第2の気流S2の流路となる反面、隙間13は気流S2の流路とならない。この例によれば、主として鉄芯10と、一次巻線8の内周面とを冷却することができる。
図4(c)は、開口部4b,5bの直径を絶縁筒12の内径に等しくした例である。この場合、ヨーク6,7によって遮られる部分を除けば、隙間11の一部が第2の気流S2の流路となる反面、隙間13は気流S2の流路とならない。この例によれば、主として鉄芯10の冷却に効果的である。
FIG. 4A shows an example in which the diameters of the openings 4 b and 5 b are equal to the inner diameter of the secondary winding 9. According to this example, except for the portion blocked by the yokes 6 and 7, the entire gaps 11 and 13 become the flow path of the second air flow S2, and mainly the iron core 10, the primary winding 8, and the secondary winding. The inner peripheral surface of 9 can be cooled.
FIG. 4B is an example in which the diameters of the openings 4 b and 5 b are equal to the inner diameter of the primary winding 8. In this case, except for the portion blocked by the yokes 6 and 7, the entire gap 11 becomes the flow path of the second air flow S2, whereas the gap 13 does not become the flow path of the air flow S2. According to this example, the iron core 10 and the inner peripheral surface of the primary winding 8 can be mainly cooled.
FIG. 4C is an example in which the diameters of the openings 4 b and 5 b are equal to the inner diameter of the insulating cylinder 12. In this case, except for the portions blocked by the yokes 6 and 7, a part of the gap 11 serves as a flow path for the second air flow S2, whereas the gap 13 does not serve as a flow path for the air flow S2. According to this example, it is mainly effective for cooling the iron core 10.

次に、図5は、図1(a),(b)における上部仕切板方向から見た主要部の平面図である。前述したように、上部仕切板4の後端部と筺体1の内面との間に、第2の気流S2の通路となる端部通気口4cが形成されている。なお、図示されていないが、下部仕切板5には端部通気口4cに相当する空間は形成されていない。図5では、端部通気口4cを巻線部3R,3S,3Tの並設方向に連続して形成してあるが、後述するバイパス通気口5cのごとく、巻線部3R,3S,3Tにそれぞれ対応させて個別に形成しても良い。   Next, FIG. 5 is a plan view of the main part viewed from the direction of the upper partition plate in FIGS. As described above, between the rear end portion of the upper partition plate 4 and the inner surface of the housing 1, the end vent hole 4 c serving as the passage of the second air flow S <b> 2 is formed. Although not shown, a space corresponding to the end vent 4c is not formed in the lower partition plate 5. In FIG. 5, the end vent 4c is formed continuously in the direction in which the winding portions 3R, 3S, and 3T are arranged in parallel. However, like the bypass vent 5c described later, the end portions 4R are formed in the winding portions 3R, 3S, and 3T. You may form separately corresponding to each.

また、図6(a),(b)は、図1(a),(b)における下部仕切板5にバイパス通気口を形成した場合の、主要部の底面図である。
図1(a),(b)に示した構造によると、第2吸気口23及び第3吸気口24から流入した冷却風による第2の気流S2が巻線部3R,3S,3Tの隙間11,13を通過しやすくなるので、巻線部3R,3S,3Tを内側から冷却する効果が大きい。しかし、第2の気流S2を利用して二次巻線9を一層集中的に冷却したい場合には、以下に説明するように、下部仕切板5にバイパス通気口を形成することが有効である。
6 (a) and 6 (b) are bottom views of the main part when a bypass vent is formed in the lower partition plate 5 in FIGS. 1 (a) and 1 (b).
According to the structure shown in FIGS. 1A and 1B, the second airflow S2 due to the cooling air flowing in from the second air inlet 23 and the third air inlet 24 becomes the gap 11 between the winding portions 3R, 3S, 3T. , 13 is easy to pass through, so that the effect of cooling the winding portions 3R, 3S, 3T from the inside is great. However, when it is desired to more intensively cool the secondary winding 9 using the second airflow S2, it is effective to form a bypass vent in the lower partition plate 5 as described below. .

すなわち、図6(a)に示すように、巻線部3R,3S,3Tにそれぞれ対応させてバイパス通気口5cを形成し、底面から見て、各バイパス通気口5cが二次巻線9の一部に重なるような位置関係とする。これにより、バイパス通気口5cを通過した冷却風が二次巻線9に直接当たるようになり、二次巻線9の冷却を促進することができる。
図6(b)は、図6(a)の三つのバイパス通気口5cを連続させて単一のバイパス通気口5dとした例である。図6(b)によれば、図6(a)に比べてバイパス通気口の加工が容易になる。
That is, as shown in FIG. 6A, the bypass vents 5c are formed corresponding to the winding portions 3R, 3S, and 3T, and each bypass vent 5c is connected to the secondary winding 9 when viewed from the bottom. The positional relationship overlaps with a part. As a result, the cooling air that has passed through the bypass vent 5c comes into direct contact with the secondary winding 9, and cooling of the secondary winding 9 can be promoted.
FIG. 6B shows an example in which the three bypass vents 5c in FIG. 6A are made continuous to form a single bypass vent 5d. According to FIG.6 (b), the process of a bypass vent becomes easy compared with Fig.6 (a).

次に、図7,図8は、本発明の他の実施形態における上部仕切板方向から見た主要部の平面図である。これらの図では、上部仕切板4と筺体1内面との間に形成される端部通気口4cにハッチングを付してある。
端部通気口4cの面積を変更すれば、第2の気流S2の風量、風速を調整することができ、これにより、主として巻線部3R,3S,3Tの背面側の冷却能力を調整することができる。図7,図8は、この端部通気口4cの面積を調整するための構造を示したものである。
Next, FIG. 7, FIG. 8 is a top view of the principal part seen from the upper partition plate direction in other embodiment of this invention. In these drawings, an end vent 4c formed between the upper partition plate 4 and the inner surface of the casing 1 is hatched.
If the area of the end vent 4c is changed, the air volume and the air speed of the second air flow S2 can be adjusted, thereby mainly adjusting the cooling capacity on the back side of the winding portions 3R, 3S, 3T. Can do. 7 and 8 show a structure for adjusting the area of the end vent 4c.

すなわち、端部通気口4cの面積の調整方法としては、図7に示すように、風量調整板15を筺体1の前後方向にスライドさせて所望の位置に固定可能としたり、あるいは、図8に示すように、一対の風量調整板16を筺体1の左右方向にスライドさせて、所望の位置に固定可能とする方法がある。
何れにしても、第2の気流S2に偏りを生じさせないためには、風量調整板15,16をスライドさせた後に形成される端部通気口4cの平面形状が、中央の巻線部3Sを中心として線対称であることが望ましい。
That is, as a method for adjusting the area of the end vent 4c, as shown in FIG. 7, the air volume adjusting plate 15 can be fixed in a desired position by sliding it in the front-rear direction of the housing 1, or in FIG. As shown, there is a method in which a pair of air volume adjusting plates 16 is slid in the left-right direction of the housing 1 and can be fixed at a desired position.
In any case, in order to prevent the second airflow S2 from being biased, the planar shape of the end vent 4c formed after the air volume adjusting plates 15 and 16 are slid is formed in the central winding 3S. It is desirable to have line symmetry as the center.

以上説明したように、本発明に係る冷却装置は、筺体1に収納された変圧器2の上下を上部仕切板4及び下部仕切板5によって区画すると共に、筺体1の内部にその前面下方から流入して巻線部3R,3S,3Tの周囲を通り、上部仕切板4の後端部の端部通気口4cを介して排気ファン21方向へ流れる第1の気流S1と、筺体1の下方から流入して仕切板内通気口5a,4a及び巻線部3R,3S,3Tの内部を軸方向に通過して排気ファン21方向へ流れる第2の気流S2とを発生させ、これら第1,第2の気流S1,S2の相乗効果により変圧器2を冷却するものである。   As described above, the cooling device according to the present invention partitions the upper and lower sides of the transformer 2 housed in the housing 1 with the upper partition plate 4 and the lower partition plate 5 and flows into the interior of the housing 1 from below the front surface. The first airflow S1 that flows around the winding portions 3R, 3S, and 3T and flows toward the exhaust fan 21 through the end vent 4c at the rear end of the upper partition plate 4 and from below the housing 1 The first and first airflows 5a and 4a and the second airflow S2 flowing in the direction of the exhaust fan 21 through the inside of the partition plate vents 5a and 4a and the winding portions 3R, 3S and 3T are generated. The transformer 2 is cooled by the synergistic effect of the two airflows S1 and S2.

このため、一次巻線8及び二次巻線9の外周面や、各巻線8,9の隙間、鉄芯10の外周面等をまんべんなく冷却することができ、筺体内部温度の均一化を図ることができる。よって、内部温度が不均一な場合に高温部に合わせて冷却能力や冷却設備を設計する必要がなくなり、オーバースペックの冷却設備に起因するコスト高を招く心配がない。
また、上部仕切板4及び下部仕切板5によって冷却風の拡散を防止できるため、冷却風を無駄なく利用して変圧器2を高効率で冷却することができる。
更に、第2の気流S2によって二次巻線9を下方から集中的に冷却できるため、従来技術のように多数の付属ファンを配置する必要がなく、低コスト化や変圧器盤の小型化に寄与すると共に、組立作業やメンテナンス作業の容易化が可能である。
For this reason, the outer peripheral surfaces of the primary winding 8 and the secondary winding 9, the gaps between the windings 8 and 9, the outer peripheral surface of the iron core 10, etc. can be cooled evenly, and the internal temperature of the housing can be made uniform. Can do. Therefore, when the internal temperature is not uniform, there is no need to design the cooling capacity and the cooling equipment in accordance with the high temperature part, and there is no fear of incurring high costs due to the overspec cooling equipment.
Further, since the diffusion of the cooling air can be prevented by the upper partition plate 4 and the lower partition plate 5, the transformer 2 can be cooled with high efficiency by using the cooling air without waste.
Furthermore, since the secondary winding 9 can be intensively cooled from below by the second air flow S2, it is not necessary to arrange a large number of attached fans as in the prior art, thereby reducing costs and miniaturizing the transformer panel. In addition to contributing, it is possible to facilitate assembly work and maintenance work.

加えて、図4〜図8に示したように、巻線部における第2の気流S2が通過する流路の断面積(仕切板内通気口4a,5aの内径)、上部仕切板4の後端部に形成される端部通気口4cの面積、及び、下部仕切板5に形成されるバイパス通気口5c,5dの面積等を適宜調整することにより、筺体1の形状や容積、巻線部の数(相数)、排気ファン21の冷却能力等に応じて、最適かつ効率的な冷却装置を実現することができる。   In addition, as shown in FIGS. 4 to 8, the cross-sectional area of the flow path through which the second air flow S <b> 2 passes in the winding portion (inner diameters of the vent holes 4 a and 5 a in the partition plate), the rear of the upper partition plate 4. By appropriately adjusting the area of the end vent 4c formed at the end and the areas of the bypass vents 5c, 5d formed in the lower partition plate 5, the shape and volume of the housing 1, the winding portion The optimal and efficient cooling device can be realized in accordance with the number of phases (number of phases), the cooling capacity of the exhaust fan 21, and the like.

本発明は、変圧器盤単体だけでなく、変圧器盤と半導体電力ユニット及びその制御装置等を一体化した電力変換装置にも利用可能である。   The present invention can be used not only for a single transformer panel, but also for a power converter that integrates a transformer panel, a semiconductor power unit, and a control device thereof.

1:筐体
2:変圧器
3R,3S,3T:巻線部
4:上部仕切板
4a:仕切板内通気口
4b:開口部
4c:端部通気口
5:下部仕切板
5a:仕切板内通気口
5b:開口部
5c,5d:バイパス通気口
6,7:ヨーク
8:一次巻線
9:二次巻線
10:鉄芯
11,13:隙間
12,14:絶縁筒
15,16:風量調整板
21:排気ファン
22:第1吸気口(主吸気口)
23:第2吸気口(副吸気口)
24:第3吸気口(副吸気口)
S1:第1の気流
S2:第2の気流
S:気流
1: Housing
2: Transformer 3R, 3S, 3T: Winding part
4: Upper partition plate 4a: Vent hole in partition plate 4b: Opening portion 4c: End portion vent port 5: Lower partition plate 5a: Vent port in partition plate 5b: Opening portion 5c, 5d: Bypass vent ports 6, 7: York
8: Primary winding 9: Secondary winding 10: Iron core 11, 13: Gap 12, 14: Insulating cylinder 15, 16: Air flow adjusting plate 21: Exhaust fan 22: First intake port (main intake port)
23: Second intake port (sub-intake port)
24: Third inlet (secondary inlet)
S1: First airflow S2: Second airflow S: Airflow

Claims (7)

筺体に収納された変圧器を冷却風により強制的に冷却する冷却装置において、
前記変圧器を構成する巻線部の軸方向両端部にそれぞれ配置された上部仕切板と下部仕切板とを備え、かつ、前記筺体の上部近傍に排気ファンを配置すると共に、
前記筺体に主吸気口及び副吸気口をそれぞれ形成し、前記上部仕切板及び前記下部仕切板に開口部を設けて前記巻線部の鉄芯との間に上部仕切板内通気口と下部仕切板内通気口とをそれぞれ形成し、
前記排気ファンの運転により、
前記主吸気口から前記巻線部の周囲に流入した冷却風を、前記上部仕切板の端部と前記筺体の内面との間に形成された端部通気口を介して、前記排気ファン方向に通過させる第1の気流と、
前記副吸気口から流入した冷却風を、前記下部仕切板内通気口から前記巻線部の内部と前記上部仕切板内通気口とを介して、前記巻線部の軸方向に沿って前記排気ファン方向に通過させる第2の気流と、
を形成したことを特徴とする変圧器の冷却装置。
In the cooling device forcibly cooling the transformer housed in the housing with cooling air,
The upper partition plate and the lower partition plate respectively disposed at both axial ends of the winding portion constituting the transformer, and an exhaust fan disposed in the vicinity of the upper portion of the casing,
A main air inlet and a sub air inlet are formed in the housing, and openings are provided in the upper partition plate and the lower partition plate, and the upper partition plate vent and lower partition are formed between the winding core and the iron core. Each with a vent in the plate,
By operating the exhaust fan,
Cooling air that has flowed into the periphery of the winding portion from the main air intake port is directed toward the exhaust fan through an end air vent formed between an end portion of the upper partition plate and the inner surface of the housing. A first air stream to pass;
The cooling air flowing in from the auxiliary air inlet is exhausted along the axial direction of the winding portion from the lower partition plate vent through the inside of the winding portion and the upper partition plate vent. A second air stream passing in the fan direction;
A transformer cooling device, characterized in that is formed.
請求項1に記載した変圧器の冷却装置において、
前記主吸気口を前記筐体の前面に形成し、かつ、前記副吸気口を前記筐体の下端部近傍に形成したことを特徴とする変圧器の冷却装置。
The transformer cooling device according to claim 1,
The transformer cooling device, wherein the main air inlet is formed in a front surface of the housing, and the sub air inlet is formed in the vicinity of a lower end portion of the housing.
請求項2に記載した変圧器の冷却装置において、
前記端部通気口を、前記上部仕切板の後端部と前記筐体の内面との間に形成したことを特徴とする変圧器の冷却装置。
The transformer cooling device according to claim 2,
The transformer cooling device, wherein the end vent is formed between a rear end portion of the upper partition plate and an inner surface of the housing.
請求項1〜3の何れか1項に記載した変圧器の冷却装置において、
前記巻線部は、前記鉄芯に対して同心状に巻かれた一次巻線と二次巻線とを備え、前記鉄芯と前記一次巻線との間、及び、前記一次巻線と前記二次巻線との間にそれぞれ保有された隙間に前記第2の気流を通過させることを特徴とする変圧器の冷却装置。
In the cooling device of the transformer given in any 1 paragraph of Claims 1-3,
The winding portion includes a primary winding and a secondary winding wound concentrically with the iron core, between the iron core and the primary winding, and the primary winding and the The transformer cooling device , wherein the second airflow is passed through gaps respectively held between the secondary windings .
請求項4に記載した変圧器の冷却装置において、
前記上部仕切板内通気口及び前記下部仕切板内通気口の面積を変えて前記隙間を通過する前記第2の気流の量を調整することを特徴とする変圧器の冷却装置。
The transformer cooling device according to claim 4 ,
The transformer cooling device, wherein the amount of the second airflow passing through the gap is adjusted by changing the areas of the vent holes in the upper partition plate and the vent holes in the lower partition plate .
請求項1〜の何れか1項に記載した変圧器の冷却装置において、
前記端部通気口の面積を変えて前記端部通気口を通過する前記第の気流の量を調整することを特徴とする変圧器の冷却装置。
In the transformer of the cooling apparatus according to any one of claim 1 to 5
Cooling system of the transformer, characterized in that adjusting the amount of the first air flow by changing the area of the end vent through the end vent.
請求項1〜6の何れか1項に記載した変圧器の冷却装置において、
前記下部仕切板に、前記第2の気流を通過させるバイパス通気口を形成したことを特徴とする変圧器の冷却装置。
In the cooling device for a transformer according to any one of claims 1 to 6,
A transformer cooling device , wherein a bypass vent for allowing the second air flow to pass through is formed in the lower partition plate .
JP2015105298A 2015-05-25 2015-05-25 Transformer cooling system Active JP6443627B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015105298A JP6443627B2 (en) 2015-05-25 2015-05-25 Transformer cooling system
CN201610142644.3A CN106205963B (en) 2015-05-25 2016-03-14 The cooling device of transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015105298A JP6443627B2 (en) 2015-05-25 2015-05-25 Transformer cooling system

Publications (2)

Publication Number Publication Date
JP2016219688A JP2016219688A (en) 2016-12-22
JP6443627B2 true JP6443627B2 (en) 2018-12-26

Family

ID=57453155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015105298A Active JP6443627B2 (en) 2015-05-25 2015-05-25 Transformer cooling system

Country Status (2)

Country Link
JP (1) JP6443627B2 (en)
CN (1) CN106205963B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101931062B1 (en) 2018-08-20 2018-12-19 한국전력공사 Cooling apparatus for mold type transformer
KR102203413B1 (en) 2018-09-28 2021-01-15 효성중공업 주식회사 Housing for heat source device
ES2939715T3 (en) * 2019-03-11 2023-04-26 Hitachi Energy Switzerland Ag Arrangement for cooling a coil
EP3770929A1 (en) * 2019-07-26 2021-01-27 ABB Power Grids Switzerland AG Transformer cooling system
CN114449797B (en) * 2021-12-20 2023-05-26 湘潭如意电机电器有限公司 Charger that security performance is high
KR102494393B1 (en) * 2022-06-28 2023-02-06 (주)수도엔지니어링 pad mounted transformer

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2981785A (en) * 1956-10-15 1961-04-25 Gen Electric Electrical apparatus with gaseous dielectric and purifying means therefor
JPS49115624U (en) * 1973-01-31 1974-10-03
JPS6081615U (en) * 1983-11-10 1985-06-06 富士電機株式会社 Air-cooled induction electric appliance
JPH06349648A (en) * 1993-06-14 1994-12-22 Fuji Electric Co Ltd Air-cooled mold transformer
JP2001284134A (en) * 2000-03-30 2001-10-12 Toshiba Corp Indoor power transforming equipment
US20050257439A1 (en) * 2004-04-29 2005-11-24 Abb Technology Ag Ventilated transformer enclosure
JP4882853B2 (en) * 2007-04-27 2012-02-22 株式会社明電舎 Air-cooled transformer board
JP2011071190A (en) * 2009-09-24 2011-04-07 Toshiba Mitsubishi-Electric Industrial System Corp Multiple transformer device
JP5404293B2 (en) * 2009-10-09 2014-01-29 株式会社東芝 Gas insulated transformer
JP5448185B2 (en) * 2010-06-10 2014-03-19 三菱電機株式会社 Transformer
JP5811609B2 (en) * 2011-06-14 2015-11-11 富士電機株式会社 Transformer cooling system
CN102779620A (en) * 2012-07-30 2012-11-14 华为技术有限公司 Air-cooled radiating device of transformer
CN105378865B (en) * 2013-07-18 2017-10-10 三菱电机株式会社 Air-cooled type reactor

Also Published As

Publication number Publication date
CN106205963A (en) 2016-12-07
JP2016219688A (en) 2016-12-22
CN106205963B (en) 2018-04-06

Similar Documents

Publication Publication Date Title
JP6443627B2 (en) Transformer cooling system
JP4882853B2 (en) Air-cooled transformer board
CN203951281U (en) There is the electric motor of self-support type housing
JP5811609B2 (en) Transformer cooling system
WO2015008359A1 (en) Air-cooled reactor
JP2008172968A (en) Forced cooling rotary electric machine
JP5689448B2 (en) Motor with highly efficient air cooling structure
US6740993B2 (en) Air-cooled electric rotary machine
JP2011071190A (en) Multiple transformer device
JP4897587B2 (en) Rotating electric machine
JP5125785B2 (en) Air cooling device for transformer panel
JPH09213532A (en) Air-cooling structure of transformer
JP2019115227A (en) Rotary electric machine
US4100439A (en) Apparatus for cooling the end zones of the lamination stacks of electric machines
JP2009056816A (en) Electric vehicle
RU2617416C1 (en) Housing for electric machine
JP5700528B2 (en) Cooling device for shelf using wind guide plate, shelf having cooling device, and cooling method
JP2005348389A (en) Speaker
US20180053593A1 (en) Transformer embedded with thermally conductive member
JP2017112190A (en) Cooler and power converter
JP5660944B2 (en) Projection display device
JP2009218763A (en) Electronic equipment
JP5109968B2 (en) Engine exhaust pipe cooling structure
JP2002369472A (en) Rotor structure of induction motor
JP6878686B2 (en) Transformer cooling structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181113

R150 Certificate of patent or registration of utility model

Ref document number: 6443627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250