JP6437004B2 - シクロペプチド系化合物の結晶粉末およびその製造方法と使用 - Google Patents

シクロペプチド系化合物の結晶粉末およびその製造方法と使用 Download PDF

Info

Publication number
JP6437004B2
JP6437004B2 JP2016546139A JP2016546139A JP6437004B2 JP 6437004 B2 JP6437004 B2 JP 6437004B2 JP 2016546139 A JP2016546139 A JP 2016546139A JP 2016546139 A JP2016546139 A JP 2016546139A JP 6437004 B2 JP6437004 B2 JP 6437004B2
Authority
JP
Japan
Prior art keywords
compound
formula
powder
solid
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016546139A
Other languages
English (en)
Other versions
JP2016538330A (ja
Inventor
リウ,シードン
ワン,シウシェン
タン,ツィージュン
ジー,シャオミン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Techwell Biopharmaceutical Co Ltd
Original Assignee
Shanghai Techwell Biopharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Techwell Biopharmaceutical Co Ltd filed Critical Shanghai Techwell Biopharmaceutical Co Ltd
Publication of JP2016538330A publication Critical patent/JP2016538330A/ja
Application granted granted Critical
Publication of JP6437004B2 publication Critical patent/JP6437004B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • C07K7/54Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring
    • C07K7/56Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring the cyclisation not occurring through 2,4-diamino-butanoic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/12Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/02General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length in solution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Veterinary Medicine (AREA)
  • Analytical Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

本発明は、化合物の結晶粉末に関し、より具体的には、シクロペプチド系化合物の結晶粉末およびその製造方法と使用に関する。
ミカファンギン(Micafungin)は、新規なエキノカンジン系抗真菌薬であり、真菌の細胞壁の構成成分であるβ−1,3−D−グルカンの合成酵素を阻害することによって、真菌細胞の構造を破壊し、溶解させる。ミカファンギンは、様々な感染、特にアスペルギルス菌、カンジダ菌、クリプトコッカス菌、ムコール菌、放線菌、ヒストプラスマ菌、白癬菌やフザリウム菌などによる感染に治療に幅広く使用されている。
ミカファンギンナトリウム(Micafungin Sodium、FK463とも呼ばれる)は、薬品Mycamine(マイカミン)の活性薬効成分である。ミカファンギンナトリウムの化学構造は、式Iで表される。
5−[(1S,2S)−2−[(3S,6S,9S,11R,15S,18S,20R,21R,24S,25S,26S)−3−[(R)−2−カルバモイル−1−ヒドロキシエチル]−11,20,21,25−テトラヒドロキシ−15−[(R)−1−ヒドロキシエチル]−26−メチル−2,5,8,14,17,23−ヘキサオキシ−18−[4−[5−(4−ペンチルオキシフェニル)イソオキサゾール−3−イル]ベンゾイルアミノ]−1,4,7,13,16,22−ヘキサアザトリシクロ[22.3.0.09,13]ヘプタコサン−6−イル]−1,2−ジヒドロキシエチル]−2−ヒドロキシベンゼンスルホン酸ナトリウム。
式I化合物は、ポリペプチド系化合物で、安定性が劣り、運搬または長期保存の時、分解物が生成してその品質と効果に影響することがある。そして、式I化合物は、結晶にさせることが困難で、通常、無定形の状態となっている。
米国特許6,107,458と7,199,248およびWO96/11210では、式I化合物の製造および精製の方法が公開された。中でも、米国特許7,199,248では、ミカファンギンDIPEA(ジイソプロピルエチルアミン)塩をろ過とクロマトグラフィーによって分離・精製した後、さらにアセトンと酢酸エチルで沈殿させ、無定形の式I化合物を得る。
Atsushi Ohigashiらは、Journal of Synthesit Organic Chemistry(有機合成化学協会誌)2006年第64巻第12期で発表した論文「Process Development of Micafungin , a Novel Lipopeptide Antifungal Agent」において、式I化合物のイオン交換溶離溶液にアセトンと酢酸エチルの混合液を入れて式I化合物を沈殿させ、無定形の式I化合物を得ることができることを紹介している。式I化合物の沈殿物は乾燥前の溶媒の含有量が高く(Dry/Wet=0.25)、式I化合物の沈殿物に約75%の溶媒が含まれ、溶媒含有量が標準値よりも低くなるように乾燥時間を長くする必要があるが、乾燥時間を長くすると、式I化合物の分解物が増え、品質が低下する。
また、藤沢薬品工業株式会社の特許出願WO03/018615では、式I化合物の新規な結晶形およびその製造方法が公開された。WO03/018615では、無定形の式I化合物を用いて水を含有するアルコール系溶液または水を含有するアセトン溶液に溶解させ、酢酸エチル、塩化メチレン、アセトンやアセトニトリルなどの溶媒を入れ、式I化合物B82型の針状結晶を得る。当該結晶は、有機溶媒において結晶させて得られ、顕微鏡において形態が針状結晶で、粉末X線回折(XRPD)スペクトルにおいて2θ角4.6°、5.5°、9.0°、9.8°、16.9°にピークがある。
藤沢薬品工業株式会社のYAMASHITAらは、生物工学会誌の2005年第83巻で発表された論文「Study of Industrial Manufacturing Methods for Micafungin (FK463)」において、FK463は溶媒の最適化およびpHの制御によって針状結晶の獲得に成功したことが記載されているが、具体的な実施様態および結晶のデータがない。同会社の先の出願WO03/018615では、式I化合物のB82型針状結晶が公開されているので、YAMASHITAらが獲得したのもB82型針状結晶であることがわかる。
本発明者は、特許WO03/018615の実施例1の方法に従ってB82型針状結晶の製造を行い、光学顕微鏡で得られた結晶を観察したところ、サイズは約1μmで、Malven粒子径分析計によって分析したところ、d50が0.2〜1.0μmで、微細の針状結晶であった。本発明者は、結晶に対して後のろ過、乾燥などのプロセス工程の操作を行う時、B82型の結晶は基本的に微細な針状形態のため、式I化合物の結晶のろ過が困難で、操作の時間が長いことを見出した。結晶の乾燥前に、式I化合物の溶媒含有量Dry/Wet(乾湿重量比)は約0.25で、結晶は大量の有機溶媒を含んでいた。溶媒含有量を原料薬の要求を充足させるために、乾燥過程に乾燥温度を上げることまたは乾燥時間を延ばすことが必要である。しかし、上記の乾燥過程を使用すると、式I化合物の分解物が増え、原料薬の品質および安定性に大きく影響する。本発明者は、B82型の針状結晶を乾燥して得られた結晶粉末を研究したところ、B82型の針状結晶の嵩密度は約0.8g/mLで、比較的に緻密で、結晶粉末の乾燥過程における溶媒の揮発に不利で、直接その乾燥過程に影響し、かつB82型の結晶が環境に露出すると、吸湿しやすく、安定性が悪いことを見出した。
そのため、商業的な生産をより良く実現させるために、本分野では、形態が規則的で、ろ過がより容易で、嵩密度が小さい、乾燥した式I化合物の安定した様態が切望されている。
本発明の一つの目的は、式I化合物の結晶粉末を提供することである。
本発明のもう一つの目的は、前記結晶粉末の製造方法を提供することである。
本発明のまたもう一つの目的は、前記結晶粉末の使用を提供することである。
式I化合物の結晶粉末
本発明は、式I化合物の結晶粉末を提供する。
構造が式Iで表される、嵩密度が0.7g/mL未満のシクロペプチド系化合物の結晶粉末。
本発明のもう一つの好適な例において、前記結晶粉末の嵩密度は0.6g/mL未満である。
本発明のもう一つの好適な例において、前記結晶粉末の嵩密度は0.5g/mL未満である。
本発明のもう一つの好適な例において、前記結晶粉末のd50は10〜100μmである。
本発明のもう一つの好適な例において、前記結晶粉末のd50は20〜50μmである。
本発明のもう一つの好適な例において、前記結晶粉末のd10は1〜9μmである。
本発明のもう一つの好適な例において、前記結晶粉末のd10は1〜5μmである。
本発明のもう一つの好適な例において、前記結晶粉末の固液分離の前において、d50は10〜100μmである。
本発明のもう一つの好適な例において、前記結晶粉末の固液分離の前において、d50は20〜50μmである。
本発明のもう一つの好適な例において、前記結晶粉末の固液分離の前において、d10は1〜9μmである。
本発明のもう一つの好適な例において、前記結晶粉末の固液分離の前において、d10は3〜6μmである。
WO03/018615で公開されたB82型針状結晶は微細な針状形態で、ろ過が困難で、乾燥しにくく、かつ安定性が悪い。本発明者は、安定性がより良く、形態がより優れた式I化合物を得るために、三相系で異なる溶媒の組み合わせを利用して結晶の溶媒系を選択した。長期間の研究を経て、本発明者は、特定の三相の溶媒系において、形態が規則的な柱状結晶が意外にも得られることを見出した。その後、大量の溶媒選択試験を行い、最終的に3種類で、安定性がより良く、形態がより優れた式I化合物の結晶粉末を得、かつ製造プロセスを確立した。WO03/018615で公開されたB82型針状結晶と比べ、本発明の結晶Aは柱状で、結晶の顆粒が大きく、その嵩密度が小さく、ろ過がしやすく、かつ結晶における溶媒が除去しやすい。
発明者は、研究したところ、意外にも、式I化合物は、メタノール/イソブタノール、メタノール/イソプロパノール、メタノール/n−プロパノールの水溶液、すなわち、三相系の溶液または四相溶媒系において、降温または難溶性溶媒の添加といった式I化合物の溶液における溶解度を低下させる手段によって、式I化合物の形態の優れた柱状結晶、すなわち、式I化合物の結晶粉末が得られることを見出した。結晶後ろ過した式I化合物の乾燥前Dry/Wet(乾湿重量比)が高く、含まれる有機溶媒の含有量が少なく、かつ乾燥後の嵩密度が低く、有機溶媒の除去が容易である。
式I化合物の結晶粉末の同定と性質
本発明者は式I化合物の結晶粉末を得た後、その性質をさらに色々な手段と装置で研究した。
「粉末嵩密度」は、粉末のゆるみ嵩密度とかため嵩密度の比較によって、微粒子の相互作用の相対的重要性が見られる計量基準である。粉末嵩密度を測定する方法は、本分野で既知のもので、たとえばメスシリンダー測定法、体積計測定法、容器測定法などの方法によって測定する。本発明の式I化合物の結晶粉末は、メスシリンダー測定法による嵩密度が0.7g/mL未満、より好ましくは0.6g/mL未満、最も好ましくは0.5g/mL未満である。
「顆粒サイズ分布」は、Malvern顆粒サイザー2600Cによって結晶液の固液分離前の結晶のサイズ分布を分析する(d10およびd50を含む)。ここで、d10およびd50は顆粒サイズ分布を表す既知のもので、d50とは、ある顆粒サイズの値で、50vol/%の顆粒のサイズが前記値よりも小さいような値である。d10とは、ある顆粒サイズの値で、10vol/%の顆粒のサイズが前記値よりも小さいような値である。d10およびd50を確認する好適な方法は、レーザー回折である。本発明の式I化合物の結晶粉末は、d50が10〜100μmで、d10が1〜9μmである。好ましくは、d50が20〜50μmで、d10が1〜5μmである。式I化合物の結晶粉末は、固液分離の前に、d50が10〜100μmで、d10が1〜9μmである。好ましくは、d50が20〜50μmで、d10が3〜6μmである。
「顕微分析技術」は、光学顕微鏡で結晶の外形を識別することによって結晶形分析の目的を果たす。本発明の式I化合物の結晶粉末は光学顕微鏡において柱状結晶である。好ましくは本発明の式I化合物の結晶粉末は、固液分離の前に、図1と基本的に一致する形状を有する。
「高速液体クロマトグラフィー」(HPLC)は、化合物の純度の検出に使用される通常の方法で、液体を移動相とし、高圧輸液システムを使用し、異なる極性を有する単一溶媒または異なる比率の混合溶媒、緩衝液などの移動相を固定相のカラムにポンプし、各成分はカラム内で分離された後、検出器に入って検出されることで、試料に対する分析を実現する。本発明において、以下のようなHPLC検出条件で式I化合物の純度を測定し、そしてサンプルの安定性の研究に使用する。
分析カラム:YMC−ODS 250×4.6mm、5μm、
移動相:アセトニトリル:リン酸塩緩衝液(pH 3.0)=45:70、
流速:1 ml/min、
カラム温度:35℃、
希釈液:水のリン酸塩緩衝液、
検出波長:210nm、
仕込み量:10μl。
気相クロマトグラフィー(GC)によって化合物における微量の不純物を分離して検出するのは、正確な定性・定量的分析方法である。本発明において、気相クロマトグラフィー(GC)によって本発明で製造される式I化合物の結晶粉末における有機溶媒含有量を測定する。
「粉末X線回折」は、「X線多晶回折(XRDまたはXRPD)」とも呼ばれ、現在結晶構造(すなわち結晶形)を測定する場合よく使われる試験方法である。粉末X線回折装置を用いて、X線が結晶を透過するとき一連の回折スペクトルが生じ、そのスペクトルにおいて回折線およびその強度はそれぞれある構造の原子団で決められるため、結晶の構造が確定できる。結晶の粉末X線回折を測定する方法は、本分野では既知である。例えば、RIGAKU D/max 2550VB/PC型の粉末X線回折装置を使用し、2°/分の走査速度で、銅輻射ターゲットでスペクトルを得る。
本発明の式I化合物の結晶粉末は特定の結晶の形態を持ち、粉末X線回折スペクトルにおいて特定の特徴ピークを有する。具体的に、本発明の式I化合物の結晶粉末の粉末X線回折スペクトルにおいて下記2θ角:4.4±0.2°、5.2±0.2°、8.5±0.2°、9.6±0.2°に特徴ピークがある。一つの好適な実施形態では、そのスペクトルにおいてさらに下記2θ角:7.5±0.2°、8.8±0.2°、16.6±0.2°、13.7±0.2°、22.5±0.2°に特徴ピークがある。もう一つの好適な実施形態では、そのスペクトルにおいてさらに下記2θ角:12.6±0.2°、14.9±0.2°、15.6±0.2°、25.1±0.2°に特徴ピークがある。一つの好適な実施形態では、本発明の式I化合物の結晶粉末の粉末X線回折スペクトルにおいて下記2θ角:4.4±0.1°、5.2±0.1°、8.5±0.1°、9.6±0.1°に特徴ピークがある。もう一つの好適な実施形態では、そのスペクトルにおいてさらに下記2θ角:7.5±0.1°、8.8±0.1°、16.6±0.1°、13.7±0.1°、22.5±0.1°に特徴ピークがある。もう一つの好適な実施形態では、そのスペクトルにおいてさらに下記2θ角:12.6±0.1°、14.9±0.1°、15.6±0.1°、25.1±0.1°に特徴ピークがある。より好ましくは、前記式I化合物の結晶粉末は図2と基本的に一致する粉末X線回折(XRPD)スペクトルを有する。
式I化合物の結晶粉末の製造
本発明は、式Iで表される化合物の、結晶粉末の製造方法であって、
(a)式Iで表される化合物を水含有アルコール系混合溶液に溶解させる工程と、
(b)降温及び/又は有機溶媒(i)の添加によって固体を得る工程と、
(c)工程(b)で得られた固体を水系とともに真空乾燥し、前記結晶粉末を得る工程と、
を含む、前記方法を提供する。
ここで、工程(a)において、前記アルコール系混合溶液は、メタノール/イソブタノール、メタノール/イソプロパノール、メタノール/n−プロパノールから選ばれる。
ここで、工程(a)において、前記水含有アルコール系混合溶液における、2種類のアルコールの体積比は0.01〜100、好ましくは0.05〜20、より好ましくは0.1〜10である。
ここで、工程(a)において、前記水含有アルコール系混合溶液における、アルコールの合計体積と水の体積比は0.1〜100、好ましくは0.5〜10、より好ましくは1〜7である。
ここで、工程(a)における前述溶解の温度は10〜50℃、好ましくは20〜40℃である。
ここで、工程(a)において、前記溶解液の合計体積に対し、その中の式I化合物の含有量は1〜500mg/ml、好ましくは5〜100mg/ml、より好ましくは10〜50mg/mlである。
ここで、工程(b)において、前記有機溶媒(i)は、n−プロパノール、イソプロパノール、イソブタノール、酢酸メチル、酢酸エチル、酢酸n−プロピル、酢酸イソプロピルから選ばれる。
ここで、工程(b)において、前記の降温の温度は−40〜35℃、好ましくは−20〜35℃、より好ましくは−10〜30℃、最も好ましくは−5〜15℃である。
ここで、工程(b)において、前記有機溶媒(i)と工程(a)における水含有アルコール系混合溶液の体積比は0.1〜50、好ましくは0.1〜10、より好ましくは1〜5である。
式I化合物の結晶粉末の用途およびその組成物
本発明によって提供される式I化合物の結晶粉末は、そのまま真菌感染を治療する医薬の製造に使用することもできる。式I化合物の結晶粉末と、薬学的に許容される担体とを含む医薬組成物を提供することができる。
関連用語
本明細書で用いられる、用語「結晶」とは、分子または原子の複合体が特定の配列形式となっている固体である。
本明細書で用いられる、用語「固液分離」とは、式I化合物が溶媒において結晶して析出した後、ろ過などの手段によって固体と液体を分離させる過程である。
本明細書で用いられる、用語「Dry/Wet」と「乾湿重量比」は、いずれも化合物の溶媒を含まない重量と溶媒を含む重量の比を指し、入れ替えて使用することができる。本発明において、結晶の湿重量は、結晶させて得られた固体を液滴の流出が見られないようになるまでろ過し、測定したものである。
ここで用いられるように、「式I化合物」、「化合物I」及び「式Iで表される化合物」は、いずれも、以下の構造式を持つ化合物を指し、入れ替えて使用することができる。
式I化合物は、本分野の通常の方法、例えば特許WO96/11210で報告された当該化合物の製造方法によって得ることができるが、これに限定されない。また、日本藤沢社などから、市販品としても得られるが、これに限定されない。
本明細書で用いられる、用語「薬学的に許容される担体」とは、治療剤の投与のための担体であり、各種の賦形剤と希釈剤を含む。この用語は、自身が必要な活性成分ではなく、かつ使用後過度の毒性がない薬剤の担体のことを指す。適切な担体は、当業者に周知である。Remington's Pharmaceutical Sciences(Mack Pub. Co.,N.J. 1991)において、薬学的に許容される賦形剤に関する十分な検討が見つけられる。組成物において、薬学的に許容される担体は液体、例えば水、塩水、グリセリンやエタノールを含んでもよい。さらに、これらの担体には、補助的な物質、例えば崩壊剤、湿潤剤、乳化剤、pH緩衝物質等が存在してもよい。
本発明の主な利点は以下の通りである。
1.ろ過および乾燥が容易で、形態が優れた式I化合物の結晶粉末を提供する。
2.固液分離しやすく、乾燥による残留溶媒の除去が容易で、工業化生産に非常に適する、式I化合物の結晶粉末の製造方法を提供する。
図1は、式I化合物の結晶の固液分離の前の顕微鏡観察の写真を示す。 図2は、式I化合物の結晶粉末の粉末X線回折(XRPD)スペクトルを示す。
以下、具体的な実施例によって、さらに本発明を説明する。これらの実施例は本発明を説明するために用いられるだけのものであり、本発明の範囲を制限するものではないと理解される。以下の実施例において、具体的な条件が記載されていない実験方法は、通常、通常の条件、或いは製造者推奨の条件で行われた。別の説明がない限り、すべての百分率、比率、割合、或いは部は、重量で計算される。
本発明における重量体積百分率の単位は当業者に周知であり、例えば100mLの溶液における溶質の重量を指す。
別の定義がない限り、本文に用いられるすべての専門用語と科学用語は、本分野の技術者に知られている意味と同様である。また、記載の内容と類似或いは同等の方法及び材料は、いずれも本発明の方法に用いることができる。ここで記載される好ましい実施方法及び材料は、例示のためだけのものである。
実施例1
化合物Iの製造
米国特許7,199,248における方法に従って製造して、式I化合物の固体の無定形粉末を得た。
比較例1
B82型の結晶の製造
特許WO03/018615の実施例1の方法に従って製造して、針状結晶を得、B82型の結晶であった。粒子径分布を測定したところ、d10=0.3μm、d50=0.96μmであった。ろ過後、湿結晶の重量を測定し、乾湿重量比を算出したところ、0.25であった。乾燥後の嵩密度は0.85g/mLで、粒子径はd10=0.25μm、d50=0.7μmであった。
実施例2
式I化合物の結晶粉末の製造
実施例1で製造された無定形の式I化合物1gを25℃で50mlのメタノール/イソブタノール水溶液(イソブタノール:水:メタノール=8:2:1)に溶解させ、ゆっくり8℃に降温し、溶液から固体が析出し、そして同温度のままで3.5h撹拌を続けて固体が大量に析出し、ゆっくり90mlの酢酸エチルを入れ、ろ過して固体を得た。ろ過前にサンプリングして倍率15×40の顕微鏡で固体を観察した写真を図1に示すが、ろ過前にサンプリングして粒子径分布を測定したところ、d10=3.3μm、d50=32.6μmであった。ろ過後、湿固体の重量を測定し、乾湿重量比を算出したところ、0.45であった。ろ過した固体を真空乾燥器に入れ、乾燥器内の底部に水道水を入れた皿を置き、真空乾燥して結晶粉末を得、得られた結晶粉末の嵩密度は0.45g/mLで、粒子径はd10=3μm、d50=31.9μmであった。そのXRPDを図2に示す。
実施例3
式I化合物の結晶粉末の製造
比較例1で製造されたB82型の結晶2.5gを30℃で50mlのメタノール/イソブタノール水溶液(イソブタノール:水:メタノール=1:1:1)に溶解させ、ゆっくり50mlの酢酸エチルを入れ、ろ過して固体を得た。ろ過前にサンプリングして粒子径分布を測定したところ、d10=4.2μm、d50=43.9μmであった。ろ過後、湿固体の重量を測定し、乾湿重量比を算出したところ、0.52であった。ろ過した固体を真空乾燥器に入れ、乾燥器内の底部に純水を入れた皿を置き、真空乾燥して結晶粉末を得、得られた結晶粉末の嵩密度は0.43g/mLで、粒子径はd10=3.7μm、d50=43.1μmであった。
実施例4
式I化合物の結晶粉末の製造
実施例1で製造された無定形の式I化合物3gを10℃で600mlのメタノール/イソブタノール水溶液(イソブタノール:水:メタノール=5:1:2)に溶解させ、ゆっくり−20℃に降温し、溶液から固体が析出し、約12h撹拌を続けて固体が大量に析出し、ろ過して固体を得た。ろ過前にサンプリングして粒子径分布を測定したところ、d10=5.7μm、d50=54.3μmであった。ろ過後、湿固体の重量を測定し、乾湿重量比を算出したところ、0.61であった。ろ過した固体を真空乾燥器に入れ、乾燥器内の底部に氷水混合物を入れた皿を置き、真空乾燥して結晶粉末を得、得られた結晶粉末の嵩密度は0.55g/mLで、粒子径はd10=5.1μm、d50=50μmであった。
実施例5
式I化合物の結晶粉末の製造
実施例1で製造された無定形の式I化合物3gを50℃で120mlのメタノール/イソプロパノール水溶液(イソプロパノール:水:メタノール=1:4:1)に溶解させ、30℃に降温し、溶液から固体が析出し、30min撹拌を続けて固体が大量に析出し、ゆっくり200mlのイソプロパノールを入れ、ろ過して固体を得た。ろ過前にサンプリングして粒子径分布を測定したところ、d10=9μm、d50=98.3μmであった。ろ過後、湿固体の重量を測定し、乾湿重量比を算出したところ、0.66であった。ろ過した固体を真空乾燥器に入れ、乾燥器内の底部に水道水を入れた皿を置き、真空乾燥して結晶粉末を得、得られた結晶粉末の嵩密度は0.6g/mLで、粒子径はd10=9μm、d50=97.7μmであった。
実施例6
式I化合物の結晶粉末の製造
実施例1で製造された無定形の式I化合物1gを20℃で20mlのメタノール/イソプロパノール水溶液(イソプロパノール:水:メタノール=10:2:1)に溶解させ、ゆっくり200mlの酢酸n−プロピルを入れ、ろ過して固体を得た。ろ過前にサンプリングして粒子径分布を測定したところ、d10=5.8μm、d50=50μmであった。ろ過後、湿固体の重量を測定し、乾湿重量比を算出したところ、0.6であった。ろ過した固体を真空乾燥器に入れ、乾燥器内の底部に水道水を入れた皿を置き、真空乾燥して結晶粉末を得、得られた結晶粉末の嵩密度は0.49g/mLで、粒子径はd10=5μm、d50=48.7μmであった。
実施例7
式I化合物の結晶粉末の製造
実施例1で製造された無定形の式I化合物1.0gを18℃で100mlのメタノール/イソプロパノール水溶液(イソプロパノール:水:メタノール=1:2:20)に溶解させ、−5℃に降温し、溶液から固体が析出し、4h撹拌を続けて固体が大量に析出し、ろ過して固体を得た。ろ過前にサンプリングして粒子径分布を測定したところ、d10=1μm、d50=10μmであった。ろ過後、湿固体の重量を測定し、乾湿重量比を算出したところ、0.69であった。ろ過した固体を真空乾燥器に入れ、乾燥器内の底部に氷水混合物を入れた皿を置き、真空乾燥して結晶粉末を得、得られた結晶粉末の嵩密度は0.6g/mLで、粒子径はd10=1μm、d50=10μmであった。
実施例8
式I化合物の結晶粉末の製造
実施例1で製造された無定形の式I化合物2gを30℃で20mlのメタノール/n−プロパノール水溶液(n−プロパノール:水:メタノール=1:15:10)に溶解させ、15℃に降温し、溶液から固体が析出し、2h撹拌を続けて固体が大量に析出し、ゆっくり100mlの酢酸イソプロピルを入れ、ろ過して固体を得た。ろ過前にサンプリングして粒子径分布を測定したところ、d10=3μm、d50=20μmであった。ろ過後、湿固体の重量を測定し、乾湿重量比を算出したところ、0.45であった。ろ過した固体を真空乾燥器に入れ、乾燥器内の底部に水道水を入れた皿を置き、真空乾燥して結晶粉末を得、得られた結晶粉末の嵩密度は0.38g/mLで、粒子径はd10=2.6μm、d50=18.7μmであった。
実施例9
式I化合物の結晶粉末の製造
実施例1で製造された無定形の式I化合物4gを24℃で300mlのメタノール/n−プロパノール水溶液(n−プロパノール:水:メタノール=20:2:1)に溶解させ、ゆっくり30mlのイソブタノールを入れ、ろ過して固体を得た。ろ過前にサンプリングして粒子径分布を測定したところ、d10=1.8μm、d50=23.9μmであった。ろ過後、湿固体の重量を測定し、乾湿重量比を算出したところ、0.62であった。ろ過した固体を真空乾燥器に入れ、乾燥器内の底部に純水を入れた皿を置き、真空乾燥して結晶粉末を得、得られた結晶粉末の嵩密度は0.54g/mLで、粒子径はd10=1.3μm、d50=20μmであった。
実施例10
式I化合物の結晶粉末の製造
実施例1で製造された無定形の式I化合物2.7gを40℃で80mlのメタノール/n−プロパノール水溶液(n−プロパノール:水:メタノール=10:3:1)に溶解させ、−10℃に降温し、溶液から固体が析出し、1h撹拌を続けて固体が大量に析出し、ろ過して固体を得た。ろ過前にサンプリングして粒子径分布を測定したところ、d10=8.7μm、d50=100μmであった。ろ過後、湿固体の重量を測定し、乾湿重量比を算出したところ、0.63であった。ろ過した固体を真空乾燥器に入れ、乾燥器内の底部に水道水を入れた皿を置き、真空乾燥して結晶粉末を得、得られた結晶粉末の嵩密度は0.56g/mLで、粒子径はd10=8.3μm、d50=100μmであった。
比較例2
実施例1で製造された無定形の式I化合物0.8gを25℃で5mlのメタノール水溶液(メタノール:水=3:2)に溶解させ、ゆっくり0℃に降温し、溶液から固体が析出し、そして同温度のままで3h撹拌を続け、ろ過して固体の無定形粉末を得、乾湿重量比を算出したところ、0.13であった。
比較例3
実施例1で製造された無定形の式I化合物2.1gを32℃で50mlのエタノール水溶液(エタノール:水=5:1)に溶解させ、10℃に降温し、溶液から固体が析出し、そして同温度のままで5h撹拌を続け、ろ過して固体の無定形粉末を得、乾湿重量比を算出したところ、0.1であった。
比較例4
実施例1で製造された無定形の式I化合物3gを20℃で55mlのn−プロパノール水溶液(n−プロパノール:水=1:1)に溶解させ、0℃に降温し、溶液から固体が析出し、そして同温度のままで5h撹拌を続け、ろ過して固体の無定形粉末を得、乾湿重量比を算出したところ、0.19であった。
比較例5
実施例1で製造された無定形の式I化合物2.5gを45℃で32mlのイソプロパノール水溶液(イソプロパノール:水=2:3)に溶解させ、15℃に降温し、溶液から固体が析出し、そして同温度のままで1h撹拌を続け、ろ過して固体の無定形粉末を得、乾湿重量比を算出したところ、0.18であった。
比較例6
実施例1で製造された無定形の式I化合物1.7gを32℃で90mlのイソブタノール水溶液(イソブタノール:水=4:1)に溶解させ、10℃に降温し、溶液から固体が析出し、そして同温度のままで2h撹拌を続け、ゆっくり20mlの酢酸エチルを入れ、ろ過して固体の無定形粉末を得、乾湿重量比を算出したところ、0.21であった。
比較例7
実施例1で製造された無定形の式I化合物1gを28℃で50mlのn−ブタノール水溶液(n−ブタノール:水=9:1)に溶解させ、0℃に降温し、ゆっくり50mlの酢酸メチルを入れ、ろ過して固体の無定形粉末を得、乾湿重量比を算出したところ、0.2であった。
比較例8
実施例1で製造された無定形の式I化合物1.2gを17℃で45mlのアセトン水溶液(アセトン:水=4:1)に溶解させ、−5℃に降温し、溶液から固体が析出し、そして同温度のままで3.5h撹拌を続け、ろ過して固体の無定形粉末を得、乾湿重量比を算出したところ、0.15であった。
比較例9
実施例1で製造された無定形の式I化合物5gを25℃で150mlのアセトニトリル水溶液(アセトニトリル:水=3:1)に溶解させ、8℃に降温し、溶液から固体が析出し、そして同温度のままで2h撹拌を続け、ゆっくり200mlの酢酸イソプロピルを入れ、ろ過して固体の無定形粉末を得、乾湿重量比を算出したところ、0.09であった。
比較例10
実施例1で製造された無定形の式I化合物1.7gを30℃で100mlのメタノール/エタノール水溶液(メタノール:エタノール:水=8:2:1)に溶解させ、11℃に降温し、溶液から固体が析出し、そして同温度のままで6h撹拌を続け、ゆっくり100mlの酢酸エチルを入れ、ろ過して固体の無定形粉末を得、乾湿重量比を算出したところ、0.23であった。
比較例11
実施例1で製造された無定形の式I化合物1.7gを23℃で100mlのプロパノール/ブタノール水溶液(プロパノール:ブタノール:水=6:5:3)に溶解させ、−5℃に降温し、溶液から固体が析出し、そして同温度のままで7h撹拌を続け、ろ過して固体の無定形粉末を得、乾湿重量比を算出したところ、0.11であった。
比較例12
実施例1で製造された無定形の式I化合物4gを45℃で28mlのメタノール/n−ブタノール水溶液(メタノール:n−ブタノール:水=1:7:2)に溶解させ、11℃に降温し、溶液から固体が析出し、そして同温度のままで6h撹拌を続け、ろ過して固体の無定形粉末を得、乾湿重量比を算出したところ、0.18であった。
比較例13
実施例1で製造された無定形の式I化合物1gを20℃で70mlのエタノール/ブタノール水溶液(エタノール:ブタノール:水=2:2:5)に溶解させ、0℃に降温し、ゆっくり100mlの酢酸エチルを入れ、ろ過して固体の無定形粉末を得、乾湿重量比を算出したところ、0.2であった。
比較例14
実施例1で製造された無定形の式I化合物3gを50℃で20mlのメタノール/アセトニトリル水溶液(メタノール:アセトニトリル:水=4:1:2)に溶解させ、25℃に降温し、溶液から固体が析出し、そして同温度のままで2h撹拌を続け、ゆっくり70mlの酢酸エチルを入れ、ろ過して固体の無定形粉末を得、乾湿重量比を算出したところ、0.19であった。
比較例15
実施例1で製造された無定形の式I化合物2gを30℃で10mlのメタノール/アセトン水溶液(メタノール:アセトン:水=9:2:2)に溶解させ、5℃に降温し、溶液から固体が析出し、そして同温度のままで4h撹拌を続け、ゆっくり50mlの酢酸エチルを入れ、ろ過して固体の無定形粉末を得、乾湿重量比を算出したところ、0.15であった。
実施例11
本実施例において、実施例2〜10と比較例1〜3で析出した固体を、液滴の流出が見られないようになるまでブフナー漏斗でろ過し、かつろ過の過程を比較した。具体的な結果を下記表に示す。
実施例2〜10では、1〜4gの式I化合物を使用して式I化合物の結晶粉末を製造し、ろ過時間は長くとも27minで、比較例1では、0.5gの式I化合物を使用してB82型の結晶を製造し、規模が小さい。しかし、ろ過に必要な時間は実施例2〜10よりも遥かに多く、本発明で製造される式I化合物の結晶粉末はろ過の過程において顕著な利点を有することが分かる。
実施例12
本実施例において、比較例と実施例で得られたサンプルの乾燥の過程を比較した。
それぞれ実施例2〜10、比較例1〜3の方法で製造して析出した5gの固体を25℃において、GCによる検出で有機溶媒を含まない結果が出るまで水系とともに真空乾燥し、その乾燥時間を比較し、かつサンプルの純度を分析した。具体的な結果を下記表に示す。
実施例13
医薬組成物の製造
20gの乳糖を50℃未満で加熱して純水(200ml)に溶解させた。20℃以下に冷却した後、乳糖溶液に実施例2の方法で得た式I化合物の結晶粉末を2.5g溶解させ、泡が立たないようにゆっくり撹拌した。2%クエン酸水溶液(0.95ml)を入れた後、pHが5.5となるように溶液に0.4%水酸化ナトリウム水溶液(約24ml)を入れ、さらに純水で希釈し、容積を250mlとした。得られた溶液を100個の体積10mlのバイアルに2.5mlずつ分けて入れた。通常の方法で、冷凍乾燥装置で各バイアルにおける溶液を冷凍乾燥し、それぞれ25mgの化合物Iの結晶粉末を含有する冷凍乾燥組成物を得た。
実施例14
医薬組成物の製造
実施例2の方法で得られた式I化合物の結晶粉末を0.2g取り、US2007249546 A1の実施例2のように点眼液を調製した。
以上の説明は本発明の好ましい態様に過ぎず、本発明の実質の技術内容の範囲を限定するものではなく、本発明の実質の技術内容は広義的に出願の請求の範囲に定義され、他の人が完成した技術実体或いは方法は、出願の請求の範囲に定義されたものとまったく同じものであれば、或いは効果が同等の変更であれば、いずれもその請求の範囲に含まれるとみなされる。

Claims (8)

  1. 構造が式Iで表されるシクロペプチド系化合物の、嵩密度が0.7g/mL未満の結晶粉末。
  2. 嵩密度が0.6g/mL未満であることを特徴とする、請求項1に記載の結晶粉末。
  3. 嵩密度が0.38〜0.6g/mLであることを特徴とする、請求項1に記載の結晶粉末。
  4. d50が10〜100μmであることを特徴とする、請求項1〜3のいずれか一項に記載の結晶粉末。
  5. d10が1〜9μmであることを特徴とする、請求項1〜4のいずれか一項に記載の結晶粉末。
  6. 請求項1〜5のいずれか一項に記載の結晶粉末の、真菌感染を治療する医薬の製造のための、使用。
  7. 請求項1〜5のいずれか一項に記載の結晶粉末と、薬学的に許容される担体とを含むことを特徴とする、医薬組成物。
  8. 請求項に記載の医薬組成物の、製造方法であって、
    請求項1〜5のいずれか一項に記載のシクロペプチド系化合物の結晶粉末と、薬学的に許容される担体とを混合し、請求項に記載の医薬組成物を得る工程、
    を含むことを特徴とする、前記製造方法。
JP2016546139A 2014-05-29 2015-05-29 シクロペプチド系化合物の結晶粉末およびその製造方法と使用 Active JP6437004B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201410235522.XA CN104788545B (zh) 2014-05-29 2014-05-29 一种环肽类化合物的结晶粉末及其制备方法和用途
CN201410235522.X 2014-05-29
PCT/CN2015/080224 WO2015180680A1 (zh) 2014-05-29 2015-05-29 一种环肽类化合物的结晶粉末及其制备方法和用途

Publications (2)

Publication Number Publication Date
JP2016538330A JP2016538330A (ja) 2016-12-08
JP6437004B2 true JP6437004B2 (ja) 2018-12-12

Family

ID=53553773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016546139A Active JP6437004B2 (ja) 2014-05-29 2015-05-29 シクロペプチド系化合物の結晶粉末およびその製造方法と使用

Country Status (5)

Country Link
US (1) US10138275B2 (ja)
EP (1) EP3150622B1 (ja)
JP (1) JP6437004B2 (ja)
CN (1) CN104788545B (ja)
WO (1) WO2015180680A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021161A1 (ja) * 2016-07-29 2018-02-01 新日本理化株式会社 ポリオレフィン系樹脂用結晶核剤、ポリオレフィン系樹脂用結晶核剤の製造方法、及び、ポリオレフィン系樹脂用結晶核剤の流動性の改良方法
CN114685852A (zh) 2016-09-16 2022-07-01 新日本理化株式会社 聚烯烃系树脂用结晶成核剂及其制造和流动性改良方法、聚烯烃系树脂组合物、成型体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005053782A (ja) * 2001-08-31 2005-03-03 Fujisawa Pharmaceut Co Ltd 環状リポペプチド化合物の新規結晶
CN102775476B (zh) * 2011-05-12 2015-01-07 上海天伟生物制药有限公司 一种米卡芬净钠盐的制备方法
CN102659930B (zh) * 2012-03-30 2014-04-23 上海天伟生物制药有限公司 一种高纯度环肽类物质的晶体及其制备方法和用途
CN102627689B (zh) * 2012-03-30 2014-08-06 上海天伟生物制药有限公司 一种环肽类化合物的水合物及其制备方法和用途
CN105254721B (zh) * 2014-05-13 2021-05-18 江苏豪森药业集团有限公司 米卡芬净的纯化转盐方法

Also Published As

Publication number Publication date
JP2016538330A (ja) 2016-12-08
CN104788545A (zh) 2015-07-22
WO2015180680A1 (zh) 2015-12-03
US20170101443A1 (en) 2017-04-13
EP3150622A1 (en) 2017-04-05
CN104788545B (zh) 2019-03-01
EP3150622A4 (en) 2017-12-27
EP3150622B1 (en) 2019-04-24
US10138275B2 (en) 2018-11-27

Similar Documents

Publication Publication Date Title
JP6491325B2 (ja) シクロペプチド系化合物の溶媒和物およびその製造方法と使用
CN108864077B (zh) 小檗碱有机酸盐的固体形式及其制备方法
TWI472515B (zh) 苯達莫斯汀鹽酸鹽(bendamustine hydrochloride)之新穎固體型式
JP6491217B2 (ja) シクロペプチド系化合物の結晶およびその製造方法と使用
JP6250629B2 (ja) 高純度のシクロペプチド系物質の結晶およびその製造方法と使用
JP6437004B2 (ja) シクロペプチド系化合物の結晶粉末およびその製造方法と使用
EA036874B1 (ru) Новые соли и полиморфы scy-078
JP7109189B2 (ja) シクロペプチド系化合物の組成物およびその製造方法と使用
WO2018001335A1 (zh) Nbi-98854的晶型及其制备方法和用途
US20110165202A1 (en) Solid state forms of fosamprenavir calcium salt and processes for preparation thereof
US20220251111A1 (en) Process for the preparation of amorphous midostaurin with a low content of residual organic solvent
CN113087775B (zh) 米卡芬净钠新晶型ii及其制备方法
CN103333138A (zh) 卡巴他赛新晶型、其制备方法、其用途及药物组合物

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170210

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170510

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180319

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181113

R150 Certificate of patent or registration of utility model

Ref document number: 6437004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250