JP6434729B2 - Ni-based alloy tube manufacturing method, Ni-based alloy high-frequency heated bending tube manufacturing method, Ni-based alloy welded tube manufacturing method, and boiler steam tube manufacturing method - Google Patents

Ni-based alloy tube manufacturing method, Ni-based alloy high-frequency heated bending tube manufacturing method, Ni-based alloy welded tube manufacturing method, and boiler steam tube manufacturing method Download PDF

Info

Publication number
JP6434729B2
JP6434729B2 JP2014145890A JP2014145890A JP6434729B2 JP 6434729 B2 JP6434729 B2 JP 6434729B2 JP 2014145890 A JP2014145890 A JP 2014145890A JP 2014145890 A JP2014145890 A JP 2014145890A JP 6434729 B2 JP6434729 B2 JP 6434729B2
Authority
JP
Japan
Prior art keywords
pipe
based alloy
tube
tube manufacturing
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014145890A
Other languages
Japanese (ja)
Other versions
JP2016023317A (en
Inventor
東海林 剛
剛 東海林
佐藤 恭
恭 佐藤
淳史 島田
淳史 島田
明紘 西本
明紘 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2014145890A priority Critical patent/JP6434729B2/en
Publication of JP2016023317A publication Critical patent/JP2016023317A/en
Application granted granted Critical
Publication of JP6434729B2 publication Critical patent/JP6434729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、Ni基系合金からなる管の製造方法、および、Ni基系合金の高周波加熱曲げ管の製造方法、Ni基系合金の溶接接合管の製造方法およびボイラ用の蒸気管の製造方法に関し、特に、蒸気温度が700℃前後となる発電プラントのボイラの主配管に好適に使用可能なNi基系合金からなる管の製造方法、Ni基系合金の高周波加熱曲げ管の製造方法、Ni基系合金の溶接接合管の製造方法およびボイラ用の蒸気管の製造方法に関する。 The present invention relates to a method of manufacturing a tube made of a Ni- based alloy, a method of manufacturing a high-frequency heated bending tube of a Ni-based alloy, a method of manufacturing a welded joint tube of a Ni-based alloy, and a method of manufacturing a steam tube for a boiler . In particular, a method of manufacturing a tube made of a Ni-based alloy that can be suitably used for a main pipe of a boiler of a power plant having a steam temperature of around 700 ° C., a method of manufacturing a high-frequency heated bending tube of a Ni-based alloy, Ni The present invention relates to a method for manufacturing a welded joint pipe of a base alloy and a method for manufacturing a steam pipe for a boiler.

発電プラント用の大型ボイラにおいては、伝熱管や配管が多数使用されている。これらのうち、蒸気温度が500℃以上の高温部の管寄せ、主蒸気管と再熱蒸気管等の厚肉で大径の管材には、従来2.25〜11%Crフェライト系耐熱鋼が長年用いられてきた。近年、二酸化炭素の排出抑制を背景として、特に石炭焚火力発電プラントではプラント効率向上のため蒸気温度が向上しつつあり、現在では主蒸気温度600℃のプラントも稼動している。
一方、更なるプラント効率の向上を目指して主蒸気温度700℃の発電プラント開発も欧州を中心に進められており、このような高温域では、高温強度及び耐食性に問題があるため、もはや従来のフェライト系耐熱鋼の適用は不可能となる。
このため高温部の配管に高強度Ni基系合金材料(固溶強化型・析出強化型Ni基合金,或いはFe−Ni基合金を含む)の採用が必要となる。
Many large heat transfer tubes and pipes are used in large boilers for power plants. Among these, 2.25 to 11% Cr ferritic heat resistant steel is conventionally used for thick and large-diameter pipes such as a high temperature header having a steam temperature of 500 ° C. or higher, a main steam pipe and a reheat steam pipe. It has been used for many years. In recent years, against the backdrop of carbon dioxide emission suppression, particularly in a coal-fired thermal power plant, the steam temperature is being improved to improve the plant efficiency. Currently, a plant with a main steam temperature of 600 ° C. is also operating.
On the other hand, the development of power plants with a main steam temperature of 700 ° C has been promoted mainly in Europe with the aim of further improving plant efficiency. In such a high temperature range, there are problems with high temperature strength and corrosion resistance. Application of ferritic heat-resistant steel becomes impossible.
For this reason, it is necessary to adopt a high-strength Ni-based alloy material (including a solid solution strengthened / precipitation strengthened Ni-based alloy or Fe—Ni-based alloy) for the piping in the high temperature part.

特開昭53−114722号公報JP-A-53-114722 特開昭54−138814号公報JP 54-138814 A 特開昭55−58329号公報JP-A-55-58329 特開2005−265449号公報JP 2005-265449 A 特開2013−44252号公報JP2013-44252A

これらの高強度Ni基系合金材料は、管材の製造過程において、熱間押し出しや熱間曲げなどの熱間加工が行われた場合、金属組織中に粗大析出物が形成し、強度の低下と耐食性の低下を生じるため、これを分解固溶させ,均一組織にして安定な組織、強度と耐食性を得る必要があるため、熱間加工毎に固溶化処理が行われるが、その固溶化処理温度が1200℃近傍と非常に高い。   When these high-strength Ni-based alloy materials are subjected to hot working such as hot extrusion or hot bending in the manufacturing process of pipes, coarse precipitates are formed in the metal structure, resulting in a decrease in strength. In order to cause a decrease in corrosion resistance, it is necessary to decompose and dissolve this to form a uniform structure to obtain a stable structure, strength and corrosion resistance. Therefore, the solution treatment is performed every hot working, but the solution treatment temperature Is very high at around 1200 ° C.

伝熱管に使用される肉厚が20mm未満で外径(直径)が100mm未満の薄い小径管では固溶化処理の保持時間が1200℃前後で10分以下程度と比較的短く、結晶粒が粗大化していないが、管寄せ等の肉厚が20mm以上で外径が100mm以上の厚肉大径管では、特に、均熱での保持時間を確保するために熱処理時間が1200℃前後で1〜数時間程度と長くなるため、管材全体の結晶粒が小径管に比較して粗大化している(例えば平均結晶粒径:200μm以上)。更に、管材の仕上げ工程として前工程で固溶化熱処理により析出物を拡散させる改善を行った後、管内表面や管外表面側に切削加工などの機械加工を行うため、管内表面や管外表面(以下、内外表面と称する)側近傍に機械加工による加工硬化が生じ、内外表面近傍の延性が低下し、次の段階の加工である高周波曲げ加工や溶接中に内外表面近傍に引張応力(曲げモーメントや溶接凝固時の収縮応力等)が作用した場合に,微細割れ発生の感受性が従来材より高いという問題を有している。   Thin thin tubes with a wall thickness of less than 20 mm and an outer diameter (diameter) of less than 100 mm used for heat transfer tubes have a relatively short retention time of about 10 minutes or less at around 1200 ° C., resulting in coarse crystal grains. However, in the case of thick large-diameter pipes with a wall thickness of 20 mm or more and an outer diameter of 100 mm or more, especially heat treatment time of around 1200 ° C. is 1 to several in order to ensure a soaking time. Since the time is longer, the crystal grains of the entire pipe material are coarser than the small diameter pipe (for example, average crystal grain size: 200 μm or more). Furthermore, as a finishing process of the tube material, after improving the diffusion of precipitates by solution heat treatment in the previous step, the inner surface of the tube and the outer surface of the tube ( In the following, work hardening occurs by machining near the inner and outer surfaces, the ductility near the inner and outer surfaces decreases, and high-frequency bending, which is the next stage of machining, and tensile stress (bending moment) near the inner and outer surfaces during welding. And the shrinkage stress at the time of welding solidification, etc.), there is a problem that the susceptibility to microcracking is higher than that of conventional materials.

さらに具体的には、これらの高強度Ni基系合金(例えばAlloy617(52Ni−22Cr−13Co−9Mo−Ti−1Al)、HR6W(45Ni−23Cr−7W−NbTi)、Alloy263(50Ni−20Cr−20Co−6Mo−2Ti−Al))では、上述のように管寄せや厚肉大径管用の材料において内外表面近傍の組織が粗粒化し、且つ機械加工による加工硬化が生じ、表面近傍の延性が低下したため、次の段階の加工である高周波曲げ加工や溶接中に表面近傍に微細割れが発生するポテンシャルが高いという問題があった。   More specifically, these high-strength Ni-based alloys (for example, Alloy617 (52Ni-22Cr-13Co-9Mo-Ti-1Al), HR6W (45Ni-23Cr-7W-NbTi), Alloy263 (50Ni-20Cr-20Co-) In 6Mo-2Ti-Al)), as described above, the structure near the inner and outer surfaces of the material for the header and the thick-walled large-diameter tube is coarsened, and work hardening occurs due to machining, resulting in reduced ductility near the surface. However, there is a problem in that the potential for microcracking in the vicinity of the surface during high-frequency bending or welding, which is the next stage of processing, is high.

図4は従来技術における機械加工時の厚肉大径管の説明図であり、図4Aは材料表面のミクロ組織の観察図、図4Bは厚肉大径管の肉厚方向の硬さ分布のグラフである。
図4に、従来技術の機械加工により表面を仕上げた高強度Ni基系管寄せまたは厚肉大径管用材料表面のミクロ組織と、肉厚方向の硬さ分布の代表例を示す。
なお、図4は、高強度Ni基系合金としてのHR6Wで作製された直径350mm、厚さ40mmの大径管において、図4Aは、光学顕微鏡で100倍で撮影したものであり、図4Bは、大径管周方向に輪切り切断して、その断面の外表面から内表面までのビッカース硬さを測定したものである。
図4Aに示すように、従来技術の機械加工法では、ミクロ組織は粗粒組織になっており、図4Bに示すように、内外表面で硬さが突出して高くなっている。
FIG. 4 is an explanatory diagram of a thick-walled large-diameter pipe during machining in the prior art, FIG. 4A is an observation diagram of the microstructure of the material surface, and FIG. 4B is a hardness distribution in the thickness direction of the thick-walled large-diameter pipe. It is a graph.
FIG. 4 shows a representative example of the microstructure of the surface of a high-strength Ni-based header or thick-walled large-diameter pipe material whose surface is finished by machining according to the prior art and the hardness distribution in the thickness direction.
4A is a large-diameter tube having a diameter of 350 mm and a thickness of 40 mm made of HR6W as a high-strength Ni-based alloy. FIG. 4A is a photograph taken at 100 × with an optical microscope. The Vickers hardness from the outer surface to the inner surface of the cross section was measured by cutting the ring in the circumferential direction of the large diameter pipe.
As shown in FIG. 4A, in the conventional machining method, the microstructure is a coarse-grained structure, and as shown in FIG. 4B, the hardness protrudes and becomes high on the inner and outer surfaces.

図5は図4に示す大径管を加工した場合の説明図であり、図5Aは高周波曲げ加工時の加工部の側面図、図5Bは図5AのVB−VB線断面図、図5Cは図5BのVC部分の拡大図、図5Dは溶接時の説明図、図5Eは図5DのVE−VE線断面図である。
図5に前記の高強度Ni基系合金大径管を高周波誘導加熱曲げしたときと、溶接をしたときの加工部および溶接部に発生する表面近傍での微細割れの説明図を示す。
図5において、従来は前工程で高温での固溶化処理後に機械加工(切削加工)により最終寸法に仕上げた高強度Ni基系合金材料(例えばAlloy617など)においては、図4Aに示すように、内外表面が粗粒組織であるため、これをそのまま高周波誘導加熱曲げ加工(図5A〜図5C参照)、又は溶接した場合(図5D、図5E参照)、内外表面近傍に機械加工による加工硬化が生じ、内外表面近傍の延性がさらに低下しているため、内外表面近傍での微細割れ発生の感受性は従来材より比較的高い。特に、図5A〜図5Cに示すように、曲げの外側には引張り応力が作用するため、微細割れの発生、進展が起こりやすい。
5 is an explanatory view when the large-diameter pipe shown in FIG. 4 is machined. FIG. 5A is a side view of a machined portion during high-frequency bending, FIG. 5B is a cross-sectional view taken along the line VB-VB in FIG. 5A, and FIG. FIG. 5D is an enlarged view of a VC portion in FIG. 5B, FIG. 5D is an explanatory view at the time of welding, and FIG. 5E is a cross-sectional view taken along the line VE-VE in FIG.
FIG. 5 is an explanatory view of fine cracks in the vicinity of the surface generated in the processed part and the welded part when the high-strength Ni-based alloy large-diameter pipe is subjected to high-frequency induction heating bending and welding.
In FIG. 5, conventionally, in a high-strength Ni-based alloy material (for example, Alloy 617) finished to a final dimension by machining (cutting) after a solution treatment at a high temperature in the previous step, as shown in FIG. Since the inner and outer surfaces have a coarse-grained structure, when this is directly subjected to high-frequency induction heating bending (see FIGS. 5A to 5C) or welded (see FIGS. 5D and 5E), work hardening by machining is performed near the inner and outer surfaces. As a result, the ductility in the vicinity of the inner and outer surfaces is further lowered, so that the susceptibility to the occurrence of fine cracks in the vicinity of the inner and outer surfaces is relatively higher than that of the conventional material. In particular, as shown in FIGS. 5A to 5C, since tensile stress acts on the outside of the bend, generation and progress of fine cracks are likely to occur.

このような表面近傍の微細割れを回避するためには,管寄せまたは厚肉大径管全体の結晶粒度を細粒化することで改善することが望ましいが、実際には管寄せまたは厚肉大径管の製品寸法が長尺で厚肉であるため固溶化熱処理による組織の粗粒化が生じている。   In order to avoid such fine cracks in the vicinity of the surface, it is desirable to improve by reducing the crystal grain size of the entire header or thick-walled large-diameter pipe. Since the product size of the diameter pipe is long and thick, the structure is coarsened by solution heat treatment.

従来法として、オーステナイトステンレス鋼を固溶化処理したのち、ショットピーニング加工、グラインダー加工および研磨加工等の冷間加工を管表面に加え、ついで再度、固溶化処理を施す表面細粒ステンレス鋼管の製造方法に関する方法が提案されている(例えば、特許文献1(特開昭53−114722号公報)、特許文献2(特開昭54−138814号公報)、特許文献3(特開昭55−58329号公報)、特許文献4(特開2005−265449号公報))。これらの方法は、いずれもオーステナイト系ステンレス鋼小径管に関するもので、表面耐水蒸気酸化性を改善するために高温で固溶化処理を施すものである。   As a conventional method, after solidifying austenitic stainless steel, cold processing such as shot peening, grinder processing and polishing is applied to the tube surface, and then again a solution treatment is performed. Have been proposed (for example, Patent Document 1 (Japanese Patent Laid-Open No. 53-114722), Patent Document 2 (Japanese Patent Laid-Open No. 54-138814), and Patent Document 3 (Japanese Patent Laid-Open No. 55-58329). ), Patent Document 4 (Japanese Patent Laid-Open No. 2005-265449). These methods all relate to austenitic stainless steel small-diameter pipes, and are subjected to a solution treatment at a high temperature in order to improve surface steam oxidation resistance.

このような高温の溶体化熱処理は、Ni基系合金の場合、従来のオーステナイト鋼より結晶粒が成長し易いため、固溶化処理によって結晶粒が粗大化し、表面近傍の延性が改善されない場合が多い。また、従来の発明は、スケールの剥離抑制が目的であって、それによって形成されるのは、結晶粒界と結晶粒とが識別できる程度の比較的に浅い加工層(〜数十μm)にすぎないため、細粒層が形成されても十分な厚さが得られず、Ni基系合金の厚肉で大径の管材においては、管の溶接および曲げ加工中における表面近傍の微細割れの発生を防止することは難しい。   In the case of such a high temperature solution heat treatment, in the case of a Ni-based alloy, crystal grains are likely to grow more than conventional austenitic steel, so that the crystal grains are coarsened by the solution treatment, and the ductility near the surface is often not improved. . Further, the conventional invention is intended to suppress delamination of the scale, and is formed in a relatively shallow processed layer (up to several tens of μm) so that the crystal grain boundary and the crystal grain can be distinguished. Therefore, even if a fine-grained layer is formed, a sufficient thickness cannot be obtained, and in the case of thick and large-diameter pipes made of Ni-based alloys, fine cracks near the surface during pipe welding and bending It is difficult to prevent the occurrence.

Ni基系合金の配管等において、溶接後の溶接面に対して、摩擦撹拌処理法(FSP法)による処理を行った後に、固溶化処理を行う技術も知られている(例えば、特許文献5(特開2013−44252号公報))。しかしながら、特許文献5記載の技術の適用対象は配管の溶接端面(平面)でのFSP回転処理で,本発明対象の配管内外面(曲面)に適用できない。また、FSP処理を行うための処理時間が多くかかるため、表面から深くまで処理を行うのに適しておらず、厚肉の部材には適用が難しい。     A technique is also known in which a solution treatment is performed after a friction stir processing method (FSP method) is performed on a welded surface after welding in a Ni-based alloy pipe or the like (for example, Patent Document 5). (JP 2013-44252 A). However, the application target of the technique described in Patent Document 5 is FSP rotation processing on the weld end face (plane) of the pipe, and cannot be applied to the pipe inner / outer face (curved surface) of the present invention. Further, since it takes a lot of processing time to perform the FSP processing, it is not suitable for processing from the surface to the deep, and is difficult to apply to a thick member.

本発明は、主蒸気温度が700℃級の施設で使用可能な高強度のNi基系合金からなる管材の溶接や曲げ加工等が行われる場合に、表面の割れの発生を抑制することを技術的課題とする。   The present invention is a technology for suppressing the occurrence of surface cracks when welding or bending of a pipe material made of a high-strength Ni-based alloy that can be used in a facility having a main steam temperature of 700 ° C. As an objective.

前記技術的課題を解決するために、請求項1に記載の発明のNi基系合金の管の製造方法は、Ni基系合金からなる管を製造する製管工程と、前記製管工程で製管された管の表面に対して、ショットピーニングによる加工硬化を少なくともショット粒子の照射圧力が0.4MPaで1分間行う加工硬化工程と、前記加工硬化がされた管を、材料の1/2融点温度以上、且つ、固溶化処理温度以下、且つ、肉厚内部結晶粒の成長しない再結晶温度領域で加熱する再結晶熱処理工程と、を備えたことを特徴とする。 In order to solve the technical problem, a manufacturing method of a Ni-based alloy pipe according to claim 1 includes a pipe-making process for manufacturing a pipe made of a Ni-based alloy, and a pipe-making process. A work hardening step in which work hardening by shot peening is performed on the surface of the pipe that has been subjected to shot particle irradiation at a pressure of 0.4 MPa for 1 minute, and the work hardened tube is made to have a 1/2 melting point of the material. And a recrystallization heat treatment step of heating in a recrystallization temperature region in which a thick internal crystal grain does not grow and is higher than the temperature and lower than the solution treatment temperature.

前記技術的課題を解決するために、請求項2に記載の発明のNi基系合金の高周波加熱曲げ管の製造方法は、Ni基系合金からなる管を製造する製管工程と、前記製管工程で製管された管の表面に対して、ショットピーニングによる加工硬化を少なくともショット粒子の照射圧力が0.4MPaで1分間行う加工硬化工程と、前記加工硬化がされた管を、材料の1/2融点温度以上、且つ、固溶化処理温度以下、且つ、肉厚内部結晶粒の成長しない再結晶温度領域で加熱する再結晶熱処理工程と、前記再結晶熱処理工程がされた管を用いて高周波によって加熱し、曲げ加工を行う工程と、を備えたことを特徴とする。 In order to solve the technical problem, a method for producing a high-frequency heated bending pipe of a Ni-based alloy according to claim 2 includes a pipe- making process for producing a pipe made of a Ni-based alloy, and the pipe-making process. The surface of the tube produced in the process is subjected to work hardening by shot peening for at least 1 minute at a shot particle irradiation pressure of 0.4 MPa, and the work hardened tube is made of 1 A recrystallization heat treatment step of heating in a recrystallization temperature region that is not lower than the melting point temperature and not higher than the solution treatment temperature and in which thick internal crystal grains do not grow, and a high-frequency wave using a tube subjected to the recrystallization heat treatment step And a step of bending by heating.

前記技術的課題を解決するために、請求項3に記載の発明のNi基系合金の溶接接合管の製造方法は、Ni基系合金からなる管を製造する製管工程と、前記製管工程で製管された管の表面に対して、ショットピーニングによる加工硬化を少なくともショット粒子の照射圧力が0.4MPaで1分間行う加工硬化工程と、前記加工硬化がされた管を、材料の1/2融点温度以上、且つ、固溶化処理温度以下、且つ、肉厚内部結晶粒の成長しない再結晶温度領域で加熱する再結晶熱処理工程と、前記再結晶熱処理工程がされた管どうし溶接する工程と、を備えたことを特徴とする。 In order to solve the technical problem, a method for manufacturing a welded joint tube of a Ni-based alloy according to the invention described in claim 3 includes a pipe- making process for manufacturing a pipe made of a Ni-based alloy, and the pipe-making process. The work hardening step in which the work hardening by shot peening is performed at least at an irradiation pressure of the shot particles of 0.4 MPa for 1 minute on the surface of the pipe manufactured in step 1 and A recrystallization heat treatment step of heating in a recrystallization temperature region in which the melting point is not lower than 2 melting point and not higher than the solution treatment temperature and the thick internal crystal grains are not grown, and a step of welding pipes subjected to the recrystallization heat treatment step And .

前記技術的課題を解決するために、請求項4に記載の発明のボイラ用の蒸気管の製造方法は、Ni基系合金からなる管を製造する製管工程と、前記製管工程で製管された管の表面に対して、ショットピーニングによる加工硬化を少なくともショット粒子の照射圧力が0.4MPaで1分間行う加工硬化工程と、前記加工硬化がされた管を、材料の1/2融点温度以上、且つ、固溶化処理温度以下、且つ、肉厚内部結晶粒の成長しない再結晶温度領域で加熱する再結晶熱処理工程と、前記再結晶熱処理工程がされた管からなるボイラ用の主蒸気管又は再熱蒸気管を作成する工程と、を備えたことを特徴とする。 In order to solve the technical problem, a method for producing a steam pipe for a boiler according to claim 4 includes a pipe making process for producing a pipe made of a Ni-based alloy, and pipe making in the pipe making process. A work hardening step in which work hardening by shot peening is performed on the surface of the finished tube at least at a shot particle irradiation pressure of 0.4 MPa for 1 minute; A boiler main steam pipe comprising the above-described recrystallization heat treatment step for heating in a recrystallization temperature region below the solution treatment temperature and in which thick internal crystal grains do not grow, and the tube subjected to the recrystallization heat treatment step Or a step of creating a reheat steam pipe.

請求項1に記載の発明によれば、主蒸気温度が700℃級の施設で使用可能な高強度のNi基系合金からなる管の溶接や曲げ加工等がされる場合に、表面の割れの発生を抑制することができる。
請求項2に記載の発明によれば、表面の割れの発生が抑制された高周波加熱曲げ管が得られる。
請求項3に記載の発明によれば、表面の割れの発生が抑制された溶接接合管が得られる。
請求項4に記載の発明によれば、表面の割れの発生が抑制された主蒸気管や再熱蒸気管が得られ、蒸気温度が700℃前後となる発電プラントに使用可能なボイラ用の蒸気管が得られる。
According to the first aspect of the present invention, when a pipe made of a high-strength Ni-based alloy that can be used in a facility having a main steam temperature of 700 ° C. is welded or bent, surface cracks are caused. Occurrence can be suppressed.
According to the second aspect of the present invention, a high-frequency heated bending tube in which occurrence of cracks on the surface is suppressed can be obtained.
According to invention of Claim 3, the welded joint pipe by which generation | occurrence | production of the crack of the surface was suppressed is obtained.
According to invention of Claim 4, the steam for boilers which can obtain the main steam pipe and reheat steam pipe with which generation | occurrence | production of the crack of the surface was suppressed, and can be used for the power plant in which steam temperature becomes around 700 degreeC . A tube is obtained.

図1は、本発明の実施形態に係るNi基系合金の管の一例としてのNi基系合金の厚肉大径管の内外面にショット加工と細粒化熱処理を施す概略構成を示す図面である。FIG. 1 is a drawing showing a schematic configuration in which shot processing and fine grain heat treatment are performed on the inner and outer surfaces of a Ni-based alloy thick-walled large-diameter tube as an example of a Ni-based alloy tube according to an embodiment of the present invention. is there. 図2は実施例1の管の製造方法で製管された管の説明図であり、図2Aは断面のミクロ組織の図、図2Bは表面近傍の硬さ分布の説明図である。2A and 2B are explanatory diagrams of a pipe manufactured by the manufacturing method of the pipe of Example 1, FIG. 2A is a cross-sectional microstructure, and FIG. 2B is an explanatory diagram of hardness distribution near the surface. 図3は図2に示す大径管を加工した場合の説明図であり、図3Aは高周波曲げ加工時の加工部の側面図、図3Bは図3AのIIIB−IIIB線断面図、図3Cは図3BのIIIC部分の拡大図、図3Dは溶接時の説明図、図3Eは図3DのIIIE−IIIE線断面図である。3 is an explanatory view when the large-diameter pipe shown in FIG. 2 is processed, FIG. 3A is a side view of a processing portion during high-frequency bending, FIG. 3B is a cross-sectional view taken along the line IIIB-IIIB in FIG. 3A, and FIG. FIG. 3D is an enlarged view of the IIIC portion of FIG. 3B, FIG. 3D is an explanatory view during welding, and FIG. 3E is a cross-sectional view taken along the line IIIE-IIIE of FIG. 図4は従来技術における機械加工時の厚肉大径管の説明図であり、図4Aは材料表面のミクロ組織の観察図、図4Bは厚肉大径管の肉厚方向の硬さ分布のグラフである。FIG. 4 is an explanatory diagram of a thick-walled large-diameter pipe during machining in the prior art, FIG. 4A is an observation diagram of the microstructure of the material surface, and FIG. 4B is a hardness distribution in the thickness direction of the thick-walled large-diameter pipe. It is a graph. 図5は図4に示す大径管を加工した場合の説明図であり、図5Aは高周波曲げ加工時の加工部の側面図、図5Bは図5AのVB−VB線断面図、図5Cは図5BのVC部分の拡大図、図5Dは溶接時の説明図、図5Eは図5DのVE−VE線断面図である。5 is an explanatory view when the large-diameter pipe shown in FIG. 4 is machined. FIG. 5A is a side view of a machined portion during high-frequency bending, FIG. 5B is a cross-sectional view taken along the line VB-VB in FIG. 5A, and FIG. FIG. 5D is an enlarged view of a VC portion in FIG. 5B, FIG. 5D is an explanatory view at the time of welding, and FIG. 5E is a cross-sectional view taken along the line VE-VE in FIG.

次に図面を参照しながら、本発明の実施の形態の具体例(以下、実施例と記載する)を説明するが、本発明は以下の実施例に限定されるものではない。
なお、以下の図面を使用した説明において、理解の容易のために説明に必要な部材以外の図示は適宜省略されている。
Next, specific examples of embodiments of the present invention (hereinafter referred to as examples) will be described with reference to the drawings, but the present invention is not limited to the following examples.
In the following description using the drawings, illustrations other than members necessary for the description are omitted as appropriate for easy understanding.

図1は、本発明の実施形態に係るNi基系合金の管の一例としてのNi基系合金の厚肉大径管の内外面に対してショット加工と細粒化熱処理を施す概略構成を示す図面である。
本発明の実施例1のNi基系合金の管の製造方法では、Ni基系合金からなる熱間押出或いは鍛造穴繰りで厚肉大径管1を製管する。
次に、製管した厚肉大径管1において、管1或いはショットノズル2を相対的に回転させながら、管1或いはショットノズル2を管長手方向に相対的に移動させ、管1の内外表面の全面を硬化処理の一例としてのショットピーニング加工による管内外表面ショット加工処理により管1内外表面近傍に高エネルギー密度の加工層3を形成させる。すなわち、ショット加工処理により、管1の表面近傍に、転位(線状の結晶欠陥)が高密度に分布した加工層3が形成される。
次に、管材全体に再結晶熱処理を行う。
FIG. 1 shows a schematic configuration in which shot processing and fine grain heat treatment are performed on the inner and outer surfaces of a Ni-based alloy thick-walled large-diameter tube as an example of a Ni-based alloy tube according to an embodiment of the present invention. It is a drawing.
In the method for producing a Ni-based alloy pipe according to Example 1 of the present invention, the thick large-diameter pipe 1 is produced by hot extrusion or forging boring made of a Ni-based alloy.
Next, the tube 1 or the shot nozzle 2 is relatively moved in the longitudinal direction of the pipe 1 while the tube 1 or the shot nozzle 2 is relatively rotated in the thick large-diameter pipe 1 manufactured, and the inner and outer surfaces of the pipe 1 are moved. A high energy density processing layer 3 is formed in the vicinity of the inner and outer surfaces of the tube 1 by shot processing of the inner and outer surfaces of the tube by shot peening as an example of the curing process. That is, by the shot processing, a processed layer 3 in which dislocations (linear crystal defects) are distributed with high density is formed near the surface of the tube 1.
Next, recrystallization heat treatment is performed on the entire tube material.

ショットピーニングに用いる粒子は、硬質で効果のあるものであれば、その材質、形状は問われないが、ショット加工層3は0.5mm以上、管1の表面からの深さ0.3mm以上までの範囲では硬さはほぼ一定であり、且つ管1の内外面の全面に均一に形成されることが好ましい。一例として、高強度Ni基系合金としてのHR6Wを使用した場合、ショット用粒子としてマルテングリットMG−120を使用し、照射時間を1分、照射圧力を0.4MPaとすると、0.5mm以上、管1の表面からの深さ0.3mm以上までの範囲では硬さはほぼ一定であり、且つ管1の内外面の全面に均一に形成された。   As long as the particles used for shot peening are hard and effective, the material and shape thereof are not limited, but the shot processing layer 3 is 0.5 mm or more and the depth from the surface of the tube 1 is 0.3 mm or more. In this range, it is preferable that the hardness is substantially constant and is uniformly formed on the entire inner and outer surfaces of the tube 1. As an example, when HR6W is used as a high-strength Ni-based alloy, when using Martensit MG-120 as the particles for shot, the irradiation time is 1 minute, and the irradiation pressure is 0.4 MPa, 0.5 mm or more, The hardness was almost constant in the range from the surface of the tube 1 to a depth of 0.3 mm or more, and was uniformly formed on the entire inner and outer surfaces of the tube 1.

再結晶熱処理の温度および時間は、各材料の1/2融点温度以上、固溶化処理温度以下、且つ肉厚内部結晶粒の成長しない再結晶温度領域に設定されている。一例として、高強度Ni基系合金としてのHR6Wを使用した場合、1/2融点温度である800℃以上、固溶化処理温度である1220℃以下、且つ、肉厚内部結晶粒の成長しない再結晶温度領域である1050℃〜1200℃を満足するように、1100〜1150℃で、0.5〜1時間とすることが好ましい。   The temperature and time of the recrystallization heat treatment are set to a recrystallization temperature region in which each material has a melting point not lower than ½ melting point and not higher than the solution treatment temperature, and thick internal crystal grains do not grow. As an example, when HR6W is used as a high-strength Ni-based alloy, recrystallization with a 1/2 melting point temperature of 800 ° C. or higher, a solution treatment temperature of 1220 ° C. or lower, and a thick internal crystal grain does not grow. In order to satisfy the temperature range of 1050 ° C. to 1200 ° C., it is preferably 1100 to 1150 ° C. and 0.5 to 1 hour.

図2は実施例1の管の製造方法で製管された管の説明図であり、図2Aは断面のミクロ組織の図、図2Bは表面近傍の硬さ分布の説明図である。
また、ショット加工および再結晶熱処理を行った後のNi基系大径管1(例えばHR6W)の断面ミクロ組織及び表面近傍硬さ分布の結果をそれぞれ図2に示す。
なお、図2は、図4と同様に、高強度Ni基系合金としてのHR6Wで作製された、直径350mm、厚さ40mmの大径管において、図2Aは、光学顕微鏡で100倍で撮影したものであり、図2Bは、大径管周方向に輪切り切断して、その断面の外表面から内表面までのビッカース硬さを測定したものである。
2A and 2B are explanatory diagrams of a pipe manufactured by the manufacturing method of the pipe of Example 1, FIG. 2A is a cross-sectional microstructure, and FIG. 2B is an explanatory diagram of hardness distribution near the surface.
Further, FIG. 2 shows the results of the cross-sectional microstructure and the near-surface hardness distribution of the Ni-based large-diameter tube 1 (for example, HR6W) after the shot processing and the recrystallization heat treatment, respectively.
2 is a large-diameter tube having a diameter of 350 mm and a thickness of 40 mm made of HR6W as a high-strength Ni-based alloy, as in FIG. 4, and FIG. 2A was photographed at 100 × with an optical microscope. FIG. 2B is a diagram in which the Vickers hardness from the outer surface to the inner surface of the cross section is measured by cutting a ring in the circumferential direction of the large diameter pipe.

この結果から、Ni基系大径管1の表面には、高エネルギー密度のショット加工層3の形成およびその後の再結晶熱処理により、厚さ0.3mm以上の細粒組織且つ肉厚中央と同等の硬さを有する延性の優れた表面層4の形成が確認された。従来法における機械加工仕上げ(ショット加工による加工硬化)では、表面近傍の硬さが硬くなるとともに、図4Aに示すように粒径が大きいため、延性が乏しくなっている(割れやすくなっている)。延性の乏しい表面粗粒組織を有する従来のNi基系合金大径管に対して、実施例1の管1では、ショット処理および再結晶熱処理を施したことにより、図2Bに示すように硬さの分布にムラが少なくなるとともに、図2Aに示すように表面近傍で粒径が細かくなっており、表面層4の延性が向上している(割れにくくなっている)。よって、表面延性の優れた細粒組織を有するNi基系大径管1の製品が製造できるようになった。   From this result, the surface of the Ni-based large-diameter tube 1 is equivalent to a fine-grained structure having a thickness of 0.3 mm or more and a wall thickness center by forming a shot processing layer 3 having a high energy density and subsequent recrystallization heat treatment The formation of the surface layer 4 having excellent hardness and excellent ductility was confirmed. In the mechanical finishing (work hardening by shot processing) in the conventional method, the hardness in the vicinity of the surface becomes hard and the particle size is large as shown in FIG. 4A, so the ductility is poor (becomes easy to break). . In the tube 1 of Example 1, the shot treatment and the recrystallization heat treatment were performed on the conventional Ni-based alloy large-diameter tube having a surface coarse grain structure with poor ductility. As shown in FIG. 2A, the particle size is fine in the vicinity of the surface and the ductility of the surface layer 4 is improved (it is difficult to break). Therefore, a Ni-based large-diameter tube 1 having a fine grain structure with excellent surface ductility can be produced.

図3は図2に示す大径管を加工した場合の説明図であり、図3Aは高周波曲げ加工時の加工部の側面図、図3Bは図3AのIIIB−IIIB線断面図、図3Cは図3BのIIIC部分の拡大図、図3Dは溶接時の説明図、図3Eは図3DのIIIE−IIIE線断面図である。
よって、図3において、実施例1のショット加工および再結晶熱処理を施した表面延性の優れたNi基系大径管1を用いた場合、図3A〜図3Cに示すように高周波曲げ加工を行ったり、図3D、図3Eに示すように溶接を行ったりしても、延性が優れた表面層4により、従来技術のような表面微細割れの発生を抑制でき、高周波によって加熱した曲げ加工或いは溶接を容易に行うことができる。
なお、曲げ加工や溶接後に、最終的には、固溶化処理を行って、析出物(凝集)を拡散させることで、高周波加熱曲げ管や溶接接合管が作製可能である。
3 is an explanatory view when the large-diameter pipe shown in FIG. 2 is processed, FIG. 3A is a side view of a processing portion during high-frequency bending, FIG. 3B is a cross-sectional view taken along the line IIIB-IIIB in FIG. 3A, and FIG. FIG. 3D is an enlarged view of the IIIC portion of FIG. 3B, FIG. 3D is an explanatory view during welding, and FIG. 3E is a cross-sectional view taken along the line IIIE-IIIE of FIG.
Therefore, in FIG. 3, when the Ni-based large-diameter pipe 1 having excellent surface ductility subjected to the shot processing and recrystallization heat treatment of Example 1 is used, high-frequency bending processing is performed as shown in FIGS. 3A to 3C. 3D and 3E, even if welding is performed, the surface layer 4 having excellent ductility can suppress the occurrence of surface microcracking as in the prior art, and bending or welding heated at high frequency. Can be easily performed.
In addition, after bending and welding, a high-frequency heating bent pipe or a welded joint pipe can be finally produced by performing a solution treatment to diffuse precipitates (aggregation).

前述の本願発明の製造方法で作成された管は、主蒸気温度700℃の発電プラントにおけるボイラの主蒸気管や再熱蒸気管に好適に使用可能である。   The pipe created by the above-described manufacturing method of the present invention can be suitably used for a main steam pipe and a reheat steam pipe of a boiler in a power plant having a main steam temperature of 700 ° C.

1…管
2…ショットノズル
3…ショット加工による加工層
4…再結晶熱処理後の表面層
DESCRIPTION OF SYMBOLS 1 ... Tube 2 ... Shot nozzle 3 ... Processed layer 4 by shot processing ... Surface layer after recrystallization heat treatment

Claims (4)

Ni基系合金からなる管を製造する製管工程と、
前記製管工程で製管された管の表面に対して、ショットピーニングによる加工硬化を少なくともショット粒子の照射圧力が0.4MPaで1分間行う加工硬化工程と、
前記加工硬化がされた管を、材料の1/2融点温度以上、且つ、固溶化処理温度以下、且つ、肉厚内部結晶粒の成長しない再結晶温度領域で加熱する再結晶熱処理工程と、
を備えたことを特徴とするNi基系合金の管の製造方法。
A pipe making process for producing a pipe made of a Ni-based alloy;
A work hardening step of performing work hardening by shot peening for at least one shot particle irradiation pressure of 0.4 MPa on the surface of the pipe made in the pipe making step;
A recrystallization heat treatment step of heating the work-hardened tube in a recrystallization temperature region not lower than a melting point temperature of the material and not higher than a solution treatment temperature and in which a thick internal crystal grain does not grow;
A method for producing a Ni-based alloy tube, comprising:
Ni基系合金からなる管を製造する製管工程と、
前記製管工程で製管された管の表面に対して、ショットピーニングによる加工硬化を少なくともショット粒子の照射圧力が0.4MPaで1分間行う加工硬化工程と、
前記加工硬化がされた管を、材料の1/2融点温度以上、且つ、固溶化処理温度以下、且つ、肉厚内部結晶粒の成長しない再結晶温度領域で加熱する再結晶熱処理工程と、
前記再結晶熱処理工程がされた管を用いて高周波によって加熱し、曲げ加工を行う工程と、
を備えたことを特徴とするNi基系合金の高周波加熱曲げ管の製造方法
A pipe making process for producing a pipe made of a Ni-based alloy;
A work hardening step of performing work hardening by shot peening for at least one shot particle irradiation pressure of 0.4 MPa on the surface of the pipe made in the pipe making step;
A recrystallization heat treatment step of heating the work-hardened tube in a recrystallization temperature region not lower than a melting point temperature of the material and not higher than a solution treatment temperature and in which a thick internal crystal grain does not grow;
Heating by high frequency using the tube subjected to the recrystallization heat treatment step , and performing a bending process;
The manufacturing method of the high frequency heating bending pipe | tube of Ni-based alloy characterized by having provided .
Ni基系合金からなる管を製造する製管工程と、
前記製管工程で製管された管の表面に対して、ショットピーニングによる加工硬化を少なくともショット粒子の照射圧力が0.4MPaで1分間行う加工硬化工程と、
前記加工硬化がされた管を、材料の1/2融点温度以上、且つ、固溶化処理温度以下、且つ、肉厚内部結晶粒の成長しない再結晶温度領域で加熱する再結晶熱処理工程と、
前記再結晶熱処理工程がされた管どうし溶接する工程と、
を備えたことを特徴とするNi基系合金の溶接接合管の製造方法
A pipe making process for producing a pipe made of a Ni-based alloy;
A work hardening step of performing work hardening by shot peening for at least one shot particle irradiation pressure of 0.4 MPa on the surface of the pipe made in the pipe making step;
A recrystallization heat treatment step of heating the work-hardened tube in a recrystallization temperature region not lower than a melting point temperature of the material and not higher than a solution treatment temperature and in which a thick internal crystal grain does not grow;
A step of welding the recrystallization heat treatment step to tubes each other,
A method for producing a welded joint tube of a Ni-based alloy, comprising :
Ni基系合金からなる管を製造する製管工程と、
前記製管工程で製管された管の表面に対して、ショットピーニングによる加工硬化を少なくともショット粒子の照射圧力が0.4MPaで1分間行う加工硬化工程と、
前記加工硬化がされた管を、材料の1/2融点温度以上、且つ、固溶化処理温度以下、且つ、肉厚内部結晶粒の成長しない再結晶温度領域で加熱する再結晶熱処理工程と、
前記再結晶熱処理工程がされた管からなるボイラ用の主蒸気管又は再熱蒸気管を作成する工程と、
を備えたことを特徴とするボイラ用の蒸気管の製造方法
A pipe making process for producing a pipe made of a Ni-based alloy;
A work hardening step of performing work hardening by shot peening for at least one shot particle irradiation pressure of 0.4 MPa on the surface of the pipe made in the pipe making step;
A recrystallization heat treatment step of heating the work-hardened tube in a recrystallization temperature region not lower than a melting point temperature of the material and not higher than a solution treatment temperature and in which a thick internal crystal grain does not grow;
A step of creating a main steam pipe or a reheat steam pipe for a boiler comprising the pipe subjected to the recrystallization heat treatment process ;
A method for manufacturing a steam pipe for a boiler.
JP2014145890A 2014-07-16 2014-07-16 Ni-based alloy tube manufacturing method, Ni-based alloy high-frequency heated bending tube manufacturing method, Ni-based alloy welded tube manufacturing method, and boiler steam tube manufacturing method Active JP6434729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014145890A JP6434729B2 (en) 2014-07-16 2014-07-16 Ni-based alloy tube manufacturing method, Ni-based alloy high-frequency heated bending tube manufacturing method, Ni-based alloy welded tube manufacturing method, and boiler steam tube manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014145890A JP6434729B2 (en) 2014-07-16 2014-07-16 Ni-based alloy tube manufacturing method, Ni-based alloy high-frequency heated bending tube manufacturing method, Ni-based alloy welded tube manufacturing method, and boiler steam tube manufacturing method

Publications (2)

Publication Number Publication Date
JP2016023317A JP2016023317A (en) 2016-02-08
JP6434729B2 true JP6434729B2 (en) 2018-12-05

Family

ID=55270372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014145890A Active JP6434729B2 (en) 2014-07-16 2014-07-16 Ni-based alloy tube manufacturing method, Ni-based alloy high-frequency heated bending tube manufacturing method, Ni-based alloy welded tube manufacturing method, and boiler steam tube manufacturing method

Country Status (1)

Country Link
JP (1) JP6434729B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110487832A (en) * 2019-08-29 2019-11-22 西安理工大学 A kind of single crystal super alloy blast recrystallizes the evaluation method of tendency in the process
CN113829005A (en) * 2021-08-30 2021-12-24 江苏圣珀新材料科技有限公司 Processing technology of high-strength nickel-based alloy welded pipe

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040060985A (en) * 2001-11-23 2004-07-06 인테그란 테크놀로지즈 인코포레이티드 Surface treatment of austenitic Ni-Fe-Cr based alloys

Also Published As

Publication number Publication date
JP2016023317A (en) 2016-02-08

Similar Documents

Publication Publication Date Title
Ye et al. Effects of post-processing on the surface finish, porosity, residual stresses, and fatigue performance of additive manufactured metals: a review
JP5029788B1 (en) Austenitic stainless steel
JP4832287B2 (en) Manufacturing method of cold-worked high-strength seamless corrosion-resistant pipe
JP6244938B2 (en) Austenitic stainless steel welded joint
JP5861699B2 (en) Manufacturing method of stepped forging
JP6244939B2 (en) Austenitic stainless steel pipe
EP2060641B1 (en) Austenite-base stainless steel pipe, for boiler, having excellent high-temperature steam oxidation resistance
John Samuel Dilip et al. A new additive manufacturing process based on friction deposition
EP3357605A1 (en) Manufacturing method and post-processing treatment
CN109609747A (en) A kind of homogenization technique of coiled tubing
JPWO2018168687A1 (en) Friction welding method
JP6434729B2 (en) Ni-based alloy tube manufacturing method, Ni-based alloy high-frequency heated bending tube manufacturing method, Ni-based alloy welded tube manufacturing method, and boiler steam tube manufacturing method
Wu et al. Rapid post processing of cold sprayed Inconel 625 by induction heating
JP2016035104A (en) Method for manufacturing stainless steel pipe, and stainless steel pipe
JP2010138474A (en) Method for producing corrosion-resistant member
CN105722630B (en) The welded joint structure of thick-wall large-diameter pipe and its welding procedure method
JP6385195B2 (en) Piercer plug for seamless pipe manufacturing
JP2010000543A (en) Method for suppressing generation of stress corrosion cracking
JP2013044252A (en) Ni-based alloy large member, ni-based alloy welded structure using the same, and method for manufacturing the structure
JP2018034201A (en) Necking method and method for manufacturing duplex stainless steel pipe
JP2016055334A (en) Method of manufacturing bent metallic bar material
KR20180035725A (en) Preparation method of fuel cladding tubes for reduction of crud deposition and reduction method of crud deposition on fuel cladding tubes
JP2876206B1 (en) How to control and prevent carburization and metal dusting
JPS59107068A (en) Treatment in weld zone of nickel alloy
JP2005510627A (en) Surface treatment of austenitic alloys mainly composed of nickel, iron and chromium

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20170712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181109

R150 Certificate of patent or registration of utility model

Ref document number: 6434729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350