JP2016055334A - Method of manufacturing bent metallic bar material - Google Patents

Method of manufacturing bent metallic bar material Download PDF

Info

Publication number
JP2016055334A
JP2016055334A JP2014185575A JP2014185575A JP2016055334A JP 2016055334 A JP2016055334 A JP 2016055334A JP 2014185575 A JP2014185575 A JP 2014185575A JP 2014185575 A JP2014185575 A JP 2014185575A JP 2016055334 A JP2016055334 A JP 2016055334A
Authority
JP
Japan
Prior art keywords
metal strip
processing
temperature
bending
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014185575A
Other languages
Japanese (ja)
Inventor
友三 西本
Yuzo Nishimoto
友三 西本
孝 古吟
Takashi Kogin
孝 古吟
山口 貴志
Takashi Yamaguchi
貴志 山口
博勝 中川
Hirokatsu Nakagawa
博勝 中川
圭司 久布白
Keiji Kubushiro
圭司 久布白
恭兵 野村
Kyohei Nomura
恭兵 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Dai Ichi High Frequency Co Ltd
Original Assignee
IHI Corp
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Dai Ichi High Frequency Co Ltd filed Critical IHI Corp
Priority to JP2014185575A priority Critical patent/JP2016055334A/en
Publication of JP2016055334A publication Critical patent/JP2016055334A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a member surface layer part from cracking in bending processing on a bar material made of Ni-based alloy.SOLUTION: A method of manufacturing a bent metallic bar material in which a bar material made of Ni-base alloy is plastically deformed by heating and clamping the bar material with a clamp arm, and swiveling the bar material by propelling to guide the bar material so that the bar material is curved drawing an arc includes: a step of preparing a processing temperature range map obtained by conducting a tensile strain imparting test using a test-piece manufactured under the same conditions with the bar material and showing a temperature range in which processing can be performed without causing any cracking; a step of determining processing conditions from the map; and a step of performing bending processing so that the processing conditions are met, the processing is carried out at a temperature higher than the allowable processing temperature calculated from the map when the bar material has a first attribute such that it is harder for the bar material to crack at a higher temperature and at a temperature lower than the allowable processing temperature calculated from the map when the bar material has a second attribute such that it is harder for the bar material to break at a lower temperature.SELECTED DRAWING: Figure 1

Description

本発明は、曲げ金属条材の製造方法および曲げ加工装置に係り、特に、ニッケル基合金からなる金属条材を熱間曲げ加工するときに部材表層部に生じることがある割れを防ぐ技術に関する。   The present invention relates to a method for manufacturing a bent metal strip and a bending apparatus, and more particularly to a technique for preventing cracks that may occur in a member surface layer portion when hot bending a metal strip made of a nickel-based alloy.

ニッケル(Ni)基合金からなる金属管は、発電用ボイラの蒸気管などのような厚肉の耐高温高圧部材として、発電所や各種のプラント、工場などの産業施設において今日使用されている。   Metal tubes made of nickel (Ni) -based alloys are used today in industrial facilities such as power plants, various plants, and factories as thick high-temperature, high-pressure, high-pressure members such as steam tubes for power generation boilers.

これらの金属管(本発明の対象部材は管に限られないが、以下、典型的な態様として管を例にとって説明する)は、規格化され予め所定形状になされたエルボやベンド等の異形管が使用される一方で、施工対象に応じて直線状の管を曲げ加工した管(「曲げ管」と言う)も、様々な曲率・管路形状への要求に柔軟に対応できることから広範に使用されている。   These metal pipes (the target member of the present invention is not limited to a pipe, but will be described below as an example of a pipe as a typical embodiment) are standardized and shaped pipes such as elbows and bends that have been previously formed in a predetermined shape. On the other hand, pipes made by bending straight pipes according to the construction object (referred to as “bend pipes”) are widely used because they can flexibly meet the demands for various curvatures and pipe shapes. Has been.

かかる曲げ管を製造するには、一般に、加工対象である直線状の金属管の一部を誘導加熱コイル等によって環状に加熱するとともに、クランプアームによって金属管の誘導加熱コイルより前端側(管先端側)を把持しながら誘導加熱コイルに向けて金属管を押し進める。クランプアームは、支軸を中心として旋回し金属管の進路を弧状に規制するもので、このようなクランプアームによって金属管を把持しながら推進させることで、誘導加熱コイルによって加熱された部分に曲げモーメントが加わり、弧を描くように金属管を連続的に塑性変形させることが出来る。   In order to manufacture such a bent tube, in general, a part of a straight metal tube to be processed is heated in an annular shape by an induction heating coil or the like, and at the front end side of the metal tube induction heating coil (tube tip) by a clamp arm. Side) and push the metal tube toward the induction heating coil. The clamp arm pivots around a support shaft and regulates the path of the metal tube in an arc shape. By pushing the metal tube while gripping the metal tube with such a clamp arm, the clamp arm is bent to the part heated by the induction heating coil. A moment is applied, and the metal tube can be continuously plastically deformed to draw an arc.

また、このような金属条材の曲げ加工に関連する技術を開示するものとして、下記特許文献がある。   Moreover, there is the following patent document as a technique for disclosing a technique related to the bending process of such a metal strip.

特開2014− 34725号公報JP 2014-34725 A 特開2002−178042号公報JP 2002-178042 A 特開2013−158830号公報JP2013-158830A

ところで、かかるNi基合金からなる金属条材は、熱間曲げ加工のときに部材表層部に微細な割れ(亀裂)が生じやすく、これを防ぐため上記特許文献のような提案が従来からなされている。   By the way, the metal strip made of such a Ni-based alloy tends to cause fine cracks (cracks) in the surface layer of the member at the time of hot bending, and proposals such as the above-mentioned patent document have been conventionally made to prevent this. Yes.

例えば特許文献1に記載の発明は、Ni、CrおよびWなどの成分を含むオーステナイト系合金部材について、外表面から5mm深さまでの領域における最高硬さHV0.1(max)と、部材の平均結晶粒径d(μm)とが、式〔HV0.1≦(−1/6)×d+300〕を満すように管理すれば熱間曲げ加工時に亀裂が生じることを防ぐことが出来るとする。   For example, in the invention described in Patent Document 1, an austenitic alloy member containing components such as Ni, Cr and W has a maximum hardness HV0.1 (max) in a region from the outer surface to a depth of 5 mm, and an average crystal of the member If the particle size d (μm) is controlled so as to satisfy the formula [HV0.1 ≦ (−1/6) × d + 300], it is assumed that cracks can be prevented from occurring during hot bending.

ところが、本願発明者らが上記条件を満たすような部材、すなわち、平均結晶粒径d=500μmで硬度180HVであり、〔180≦(−1/6)×500+300=216.7〕となる同様の部材を調製して曲げ試験を行ったところ、部材表層部に亀裂が観察されるものがあり、特許文献1記載の発明では亀裂の発生を必ずしも完全に防ぐことが出来ないことが確認された。   However, the members satisfying the above conditions, that is, the average crystal grain size d = 500 μm, the hardness is 180 HV, and [180 ≦ (−1/6) × 500 + 300 = 216.7] When a member was prepared and subjected to a bending test, it was confirmed that cracks were observed in the surface layer of the member, and the invention described in Patent Document 1 did not necessarily prevent the occurrence of cracks.

また、特許文献3記載の発明は、Ni基合金またはFe−Ni基合金からなる超合金部材を加熱炉内で1175℃以上1250℃未満の温度で加熱した後に(加工硬化層消失工程)曲げ加工を行うことで、部材表層の粒界割れを防止する。しかしながら、本願発明者らが同様の熱処理(1200℃まで加熱)を施した後に熱間曲げを行ったところ、部材表層部の割れを防ぐことは出来なかった。   The invention described in Patent Document 3 is a bending process after heating a superalloy member made of a Ni-based alloy or a Fe-Ni-based alloy in a heating furnace at a temperature of 1175 ° C. or higher and lower than 1250 ° C. (work hardening layer disappearing step). By carrying out, the grain boundary cracking of the member surface layer is prevented. However, when the present inventors performed hot bending after performing the same heat treatment (heating to 1200 ° C.), it was not possible to prevent cracking of the member surface layer portion.

またこの文献記載の発明(特許文献2記載の発明も同様)では、曲げ加工前に所定の正確な温度ですべての加工対象に対して逐一熱処理を行なわなければならない煩わしさがあり、製造工程が増える難がある。このようにNi基合金からなる金属条材に対する従来の割れ防止技術は十分なものとは言えない。   Further, in the invention described in this document (the same is true of the invention described in Patent Document 2), there is an inconvenience that it is necessary to perform heat treatment on all the objects to be processed one by one at a predetermined accurate temperature before the bending process. There is an increasing difficulty. Thus, it cannot be said that the conventional crack prevention technology for the metal strips made of Ni-base alloy is sufficient.

したがって、本発明の目的は、Ni基合金からなる金属条材の熱間曲げ加工にあたって部材表層部に亀裂が発生することをより簡便かつ十分に防ぐことを可能とする点にある。   Accordingly, an object of the present invention is to make it possible to more easily and sufficiently prevent the occurrence of cracks in the member surface layer portion during hot bending of a metal strip made of a Ni-based alloy.

前記課題を解決し目的を達成するため、本発明に係る曲げ金属条材の製造方法は、ニッケル(Ni)基合金からなる金属条材の一部を環状に加熱すると共に、金属条材の加熱部近傍位置を把持可能で且つ当該把持部から一定距離隔てた支軸を中心として旋回可能なクランプアームによって金属条材を把持し、金属条材を材軸方向に推進させることによりクランプアームによる把持部を旋回させ金属条材の少なくとも一部が弧を描いて湾曲するように案内することにより金属条材の加熱部に曲げモーメントを加えて金属条材の少なくとも一部を連続的に湾曲状態に塑性変形させて金属条材を曲げ加工するものであるが、加工温度範囲マップを用意する工程と、当該加工温度範囲マップから加工条件を決定する工程と、当該加工条件を満たすように曲げ加工を行う工程とを含む。   In order to solve the above-described problems and achieve the object, a method for manufacturing a bent metal strip according to the present invention heats a metal strip made of a nickel (Ni) -based alloy in a ring shape and heats the metal strip. The metal strip is gripped by a clamp arm that can grip the vicinity of the section and can be turned around a support shaft that is separated from the gripping section by a certain distance, and is held by the clamp arm by propelling the metal strip in the direction of the axis. By turning the part and guiding it so that at least a part of the metal strip is curved in an arc, a bending moment is applied to the heated portion of the metal strip, so that at least a part of the metal strip is continuously bent. The metal strip is bent by plastic deformation, but the step of preparing a processing temperature range map, the step of determining processing conditions from the processing temperature range map, and the processing conditions are satisfied. And a step of performing bending.

ここで、加工温度範囲マップとは、割れを発生させることなく曲げ加工を行うことが可能な許容加工温度範囲を示すもので、加工すべき金属条材と同一条件で製造した試験片に対して引張ひずみと加熱温度を異ならせた複数回の引張ひずみ付与試験を行い、これらの試験において試験片に割れが発生したか否かを判定することにより得ることが出来る。   Here, the processing temperature range map indicates an allowable processing temperature range in which bending can be performed without causing cracks, and for a test piece manufactured under the same conditions as the metal strip to be processed. It can be obtained by conducting a plurality of tensile strain application tests with different tensile strains and heating temperatures and determining whether or not cracks have occurred in the test pieces in these tests.

また、この加工温度範囲マップから決定される上記加工条件は、温度が高いほど割れ難くなる第一の属性を金属条材が有する場合には加工温度範囲マップから算出した許容加工温度より高い温度で塑性変形を行う一方、温度が低いほど割れ難くなる第二の属性を金属条材が有する場合には加工温度範囲マップから算出した許容加工温度より低い温度で塑性変形を行うことである。   Further, the above processing conditions determined from this processing temperature range map are higher than the allowable processing temperature calculated from the processing temperature range map when the metal strip has a first attribute that becomes harder to break as the temperature increases. On the other hand, when the metal strip has the second attribute that is harder to crack as the temperature is lower, plastic deformation is performed at a temperature lower than the allowable processing temperature calculated from the processing temperature range map.

発明者は長年に亘り多数の条材の曲げ加工を行ってきたが、曲げ加工を行う場合に条材によって加工温度を高くするほど割れが発生し難くなるもの(このような性質を「第一の属性」と称する)と、逆に、加工温度を低くするほど割れが発生し難くなるもの(このような性質を「第二の属性」と称する)とがあることを発見し、加工温度と割れの発生のしやすさ(これを「割れ感受性」と言う)との相関関係は一律に規定することは出来ないことを見出した。   The inventor has been bending a large number of strips for many years. However, when bending is performed, cracks are less likely to occur as the processing temperature is increased by the strips. On the other hand, it is found that there are some which are less likely to crack as the processing temperature is lowered (this property is referred to as “second attribute”). It has been found that the correlation with the ease of cracking (this is called “cracking sensitivity”) cannot be defined uniformly.

一方、上記加工温度と割れ感受性についてどちらの挙動を示すかは、たとえ組成が同じであっても逆の挙動を示すことがあり、条材に含まれる微量元素や曲げ加工の素材となる条材の製造方法の違いなど様々な要因やそれらの組み合わせによって割れ感受性に関する属性が決まると考えられ、その原因を特定することは困難である。   On the other hand, which of the above processing temperatures and cracking susceptibility shows the opposite behavior even if the composition is the same, the trace element contained in the strip material and the strip material used as the material for bending It is considered that the attribute related to cracking sensitivity is determined by various factors such as differences in manufacturing methods and combinations thereof, and it is difficult to specify the cause.

そこで、本発明では曲げ加工を行うにあたって、加工対象と同一の条件で製造された試験片を使用して実際に引張ひずみを付与する試験を行い、加工対象が割れ感受性について上記第一または第二いずれの属性を持つか判別する。なお、「同一条件」とは、成分および製造方法(本発明の製造方法において加工対象となる直線状の条材(例えば直管)の製造方法)が同じであることを意味する。またこの引張ひずみ付与試験では、例えば高周波誘導加熱により加熱しながら試験片に引張ひずみを与え、加工時の熱間曲げ状態を再現する。引張ひずみを与える具体的方法は、試験片を単純に軸方向に引っ張る引張試験によっても良いし、試験片を加工対象と同様に曲げる曲げ試験によっても良い。   Therefore, in the present invention, when bending is performed, a test for actually applying tensile strain is performed using a test piece manufactured under the same conditions as the object to be processed, and the object to be processed is the first or second in terms of crack sensitivity. Determine which attribute it has. The “same conditions” means that the components and the manufacturing method (the manufacturing method of a straight strip (for example, straight pipe) to be processed in the manufacturing method of the present invention) are the same. Further, in this tensile strain application test, for example, tensile strain is applied to the test piece while being heated by high frequency induction heating, and the hot bending state during processing is reproduced. A specific method for applying the tensile strain may be a tensile test in which the test piece is simply pulled in the axial direction, or a bending test in which the test piece is bent in the same manner as the workpiece.

また上記引張ひずみ付与試験は、引張ひずみと加熱温度(試験片の材料温度)を異ならせて複数回(様々な引張ひずみと加熱温度の組み合わせについて)行う。そして、これらの試験において試験片に割れが発生したか否か判定を行い、一方の軸に引張ひずみ(当該試験片に生じさせた最大の引張ひずみの値)を、他方の軸に加熱温度を取った二次元(二軸)グラフに割れが発生したか否かの判定結果をプロットした加工温度範囲マップを得る。   The tensile strain application test is performed a plurality of times (for various combinations of tensile strain and heating temperature) with different tensile strain and heating temperature (material temperature of the test piece). In these tests, it is determined whether or not a crack has occurred in the test piece. Tensile strain (the value of the maximum tensile strain generated in the test piece) is applied to one shaft, and the heating temperature is applied to the other shaft. A processing temperature range map is obtained by plotting the determination result of whether or not a crack has occurred in the taken two-dimensional (biaxial) graph.

この加工温度範囲マップは、割れを発生させることなく曲げ加工を行うことが可能な許容加工温度範囲を示しており(より具体的な詳細は後の実施形態において図面を参照しつつ述べる)、このマップを参照することにより、当該金属条材が、温度が高いほど割れ難くなる第一の属性を有する条材であるか、あるいは、温度が低いほど割れ難くなる第二の属性を有する条材であるかを判別することが出来るとともに、割れを生じさせずに曲げ加工を行うことが可能な限界値を得ることが出来る。この限界値(これが前記「許容加工温度」である)は、当該条材が第一の属性を有する場合には、これより低い温度であると割れが発生する可能性がある下限値であり、当該条材が第二の属性を有する場合には、これより高い温度であると割れが発生する可能性がある上限値となる。   This processing temperature range map shows the allowable processing temperature range in which bending can be performed without causing cracks (more specific details will be described with reference to the drawings in a later embodiment). By referring to the map, the metal strip is a strip having a first attribute that is hard to break as the temperature is high, or a strip having a second attribute that is hard to break as the temperature is low. It is possible to determine whether or not there is a limit value at which bending can be performed without causing cracks. This limit value (this is the “allowable processing temperature”) is a lower limit value that may cause cracking at a temperature lower than this when the strip has the first attribute, When the said strip has the 2nd attribute, it becomes an upper limit which a crack may generate | occur | produce at temperature higher than this.

そして、加工対象(金属条材)に発生することが予想される引張ひずみ(引張ひずみの最大値)に対応する許容加工温度を当該加工温度範囲マップから算出し、前記加工条件として、加工対象が第一の属性を有する場合には当該許容加工温度(下限値)より高い温度で塑性変形を行い、加工対象が第二の属性を有する場合には当該許容加工温度(上限値)より低い温度で塑性変形を行う。なお、加工対象が第一および第二のいずれの属性を有するものであっても、加工時に当該加工対象を曲げられる(塑性変形させられる)温度以上に加熱することは勿論である。また、上記引張ひずみは、加工中に最大の引張ひずみが生じる曲げ外周側の引張ひずみの最大値であり、この値は、曲げ半径の大きさや圧縮曲げを行うか否か、圧縮曲げを行う場合には加工中に加える圧縮力の大きさ等によって異なるが、これらの条件が決まれば算出(予測)することが可能である。   Then, an allowable processing temperature corresponding to a tensile strain (maximum value of tensile strain) that is expected to occur in the processing target (metal strip) is calculated from the processing temperature range map, and the processing target is: When it has the first attribute, plastic deformation is performed at a temperature higher than the permissible processing temperature (lower limit), and when the processing target has the second attribute, at a temperature lower than the permissible processing temperature (upper limit). Perform plastic deformation. Note that, regardless of whether the processing target has the first or second attribute, it is a matter of course that the processing target is heated to a temperature at which the processing target is bent (plastically deformed) or higher. The above tensile strain is the maximum value of the tensile strain on the outer periphery of the bending where the maximum tensile strain occurs during processing. This value is the size of the bending radius and whether or not to perform compression bending. However, it can be calculated (predicted) if these conditions are determined, although it depends on the magnitude of the compressive force applied during processing.

なお、加工温度範囲マップを得るには上述のように引張ひずみ付与試験を実施する必要があるが、試験を一旦実施してマップを得てしまえば、同一の成分・製造方法で製造された金属条材に対しては曲げ加工にあたって熱処理などの前処理を個々の条材に対して逐一行う必要がなくなるため、曲げ金属条材の量産性を高めることが出来る。   In order to obtain the processing temperature range map, it is necessary to carry out the tensile strain application test as described above. Once the test is carried out and the map is obtained, the metal produced with the same components and production method is used. Since it is not necessary to perform pre-treatment such as heat treatment for each strip for each strip, it is possible to increase the mass productivity of the bent metal strip.

また本発明の一態様では、前記金属条材の加熱をコイルによって行い、このコイルが、金属条材の推進方向に順に並ぶように配置した第一のコイル部と第二のコイル部とを含み、曲げ加工のときに、第一のコイル部によって金属条材が加工温度にまで加熱されるように第一のコイル部を第二のコイル部より大きな出力で駆動する。   In one aspect of the present invention, the metal strip is heated by a coil, and the coil includes a first coil portion and a second coil portion that are arranged in order in the propelling direction of the metal strip. During the bending process, the first coil part is driven with a larger output than the second coil part so that the metal strip is heated to the processing temperature by the first coil part.

従来の曲げ加工では、クランプアーム直前の金属管の部分を1ターンの巻線からなるコイルによって単純に加熱するか(後述する図4において2段目のコイル部12bのみを備えたようなコイル構成)、あるいは、複数のコイル部を備えるコイルを使用する場合(例えば後述の図4に示すような2段のコイル部12a,12bからなるコイル構成)であっても従来では、各コイル部への投入電力を特に変えることなく同じ出力で駆動する(各コイル部に同等の電力供給を行う)ことが通常であった。   In the conventional bending process, the portion of the metal tube immediately before the clamp arm is simply heated by a coil consisting of a one-turn winding (a coil configuration having only a second-stage coil portion 12b in FIG. 4 described later) ) Or when a coil having a plurality of coil portions is used (for example, a coil configuration comprising two-stage coil portions 12a and 12b as shown in FIG. 4 described later), It has been usual to drive with the same output without changing the input power (equivalent power supply to each coil unit).

ところが、割れを防ぐと言う新たな観点から従来の加工装置(特にコイル)を検討したところ、金属条材を推進させて行く場合に、コイルの配置領域に進入した初期の段階(予熱段階)でも比較的大きな引張力が条材の曲げ外周側にかかっており、この引張力が割れを引き起こす原因となることがあることが判明した。なお上記のような従来装置の場合、金属条材は、後に図面を参照して述べるように、コイルを通過する直後に温度ピークを迎え、このピークに向かってコイルを通過中温度が上昇し続けるような温度変化を示す(図7中の破線参照)。   However, when considering conventional processing equipment (especially coils) from the new point of view of preventing cracks, when propelling metal strips, even at the initial stage (preheating stage) when entering the coil placement region. It has been found that a relatively large tensile force is applied to the bending outer periphery of the strip, and this tensile force may cause cracking. In the case of the conventional apparatus as described above, as described later with reference to the drawings, the metal strip reaches a temperature peak immediately after passing through the coil, and the temperature continues to rise while passing through the coil toward this peak. Such a temperature change is shown (see the broken line in FIG. 7).

そこで本発明の一態様に係る製造方法では、前述した加工条件(加工温度範囲マップにより決定した温度条件)に基づいて加工することに加えて、コイルの配置構成を変更し、当該コイルが、金属条材の推進方向に順に並ぶように配置した第一のコイル部と第二のコイル部を含むようにし、曲げ加工のときに、第一のコイル部によって金属条材が加工温度にまで加熱されるように第一のコイル部を第二のコイル部より大きな出力で駆動する。別の表現をすれば当該態様に係るコイルは、金属条材の推進方向に向かって後方(クランプアームから遠い側)に配置した第一のコイル部と、先方(クランプアームに近い側)に配置した第二のコイル部とを含み、第一のコイル部を、金属条材の温度を加工温度にまで高める本加熱用コイルとし、第二のコイル部を、第一のコイル部によって高められた金属条材の温度を加工温度に保持する保温用コイルとした。   Therefore, in the manufacturing method according to one aspect of the present invention, in addition to processing based on the above-described processing conditions (temperature conditions determined by a processing temperature range map), the arrangement configuration of the coil is changed, and the coil is made of metal. The first coil part and the second coil part arranged so as to be arranged in order in the propelling direction of the strip are included, and during the bending process, the metal strip is heated to the processing temperature by the first coil part. Thus, the first coil part is driven with a larger output than the second coil part. In other words, the coil according to the aspect is arranged in the first coil portion arranged on the rear side (the side far from the clamp arm) and in the front side (side near the clamp arm) in the propelling direction of the metal strip. The first coil portion is a main heating coil that raises the temperature of the metal strip to the processing temperature, and the second coil portion is enhanced by the first coil portion. It was set as the heat retention coil which hold | maintains the temperature of a metal strip at processing temperature.

このような態様によれば、コイルの配置領域に進行した金属条材は、当初から加工温度に達するように速やかに加熱されこの温度が維持されるから、温度が未だ低い予熱段階で引張力を受けて割れが発生する事態を回避することが出来る。特に、肉厚が大きな条材(例えば厚肉の金属管)を加工するような場合には、肉厚が大きくなればなるほど条材内面(管内面)の温度が上がり難くなるから、従来のコイル構成では温度が十分に上がらないうちに条材が大きな引張力を受けて条材内面に割れが発生しやすくなる。これに対して上記態様に係るコイルによれば、早い段階で条材の内面側まで温度を高めることが出来るから、このような厚肉の条材に生じやすい割れの発生も効果的に防ぐことが出来る。   According to such an aspect, the metal strip that has progressed to the coil placement region is quickly heated so as to reach the processing temperature from the beginning, and this temperature is maintained, so that the tensile force is applied in the preheating stage where the temperature is still low. It is possible to avoid a situation in which cracking occurs. In particular, when processing a strip with a large thickness (for example, a thick metal tube), the temperature of the inner surface of the strip (the inner surface of the tube) is less likely to increase as the thickness increases. In the configuration, the strip material is subjected to a large tensile force before the temperature is sufficiently increased, and cracks are likely to occur on the inner surface of the strip material. On the other hand, according to the coil according to the above aspect, since the temperature can be increased to the inner surface side of the strip material at an early stage, it is possible to effectively prevent the occurrence of such cracks that are likely to occur in the thick strip material. I can do it.

本発明に言う金属条材とは、典型的には管状部材(金属管/中空部材)であるが、これに限られず、様々な断面形状を有する棒状部材(中実部材)なども本発明に言う金属条材に含まれる。また、本発明に言うNi基合金の組成の一例(重量比)を示せば、Niを50%以上、Crを22%、Coを12%、Moを9%それぞれ含み、さらにAlを含む。   The metal strip referred to in the present invention is typically a tubular member (metal tube / hollow member), but is not limited thereto, and rod-shaped members (solid members) having various cross-sectional shapes are also included in the present invention. Included in the metal strip. An example (weight ratio) of the composition of the Ni-based alloy according to the present invention includes 50% or more of Ni, 22% of Cr, 12% of Co, 9% of Mo, and further contains Al.

本発明によれば、Ni基合金からなる金属条材の熱間曲げ加工にあたって部材表層部に亀裂が発生することをより簡便かつ十分に防ぐことが出来る。   ADVANTAGE OF THE INVENTION According to this invention, it can prevent more easily and fully that a crack generate | occur | produces in a member surface layer part in the hot bending process of the metal strip which consists of Ni base alloys.

本発明の他の目的、特徴および利点は、図面に基づいて述べる以下の本発明の実施の形態の説明により明らかにする。なお、本発明はこれら実施の形態に限定されるものではなく、特許請求の範囲に記載の範囲内で種々の変更を行うことができることは当業者に明らかである。また各図中、同一の符号は、同一又は相当部分を示す。   Other objects, features, and advantages of the present invention will become apparent from the following description of embodiments of the present invention described with reference to the drawings. Note that the present invention is not limited to these embodiments, and it will be apparent to those skilled in the art that various modifications can be made within the scope of the claims. Moreover, in each figure, the same code | symbol shows the same or an equivalent part.

図1は、本発明の一実施形態に係る曲げ金属条材(曲げ管)の製造方法の工程を示すフローチャートである。FIG. 1 is a flowchart showing the steps of a method for manufacturing a bent metal strip (bending pipe) according to an embodiment of the present invention. 図2は、試験片を使用して引張ひずみ付与試験を行った結果(第一の属性)を例示する線図(加工温度範囲マップの一例)である。FIG. 2 is a diagram (an example of a processing temperature range map) illustrating a result (first attribute) of performing a tensile strain application test using a test piece. 図3は、別の試験片を使用して引張ひずみ付与試験を行った結果(第二の属性)を例示する線図(加工温度範囲マップの別の一例)である。FIG. 3 is a diagram (another example of a processing temperature range map) illustrating the result (second attribute) of a tensile strain application test using another test piece. 図4は、本発明の一実施形態に係る曲げ加工装置(初期状態)を模式的に示す平面図である。FIG. 4 is a plan view schematically showing a bending apparatus (initial state) according to an embodiment of the present invention. 図5は、前記実施形態に係る曲げ加工装置(加工中の状態)を模式的に示す平面図である。FIG. 5 is a plan view schematically showing the bending apparatus (the state during processing) according to the embodiment. 図6は、前記実施形態に係る曲げ加工装置のコイル配置部(金属管)の断面図(図4のA−A断面)である。FIG. 6 is a cross-sectional view (A-A cross section in FIG. 4) of the coil placement portion (metal tube) of the bending apparatus according to the embodiment. 図7は、前記実施形態に係る曲げ加工装置で加工を行った場合の金属管の外面の温度変化を、従来の加工装置で加工を行った場合と比較して示す線図である。FIG. 7 is a diagram showing a temperature change of the outer surface of the metal tube when the bending is performed by the bending apparatus according to the embodiment as compared with the case where the processing is performed by the conventional processing apparatus. 図8は、前記実施形態に係る曲げ加工装置を使用して図3に示した第一の属性を有する金属管を曲げ加工したときの引張ひずみの変化を、従来の加工装置を使用した場合と比較して示す線図である。FIG. 8 shows the change in tensile strain when the metal pipe having the first attribute shown in FIG. 3 is bent using the bending apparatus according to the embodiment, and the case where the conventional processing apparatus is used. It is a diagram shown in comparison. 図9は、前記実施形態に係る曲げ加工装置で加工を行った場合の金属管の外面の温度変化と内面の温度変化を示す線図である。FIG. 9 is a diagram showing the temperature change of the outer surface of the metal tube and the temperature change of the inner surface when processing is performed by the bending apparatus according to the embodiment. 図10は、従来の曲げ加工装置で加工を行った場合の金属管の外面の温度変化と内面の温度変化を示す線図である。FIG. 10 is a diagram showing a change in temperature of the outer surface of the metal tube and a change in temperature of the inner surface when processing is performed with a conventional bending apparatus.

本発明の一実施形態に係る曲げ金属条材の製造方法は、直線状の金属管(直管)を曲げ加工して曲げ管を製造するものであるが、最初に図1を参照して工程全体について簡単に述べ、その後、各工程についてそれぞれ詳細に説明を行う。   The method for manufacturing a bent metal strip according to an embodiment of the present invention is a method of manufacturing a bent pipe by bending a straight metal pipe (straight pipe). First, referring to FIG. The whole will be briefly described, and then each process will be described in detail.

図1に示すように本方法では、まず、引張ひずみ付与試験を実施することにより加工温度範囲マップを得て(工程S1)、加工対象である金属管の属性を判別する(工程S2)。そして、当該加工対象が第一属性を有する場合には、曲げ加工中に加工対象に発生することが予想される引張ひずみ(曲げ外周側に生じる引張ひずみの最大値)から許容加工温度を当該加工温度範囲マップを使用して求め(工程S3)、これを加工条件として曲げ加工を行う(工程S4)。一方、加工対象が第二属性を有する場合には、同様に、加工対象に生じることが予想される引張ひずみから許容加工温度を加工温度範囲マップを使用して求め(工程S5)、これを加工条件として曲げ加工を行う(工程S6)。以下、各々について具体的に説明する。   As shown in FIG. 1, in this method, first, a processing temperature range map is obtained by performing a tensile strain application test (step S1), and the attribute of the metal tube to be processed is determined (step S2). If the object to be processed has the first attribute, the allowable processing temperature is calculated from the tensile strain expected to occur in the object to be processed during bending (the maximum value of the tensile strain generated on the outer periphery of the bending). A temperature range map is used (step S3), and bending is performed using this as a processing condition (step S4). On the other hand, when the processing target has the second attribute, similarly, an allowable processing temperature is obtained from the tensile strain expected to be generated in the processing target using the processing temperature range map (step S5), and this is processed. Bending is performed as a condition (step S6). Each will be described in detail below.

〔加工条件の決定(S1〜S3,S5)〕
図2〜図3は加工温度範囲マップの一例を示すもので、引張ひずみと材料温度の様々な組み合わせについて割れが発生したか否かの判定結果をプロットしたものである。加工温度範囲マップを得るには、引張ひずみ付与試験を実施する。この試験は、加工対象となる金属管と同一の成分で且つ同一の製造方法で複数本の試験片を作製し、これらの試験片を、様々な温度(例えば850℃〜1150℃)に加熱してそれら各温度下で様々な大きさ(例えば5%〜20%)の引張ひずみを生じさせる引張試験を行う。
[Determination of processing conditions (S1 to S3, S5)]
FIG. 2 to FIG. 3 show examples of processing temperature range maps, and plot the determination results as to whether cracks have occurred for various combinations of tensile strain and material temperature. In order to obtain a processing temperature range map, a tensile strain application test is performed. In this test, a plurality of test pieces having the same components and the same manufacturing method as the metal pipe to be processed are produced, and these test pieces are heated to various temperatures (for example, 850 ° C. to 1150 ° C.). Thus, tensile tests are performed to generate tensile strains of various sizes (for example, 5% to 20%) under the respective temperatures.

そして、各試験片に割れが生じたか否かを判定し、この結果をグラフ上にプロットする。図中○印は割れが発生しなかったことを、×印は割れが発生したことを示しており、各図中の曲線は、割れが発生した場合と割れが発生しなかった場合の境界を示している。これらの図から分かるように、加工対象(試験片)によって温度が高くなるほど割れ難くなるもの(図2/第一の属性)と、温度が高くなると却って割れ易くなるもの(図3/第二の属性)とがある。   Then, it is determined whether or not each test piece is cracked, and the result is plotted on a graph. The circles in the figure indicate that no cracks occurred, and the x marks indicate that cracks occurred. The curves in each figure show the boundary between when cracks occurred and when no cracks occurred. Show. As can be seen from these figures, depending on the object to be processed (test piece), it becomes harder to break as the temperature increases (FIG. 2 / first attribute), and it becomes easier to crack when the temperature becomes higher (FIG. 3 / second). Attribute).

試験片を使用した上記引張ひずみ付与試験を実施することにより、加工対象となる金属管が第一の属性を有するか、あるいは第二の属性を有するかを判別することが出来る。そして、当該金属管が図2に示すような第一の属性を有する場合には、加工対象に発生することが予想される最大引張ひずみに対応する温度を図2の曲線から求め、これを許容加工温度とする。この許容加工温度は、割れを生じさせずに曲げ加工を行うことが可能な下限値であり、この許容加工温度より高い温度で曲げ加工(塑性変形)を行うことを加工条件とする。例えば、当該引張ひずみが7.5%である場合には、許容加工温度は1080℃となり、これより高い温度で曲げ加工することが加工条件となる。   By performing the tensile strain application test using the test piece, it is possible to determine whether the metal pipe to be processed has the first attribute or the second attribute. If the metal tube has the first attribute as shown in FIG. 2, the temperature corresponding to the maximum tensile strain expected to occur in the workpiece is obtained from the curve in FIG. 2, and this is allowed. The processing temperature. This allowable processing temperature is a lower limit value at which bending can be performed without causing cracks, and the processing condition is to perform bending (plastic deformation) at a temperature higher than the allowable processing temperature. For example, when the tensile strain is 7.5%, the allowable processing temperature is 1080 ° C., and bending is performed at a higher temperature.

一方、当該金属管が図3に示すような第二の属性を有する場合には、前記引張ひずみに対応する温度を図3の曲線から求め、これを許容加工温度とする。この許容加工温度は、割れを生じさせずに曲げ加工を行うことが可能な上限値であり、この許容加工温度より低い温度で曲げ加工(塑性変形)を行うことを加工条件とする。例えば、当該引張ひずみが7.5%である場合には、許容加工温度は1020℃となり、これより低い温度で曲げ加工することが加工条件となる。なお、前述したように第一・第二いずれの属性を有する場合であっても加工時に当該金属管を曲げられる(塑性変形させられる)温度以上に加熱することは勿論である。   On the other hand, when the said metal pipe has a 2nd attribute as shown in FIG. 3, the temperature corresponding to the said tensile strain is calculated | required from the curve of FIG. 3, and this is made into allowable process temperature. This allowable processing temperature is an upper limit value at which bending can be performed without causing cracks, and the processing condition is that bending processing (plastic deformation) is performed at a temperature lower than the allowable processing temperature. For example, when the tensile strain is 7.5%, the allowable processing temperature is 1020 ° C., and bending is performed at a lower temperature. Of course, as described above, the metal tube is heated to a temperature at which the metal tube can be bent (plastically deformed) or more at the time of processing even when the first or second attribute is provided.

〔曲げ加工の実施(S4又はS6)〕
図4〜図6は本発明の一実施形態に係る曲げ加工装置を示す平面図であり、曲げ加工は例えば当該装置を使用して行う。
[Perform bending (S4 or S6)]
4-6 is a top view which shows the bending apparatus which concerns on one Embodiment of this invention, and performs a bending process using the said apparatus, for example.

図4〜図6に示すようにこの曲げ加工装置は、加工対象である金属管11の一部を環状に加熱する誘導加熱コイル12と、コイル12に向け金属管11を推進する推進機構14と、金属管11の前方部分を把持する前方クランプ33を有するとともに金属管11の推進に伴い支軸32を中心として回動することにより金属管11に曲げモーメントを付与するクランプアーム31と、金属管11の推進と反対方向の力である引戻力を発生して金属管11に圧縮力を付与する圧縮機構21を備えている。   As shown in FIGS. 4 to 6, this bending apparatus includes an induction heating coil 12 that annularly heats a part of the metal tube 11 to be processed, and a propulsion mechanism 14 that propels the metal tube 11 toward the coil 12. A clamp arm 31 that has a front clamp 33 for holding the front portion of the metal tube 11 and that imparts a bending moment to the metal tube 11 by rotating around the support shaft 32 as the metal tube 11 is propelled; 11 is provided with a compression mechanism 21 that generates a pulling force that is a force in the direction opposite to the propulsion 11 and applies a compressive force to the metal tube 11.

なお、図4〜図6には前後左右上下の方向を示しており、本実施形態ではこれらの方向に基づいて説明を行う。また、図中符号Cは金属管11の中心線を、符号Rは金属管11の曲げ半径を、符号11aは金属管11の内面を、符号11bは金属管11の外面を、符号tは金属管11の肉厚を、符号13は金属管11を案内するガイドローラをそれぞれ示している。   Note that FIGS. 4 to 6 show front, rear, left, right, and up and down directions, and the present embodiment will be described based on these directions. Further, in the figure, symbol C is the center line of the metal tube 11, symbol R is the bending radius of the metal tube 11, symbol 11a is the inner surface of the metal tube 11, symbol 11b is the outer surface of the metal tube 11, and symbol t is the metal. Reference numeral 13 denotes a guide roller for guiding the metal tube 11.

金属管11を推進させる推進機構14は、金属管11の後部を把持する後方クランプ15と、この後方クランプ15を通じて金属管11に前方への推進力を付与する推進駆動部16とを有する。推進駆動部16は、例えば油圧シリンダにより構成する。   The propulsion mechanism 14 that propels the metal tube 11 includes a rear clamp 15 that holds the rear portion of the metal tube 11 and a propulsion drive unit 16 that applies a forward propulsive force to the metal tube 11 through the rear clamp 15. The propulsion drive unit 16 is constituted by, for example, a hydraulic cylinder.

一方、金属管11に圧縮力をかける圧縮機構21は、クランプアーム31の下端部に固定されクランプアーム31の支軸32を中心としてクランプアーム31と一緒に回転する(矢印P4参照)スプロケット24と、このスプロケット24と噛み合うチェーン23と、チェーン23を金属管11の推進方向と逆方向(後方)へ引っ張る引戻力P5を発生する圧縮駆動部22とを有する。圧縮駆動部22は、例えば油圧シリンダにより構成すれば良い。   On the other hand, the compression mechanism 21 that applies a compression force to the metal tube 11 is fixed to the lower end portion of the clamp arm 31 and rotates together with the clamp arm 31 around the support shaft 32 of the clamp arm 31 (see arrow P4). The chain 23 meshes with the sprocket 24, and the compression drive unit 22 that generates a pulling back force P5 that pulls the chain 23 in the direction opposite to the propulsion direction of the metal tube 11 (rearward). The compression drive unit 22 may be constituted by, for example, a hydraulic cylinder.

なお、これら推進機構14および圧縮機構21は、特定の構造に限定されるものではなく、本発明における推進機構14は金属管11を推進可能なものであれば、また、圧縮機構21は金属管11に対して圧縮力を付与可能なものあれば、それぞれ如何なるものであっても良く、図示した構造に限定されない。   Note that the propulsion mechanism 14 and the compression mechanism 21 are not limited to specific structures, and the propulsion mechanism 14 in the present invention is capable of propelling the metal tube 11, and the compression mechanism 21 is a metal tube. Any structure can be used as long as it can apply a compressive force to 11 and is not limited to the illustrated structure.

金属管11を加熱するコイル12は、クランプアーム31の後方に配置する。このコイル12は、誘導加熱コイルからなり金属管11を加工温度(塑性変形させるための温度であり加工中における最高温度)にまで高める本加熱用コイル部12aと、同じく誘導加熱コイルからなり本加熱用コイル部12aによって高められた金属管11の温度を加工温度に保持する保温用コイル部12bとからなる。   The coil 12 that heats the metal tube 11 is disposed behind the clamp arm 31. The coil 12 is composed of an induction heating coil, and a main heating coil portion 12a for raising the metal tube 11 to a processing temperature (a temperature for plastic deformation and a maximum temperature during processing), and also an induction heating coil and a main heating. And a heat retaining coil portion 12b that keeps the temperature of the metal tube 11 raised by the coil portion 12a at the processing temperature.

これらのコイル部12a,12bは共に、高周波電力を供給する電源を含む駆動部(図示せず)によってそれぞれ駆動するが、本加熱用コイル部12aは保温用コイル部12bに比べて高周波電力の投入量を大きくする(本加熱用コイル部12aの電流密度が保温用コイル部12bの電流密度より大きくなるように各コイル部に電流を供給する)。これは、本加熱用コイル部12aによって金属管11の温度を加工温度にまで速やかに高めて後に述べる初期ひずみによる割れを防ぐためである。また、保温用コイル部12bは、本加熱用コイル部12aによって高められた温度を維持するだけ良いから、本加熱用コイル部12aに比べて電力投入量は少なくて良い。具体的な例を述べれば、本加熱用コイル部12aに例えば70%、保温用コイル部12bに例えば30%の電力をそれぞれ投入する。なお、本加熱用コイル部12aおよび保温用コイル部12bは、本実施形態ではそれぞれ1つのコイル部(1ターンの巻線)を備えるものとしたが、これら各コイル部12a,12bは、いずれか一方または双方を複数のコイル部(2ターン以上の巻線)からなるようにしても良い。   Both of these coil parts 12a and 12b are driven by a drive part (not shown) including a power source for supplying high-frequency power, but the heating coil part 12a is supplied with high-frequency power compared to the heat retaining coil part 12b. The amount is increased (current is supplied to each coil portion so that the current density of the main heating coil portion 12a is larger than the current density of the heat retaining coil portion 12b). This is to prevent the crack due to the initial strain described later by quickly raising the temperature of the metal tube 11 to the processing temperature by the main heating coil portion 12a. Further, since the heat retaining coil portion 12b only needs to maintain the temperature raised by the main heating coil portion 12a, the power input amount may be smaller than that of the main heating coil portion 12a. To describe a specific example, for example, 70% of electric power is supplied to the main heating coil portion 12a and 30% of electric power is supplied to the heat retaining coil portion 12b, for example. In addition, although this heating coil part 12a and the heat insulation coil part 12b shall be provided with one coil part (one turn winding) in this embodiment, respectively, these each coil parts 12a and 12b are either One or both may be composed of a plurality of coil portions (windings of two or more turns).

また、曲げ加工直後に金属管11を冷却できるように冷却水を噴射可能な冷却機構(冷却機構自体は図示しないが、当該冷却機構から噴射される冷却水を図5において符号10で示した)をコイル12(保温用コイル部12b)と一体に設けてあり、加工時にはコイル12(保温用コイル部12b)の直ぐ前方の金属管11の外表面11bに向け冷却水10を吹き付け、加熱され曲げられた金属管11を冷却する。   Further, a cooling mechanism capable of injecting cooling water so that the metal pipe 11 can be cooled immediately after bending (the cooling mechanism itself is not shown, but the cooling water injected from the cooling mechanism is indicated by reference numeral 10 in FIG. 5). Is integrally formed with the coil 12 (the heat retaining coil portion 12b), and during processing, the cooling water 10 is sprayed toward the outer surface 11b of the metal tube 11 immediately in front of the coil 12 (the heat retaining coil portion 12b), and heated and bent. The obtained metal tube 11 is cooled.

加工にあたっては、金属管11の後部を後方クランプ15によって、金属管11の前部を前方クランプ33によってそれぞれ把持し、後方クランプ15を介して油圧シリンダ16により金属管11を前方へ推進する(矢印P1参照)。   In processing, the rear portion of the metal tube 11 is held by the rear clamp 15 and the front portion of the metal tube 11 is held by the front clamp 33, and the metal tube 11 is pushed forward by the hydraulic cylinder 16 via the rear clamp 15 (arrow). P1).

金属管11が前方へ推進されると(矢印P2参照)、この推進力P2を受けてクランプアーム31は支軸32を中心として水平に回動し(矢印P3参照)、金属管11を把持している前方クランプ33は支軸32を中心として弧を描くように旋回する。これに伴い、前方クランプ33により把持された金属管11には曲げモーメントが加わり、コイル12によって加熱された部分が次々と曲げられて金属管11が連続的に弧状に塑性変形される(図5参照)。   When the metal tube 11 is propelled forward (see arrow P2), the clamp arm 31 receives the propulsive force P2 and rotates horizontally around the support shaft 32 (see arrow P3) to grip the metal tube 11. The front clamp 33 is pivoted to draw an arc around the support shaft 32. Along with this, a bending moment is applied to the metal tube 11 held by the front clamp 33, the portions heated by the coil 12 are bent one after another, and the metal tube 11 is continuously plastically deformed in an arc shape (FIG. 5). reference).

一方、金属管11(曲げ外周側)の引張ひずみを低減させるため、次のような圧縮曲げを行うことも可能である。   On the other hand, in order to reduce the tensile strain of the metal tube 11 (bending outer peripheral side), the following compression bending can be performed.

金属管11の推進に伴うクランプアーム31の回動により、スプロケット24が回転してチェーン23が巻き取られるが、これに抗する力(後方への引戻力)P5を圧縮駆動部22によってチェーン23及びスプロケット24を介してクランプアーム31にかける。これにより、金属管11に対して材軸方向の圧縮力を付与し、曲げ加工中に金属管11に発生する引張ひずみを低減することが出来る。なお、このような圧縮曲げによれば、引張ひずみを低減することによって割れを防ぐことが出来ることに加え、金属管11の曲げ外周側の減肉(肉厚が薄くなること)を抑制することも可能となる。   The sprocket 24 rotates and the chain 23 is taken up by the rotation of the clamp arm 31 accompanying the propulsion of the metal tube 11, and a force (retracting force backward) P <b> 5 is resisted by the compression drive unit 22. 23 and the sprocket 24, it is applied to the clamp arm 31. Thereby, the compressive force of a material axial direction is provided with respect to the metal pipe 11, and the tensile strain which generate | occur | produces in the metal pipe 11 during a bending process can be reduced. In addition, according to such a compression bending, in addition to being able to prevent a crack by reducing a tensile strain, it suppresses the thinning (thinning thickness becomes thin) of the bending outer periphery side of the metal pipe 11. Is also possible.

図7は、本実施形態に係る曲げ加工装置で加工を行った場合の金属管の外面11bの温度変化を、従来装置で加工を行った場合と比較して示すもので、金属管11の或る点(部分)が、金属管11が推進される(時間が経過する)につれてコイル12に接近していき、コイル12内に進入して加熱され、その後コイル12内から抜け出て冷却水10によって冷却されるまでの温度変化を示している。なお、同図中に符号H1で示した期間は一段目のコイル部を通過している期間を示し、符号H2で示した期間は二段目のコイル部を通過している期間を示している。また、従来装置では1段目のコイル部と2段目のコイル部に同量の電力を投入している。   FIG. 7 shows the temperature change of the outer surface 11b of the metal tube when the bending is performed by the bending apparatus according to the present embodiment in comparison with the case where the processing is performed by the conventional apparatus. As the metal tube 11 is propelled (time elapses), the point (part) approaches the coil 12, enters the coil 12, is heated, and then escapes from the coil 12 and is cooled by the cooling water 10. The temperature change until it is cooled is shown. In addition, the period shown with the code | symbol H1 in the same figure shows the period which has passed the 1st coil part, and the period shown with the code | symbol H2 has shown the period which has passed the 2nd coil part. . In the conventional apparatus, the same amount of power is supplied to the first-stage coil unit and the second-stage coil unit.

この図7に書き入れたように従来の装置(破線)では、未だ十分に温度が上がっていない期間H1において初期ひずみが発生してしまうのに対して、本実施形態の装置(実線)では、初期ひずみが発生するときには金属管の当該部分の温度が十分に上がっており、温度が低い段階で引張力を受けることによる割れ発生を防ぐことが出来るとともに、厚肉管であっても推力の増大を伴うことなく塑性変形させることが出来る。なお、コイルが1段のコイル部(1ターンの巻線)からなる場合も、図7の破線のような温度変化、つまり、コイルを通過中に温度が上昇し続けて温度ピークがコイルを通過する直後になるような温度変化を示す。   As shown in FIG. 7, in the conventional apparatus (broken line), initial strain occurs in the period H1 where the temperature has not been sufficiently increased, whereas in the apparatus (solid line) of the present embodiment, the initial distortion occurs. When strain occurs, the temperature of the relevant part of the metal tube has risen sufficiently, preventing cracking due to tensile force when the temperature is low, and increasing the thrust even for thick-walled tubes. It can be plastically deformed without it. Even when the coil is composed of a single stage coil portion (one turn winding), the temperature changes as shown by the broken line in FIG. 7, that is, the temperature continues to rise while passing through the coil, and the temperature peak passes through the coil. It shows a temperature change just after

また図8は、本実施形態に係る曲げ加工装置を使用して前記図2に示した第一の属性を有する金属管を加工したときの引張ひずみの変化を、従来装置を使用した場合と比較して示すものである。   Further, FIG. 8 compares the change in tensile strain when the metal pipe having the first attribute shown in FIG. 2 is processed using the bending apparatus according to the present embodiment, compared with the case where the conventional apparatus is used. It is shown.

同図に示すように従来の装置(二点鎖線)では、本加熱用コイルによって加工温度(この場合1150℃)にまで加熱されたときには割れ発生の可能性を示す許容加工温度を上回っているものの、引張ひずみが生じ始める初期段階(予熱段階)では許容加工温度を下回っており、割れが生じる虞がある。これに対して、本実施形態の加工装置(一点鎖線)によれば、引張ひずみが生じ始める初期段階においても許容加工温度を上回っており、したがって割れを防ぐことが出来る。   As shown in the figure, in the conventional apparatus (two-dot chain line), when the heating coil is heated to the processing temperature (in this case, 1150 ° C.), it exceeds the allowable processing temperature indicating the possibility of cracking. In the initial stage (preheating stage) where tensile strain begins to occur, the allowable processing temperature is below, and cracking may occur. On the other hand, according to the processing apparatus (one-dot chain line) of this embodiment, the allowable processing temperature is exceeded even in the initial stage where tensile strain starts to occur, and therefore cracking can be prevented.

さらに、図9は肉厚の大きな金属管について本実施形態に係る曲げ加工装置で加工を行った場合の金属管の内外各面11a,11bの温度変化を示すもので、図10は同様の金属管を従来の装置で加工を行った場合の金属管の内外各面11a,11bの温度変化を同様に示すものである。   Furthermore, FIG. 9 shows the temperature change of the inner and outer surfaces 11a and 11b of the metal tube when the metal tube having a large thickness is processed by the bending apparatus according to the present embodiment. FIG. Similarly, the temperature change of the inner and outer surfaces 11a and 11b of the metal tube when the tube is processed by a conventional apparatus is shown.

これら図9および図10から分かるように、本実施形態の装置(図9)によれば、従来装置(図10)に比べて管外面11bと管内面11aの温度差を小さくすることが出来る。肉厚tの大きな管は、外面11bと比べて内面11aの温度が特に十分に上がらず、肉厚tの薄い管と比べて割れが発生しやすくなるが、本実施形態の装置によれば、このような厚肉の管についても従来の装置より割れを良好に防ぐことが出来る。   As can be seen from FIGS. 9 and 10, according to the apparatus of the present embodiment (FIG. 9), the temperature difference between the pipe outer surface 11b and the pipe inner surface 11a can be reduced as compared with the conventional apparatus (FIG. 10). A tube having a large wall thickness t has a particularly high temperature on the inner surface 11a compared to the outer surface 11b, and cracks are likely to occur compared to a tube having a smaller wall thickness t. According to the apparatus of this embodiment, however, Such a thick tube can also be better prevented from cracking than conventional devices.

特に、前述した第二の属性を有する材料は加工温度が高くなると割れが発生するため低い温度での加工が望ましいが、温度が低すぎるとそもそも曲げ加工が不可能となる。厚肉管、例えば40mmを超えるような肉厚の管を加工する場合には管外面11bと管内面11aの温度差が大きくなりやすく、このため特に、外面温度の上限が制限される第二属性の管では内面温度が低過ぎて曲げ加工が出来なくなる事態(管を推し進める推力が大きくなりすぎたり加工中に管の形状を確保することが出来なくなるなど)も生じ得る。   In particular, the material having the second attribute described above is desirably processed at a low temperature because cracking occurs when the processing temperature is high. However, if the temperature is too low, bending cannot be performed in the first place. When processing a thick-walled tube, for example, a tube having a wall thickness exceeding 40 mm, the temperature difference between the tube outer surface 11b and the tube inner surface 11a tends to increase, and therefore, the second attribute that limits the upper limit of the outer surface temperature. In such a pipe, the inner surface temperature is too low to bend (for example, the thrust for pushing the pipe becomes too large or the shape of the pipe cannot be secured during machining).

これに対して、前記実施形態の加工装置(コイル)を使用すれば、すなわち、加工温度範囲マップに基づいて決定した加工条件を使用する本発明の加工方法と、前記コイル12とを併用すれば、このような厚肉管も割れを発生させることなく良好に加工することが可能となる。   On the other hand, if the processing apparatus (coil) of the embodiment is used, that is, if the processing method of the present invention using the processing conditions determined based on the processing temperature range map and the coil 12 are used in combination. Such a thick tube can be processed well without causing cracks.

C 金属管の中心線
R 曲げ半径
11a 金属管の内面
11b 金属管の外面
t 金属管の肉厚
H1 一段目のコイル(部)の通過期間
H2 二段目のコイル(部)の通過期間
11 金属条材(金属管)
12 誘導加熱コイル
12a 本加熱用コイル部
12b 保温用コイル部
13 ガイドローラ
14 推進機構
15 後方クランプ
16 推進駆動部
21 圧縮機構
22 圧縮駆動部
23 チェーン
24 スプロケット
31 クランプアーム
32 支軸
33 前方クランプ
C Center line of metal tube R Bending radius 11a Inner surface of metal tube 11b Outer surface of metal tube t Thickness of metal tube H1 Passing period of first-stage coil (part) H2 Passing period of second-stage coil (part) 11 Metal Strip material (metal pipe)
DESCRIPTION OF SYMBOLS 12 Induction heating coil 12a Main heating coil part 12b Thermal insulation coil part 13 Guide roller 14 Propulsion mechanism 15 Back clamp 16 Propulsion drive part 21 Compression mechanism 22 Compression drive part 23 Chain 24 Sprocket 31 Clamp arm 32 Support axis 33 Front clamp

Claims (2)

ニッケル基合金からなる金属条材の一部を環状に加熱すると共に、
前記金属条材の加熱部近傍位置を把持可能で且つ当該把持部から一定距離隔てた支軸を中心として旋回可能なクランプアームによって前記金属条材を把持し、
前記金属条材を材軸方向に推進させることにより前記クランプアームによる把持部を旋回させ前記金属条材の少なくとも一部が弧を描いて湾曲するように案内することにより前記金属条材の加熱部に曲げモーメントを加えて当該金属条材の少なくとも一部を連続的に湾曲状態に塑性変形させて当該金属条材を曲げ加工する
曲げ金属条材の製造方法であって、
前記金属条材と同一条件で製造した試験片に対して引張ひずみと加熱温度を異ならせた複数回の引張ひずみ付与試験を行ってこれらの試験において試験片に割れが発生したか否かを判定することにより得られた、割れを発生させることなく曲げ加工を行うことが可能な許容加工温度範囲を示す加工温度範囲マップを用意する工程と、
前記加工温度範囲マップから加工条件を決定する工程と、
前記加工条件を満たすように前記曲げ加工を行う工程と
を含み、
前記加工条件は、温度が高いほど割れ難くなる第一の属性を前記金属条材が有する場合には前記加工温度範囲マップから算出した許容加工温度より高い温度で前記塑性変形を行う一方、温度が低いほど割れ難くなる第二の属性を前記金属条材が有する場合には前記加工温度範囲マップから算出した許容加工温度より低い温度で前記塑性変形を行うことである
ことを特徴とする曲げ金属条材の製造方法。
While heating a part of the metal strip made of nickel-based alloy in an annular shape,
The metal strip can be gripped by a clamp arm that can grip a position in the vicinity of the heating portion of the metal strip and can pivot around a support shaft that is spaced from the gripping portion by a certain distance,
The metal strip is heated by propelling the metal strip in the direction of the axis of the shaft to turn the gripping part by the clamp arm and guiding the metal strip to be curved in an arc. A bending metal strip is produced by bending a metal strip by plastically deforming at least a part of the strip continuously into a curved state by applying a bending moment to
The test pieces manufactured under the same conditions as the metal strip are subjected to multiple tensile strain tests with different tensile strain and heating temperature to determine whether or not cracks have occurred in the test pieces in these tests. A step of preparing a processing temperature range map indicating an allowable processing temperature range obtained by performing bending without causing cracks; and
Determining a processing condition from the processing temperature range map;
Performing the bending process so as to satisfy the processing conditions,
When the metal strip has the first attribute that is harder to break as the temperature is higher, the processing condition is that the plastic deformation is performed at a temperature higher than the allowable processing temperature calculated from the processing temperature range map. The bent metal strip is characterized in that when the metal strip has a second attribute that is harder to break as it is lower, the plastic deformation is performed at a temperature lower than an allowable processing temperature calculated from the processing temperature range map. A method of manufacturing the material.
前記金属条材の加熱は、前記金属条材を環状に加熱可能なコイルによって行い、
当該コイルは、前記金属条材の推進方向に順に並ぶように配置した第一のコイル部と第二のコイル部とを含み、
前記曲げ加工のときに、前記第一のコイル部によって前記金属条材が加工温度にまで加熱されるように前記第一のコイル部を前記第二のコイル部より大きな出力で駆動する
請求項1に記載の曲げ金属条材の製造方法。
The heating of the metal strip is performed by a coil capable of heating the metal strip in an annular shape,
The coil includes a first coil portion and a second coil portion arranged in order in the propulsion direction of the metal strip,
The first coil unit is driven with a larger output than the second coil unit so that the metal strip is heated to a processing temperature by the first coil unit during the bending process. A method for producing a bent metal strip as described in 1.
JP2014185575A 2014-09-11 2014-09-11 Method of manufacturing bent metallic bar material Pending JP2016055334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014185575A JP2016055334A (en) 2014-09-11 2014-09-11 Method of manufacturing bent metallic bar material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014185575A JP2016055334A (en) 2014-09-11 2014-09-11 Method of manufacturing bent metallic bar material

Publications (1)

Publication Number Publication Date
JP2016055334A true JP2016055334A (en) 2016-04-21

Family

ID=55756858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014185575A Pending JP2016055334A (en) 2014-09-11 2014-09-11 Method of manufacturing bent metallic bar material

Country Status (1)

Country Link
JP (1) JP2016055334A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114453467A (en) * 2021-12-28 2022-05-10 株洲兆源机电科技有限公司 Open-loop type expanding machine suitable for flat guide bar

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112769A (en) * 1978-02-24 1979-09-03 Daiichi Koshuha Kogyo Kk Compression bending method and apparatus of oestenite stainless steel pipe
JPS55143912U (en) * 1979-03-30 1980-10-15
JPS61111724A (en) * 1984-11-06 1986-05-29 Dai Ichi High Frequency Co Ltd Method for bend work of stainless steel pipe
JPH0422517A (en) * 1990-05-17 1992-01-27 Kubota Corp Method for bending thick wall pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112769A (en) * 1978-02-24 1979-09-03 Daiichi Koshuha Kogyo Kk Compression bending method and apparatus of oestenite stainless steel pipe
JPS55143912U (en) * 1979-03-30 1980-10-15
JPS61111724A (en) * 1984-11-06 1986-05-29 Dai Ichi High Frequency Co Ltd Method for bend work of stainless steel pipe
JPH0422517A (en) * 1990-05-17 1992-01-27 Kubota Corp Method for bending thick wall pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114453467A (en) * 2021-12-28 2022-05-10 株洲兆源机电科技有限公司 Open-loop type expanding machine suitable for flat guide bar
CN114453467B (en) * 2021-12-28 2024-01-02 株洲兆源机电科技有限公司 Open-loop type expanding machine suitable for flat conducting bars

Similar Documents

Publication Publication Date Title
JP5029788B1 (en) Austenitic stainless steel
JP6389697B2 (en) Bending metal pipe manufacturing method, metal pipe bending apparatus and coil
CN104607580A (en) Forging forming technology of aluminum alloy straight-flanked ring with extra-large specification
CN103861888B (en) A kind of preparation method of high-performance copper/composite ti pipe
Haneklaus et al. Tube expansion and diffusion bonding of 316L stainless steel tube-to-tube sheet joints using a commercial roller tube expander
John Samuel Dilip et al. A new additive manufacturing process based on friction deposition
KR20130122975A (en) Method for correcting pipe end of seamless pipe formed from high-cr stainless steel
Furushima et al. Effects of oxidation and surface roughening on drawing limit in dieless drawing process of SUS304 stainless steel microtubes
CN108000003A (en) A kind of preparation method of high-performance nickel-base alloy bare welding filler metal
JP2016055334A (en) Method of manufacturing bent metallic bar material
JP2008062277A (en) Multi-layered welding method of stainless steel tube, and multi-layered weldment
JP6414429B2 (en) Metal tube manufacturing method
Liu et al. Deformation characteristics and performance evolution of superalloy capillary drawn by electrically assisted microforming
JP6434729B2 (en) Ni-based alloy tube manufacturing method, Ni-based alloy high-frequency heated bending tube manufacturing method, Ni-based alloy welded tube manufacturing method, and boiler steam tube manufacturing method
JP2006233311A (en) Method for producing spray-coated steel sheet having excellent corrosion resistance and equipment line for steel sheet
JP5360046B2 (en) Manufacturing method of hot extruded tube
JPWO2011151971A1 (en) Crevice double pipe and its manufacturing method
JP6118714B2 (en) Welded joint structure of thick-walled large-diameter pipe and its welding method
JP6436564B2 (en) Bending metal strip manufacturing method
JP6686803B2 (en) Mouth drawing method and method for producing duplex stainless steel pipe
JP2008307594A (en) Uoe steel tube for line pipe excellent in deformability
JP6012192B2 (en) Bending method for superalloy members
Liu et al. Material Advancements for 700° C A-USC-Power Plants in China
JP2019141864A (en) Squeezing method for end of duplex stainless steel pipe, and production method for duplex stainless steel pipe
CN210208142U (en) Peeling device for titanium alloy wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181107