JP2019141864A - Squeezing method for end of duplex stainless steel pipe, and production method for duplex stainless steel pipe - Google Patents

Squeezing method for end of duplex stainless steel pipe, and production method for duplex stainless steel pipe Download PDF

Info

Publication number
JP2019141864A
JP2019141864A JP2018026572A JP2018026572A JP2019141864A JP 2019141864 A JP2019141864 A JP 2019141864A JP 2018026572 A JP2018026572 A JP 2018026572A JP 2018026572 A JP2018026572 A JP 2018026572A JP 2019141864 A JP2019141864 A JP 2019141864A
Authority
JP
Japan
Prior art keywords
squeezing
temperature
stainless steel
raw tube
duplex stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018026572A
Other languages
Japanese (ja)
Other versions
JP7000907B2 (en
Inventor
黒田 浩一
Koichi Kuroda
浩一 黒田
大作 彌永
Daisaku Yanaga
大作 彌永
一弥 中根
Kazuya Nakane
一弥 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018026572A priority Critical patent/JP7000907B2/en
Publication of JP2019141864A publication Critical patent/JP2019141864A/en
Application granted granted Critical
Publication of JP7000907B2 publication Critical patent/JP7000907B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Metal Extraction Processes (AREA)

Abstract

To provide a squeezing method for the original pipe end of a duplex stainless steel pipe preventing crack without carrying out a solution heat treatment, and to provide a production method for the duplex stainless steel pipe using the squeezing method.SOLUTION: There is provided a squeezing method for the original pipe end of a duplex stainless steel including in mass%, 0.008-0.03% C, 0-1% Si, 0.1-2% Mn, 20-35% Cr, 3-10% Ni, 0-5% Mo, 0-6% W, 0-3% Cu, 0.15-0.40% N, and the balance Fe with impurities. The squeezing method includes a heating process and a squeezing process. In the heating process, the original pipe end is heated to 650°C or more but less than 800°C. In the squeezing process, the pipe end is heated so that the pipe end temperature Tf at squeezing process ending is 400°C or higher and satisfies an expression (1) with respect to a temperature To at squeezing process starting: Tf≥4.4To-2680 (1), and then is squeezed.SELECTED DRAWING: Figure 1

Description

本発明は、二相ステンレス鋼からなる素管の口絞り加工方法及び二相ステンレス鋼管を生産する方法に関する。   The present invention relates to a method for drawing a base pipe made of a duplex stainless steel and a method for producing a duplex stainless steel pipe.

鋼管を所定の寸法に加工する方法として、引抜加工がある。一般的な引抜加工は次のとおりである。初めに、引抜加工される鋼管の素管の一方の端部を加熱する。加熱された素管の一方の端部を圧下して細く(縮径)し、把持しやすい形状にする。素管の一方の端部を圧下して縮径する加工は「口絞り加工」と称される。また、口絞り加工により縮径された一方の端部は「口絞り部」と称される。口絞り部は、ダイスに通される。口絞り部はグリッパと呼ばれる把持機構で把持される。グリッパで口絞り部を把持した後、グリッパを引抜方向に移動して、素管を引き抜く。以上の工程により、引抜加工が実施される。引抜加工の後、口絞り部を切断して製品とされる。   As a method of processing a steel pipe into a predetermined dimension, there is a drawing process. The general drawing process is as follows. First, one end portion of a base pipe of a steel pipe to be drawn is heated. One end of the heated element tube is squeezed down to be thin (reduced diameter) so that it can be easily gripped. The process of reducing the diameter by reducing one end of the raw tube is called “mouth drawing process”. One end portion reduced in diameter by the mouth drawing process is referred to as a “mouth drawing portion”. The mouth restrictor is passed through a die. The aperture stop is gripped by a gripping mechanism called a gripper. After gripping the mouth restrictor with the gripper, the gripper is moved in the pulling direction and the base tube is pulled out. The drawing process is performed through the above steps. After the drawing process, the mouth restrictor is cut into a product.

近年、深井戸の油井や天然ガス井の開発に伴い、高強度及び耐食性に優れた油井管の需要が増加している。そのため、油井管にはフェライト相及びオーステナイト相を有する二相ステンレス鋼管が用いられることがある。   In recent years, with the development of deep well oil wells and natural gas wells, demand for oil well pipes having high strength and excellent corrosion resistance is increasing. Therefore, a duplex stainless steel pipe having a ferrite phase and an austenite phase may be used for the oil well pipe.

二相ステンレス鋼からなる素管を所定の温度範囲に加熱すると、σ相が析出することがある。σ相が析出すると素管のじん性が低下する。そのため、σ相が析出した素管を口絞り加工すると、割れが発生することがある。また、口絞り加工で割れが発生しなくても、引抜加工で割れが発生することがある。そのため、引抜加工前に口絞り加工された素管のσ相を除去するために溶体化処理が実施される。溶体化処理はたとえば、素管を所定の温度まで再加熱し、急冷する。これにより、高強度の二相ステンレス鋼からなる素管を口絞り加工及び引抜加工しても、割れを抑制できる。   When a base tube made of duplex stainless steel is heated to a predetermined temperature range, a σ phase may precipitate. When the sigma phase precipitates, the toughness of the raw tube decreases. For this reason, cracking may occur when the raw tube on which the σ phase is precipitated is drawn. Even if no cracking occurs in the mouth drawing process, a crack may occur in the drawing process. Therefore, a solution treatment is performed in order to remove the σ phase of the raw pipe that has been drawn before the drawing process. In the solution treatment, for example, the raw tube is reheated to a predetermined temperature and rapidly cooled. Thereby, even if a base pipe made of high-strength duplex stainless steel is subjected to mouth drawing and drawing, cracking can be suppressed.

割れを抑制した口絞り加工方法はたとえば、特開2011−194469号公報(特許文献1)に開示されている。   A mouth-drawing method that suppresses cracking is disclosed in, for example, Japanese Patent Application Laid-Open No. 2011-194469 (Patent Document 1).

特許文献1に開示された口絞り加工方法では、引張強度が980MPa以上の高強度の電縫鋼管を用いる。この電縫鋼管は炭素鋼からなる。特許文献1に開示された口絞り方法では、口絞り加工前に、口絞り部を450〜550℃に加熱する。加熱された電縫鋼管をダイスにより口絞り加工する。これにより、電縫鋼管のシーム部の割れを抑制できる、と特許文献1には記載されている。   In the mouth-drawing method disclosed in Patent Document 1, a high-strength ERW steel pipe having a tensile strength of 980 MPa or more is used. This ERW pipe is made of carbon steel. In the squeezing method disclosed in Patent Document 1, the squeezed part is heated to 450 to 550 ° C. before the squeezing process. The heated ERW steel pipe is wrung with a die. Thereby, it is described in patent document 1 that the crack of the seam part of an ERW steel pipe can be suppressed.

特開2011−194469号公報JP 2011-194469 A

しかしながら、特許文献1の口絞り加工方法は、σ相が析出しにくい炭素鋼からなる電縫鋼管を対象とする。そのため、特許文献1の口絞り加工方法を二相ステンレス鋼管に単純に適用することはできない。また、電縫鋼管は、鋼板を円形にし、鋼板の端部同士を溶接により接合する。そのため、特許文献1の炭素鋼を二相ステンレス鋼に代えても、溶接熱によりσ相が発生しやすい。すなわち、特許文献1の口絞り加工方法により加工された二相ステンレス鋼管に対しては溶体化処理が必須となる。溶体化処理を実施すれば、作業工程が1つ増えるため生産効率が低い。   However, the squeezing method disclosed in Patent Document 1 is intended for an electric resistance welded steel pipe made of carbon steel in which the σ phase hardly precipitates. Therefore, the mouth drawing method of Patent Document 1 cannot be simply applied to the duplex stainless steel pipe. Moreover, an electric resistance steel pipe makes a steel plate circular, and joins the edge parts of a steel plate by welding. Therefore, even if the carbon steel of Patent Document 1 is replaced with a duplex stainless steel, a σ phase is easily generated by welding heat. That is, solution treatment is essential for the duplex stainless steel pipe processed by the mouth drawing method of Patent Document 1. If the solution treatment is performed, the number of work steps is increased and thus the production efficiency is low.

さらに、σ相は材料を所定の温度範囲で一定時間保持すると析出する。このσ相が析出する所定の温度範囲(σ相析出温度域)は材料の組成に依存する。そのため、予め口絞り加工対象の材料のσ相析出温度域を調査し、σ相析出温度域外で口絞り加工を実施して素管の割れを抑制することが考えられる。しかしながら、実操業では、σ相析出温度域外で口絞り加工を実施しても素管に割れが発生することがある。   Furthermore, the σ phase is precipitated when the material is held for a certain time in a predetermined temperature range. The predetermined temperature range in which the σ phase precipitates (σ phase precipitation temperature range) depends on the composition of the material. Therefore, it is conceivable that the σ phase precipitation temperature range of the material to be squeezed is investigated in advance, and squeezing is performed outside the σ phase precipitation temperature range to suppress cracking of the raw tube. However, in actual operation, even if the squeezing process is performed outside the σ phase precipitation temperature range, cracks may occur in the raw tube.

本発明の目的は、溶体化処理をしなくても割れを抑制した二相ステンレス鋼管の素管の口絞り加工方法及び二相ステンレス鋼管を生産する方法を提供することである。また、本発明のもう一つの目的は、実操業を考慮した割れを抑制する二相ステンレス鋼管の口絞り加工方法及び二相ステンレス鋼管を生産する方法を提供することである。   An object of the present invention is to provide a method for drawing a base pipe of a duplex stainless steel pipe that suppresses cracking without performing a solution treatment and a method for producing a duplex stainless steel pipe. Another object of the present invention is to provide a method for producing a duplex stainless steel pipe and a method for producing a duplex stainless steel pipe that suppresses cracking in consideration of actual operation.

本実施形態の口絞り加工方法は、質量%で、C:0.008〜0.03%、Si:0〜1%、Mn:0.1〜2%、Cr:20〜35%、Ni:3〜10%、Mo:0〜5%、W:0〜6%、Cu:0〜3%、及び、N:0.15〜0.40%、を含有し、残部はFe及び不純物からなる二相ステンレス鋼の素管の端部の口絞り加工方法である。口絞り加工方法は、加熱工程と、口絞り加工工程と、を含む。加熱工程では、素管の端部を650℃以上、800℃未満に加熱する。口絞り加工工程では、口絞り加工終了時の端部の温度Tfが、400℃以上、かつ、口絞り加工開始時の端部の温度Toに対して式(1)を満たして加熱された端部を口絞り加工する。
Tf ≧ 4.4To−2680 (1)
The mouth-drawing method of this embodiment is mass%, C: 0.008 to 0.03%, Si: 0 to 1%, Mn: 0.1 to 2%, Cr: 20 to 35%, Ni: 3 to 10%, Mo: 0 to 5%, W: 0 to 6%, Cu: 0 to 3%, and N: 0.15 to 0.40%, with the balance being Fe and impurities This is a method of squeezing the end of a duplex stainless steel pipe. The squeezing method includes a heating step and a squeezing step. In the heating step, the end of the raw tube is heated to 650 ° C. or higher and lower than 800 ° C. In the squeezing process, the end temperature Tf at the end of the squeezing process is 400 ° C. or higher, and the end heated to satisfy the formula (1) with respect to the end temperature To at the start of the squeezing process. Mouth drawing part.
Tf ≧ 4.4 To-2680 (1)

本実施形態の二相ステンレス鋼管を生産する方法は、準備工程と、加熱工程と、口絞り加工工程と、冷間引抜加工工程と、を含む。準備工程では、質量%で、C:0.008〜0.03%、Si:0〜1%、Mn:0.1〜2%、Cr:20〜35%、Ni:3〜10%、Mo:0〜5%、W:0〜6%、Cu:0〜3%、及び、N:0.15〜0.40%、を含有し、残部はFe及び不純物からなる二相ステンレス鋼の素管を準備する。加熱工程では、素管の端部を650℃以上、800℃未満に加熱する。口絞り加工工程では、口絞り加工終了時の端部の温度Tfが、400℃以上、かつ、口絞り加工開始時の端部の温度Toに対して式(1)を満たして加熱された端部を口絞り加工する。冷間引抜加工工程では、口絞り加工された素管を冷間引抜加工する。
Tf ≧ 4.4To−2680 (1)
The method for producing the duplex stainless steel pipe of the present embodiment includes a preparation process, a heating process, a mouth drawing process, and a cold drawing process. In the preparation step, C: 0.008 to 0.03%, Si: 0 to 1%, Mn: 0.1 to 2%, Cr: 20 to 35%, Ni: 3 to 10%, Mo in mass%. : 0 to 5%, W: 0 to 6%, Cu: 0 to 3%, and N: 0.15 to 0.40%, with the balance being elemental of duplex stainless steel made of Fe and impurities Prepare the tube. In the heating step, the end of the raw tube is heated to 650 ° C. or higher and lower than 800 ° C. In the squeezing process, the end temperature Tf at the end of the squeezing process is 400 ° C. or higher, and the end heated to satisfy the formula (1) with respect to the end temperature To at the start of the squeezing process. Mouth drawing part. In the cold drawing process, the drawn pipe is cold drawn.
Tf ≧ 4.4 To-2680 (1)

本発明による口絞り加工方法及び二相ステンレス鋼管を生産する方法によれば、溶体化処理をしなくても二相ステンレス鋼管の素管の割れが抑制される。また、本発明による口絞り加工方法及び二相ステンレス鋼管を生産する方法によれば、実操業での二相ステンレス鋼管の素管の割れを抑制できる。   According to the mouth-drawing method and the method for producing a duplex stainless steel pipe according to the present invention, cracking of the base pipe of the duplex stainless steel pipe can be suppressed without solution treatment. Moreover, according to the mouth-drawing method and the method for producing a duplex stainless steel pipe according to the present invention, it is possible to suppress cracking of the base pipe of the duplex stainless steel pipe in actual operation.

図1は、口絞り加工前後の素管の温度と加工割れとの関係を示す図である。FIG. 1 is a diagram showing the relationship between the temperature of the blank tube before and after the squeezing process and the process cracks. 図2は、口絞り加工工程を示す断面図である。FIG. 2 is a cross-sectional view showing a mouth drawing process. 図3は、引抜装置の全体構成図である。FIG. 3 is an overall configuration diagram of the drawing device.

以下、図面を参照して、本発明の実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

本明細書において、「素管」とは引抜加工前の二相ステンレス鋼管を意味する。また、本実施形態の二相ステンレス鋼管は継目無鋼管を対象とする。   In this specification, the “element tube” means a duplex stainless steel tube before drawing. Moreover, the duplex stainless steel pipe of this embodiment is intended for a seamless steel pipe.

σ相の析出挙動は、加熱温度、口絞り加工終了時の素管の温度、口絞り加工後の素管の温度履歴等の複合的な要因により左右される。口絞り加工後の素管の組織中にσ相が一旦析出すれば、次工程の冷間引抜加工において、素管の口絞り部が破断する可能性が高まる。そのため、口絞り加工後の素管の全領域においてσ相の析出を完全に防止することが望ましい。   The precipitation behavior of the σ phase depends on complex factors such as the heating temperature, the temperature of the raw tube at the end of the squeezing process, and the temperature history of the raw tube after the squeezing process. Once the σ phase is precipitated in the structure of the raw pipe after the squeezing process, the possibility that the squeezed part of the raw pipe breaks in the cold drawing process in the next step increases. Therefore, it is desirable to completely prevent the precipitation of the σ phase in the entire region of the raw tube after the squeezing process.

本発明者らは、口絞り加工において二相ステンレス鋼管の素管が割れる原因について検討した。その結果、口絞り加工前後において素管の温度がσ相析出温度未満であれば、σ相の析出が抑制され、二相ステンレス鋼管の素管の割れが抑制できることを見出した。この観点からすれば、予め、口絞り加工対象の材料のσ相析出温度域を調べ、σ相析出温度域外で口絞り加工をすれば素管の割れを抑制できる。σ相析出温度域は、口絞り加工される素管に適当なひずみ量を与えた後、材料を種々の温度に加熱し、組織を観察することで求められる。   The inventors of the present invention have examined the cause of cracking of the base pipe of a duplex stainless steel pipe in mouth drawing. As a result, it was found that if the temperature of the raw pipe before and after the mouth drawing process is lower than the σ phase precipitation temperature, the precipitation of the σ phase is suppressed and the cracking of the raw pipe of the duplex stainless steel pipe can be suppressed. From this point of view, if the σ phase precipitation temperature range of the material to be squeezed is previously examined and squeezed outside the sigma phase precipitation temperature range, cracking of the raw tube can be suppressed. The σ phase precipitation temperature range is obtained by applying an appropriate amount of strain to the raw tube to be drawn and then heating the material to various temperatures and observing the structure.

しかしながら、実操業では、σ相析出温度域外で口絞り加工を実施しても、素管に割れが発生することがある。本発明者らは、このσ相析出温度域外での口絞り加工による素管の割れの原因を検討した。その結果、この原因は次のように考察される。   However, in actual operation, cracks may occur in the raw tube even if the squeezing process is performed outside the σ phase precipitation temperature range. The present inventors examined the cause of cracking of the raw tube due to squeezing outside the σ phase precipitation temperature range. As a result, this cause is considered as follows.

一般に、口絞り加工は複数回に分けて実施される。口絞り加工の際、素管は工具と接触するため工具抜熱により素管の温度は低下する。これは、口絞り加工回数が多いほど顕著となる。また、放冷によっても素管の温度は低下する。そのため、口絞り加工による素管の塑性変形によって材料組織内に導入された格子欠陥の移動が停滞し、材料の回復現象が起こりにくくなる。その結果、素管の累積ひずみが増大し、加工硬化に伴う材料の延性が低下する。これにより、素管に割れが発生し得ると考えられる。要するに、本発明者らは、σ相析出温度域外での口絞り加工であっても、工具抜熱等の様々な要因に起因する実操業条件を考慮して素管の温度を適切に制御しなければ、口絞り加工において素管に割れが発生し得ることを見出した。   Generally, the squeezing process is performed in a plurality of times. At the time of squeezing, the raw tube comes into contact with the tool, so the temperature of the raw tube decreases due to heat removal from the tool. This becomes more prominent as the number of times of squeezing is increased. In addition, the temperature of the raw tube also decreases due to cooling. For this reason, the movement of lattice defects introduced into the material structure is stagnated due to plastic deformation of the raw pipe by the squeezing process, and the material recovery phenomenon is less likely to occur. As a result, the accumulated strain of the raw tube increases and the ductility of the material accompanying work hardening decreases. Thereby, it is thought that a crack may generate | occur | produce in a raw tube. In short, the present inventors appropriately control the temperature of the raw tube in consideration of the actual operation conditions caused by various factors such as tool heat removal even in the squeezing process outside the σ phase precipitation temperature range. If it is not, it has been found that cracks can occur in the raw pipe in the mouth drawing process.

続いて、本発明者らは口絞り加工又は引抜加工において二相ステンレス鋼管の素管が割れる原因をさらに詳細に調査した。その結果、次の知見を得た。口絞り加工又は引抜加工において、二相ステンレス鋼管の素管に割れが発生するか否かの境界に関して、素管の加熱温度、すなわち口絞り加工前(開始時)の素管の温度と、口絞り加工後(終了時)の素管の温度とに所定の関係があり、単に口絞り加工前後で素管の温度がσ相析出温度域外であればよいのではなく、この所定の関係を考慮して素管の温度を制御する必要がある。要するに、素管の割れを抑制できる口絞り加工前の素管の温度及び口絞り加工後の素管の温度は一定値ではなく、口絞り加工後の素管の温度は口絞り加工前の素管の温度に対応する。この点について具体的に説明する。   Subsequently, the present inventors investigated in more detail the cause of the breakage of the duplex stainless steel pipe in mouth drawing or drawing. As a result, the following knowledge was obtained. With regard to the boundary of whether or not cracking occurs in the duplex stainless steel pipe in the drawing or drawing process, the heating temperature of the blank, that is, the temperature of the blank before the drawing (at the start) and the mouth There is a predetermined relationship with the temperature of the tube after drawing (at the end), and it is not necessary that the temperature of the tube is just outside the sigma phase precipitation temperature range before and after mouth drawing. Therefore, it is necessary to control the temperature of the raw tube. In short, the temperature of the tube before squeezing and the temperature of the tube after squeezing that can suppress cracking of the stub tube are not constant values, and the temperature of the tube after squeezing is the same as that before squeezing. Corresponds to tube temperature. This point will be specifically described.

後述する実施例に示すように、本発明者らは、二相ステンレス鋼管の素管の端部を加熱し(加熱工程)、加熱された素管の端部を口絞り加工した(口絞り加工工程)。その後、口絞り加工された素管を冷間で引抜加工し(引抜加工工程)、二相ステンレス鋼管を製造した。そして、口絞り加工工程中又は引抜加工工程中に素管に割れが発生したか否かを目視観察及びミクロ組織観察により確認した。試験条件の詳細については、後述の実施例で述べるため、ここでは省略する。   As shown in Examples described later, the present inventors heated the end of a base pipe of a duplex stainless steel pipe (heating process), and squeezed the end of the heated base pipe (mouth squeezing process). Process). Thereafter, the drawn pipe was cold drawn (drawing process) to produce a duplex stainless steel pipe. Then, it was confirmed by visual observation and microstructural observation whether cracks occurred in the raw tube during the mouth drawing process or the drawing process. Details of the test conditions will be described in the examples described later, and will be omitted here.

図1は、口絞り加工前後の素管の温度と加工割れとの関係を示す図である。図1は、後述する実施例の試験結果である。図1中、横軸は口絞り加工開始時の温度To(℃)を示し、縦軸は口絞り加工終了時の温度Tf(℃)を示す。図1中、白丸印は口絞り加工及び引抜加工で素管に割れが発生しなかった結果を示し、黒丸印は口絞り加工又は引抜加工で素管に割れが発生した結果を示す。図1中、白三角印は口絞り加工開始時から口絞り加工終了時までが、20分未満であれば素管に割れは発生しなかったが、20分以上であれば素管に割れが発生した結果を示す。   FIG. 1 is a diagram showing the relationship between the temperature of the blank tube before and after the squeezing process and the process cracks. FIG. 1 shows the test results of examples described later. In FIG. 1, the horizontal axis indicates the temperature To (° C.) at the start of squeezing, and the vertical axis indicates the temperature Tf (° C.) at the end of squeezing. In FIG. 1, white circles indicate the results of no cracks occurring in the pipes during the squeezing and drawing processes, and black circles indicate the results of cracks occurring in the pipes during the squeezing or drawing processes. In FIG. 1, the white triangle mark indicates that no cracking occurred in the raw tube if it was less than 20 minutes from the start of the squeezing process to the end of the squeezing process. Shows the results that occurred.

図1を参照して、後述する実施例の結果に基づき素管に割れが発生しなかった温度域は直線1〜直線4で囲まれる領域である。各直線について説明する。   Referring to FIG. 1, the temperature range in which no cracks occurred in the raw tube based on the results of examples described later is a region surrounded by straight lines 1 to 4. Each straight line will be described.

直線1は、素管に割れが発生しなかった結果(白丸印及び白三角印)と、割れが発生した結果(黒丸印)との境界を表す。なお、白三角印で示す結果では、口絞り加工開始時から20分以上経てば素管に割れが発生したが、実操業では口絞り加工開始時から口絞り加工終了時までを20分未満とすることは可能であるため、白三角印も素管に割れが発生しなかった結果に含める。この直線1を口絞り加工終了時の素管(端部)の温度Tf(℃)と口絞り加工開始時の素管(端部)の温度To(℃)との関数で表すと、以下の式となる。
Tf = 4.4To−2680
The straight line 1 represents the boundary between the result of no cracks in the blank (white circles and white triangles) and the result of cracks (black circles). In the results indicated by white triangle marks, cracks occurred in the raw tube after 20 minutes or more from the start of squeezing, but in actual operation, the time from the start of squeezing to the end of squeezing is less than 20 minutes. Therefore, the white triangle mark is also included in the result of the crack not occurring in the element tube. When the straight line 1 is expressed as a function of the temperature Tf (° C.) of the raw tube (end) at the end of the squeezing process and the temperature To (° C.) of the raw pipe (end) at the start of the squeezing process, It becomes an expression.
Tf = 4.4 To-2680

直線2は、口絞り加工終了時の素管の温度Tfが400℃の線を示す。二相ステンレス鋼管は高強度であるため、口絞り加工終了時の素管の温度Tfが400℃未満であれば、加工中の素管の温度低下を考慮しても、口絞り加工開始時の素管の温度Toが650℃以上となることはない。口絞り加工開始時の素管の温度Toが650℃未満であれば、素管の加工性が低く、素管を所望の外径に縮径することが困難である。したがって、実質的に二相ステンレス鋼管の口絞り加工において、口絞り加工終了時の素管の温度Tfが400℃以下となることはない。直線2は、このことを表している。   A straight line 2 indicates a line where the temperature Tf of the raw tube at the end of the squeezing process is 400 ° C. Since the duplex stainless steel pipe has high strength, if the temperature Tf of the raw pipe at the end of the drawing process is less than 400 ° C., the temperature at the start of the drawing process can be taken into account even if the temperature drop of the raw pipe is taken into consideration. The temperature To of the raw tube does not exceed 650 ° C. If the temperature To of the raw pipe at the start of squeezing is less than 650 ° C., the workability of the raw pipe is low, and it is difficult to reduce the diameter of the raw pipe to a desired outer diameter. Therefore, the temperature Tf of the raw tube at the end of the squeezing process is never 400 ° C. or lower in the squeezing process of the duplex stainless steel pipe. Line 2 represents this.

直線3は、口絞り加工開始時の素管の温度Toが650℃の線を示す。上述と同様に、口絞り加工開始時の素管の温度Toが650℃未満であれば、素管の加工性が低く、素管を所望の外径に縮径することが困難である。口絞り加工開始時の素管の温度Toが650℃未満であっても、口絞り加工は不可能ではないが、高出力のプレス機が必要となり、またプレス機のダイスが早期に消耗しやすくなる。そのため、口絞り加工開始時の素管の温度Toの下限は650℃である。   A straight line 3 indicates a line in which the temperature To of the raw tube at the start of squeezing is 650 ° C. Similarly to the above, if the temperature To of the raw tube at the start of squeezing is less than 650 ° C., the workability of the raw tube is low, and it is difficult to reduce the diameter of the raw tube to a desired outer diameter. Even if the tube To temperature at the start of squeezing is less than 650 ° C, squeezing is not impossible, but a high-power press is required, and the die of the press is likely to be consumed quickly. Become. Therefore, the lower limit of the raw tube temperature To at the start of squeezing is 650 ° C.

直線4は、口絞り加工終了時の素管の温度Tfと口絞り加工開始時の素管の温度Toとの等温線を示す。口絞り加工では、ダイスが素管の端部を圧下する。その際、ダイスの温度は加熱された素管の温度よりも低い。したがって、口絞り加工により素管は抜熱される。換言すれば、口絞り加工終了時の素管の温度Tfが口絞り加工開始時の素管の温度Toよりも大きくなることは原則あり得ない。そのため、直線4は物理的な理由により定まる線である。なお、口絞り加工の際、ダイスを高速に稼働させたり、プレス機の出力を著しく高くすれば、加工発熱により、口絞り加工終了時の素管の温度が口絞り加工開始時の素管の温度よりも高くなる場合がある。しかしながら、本実施形態の口絞り加工方法及び二相ステンレス鋼管を生産する方法では、そのような高速強加工は対象外とする。   A straight line 4 shows an isothermal line between the temperature Tf of the raw tube at the end of the squeezing process and the temperature To of the raw tube at the start of the squeezing process. In the squeezing process, a die presses down the end of the raw tube. At that time, the temperature of the die is lower than the temperature of the heated raw tube. Therefore, the raw tube is extracted by mouth drawing. In other words, it is impossible in principle that the temperature Tf of the raw tube at the end of the squeezing process becomes higher than the temperature To of the raw tube at the start of the squeezing process. Therefore, the straight line 4 is a line determined for physical reasons. If the die is operated at high speed or the output of the press machine is remarkably increased during the squeezing process, the temperature of the tube at the end of the squeeze process will be reduced by the heat generated by the process. May be higher than temperature. However, such high-speed and strong machining is excluded in the mouth drawing method and the method of producing a duplex stainless steel pipe according to this embodiment.

ここで、直線1に着目する。上述したように、素管の割れの原因となるσ相の析出は素管の温度に依存することが知られている。したがって一般に、素管が割れるか否かは、口絞り加工前の素管の温度と口絞り加工後の素管の温度との関係ではなく、口絞り加工前、加工中及び加工後の素管の温度がσ相析出温度域でなければよいと考えられていた。しかしながら、実際には上述したように口絞り加工による素管の材料の延性低下によって、σ相析出温度域外での口絞り加工であっても素管が割れることがある。本発明者らの詳細な検討により、素管に割れが発生するか否かの境界は、口絞り加工終了時の素管の温度Tf及び口絞り加工開始時の素管の温度Toの関数となることが見出された。   Here, pay attention to the straight line 1. As described above, it is known that the precipitation of the σ phase that causes cracks in the raw tube depends on the temperature of the raw tube. Therefore, in general, whether or not the raw tube is broken is not the relationship between the temperature of the raw tube before the squeezing process and the temperature of the raw tube after the squeezing process, but the raw tube before, during, and after the squeezing process. It was thought that the temperature of the sigma was not in the σ phase precipitation temperature range. However, in practice, as described above, due to a decrease in ductility of the material of the raw tube due to the squeezing process, the raw tube may be cracked even in the squeezing process outside the σ phase precipitation temperature range. As a result of detailed examinations by the present inventors, the boundary of whether or not cracking occurs in the raw pipe is a function of the temperature Tf of the raw pipe at the end of squeezing and the temperature To of the raw pipe at the start of squeezing. Was found to be.

たとえば、口絞り加工開始時の素管の温度Toが700℃の場合を見ると、この場合、素管に割れが発生しないための口絞り加工終了時の素管の温度Tfは400℃〜700℃である。一方、口絞り加工開始時の素管の温度Toが750℃の場合を見ると、この場合、素管に割れが発生しないための口絞り加工終了時の素管の温度Tfは約620℃〜約750℃である。このように、口絞り加工前、加工中及び加工後の素管の温度がσ相析出温度域外のある一定の温度範囲であれば素管に割れが発生しないのではなく、口絞り加工前後の素管の温度に相関があり、口絞り加工開始時の素管の温度によって割れの発生を抑制できる口絞り加工終了時の素管の温度が変わることが見出された。   For example, looking at the case where the temperature To of the raw tube at the start of squeezing is 700 ° C., in this case, the temperature Tf of the raw tube at the end of the squeezing process is 400 to 700 ° C. ° C. On the other hand, when the temperature To of the raw tube at the start of the squeezing process is 750 ° C., the temperature Tf of the raw tube at the end of the squeezing process is about 620 ° C. to prevent cracking in the raw tube. About 750 ° C. In this way, if the temperature of the raw pipe before, during and after the squeezing is within a certain temperature range outside the σ phase precipitation temperature range, the raw pipe will not crack, but before and after the squeezing process. It has been found that there is a correlation with the temperature of the raw tube, and the temperature of the raw tube at the end of the drawing process, which can suppress the occurrence of cracking, changes depending on the temperature of the raw tube at the start of the drawing process.

以上の知見に基づいた本実施形態の口絞り加工方法は、質量%で、C:0.008〜0.03%、Si:0〜1%、Mn:0.1〜2%、Cr:20〜35%、Ni:3〜10%、Mo:0〜5%、W:0〜6%、Cu:0〜3%、及び、N:0.15〜0.40%、を含有し、残部はFe及び不純物からなる二相ステンレス鋼の素管の端部の口絞り加工方法である。口絞り加工方法は、加熱工程と、口絞り加工工程と、を含む。加熱工程では、素管の端部を650℃以上、800℃未満に加熱する。口絞り加工工程では、口絞り加工終了時の端部の温度Tfが、400℃以上、かつ、口絞り加工開始時の端部の温度Toに対して式(1)を満たして加熱された端部を口絞り加工する。
Tf ≧ 4.4To−2680 (1)
The squeezing method of this embodiment based on the above knowledge is mass%, C: 0.008 to 0.03%, Si: 0 to 1%, Mn: 0.1 to 2%, Cr: 20 -35%, Ni: 3-10%, Mo: 0-5%, W: 0-6%, Cu: 0-3%, and N: 0.15-0.40%, the balance Is a method of squeezing the end portion of a duplex stainless steel pipe made of Fe and impurities. The squeezing method includes a heating step and a squeezing step. In the heating step, the end of the raw tube is heated to 650 ° C. or higher and lower than 800 ° C. In the squeezing process, the end temperature Tf at the end of the squeezing process is 400 ° C. or higher, and the end heated to satisfy the formula (1) with respect to the end temperature To at the start of the squeezing process. Mouth drawing part.
Tf ≧ 4.4 To-2680 (1)

上述したように、σ相析出温度域外での口絞り加工であっても素管に割れが生じることがある。本発明者らは、この原因が口絞り加工中の材料の延性低下によることを見出した。そして、この材料の延性低下による素管の割れには、口絞り加工開始時の素管の端部の温度と、口絞り加工終了時の素管の端部の温度とが所定の関係(式(1))を有することを見出した。この知見に基づいて口絞り加工前後の二相ステンレス鋼管の素管の温度を制御すれば、後述する実施例に示すように、σ相析出温度域外で口絞り加工を実施するため、σ相を除去する溶体化処理は必要ない。さらに、実操業における口絞り加工中の素管の延性低下をも考慮しているため、素管の割れの発生がさらに抑制される。   As described above, cracks may occur in the raw pipe even in the squeezing process outside the σ phase precipitation temperature range. The present inventors have found that this cause is due to a decrease in ductility of the material during squeezing. For cracking of the pipe due to the ductility reduction of this material, the temperature at the end of the pipe at the start of squeezing and the temperature at the end of the pipe at the end of squeezing have a predetermined relationship (formula (1)). Based on this knowledge, if the temperature of the base tube of the duplex stainless steel pipe before and after the squeezing process is controlled, the sigma phase is changed to perform the squeezing process outside the sigma phase precipitation temperature range as shown in the examples described later. There is no need for a solution treatment to be removed. Furthermore, since the ductility reduction of the pipe during the squeezing process in actual operation is also considered, the occurrence of cracks in the pipe is further suppressed.

好ましくは、上記の口絞り加工方法において、口絞り加工開始時から口絞り加工終了時までが、15分以内である。   Preferably, in the above-described squeezing method, the time from the start of squeezing to the end of squeezing is within 15 minutes.

σ相の析出は材料の温度及びその温度の保持時間に依存する。口絞り加工において、素管の端部全域の温度を正確に把握することは実際上困難である。そのため、素管の端部の一部の領域の温度が、σ相析出温度域に達することも考えられる。したがって、σ相が析出するまでの間に口絞り加工を終了すれば、仮に素管の端部の一部がσ相析出温度域であっても素管の割れを抑制できる。   The precipitation of the σ phase depends on the temperature of the material and the holding time of that temperature. In the squeezing process, it is practically difficult to accurately grasp the temperature of the entire end portion of the raw tube. For this reason, it is conceivable that the temperature of a part of the end portion of the raw tube reaches the σ phase precipitation temperature range. Therefore, if the squeezing process is completed before the σ phase is precipitated, cracking of the raw tube can be suppressed even if part of the end of the raw tube is in the σ phase precipitation temperature range.

好ましくは、口絞り加工する工程では、端部の外径加工度が32%以下である。   Preferably, in the step of squeezing, the outer diameter processing degree of the end portion is 32% or less.

二相ステンレス鋼は高強度であるため、外径加工度が大きすぎればプレス機を高出力にする必要があり、また口絞り加工工具(ダイス)が早期に消耗する。したがって、外径加工度は一定値以下であるのが好ましい。   Since the duplex stainless steel has high strength, if the outer diameter processing degree is too large, it is necessary to increase the output of the press machine, and the mouth drawing tool (dies) is consumed quickly. Therefore, it is preferable that the outer diameter processing degree is not more than a certain value.

本実施形態の二相ステンレス鋼管を生産する方法は、準備工程と、加熱工程と、口絞り加工工程と、冷間引抜加工工程と、を含む。準備工程では、質量%で、C:0.008〜0.03%、Si:0〜1%、Mn:0.1〜2%、Cr:20〜35%、Ni:3〜10%、Mo:0〜5%、W:0〜6%、Cu:0〜3%、及び、N:0.15〜0.40%、を含有し、残部はFe及び不純物からなる二相ステンレス鋼の素管を準備する。加熱工程では、素管の端部を650℃以上、800℃未満に加熱する。口絞り加工工程では、口絞り加工終了時の端部の温度Tfが、400℃以上、かつ、口絞り加工開始時の端部の温度Toに対して式(1)を満たして加熱された端部を口絞り加工する。冷間引抜加工工程では、口絞り加工された素管を冷間引抜加工する。
Tf ≧ 4.4To−2680 (1)
The method for producing the duplex stainless steel pipe of the present embodiment includes a preparation process, a heating process, a mouth drawing process, and a cold drawing process. In the preparation step, C: 0.008 to 0.03%, Si: 0 to 1%, Mn: 0.1 to 2%, Cr: 20 to 35%, Ni: 3 to 10%, Mo in mass%. : 0 to 5%, W: 0 to 6%, Cu: 0 to 3%, and N: 0.15 to 0.40%, with the balance being elemental of duplex stainless steel made of Fe and impurities Prepare the tube. In the heating step, the end of the raw tube is heated to 650 ° C. or higher and lower than 800 ° C. In the squeezing process, the end temperature Tf at the end of the squeezing process is 400 ° C. or higher, and the end heated to satisfy the formula (1) with respect to the end temperature To at the start of the squeezing process. Mouth drawing part. In the cold drawing process, the drawn pipe is cold drawn.
Tf ≧ 4.4 To-2680 (1)

以下、本実施形態の口絞り加工方法について説明する。本実施形態の口絞り加工方法は、加熱工程と、口絞り加工工程と、を含む。   Hereinafter, the mouth drawing method of the present embodiment will be described. The mouth drawing method of this embodiment includes a heating step and a mouth drawing step.

[加熱工程]
加熱工程では、二相ステンレス鋼管の素管の端部を加熱装置により加熱する。加熱する方法は特に限定されないが、通常、インダクションヒータ、ガス加熱等で行われる。素管の端部は、素管の端面から所定の長さの領域を意味する。要するに、素管の端部は、口絞り部に相当する。素管の端部を加熱することにより材料の加工性が向上するため、高強度の二相ステンレス鋼管であっても、口絞り加工できる。
[Heating process]
In the heating step, the end of the base pipe of the duplex stainless steel pipe is heated by a heating device. The heating method is not particularly limited, but is usually performed by an induction heater, gas heating, or the like. The end portion of the raw tube means a region having a predetermined length from the end surface of the raw tube. In short, the end portion of the raw tube corresponds to the mouth restrictor. Since the workability of the material is improved by heating the end of the blank tube, even a high-strength duplex stainless steel tube can be drawn.

素管の端部の加熱温度は、650℃以上、800℃未満である。上述したように、口絞り加工開始時の素管の温度Toが650℃未満であれば、素管の加工性が低く、素管を所望の外径に縮径することが困難である。加熱工程で素管の端部の温度が650℃以上であれば、実際上、口絞り加工開始時の素管の温度が650℃未満となりにくい。したがって、加熱工程での素管の端部の加熱温度の下限は650℃である。なお、口絞り加工開始時の素管の温度Toが650℃未満であっても、口絞り加工は不可能ではないが、高出力のプレス機が必要となり、またプレス機のダイスが早期に消耗しやすくなる。この観点からも、口絞り加工開始時の素管の温度Toの下限は650℃である。後述する実施例に基づき、口絞り加工開始時の素管の温度Toが800℃以上であれば、σ相が析出しやすくなる。加熱工程で素管の端部の温度が800℃未満であれば、実際上、口絞り加工開始時の素管の温度が800℃以上となることは原則ない。したがって、加熱工程での素管の端部の加熱温度の上限は800℃である。好ましくは、加熱工程での素管の端部の加熱温度の上限は750℃である。口絞り加工開始時の素管の温度Toは低い方がσ相が析出しにくくなるからである。   The heating temperature at the end of the raw tube is 650 ° C. or higher and lower than 800 ° C. As described above, if the temperature To of the raw tube at the start of squeezing is less than 650 ° C., the workability of the raw tube is low, and it is difficult to reduce the diameter of the raw tube to a desired outer diameter. If the temperature of the end portion of the raw tube is 650 ° C. or higher in the heating process, the temperature of the raw tube at the start of squeezing process is practically less than 650 ° C. Therefore, the lower limit of the heating temperature at the end of the raw tube in the heating step is 650 ° C. Note that even if the tube tube temperature To at the start of the squeezing process is less than 650 ° C., the squeezing process is not impossible, but a high-power press is required, and the press dies are quickly consumed. It becomes easy to do. Also from this viewpoint, the lower limit of the temperature To of the raw pipe at the start of the squeezing process is 650 ° C. Based on an example described later, if the temperature To of the raw tube at the start of squeezing is 800 ° C. or higher, the σ phase is likely to precipitate. If the temperature of the end portion of the raw tube is less than 800 ° C. in the heating process, in practice, the temperature of the raw tube at the start of squeezing does not become 800 ° C. or more in principle. Therefore, the upper limit of the heating temperature at the end of the raw tube in the heating process is 800 ° C. Preferably, the upper limit of the heating temperature at the end of the raw tube in the heating step is 750 ° C. This is because the lower the temperature To of the raw tube at the start of squeezing, the less the σ phase is precipitated.

[口絞り加工工程]
口絞り加工工程は、加熱工程後に実施される。口絞り加工工程では、加熱された素管の端部を口絞り加工する。より具体的には、素管の端部を口絞り加工装置で圧下し、縮径する。口絞り加工装置はたとえば、プレス装置、スウェージング装置等である。
[Mouth drawing process]
The mouth drawing process is performed after the heating process. In the squeezing process, the end of the heated raw tube is squeezed. More specifically, the end portion of the raw tube is reduced by a squeezing device to reduce the diameter. The mouth drawing device is, for example, a press device, a swaging device, or the like.

図2は、口絞り加工工程を示す断面図である。図2は、素管の管軸CA方向に垂直な断面を示す。図2を参照して、素管2の端部を口絞り加工装置1に回転可能に固定する。口絞り加工装置1は複数のダイス3を有する。図2では、口絞り加工装置1が素管2の円周方向に等間隔に配置された8つのダイス3を有する場合を示す。しかしながら、ダイス3の数は8つに限定されない。ダイス3の数は、適宜設定されればよい。   FIG. 2 is a cross-sectional view showing a mouth drawing process. FIG. 2 shows a cross section perpendicular to the tube axis CA direction of the raw tube. Referring to FIG. 2, the end of the raw tube 2 is fixed to the mouth drawing device 1 so as to be rotatable. The aperture drawing apparatus 1 has a plurality of dies 3. FIG. 2 shows a case where the squeezing apparatus 1 has eight dice 3 arranged at equal intervals in the circumferential direction of the raw tube 2. However, the number of dies 3 is not limited to eight. The number of dies 3 may be set as appropriate.

素管2を管軸CA周りに回転させながら、ダイス3が素管2の径方向(図2中の矢印方向)に往復運動する。これにより、素管2の端部が口絞り加工され、縮径される。すなわち、口絞り部が成形される。なお、上述の説明と異なり、ダイス3が素管2の周方向に沿って移動して素管2の端部を口絞り加工してもよい。口絞り部の断面形状は円形であってもよいし、円形でなくてもよい。要するに、口絞り部の断面形状は引抜加工時にグリッパが把持できる形状であればよい。   The die 3 reciprocates in the radial direction of the raw tube 2 (the arrow direction in FIG. 2) while rotating the raw tube 2 around the tube axis CA. Thereby, the end portion of the raw tube 2 is squeezed to reduce the diameter. That is, the mouth restrictor is formed. Note that, unlike the above description, the die 3 may move along the circumferential direction of the raw tube 2 to squeeze the end of the raw tube 2. The cross-sectional shape of the aperture stop may be circular or may not be circular. In short, the cross-sectional shape of the mouthpiece portion may be any shape that can be gripped by the gripper during drawing.

口絞り加工工程は、複数回繰り返してもよい。すなわち、複数回に分けて素管の端部を口絞り加工してもよい。口絞り加工を複数回に分けることで、1回の外径加工度を小さくすることができ、口絞り加工による素管の割れをさらに抑制できる。   The squeezing process may be repeated a plurality of times. That is, the end portion of the raw tube may be squeezed in multiple steps. By dividing the squeezing process into a plurality of times, it is possible to reduce the degree of outer diameter processing at one time, and it is possible to further suppress the cracking of the raw pipe due to the squeezing process.

図1を参照して、上述したように、二相ステンレス鋼管の素管の口絞り加工において、素管の割れの発生が抑制できるのは、直線1〜直線4で囲まれる領域である。図1の直線2に基づけば、素管の端部の割れを抑制するには、口絞り加工終了時の素管の端部の温度Tfは、400℃以上である必要がある。これに加え、図1の直線1に基づけば、口絞り加工終了時の素管の端部の温度Tfは、以下の式(1)も満たしている必要がある。
Tf ≧ 4.4To−2680 (1)
With reference to FIG. 1, as described above, in the mouth drawing process of the base pipe of the duplex stainless steel pipe, the generation of cracks in the base pipe can be suppressed in the region surrounded by the straight lines 1 to 4. Based on the straight line 2 in FIG. 1, the temperature Tf at the end of the raw tube at the end of the squeezing process needs to be 400 ° C. or higher in order to suppress cracking at the end of the raw tube. In addition to this, based on the straight line 1 in FIG. 1, the temperature Tf at the end of the raw tube at the end of the squeezing process must also satisfy the following equation (1).
Tf ≧ 4.4 To-2680 (1)

すなわち、口絞り加工終了時の端部の温度Tfが、400℃以上、かつ、口絞り加工開始時の素管の温度Toに対して式(1)を満たして素管の端部を口絞り加工すれば、σ相の析出に起因する素管の割れを抑制し、さらには、口絞り加工による材料の延性低下に起因する素管の割れをも抑制することができる。また、図1の直線1〜直線4で囲まれる領域内の温度は、後述する実施例に示すようにσ相析出温度域外であるため、σ相の析出が抑制され、σ相を除去するために溶体化処理を実施する必要もない。なお、複数回口絞り加工工程を実施する場合であっても、各口絞り加工工程において口絞り加工終了時の端部の温度Tfが、400℃以上、かつ、口絞り加工開始時の素管の温度Toに対して式(1)を満たす必要がある。   That is, the end temperature Tf at the end of squeezing is 400 ° C. or more, and the end of the base tube is squeezed by satisfying the formula (1) with respect to the temperature To of the base tube at the start of squeezing. If it processes, the crack of the pipe | tube resulting from precipitation of (sigma) phase can be suppressed, and also the crack of the pipe | tube based on the ductile fall of the material by mouth drawing process can also be suppressed. Further, since the temperature in the region surrounded by the straight lines 1 to 4 in FIG. 1 is outside the σ phase precipitation temperature range as shown in the examples described later, the precipitation of the σ phase is suppressed and the σ phase is removed. It is not necessary to carry out a solution treatment. Even when the squeezing process is performed a plurality of times, the end temperature Tf at the end of the squeezing process is 400 ° C. or more in each squeezing process, and the raw tube at the start of the squeezing process It is necessary to satisfy the formula (1) with respect to the temperature To.

後述する実施例に基づいて、口絞り加工工程では、1回の口絞り加工による素管の端部の外径加工度は32%以下であるのが好ましい。二相ステンレス鋼等の高強度の材料は、塑性変形しにくい。そのため、素管の外径加工度が32%よりも大きければ、口絞り加工により素管の端部に割れ等が発生しやすい。したがって、素管の外径加工度は32%以下であるのが好ましい。   Based on the examples described later, in the squeezing process, it is preferable that the outer diameter processing degree of the end portion of the raw tube by one squeezing process is 32% or less. High-strength materials such as duplex stainless steel are difficult to plastically deform. For this reason, if the outer diameter processing degree of the raw pipe is larger than 32%, cracking or the like is likely to occur at the end of the raw pipe due to mouth drawing. Therefore, it is preferable that the outer diameter processing degree of the raw tube is 32% or less.

[加工時間]
σ相の析出は、素管の温度以外にも、素管の温度の保持時間にも依存する。たとえば、二相ステンレス鋼管の素管をあるσ相析出温度に加熱し、その温度を保持したとする。加熱後所定時間は素管にσ相は析出しないが、所定時間を過ぎると素管にσ相が析出する。この所定時間は素管の温度によって変化する。そのため、実操業では、予め口絞り加工する素管の材料のσ相析出温度域を調査し、それに基づいて口絞り加工前後の素管の温度を制御し、σ相の析出を抑制している。
[Machining time]
The precipitation of the σ phase depends not only on the temperature of the raw tube but also on the holding time of the temperature of the raw tube. For example, it is assumed that a base pipe of a duplex stainless steel pipe is heated to a certain σ phase precipitation temperature and the temperature is maintained. The σ phase does not precipitate in the raw tube for a predetermined time after heating, but after the predetermined time, the σ phase precipitates in the raw tube. This predetermined time varies depending on the temperature of the raw tube. Therefore, in actual operation, the σ phase precipitation temperature range of the material of the raw pipe to be squeezed is investigated in advance, and the temperature of the raw pipe before and after the squeezing is controlled based on this to suppress the σ phase precipitation. .

しかしながら、口絞り加工では時々刻々と素管の温度は変化する。また、口絞り加工により導入されるひずみ量は、素管の端部の場所によって異なり、一様ではない。したがって、ある温度及びあるひずみ量におけるσ相の析出条件を把握しても、完全に実操業での口絞り加工の条件を考慮しているとは言えず、操業条件を決定する目安となるに過ぎない。また、あらゆる温度及びひずみ量についてσ相の析出条件を予備調査することは実際上困難である。そのため、素管の端部の一部の領域の温度が、σ相温度域に達することも考えられる。したがって、σ相が析出するまでの間に口絞り加工を終了すれば、仮に素管の端部の一部がσ相析出温度域であっても素管の割れを抑制できる。後述する実施例に基づき、口絞り加工工程では、口絞り加工開始時から口絞り加工終了時までが、20分未満であればよい。しかしながら、実操業上、σ相が析出する時間の直前までよりもある程度余裕がある方が好ましいので、口絞り加工開始時から口絞り加工終了時までが15分以内であるのが好ましい。   However, in the squeezing process, the temperature of the raw tube changes from moment to moment. In addition, the amount of strain introduced by the squeezing process varies depending on the location of the end of the raw tube and is not uniform. Therefore, grasping the precipitation condition of the σ phase at a certain temperature and a certain amount of strain does not completely take into account the conditions of squeezing in actual operation, but it is a guideline for determining the operation condition. Not too much. In addition, it is practically difficult to preliminarily investigate the precipitation conditions of the σ phase for all temperatures and strains. Therefore, it is conceivable that the temperature of a part of the end portion of the raw tube reaches the σ phase temperature range. Therefore, if the squeezing process is completed before the σ phase is precipitated, cracking of the raw tube can be suppressed even if part of the end of the raw tube is in the σ phase precipitation temperature range. In the squeezing process, the time from the start of the squeezing process to the end of the squeezing process may be less than 20 minutes based on the examples described later. However, in actual operation, it is preferable that there is some margin than immediately before the time when the σ phase precipitates, and therefore, it is preferable that the time from the start of the squeezing process to the end of the squeezing process is within 15 minutes.

[二相ステンレス鋼]
本実施形態の口絞り加工方法は、二相ステンレス鋼管の素管の端部の口絞り加工を対象とする。以下、本実施形態の二相ステンレス鋼について説明する。以下の説明において、各成分元素の含有量の「%」は「質量%」を意味する。
[Duplex stainless steel]
The squeezing method of this embodiment is intended for squeezing of the end of the base pipe of a duplex stainless steel pipe. Hereinafter, the duplex stainless steel of this embodiment will be described. In the following description, “%” of the content of each component element means “mass%”.

C:0.008〜0.03%
炭素(C)は、鋼中のオーステナイト相を安定化する。一方、C含有量が高すぎれば、粗大な炭化物が析出しやすくなり、鋼の耐食性、特に耐SCC性が低下する。したがって、C含有量は0.008〜0.03%である。
C: 0.008 to 0.03%
Carbon (C) stabilizes the austenite phase in the steel. On the other hand, if the C content is too high, coarse carbides are likely to precipitate, and the corrosion resistance of the steel, particularly the SCC resistance, is reduced. Therefore, the C content is 0.008 to 0.03%.

Si:0〜1%
シリコン(Si)は、任意元素である。Siは、鋼を脱酸する。Siはさらに、鋼の耐食性を高める。Si含有量が高すぎれば、オーステナイト組織の安定性が低下し、かつ、延性が低下する。したがって、Si含有量は0〜1%である。
Si: 0 to 1%
Silicon (Si) is an optional element. Si deoxidizes steel. Si further increases the corrosion resistance of the steel. If the Si content is too high, the stability of the austenite structure is lowered and the ductility is lowered. Therefore, the Si content is 0 to 1%.

Mn:0.1〜2%
マンガン(Mn)は、鋼を脱酸するとともに、オーステナイト組織を安定化させる。また、Mnは、σ相の析出を抑制しつつ、鋼の強度を高める。一方、Mn含有量が高すぎれば、鋼の耐食性が低下する。したがって、Mn含有量は、0.1〜2%である。
Mn: 0.1 to 2%
Manganese (Mn) deoxidizes steel and stabilizes the austenite structure. Further, Mn increases the strength of the steel while suppressing the precipitation of the σ phase. On the other hand, if the Mn content is too high, the corrosion resistance of the steel decreases. Therefore, the Mn content is 0.1 to 2%.

Cr:20〜35%
クロム(Cr)は鋼の耐食性を高める。一方、Cr含有量が高すぎれば、σ相に代表される金属間化合物が顕著に析出し、鋼の熱間加工性を低下する。したがって、Cr含有量は20〜35%である。
Cr: 20 to 35%
Chromium (Cr) increases the corrosion resistance of steel. On the other hand, if the Cr content is too high, intermetallic compounds typified by the σ phase are remarkably precipitated and the hot workability of the steel is reduced. Therefore, the Cr content is 20 to 35%.

Ni:3〜10%
ニッケル(Ni)はオーステナイト組織を安定化させる。Niはさらに、鋼の耐食性を高める。一方、Ni含有量が高すぎれば、二相ステンレス鋼中のフェライト相の割合が減少する。さらに、σ相に代表される金属間化合物が顕著に析出する。したがって、Ni含有量は3〜10%である。
Ni: 3 to 10%
Nickel (Ni) stabilizes the austenite structure. Ni further enhances the corrosion resistance of the steel. On the other hand, if the Ni content is too high, the proportion of the ferrite phase in the duplex stainless steel decreases. Furthermore, intermetallic compounds represented by the σ phase are remarkably precipitated. Therefore, the Ni content is 3 to 10%.

Mo:0〜5%
モリブデン(Mo)は、任意元素である。Moは、鋼の耐食性及び強度を高める。一方、Mo含有量が高すぎれば、σ相に代表される金属間化合物が顕著に析出する。したがって、Mo含有量は0〜5%である。
Mo: 0 to 5%
Molybdenum (Mo) is an optional element. Mo increases the corrosion resistance and strength of steel. On the other hand, if the Mo content is too high, intermetallic compounds typified by the σ phase are significantly precipitated. Therefore, the Mo content is 0 to 5%.

W:0〜6%
タングステン(W)は、任意元素である。Wは、鋼の耐食性を高める。一方、W含有量が高すぎれば、σ相に代表される金属間化合物が顕著に析出する。したがって、W含有量は0〜6%である。
W: 0-6%
Tungsten (W) is an optional element. W increases the corrosion resistance of steel. On the other hand, if the W content is too high, an intermetallic compound typified by the σ phase precipitates significantly. Therefore, the W content is 0 to 6%.

Cu:0〜3%
銅(Cu)は、任意元素である。Cuはオーステナイト組織を安定化させる。Cuはさらに、フェライト相及びオーステナイト相の境界におけるσ相の生成を抑制する。Cuはさらに、鋼の強度を高める。一方、Cu含有量が高すぎれば、鋼の熱間加工性が低下する。したがって、Cu含有量は0〜3%である。
Cu: 0 to 3%
Copper (Cu) is an optional element. Cu stabilizes the austenite structure. Cu further suppresses the generation of the σ phase at the boundary between the ferrite phase and the austenite phase. Cu further increases the strength of the steel. On the other hand, if Cu content is too high, the hot workability of steel will fall. Therefore, the Cu content is 0 to 3%.

N:0.15〜0.40%
窒素(N)は、オーステナイト組織を安定化させる。Nは、二相ステンレス鋼の熱的安定性、強度及び耐食性を高める。一方、N含有量が高すぎれば、溶接欠陥であるブローホールが発生しやすくなる。さらに、溶接時の熱影響により粗大な窒化物が生成し、鋼の靭性及び耐食性が低下する。したがって、N含有量は0.15〜0.40%である。
N: 0.15-0.40%
Nitrogen (N) stabilizes the austenite structure. N enhances the thermal stability, strength and corrosion resistance of the duplex stainless steel. On the other hand, if the N content is too high, blow holes that are welding defects are likely to occur. Furthermore, coarse nitrides are generated due to the heat effect during welding, and the toughness and corrosion resistance of the steel are reduced. Therefore, the N content is 0.15 to 0.40%.

本実施形態の二相ステンレス鋼の残部は、鉄(Fe)及び不純物からなる。ここでいう不純物は、鋼の原料として利用される鉱石やスクラップ、又は製造過程の環境等から混入される元素をいう。不純物はたとえば、燐(P)、硫黄(S)、アルミニウム(Al)等である。   The balance of the duplex stainless steel according to this embodiment is made of iron (Fe) and impurities. The impurities referred to here are ores and scraps used as raw materials for steel, or elements mixed in from the environment of the manufacturing process. Impurities are, for example, phosphorus (P), sulfur (S), aluminum (Al), and the like.

以上、本実施形態の口絞り加工方法を説明した。続いて、本実施形態の口絞り加工方法を用いた二相ステンレス鋼管を生産する方法を説明する。本実施形態の二相ステンレス鋼管を生産する方法は、準備工程と、加熱工程と、口絞り加工工程と、引抜加工工程と、を含む。   The mouth drawing method of the present embodiment has been described above. Next, a method for producing a duplex stainless steel pipe using the mouth drawing method of this embodiment will be described. The method for producing the duplex stainless steel pipe of the present embodiment includes a preparation process, a heating process, a mouth drawing process, and a drawing process.

[準備工程]
準備工程では、上述した二相ステンレス鋼の素管を準備する。素管は継目無鋼管である。マンネスマン製法、ユジーン製法等により製造された二相ステンレス鋼管の素管を所定の長さに切断し、口絞り加工用の二相ステンレス鋼管の素管を得る。
[Preparation process]
In the preparation step, the above-mentioned duplex stainless steel pipe is prepared. The raw pipe is a seamless steel pipe. A base tube of a duplex stainless steel pipe manufactured by Mannesmann manufacturing method, Eugene manufacturing method, or the like is cut into a predetermined length to obtain a duplex stainless steel tube base tube for mouth drawing.

[加熱工程]
加熱工程は、上述した本実施形態の口絞り加工方法の加熱工程と同じである。そのため、詳細な説明は省略する。
[Heating process]
A heating process is the same as the heating process of the mouth-drawing processing method of this embodiment mentioned above. Therefore, detailed description is omitted.

[口絞り加工工程]
口絞り加工工程は、上述した本実施形態の口絞り加工方法の口絞り加工ステップと同じである。そのため、詳細な説明は省略する。すなわち、本実施形態の二相ステンレス鋼管を生産する方法の加熱工程及び口絞り加工工程では、上述した本実施形態の口絞り加工方法を実施する。口絞り加工工程後、素管を常温まで冷却する。冷却方法はたとえば、常温での放冷である。
[Mouth drawing process]
The squeezing process is the same as the squeezing process step of the squeezing method of the present embodiment described above. Therefore, detailed description is omitted. That is, in the heating process and the squeezing process of the method for producing the duplex stainless steel pipe of the present embodiment, the above-described squeezing process method of the present embodiment is performed. After the squeezing process, the tube is cooled to room temperature. The cooling method is, for example, cooling at room temperature.

[引抜加工工程]
冷却された素管に対し冷間引抜加工を実施する。これにより、所定の寸法に縮径された二相ステンレス鋼管が得られる。
[Drawing process]
Cold drawing is performed on the cooled raw tube. Thereby, a duplex stainless steel pipe reduced in diameter to a predetermined size is obtained.

図3は、引抜装置の全体構成図である。引抜装置は、グリッパ4と、ダイス5と、キャリッジ6と、移動装置7とを備える。図3では、ダイス5は断面図を示す。   FIG. 3 is an overall configuration diagram of the drawing device. The drawing device includes a gripper 4, a die 5, a carriage 6, and a moving device 7. In FIG. 3, the die 5 shows a cross-sectional view.

ダイス5は、引抜加工時に素管2を縮径して、素管2の真円度を高める。ダイス5は、入側(図3の左側)から出側(図3の右側)に向かって順に、アプローチ部8、ベアリング部9を連続して備える。アプローチ部8では、ダイス5の入側から出側に向かって内径が徐々に小さくなる。すなわち、アプローチ部8はテーパ形状を有する。ベアリング部9は円筒である。ベアリング部9の内径は一定で、製造される二相ステンレス鋼管の外径に相当する。   The die 5 reduces the diameter of the raw tube 2 at the time of drawing to increase the roundness of the raw tube 2. The die 5 includes an approach portion 8 and a bearing portion 9 sequentially from the entry side (left side in FIG. 3) to the exit side (right side in FIG. 3). In the approach portion 8, the inner diameter gradually decreases from the entry side to the exit side of the die 5. That is, the approach portion 8 has a tapered shape. The bearing portion 9 is a cylinder. The inner diameter of the bearing portion 9 is constant and corresponds to the outer diameter of the manufactured duplex stainless steel pipe.

グリッパ4は、引抜加工中の素管2の口絞り部10を把持する。図3では、口絞り部10はグリッパ4で隠れているため破線で示す。グリッパ4はキャリッジ6に取り付けられる。キャリッジ6は移動装置7に取付けられる。移動装置7はたとえばチェーンであり、引抜加工時に、キャリッジ6及びグリッパ4を引抜方向Xに移動する。これにより、グリッパ4に把持された素管2が引き抜かれ、二相ステンレス鋼管が得られる。   The gripper 4 holds the mouth restrictor 10 of the raw tube 2 being drawn. In FIG. 3, the mouth restrictor 10 is hidden by the gripper 4 and is therefore indicated by a broken line. The gripper 4 is attached to the carriage 6. The carriage 6 is attached to the moving device 7. The moving device 7 is a chain, for example, and moves the carriage 6 and the gripper 4 in the drawing direction X at the time of drawing. Thereby, the raw tube 2 gripped by the gripper 4 is pulled out, and a duplex stainless steel tube is obtained.

本実施形態の口絞り加工方法の効果を確認するために、口絞り加工前の素管の加熱温度を種々変更して口絞り加工を実施した。すなわち、口絞り加工開始時の素管の温度Toを種々変更して口絞り加工を実施した。具体的には、二相ステンレス鋼管の素管の端部を加熱した(加熱工程)。その後、加熱された素管の端部を5回から10回の範囲で口絞り加工した(口絞り加工工程)。加熱工程では、加熱炉を制御し、素管の端部を約670℃〜約800℃の範囲の種々の温度に加熱した。口絞り加工工程では、1回当たりの加工量を変化させて口絞り回数を2回から10回の間で変化させ、口絞り加工開始から口絞り加工終了までの時間を3分から15分の間で変化させることにより、口絞り加工終了時の素管の端部の温度を約420℃〜約720℃の範囲の種々の温度に変化させた。そして、口絞り加工後、素管の割れの有無を目視観察及びミクロ組織観察により確認した。   In order to confirm the effect of the squeezing method of the present embodiment, the squeezing process was performed by variously changing the heating temperature of the raw tube before the squeezing process. That is, the squeezing process was performed by changing the temperature To of the raw tube at the start of the squeezing process. Specifically, the end of the base pipe of the duplex stainless steel pipe was heated (heating process). Thereafter, the end portion of the heated raw tube was subjected to squeezing in the range of 5 to 10 times (squeezing process). In the heating step, the heating furnace was controlled, and the end of the raw tube was heated to various temperatures ranging from about 670 ° C to about 800 ° C. In the squeezing process, the amount of squeezing is changed from 2 to 10 times by changing the processing amount per time, and the time from the start of squeezing process to the end of squeezing process is between 3 minutes and 15 minutes Thus, the temperature of the end portion of the raw tube at the end of the squeezing process was changed to various temperatures ranging from about 420 ° C. to about 720 ° C. And after mouth-drawing processing, the presence or absence of the crack of a raw tube was confirmed by visual observation and microstructure observation.

[試験条件]
本実施例で用いた二相ステンレス鋼の組成を表1に示す。口絞り加工条件を表2に示す。
[Test conditions]
Table 1 shows the composition of the duplex stainless steel used in this example. Table 2 shows the squeezing conditions.

Figure 2019141864
Figure 2019141864

Figure 2019141864
Figure 2019141864

表2中、「口絞り径」とは、口絞り加工後の素管の外径を意味する。「外径加工度」は、以下の式で算出された。本実施例での素管の端部の加熱方法は、インダクションヒータによる直接加熱であった。
(外径加工度(%))=(1−(口絞り加工後の素管の端部の外径)/(口絞り加工前の素管の端部の外径))×100
In Table 2, “diaphragm diameter” means the outer diameter of the raw tube after squeezing. The “outer diameter processing degree” was calculated by the following equation. The heating method of the end of the raw tube in this example was direct heating by an induction heater.
(Outer diameter processing degree (%)) = (1− (Outer diameter of end of raw pipe after squeezing) / (Outer diameter of end of raw pipe before squeezing)) × 100

[試験結果]
試験結果を、図1に示す。図1を参照して、口絞り加工開始時の素管の温度Toが800℃であれば、素管に割れが発生した。口絞り加工開始時の素管の温度Toが800℃の試験での素管を観察すると、σ相の析出が観察された。また、σ相は素管の温度が高温になると析出しやすくなる。すなわち、口絞り加工開始時の素管の温度Toが800℃以上であれば、σ相析出温度域であることが分かった。
[Test results]
The test results are shown in FIG. Referring to FIG. 1, if the temperature To of the raw tube at the start of squeezing was 800 ° C., the raw tube was cracked. When the raw tube was observed in a test where the temperature To of the raw tube at the start of squeezing was 800 ° C., precipitation of the σ phase was observed. Further, the σ phase is likely to precipitate when the temperature of the raw tube becomes high. That is, it was found that if the temperature To of the raw tube at the start of squeezing was 800 ° C. or higher, it was in the σ phase precipitation temperature range.

口絞り加工開始時の素管の温度Toが800℃未満であっても、口絞り加工終了時の素管の温度Tfが低いほど、素管に割れが発生しやすかった。口絞り加工開始時の素管の温度Toが800℃未満であって、素管に割れが発生した試験での素管を観察すると、σ相の析出は観察されなかった。すなわち、これらの試験では、σ相に起因して素管は割れず、上述したように材料の延性低下により素管に割れが発生したものと考えられる。   Even when the temperature To of the raw tube at the start of the squeezing process was less than 800 ° C., the lower the temperature Tf of the raw tube at the end of the squeezing process, the easier the cracking occurred in the raw tube. When the raw tube was observed in a test in which the temperature To of the raw tube at the start of squeezing was less than 800 ° C. and cracked in the raw tube, no precipitation of σ phase was observed. That is, in these tests, it is considered that the base pipe was not cracked due to the σ phase, and cracks were generated in the base pipe due to a decrease in the ductility of the material as described above.

以上、本発明の実施形態を説明した。しかしながら、上述した実施形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施形態を適宜変更して実施することができる。   The embodiments of the present invention have been described above. However, the above-described embodiment is merely an example for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and can be carried out by appropriately changing the above-described embodiment without departing from the spirit thereof.

1:口絞り加工装置
2:素管
3:ダイス
4:グリッパ
5:ダイス
6:キャリッジ
7:移動装置
8:アプローチ部
9:ベアリング部
10:口絞り部
1: Mouth drawing device 2: Raw tube 3: Die 4: Gripper 5: Die 6: Carriage 7: Moving device 8: Approach part 9: Bearing part 10: Mouth part

Claims (4)

質量%で、C:0.008〜0.03%、Si:0〜1%、Mn:0.1〜2%、Cr:20〜35%、Ni:3〜10%、Mo:0〜5%、W:0〜6%、Cu:0〜3%、及び、N:0.15〜0.40%、を含有し、残部はFe及び不純物からなる二相ステンレス鋼の素管の端部の口絞り加工方法であって、
前記素管の端部を650℃以上、800℃未満に加熱する工程と、
口絞り加工終了時の前記端部の温度Tfが、400℃以上、かつ、口絞り加工開始時の前記端部の温度Toに対して式(1)を満たして前記加熱された端部を口絞り加工する工程と、を備える口絞り加工方法。
Tf ≧ 4.4To−2680 (1)
In mass%, C: 0.008 to 0.03%, Si: 0 to 1%, Mn: 0.1 to 2%, Cr: 20 to 35%, Ni: 3 to 10%, Mo: 0 to 5 %, W: 0 to 6%, Cu: 0 to 3%, and N: 0.15 to 0.40%, with the balance being the end of a duplex stainless steel element tube made of Fe and impurities Squeezing method of
Heating the end of the base tube to 650 ° C. or higher and lower than 800 ° C .;
The temperature Tf of the end portion at the end of the squeezing process is 400 ° C. or higher, and the end portion heated to satisfy the formula (1) with respect to the temperature To of the end portion at the start of the squeezing process. A mouth drawing method comprising: a drawing process.
Tf ≧ 4.4 To-2680 (1)
請求項1に記載の口絞り加工方法であって、
前記口絞り加工開始時から前記口絞り加工終了時までが、15分以内である、口絞り加工方法。
The mouth-drawing method according to claim 1,
The mouth drawing method, wherein the time from the start of the mouth drawing to the end of the mouth drawing is within 15 minutes.
請求項1又は請求項2に記載の口絞り加工方法であって、
前記口絞り加工する工程では、前記端部の外径加工度が32%以下である、口絞り加工方法。
The squeezing method according to claim 1 or 2,
In the squeezing process, a squeezing method in which an outer diameter processing degree of the end portion is 32% or less.
質量%で、C:0.008〜0.03%、Si:0〜1%、Mn:0.1〜2%、Cr:20〜35%、Ni:3〜10%、Mo:0〜5%、W:0〜6%、Cu:0〜3%、及び、N:0.15〜0.40%、を含有し、残部はFe及び不純物からなる二相ステンレス鋼の素管を準備する工程と、
前記素管の端部を650℃以上、800℃未満に加熱する工程と、
口絞り加工終了時の前記端部の温度Tfが、400℃以上、かつ、口絞り加工開始時の前記端部の温度Toに対して式(1)を満たして前記加熱された端部を口絞り加工する工程と、
前記口絞り加工された素管を冷間引抜加工する工程と、を備える二相ステンレス鋼管を生産する方法。
Tf ≧ 4.4To−2680 (1)
In mass%, C: 0.008 to 0.03%, Si: 0 to 1%, Mn: 0.1 to 2%, Cr: 20 to 35%, Ni: 3 to 10%, Mo: 0 to 5 %, W: 0 to 6%, Cu: 0 to 3%, and N: 0.15 to 0.40%, and the balance is prepared as a base tube of duplex stainless steel made of Fe and impurities Process,
Heating the end of the base tube to 650 ° C. or higher and lower than 800 ° C .;
The temperature Tf of the end portion at the end of the squeezing process is 400 ° C. or higher, and the end portion heated to satisfy the formula (1) with respect to the temperature To of the end portion at the start of the squeezing process. Drawing process;
A method of producing a duplex stainless steel pipe comprising a step of cold drawing the raw pipe subjected to the mouth drawing.
Tf ≧ 4.4 To-2680 (1)
JP2018026572A 2018-02-19 2018-02-19 Duplex stainless steel pipe mouth drawing method and duplex stainless steel pipe production method Active JP7000907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018026572A JP7000907B2 (en) 2018-02-19 2018-02-19 Duplex stainless steel pipe mouth drawing method and duplex stainless steel pipe production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018026572A JP7000907B2 (en) 2018-02-19 2018-02-19 Duplex stainless steel pipe mouth drawing method and duplex stainless steel pipe production method

Publications (2)

Publication Number Publication Date
JP2019141864A true JP2019141864A (en) 2019-08-29
JP7000907B2 JP7000907B2 (en) 2022-01-19

Family

ID=67771585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018026572A Active JP7000907B2 (en) 2018-02-19 2018-02-19 Duplex stainless steel pipe mouth drawing method and duplex stainless steel pipe production method

Country Status (1)

Country Link
JP (1) JP7000907B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176333A1 (en) * 2022-03-16 2023-09-21 株式会社プロテリアル Tapered material manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182918A (en) * 1983-03-31 1984-10-17 Kawasaki Steel Corp Production of two-phase stainless steel oil well pipe having high strength
JPS60166118A (en) * 1984-02-09 1985-08-29 Sumitomo Metal Ind Ltd Method of pointing blank pipe for elongation
JPS60190519A (en) * 1984-03-12 1985-09-28 Sumitomo Metal Ind Ltd Method for directly softening and rolling two-phase stainless steel bar
JP2009046759A (en) * 2007-07-20 2009-03-05 Sumitomo Metal Ind Ltd Process for production of duplex stainless steel tubes
JP2016003377A (en) * 2014-06-18 2016-01-12 新日鐵住金株式会社 Two-phase stainless steel tube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182918A (en) * 1983-03-31 1984-10-17 Kawasaki Steel Corp Production of two-phase stainless steel oil well pipe having high strength
JPS60166118A (en) * 1984-02-09 1985-08-29 Sumitomo Metal Ind Ltd Method of pointing blank pipe for elongation
JPS60190519A (en) * 1984-03-12 1985-09-28 Sumitomo Metal Ind Ltd Method for directly softening and rolling two-phase stainless steel bar
JP2009046759A (en) * 2007-07-20 2009-03-05 Sumitomo Metal Ind Ltd Process for production of duplex stainless steel tubes
JP2016003377A (en) * 2014-06-18 2016-01-12 新日鐵住金株式会社 Two-phase stainless steel tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176333A1 (en) * 2022-03-16 2023-09-21 株式会社プロテリアル Tapered material manufacturing method

Also Published As

Publication number Publication date
JP7000907B2 (en) 2022-01-19

Similar Documents

Publication Publication Date Title
JP4513807B2 (en) Fe-Ni alloy tube and method of manufacturing the same
JP5097017B2 (en) Manufacturing method of high Cr ferritic heat resistant steel
JP4894855B2 (en) Seamless pipe manufacturing method
JP5915818B2 (en) Seamless steel pipe for line pipe used in sour environment
JP6686320B2 (en) Manufacturing method of stainless steel pipe
JPWO2011152240A1 (en) Seamless steel pipe for line pipe and manufacturing method thereof
JP5589965B2 (en) Austenitic stainless steel pipe manufacturing method and austenitic stainless steel pipe
JP6571103B2 (en) Nickel-based alloys, methods and uses
JP6805639B2 (en) Manufacturing method of stainless steel pipe
JP4692650B2 (en) Seamless pipe manufacturing method
JP6520465B2 (en) Method of manufacturing martensitic stainless steel pipe
CN100408905C (en) Manufacturing method of seamless steel pipe for pressure pipeline
JP5516831B1 (en) Seamless steel pipe and manufacturing method thereof
WO2015005119A1 (en) METHOD FOR PRODUCING HIGH-Cr STEEL PIPE
JP7000907B2 (en) Duplex stainless steel pipe mouth drawing method and duplex stainless steel pipe production method
JP6686803B2 (en) Mouth drawing method and method for producing duplex stainless steel pipe
KR101516104B1 (en) PRODUCTION METHOD FOR ROUND STEEL BAR FOR SEAMLESS PIPE COMPRISING HIGH Cr-Ni ALLOY, AND PRODUCTION METHOD FOR SEAMLESS PIPE USING ROUND STEEL BAR
JPH09241746A (en) Production of high strength duplex stainless steel tube
JP6390677B2 (en) Low carbon martensitic stainless steel welded pipe and method for producing the same
JP2008266700A (en) High-strength steel tube for machine structure, and method for producing the same
CN113020313A (en) Ledeburite die steel seamless steel tube and preparation method thereof
JP2012102375A (en) Method for producing austenitic alloy large-diameter pipe
JP6551224B2 (en) Steel pipe manufacturing method
JP2006334607A (en) Forging method for hard-to-work material
JP2013100584A (en) Nickel-based alloy tube having excellent hot extrusion property and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211207

R151 Written notification of patent or utility model registration

Ref document number: 7000907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151