JP6423943B2 - 横風飛行とホバー飛行の間で航空車両を移行させる方法およびシステム - Google Patents

横風飛行とホバー飛行の間で航空車両を移行させる方法およびシステム Download PDF

Info

Publication number
JP6423943B2
JP6423943B2 JP2017216487A JP2017216487A JP6423943B2 JP 6423943 B2 JP6423943 B2 JP 6423943B2 JP 2017216487 A JP2017216487 A JP 2017216487A JP 2017216487 A JP2017216487 A JP 2017216487A JP 6423943 B2 JP6423943 B2 JP 6423943B2
Authority
JP
Japan
Prior art keywords
air vehicle
closed path
flight orientation
tether
along
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017216487A
Other languages
English (en)
Other versions
JP2018047898A (ja
Inventor
ジェンセン,ケネス
チャブ,エリック,クリストファー
リンド,デーモン ヴァンダー
リンド,デーモン ヴァンダー
Original Assignee
エックス デベロップメント エルエルシー
エックス デベロップメント エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エックス デベロップメント エルエルシー, エックス デベロップメント エルエルシー filed Critical エックス デベロップメント エルエルシー
Publication of JP2018047898A publication Critical patent/JP2018047898A/ja
Application granted granted Critical
Publication of JP6423943B2 publication Critical patent/JP6423943B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/022Tethered aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/60Tethered aircraft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D5/00Other wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D5/00Other wind motors
    • F03D5/06Other wind motors the wind-engaging parts swinging to-and-fro and not rotating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • F03D9/32Wind motors specially adapted for installation in particular locations on moving objects, e.g. vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0866Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft specially adapted to captive aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/10UAVs specially adapted for particular uses or applications for generating power to be supplied to a remote station, e.g. UAVs with solar panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • B64U2201/202Remote controls using tethers for connecting to ground station
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/92Mounting on supporting structures or systems on an airbourne structure
    • F05B2240/921Mounting on supporting structures or systems on an airbourne structure kept aloft due to aerodynamic effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Description

関連出願の相互参照
[0001] 本願は、参照によりその全体を本明細書に組み込む、2013年12月30日出願の米国特許出願第14/144,146号の優先権を主張するものである。
[0002] 本明細書で特に指示しない限り、本項に記載する内容は、本願の特許請求の範囲に対する従来技術ではなく、本項に含まれることによって従来技術として承認されるものではない。
[0003] 発電システムは、化学的および/または機械的エネルギー(例えば運動エネルギー)を、公益事業システムなど様々な適用業務のための電気エネルギーに変換することができる。一例として、風力エネルギーシステムは、風の運動エネルギーを電気エネルギーに変換することができる。
[0004] 本明細書では、運動エネルギーから電気エネルギーへの変換を容易にする特定の飛行モード間で航空車両を移行させる方法およびシステムについて述べる。具体的には、本明細書に記載する実施形態は、横風飛行からホバー飛行に航空車両を移行させることに関する。本明細書に記載する実施形態は、低高度で航空車両の速度を急速に低下させることによってホバー飛行に入ることを改善することができるので有利である。さらに、本明細書に記載する実施形態は、航空車両が別の飛行モードに入ることなく横風飛行からホバー飛行に移行する助けになり得る。
[0005] 1つの態様では、方法は、航空車両を、横風飛行配向に配向されている間にテザー球上の第1の閉じた経路に沿って進行するように動作させるステップであって、テザーが、第1の端部で航空車両に接続され、第2の端部で地上局に接続されており、テザー球が、テザーの長さに対応する半径を有するステップと、航空車両が横風飛行配向にある間に、航空車両を、テザー球上の第2の閉じた経路に沿って進行して、航空車両の速度が低下するように動作させるステップと、航空車両の速度が低下した後、または低下している間に、航空車両を、横風飛行配向である間に第2の閉じた経路に沿って進行している状態からホバー飛行配向に移行させるステップとを含むことができる。
[0006] 別の態様では、システムは、テザーの第1の端部に接続された航空車両と、テザーの第2の端部に接続された地上局と、航空車両を、横風飛行配向に配向されている間にテザー球上の第1の閉じた経路に沿って進行するように動作させ、ここで、テザー球が、テザーの長さに対応する半径を有しており、航空車両が横風飛行配向にある間に、航空車両を、テザー球上の第2の閉じた経路に沿って進行して、航空車両の速度が低下するように動作させ、航空車両の速度が低下した後、または低下している間に、航空車両を、横風飛行配向である間に第2の閉じた経路に沿って進行している状態からホバー飛行配向に移行させるように構成された制御システムとを含むことができる。
[0007] 別の態様では、コンピューティングデバイスに様々な機能を実行させる、コンピューティングデバイスによって実行可能な命令を記憶した非一時的コンピュータ可読媒体を開示する。これらの機能は、航空車両を横風飛行配向でテザー球上の第1の閉じた経路に沿って進行するように動作させることであって、ここで、テザーは、第1の端部が航空車両に接続され、第2の端部が地上局に接続されており、テザー球は、テザーの長さに対応する半径を有することと、航空車両が横風飛行配向にある間に、航空車両を、テザー球上の第2の閉じた経路に沿って進行して、航空車両の速度が低下するように動作させることと、航空車両の速度が低下した後、または低下している間に、航空車両を、横風飛行配向である間に第2の閉じた経路に沿って進行している状態からホバー飛行配向に移行させることとを含む。
[0008] 別の態様では、方法は、航空車両を、横風飛行配向に配向されている間にテザー球上の閉じた経路に沿って進行するように動作させるステップであって、テザーが、第1の端部で航空車両に接続され、第2の端部で地上局に接続されており、テザー球が、テザーの長さに対応する半径を有するステップと、航空車両が横風飛行配向で閉じた経路に沿って進行している間に、航空車両にかかる抗力が増加するように、または航空車両にかかる揚力が低下するように航空車両を動作させることによって、航空車両の速度を低下させるステップと、航空車両の速度が低下した後、または低下している間に、航空車両を、横風飛行配向である間に閉じた経路に沿って進行している状態からホバー飛行配向に移行させるステップとを含むことができる。
[0009] 別の態様では、システムは、テザーの第1の端部に接続された航空車両と、テザーの第2の端部に接続された地上局と、航空車両を、横風飛行配向に配向されている間にテザー球上の閉じた経路に沿って進行するように動作させ、ここで、テザー球が、テザーの長さに対応する半径を有しており、航空車両が横風飛行配向で閉じた経路に沿って進行している間に、航空車両にかかる抗力が増加するように、または航空車両にかかる揚力が低下するように航空車両を動作させることによって航空車両の速度を低下させ、航空車両の速度が低下した後、または低下している間に、航空車両を、横風飛行配向である間に閉じた経路に沿って進行している状態からホバー飛行配向に移行させるように構成された制御システムとを含むことができる。
[0010] 別の態様では、コンピューティングデバイスに様々な機能を実行させる、コンピューティングデバイスによって実行可能な命令を記憶した非一時的コンピュータ可読媒体を開示する。これらの機能は、航空車両を、横風飛行配向に配向されている間にテザー球上の閉じた経路に沿って進行するように動作させることであって、テザーが、第1の端部で航空車両に接続され、第2の端部で地上局に接続されており、テザー球が、テザーの長さに対応する半径を有することと、航空車両が横風飛行配向で閉じた経路に沿って進行している間に、航空車両にかかる抗力が増加するように、または航空車両にかかる揚力が低下するように航空車両を動作させることによって航空車両の速度を低下させることと、航空車両の速度が低下した後、または低下している間に、航空車両を、横風飛行配向である間に閉じた経路に沿って進行している状態からホバー飛行配向に移行させることとを含む。
[0011] 別の態様では、システムは、航空車両を、横風飛行配向に配向されている間にテザー球上の第1の閉じた経路に沿って進行するように動作させる手段であって、テザーが、第1の端部で航空車両に接続され、第2の端部で地上局に接続されており、テザー球が、テザーの長さに対応する半径を有する手段と、航空車両が横風飛行配向にある間に、航空車両を、テザー球上の第2の閉じた経路に沿って進行して、航空車両の速度が低下するように動作させる手段と、航空車両の速度が低下した後、または低下している間に、航空車両を、横風飛行配向である間に第2の閉じた経路に沿って進行している状態からホバー飛行配向に移行させる手段とを含むことができる。
[0012] さらに別の態様では、システムは、航空車両を、横風飛行配向に配向されている間にテザー球上の閉じた経路に沿って進行するように動作させる手段であって、テザーが、第1の端部で航空車両に接続され、第2の端部で地上局に接続されており、テザー球が、テザーの長さに対応する半径を有する手段と、航空車両が横風飛行配向で閉じた経路に沿って進行している間に、航空車両にかかる抗力が増加するように、または航空車両にかかる揚力が低下するように航空車両を動作させることによって、航空車両の速度を低下させる手段と、航空車両の速度が低下した後、または低下している間に、航空車両を、横風飛行配向である間に閉じた経路に沿って進行している状態からホバー飛行配向に移行させる手段とを含むことができる。
[0013] 上記およびその他の態様、利点および代替物は、以下の詳細な説明を適宜添付の図面を参照しながら読めば、当業者には明らかになるであろう。
[0014]実施形態例による空中風力タービン(AWT)を示す図である。 [0015]実施形態例によるAWTの構成要素を示す簡略ブロック図である。 [0016]実施形態例による、横風飛行状態の航空車両の一例を示す図である。 [0017]実施形態例による、航空車両が横風飛行からホバー飛行に移行する一例を示す図である。 [0018]実施形態例による、航空車両が横風飛行からホバー飛行に移行する別の例を示す図である。 [0019]実施形態例による、航空車両が横風飛行からホバー飛行に移行する別の例を示す図である。 [0020]実施形態例による、迎角を含むグラフ表現である。 実施形態例による、迎角を含むグラフ表現である。 [0021]実施形態例による、航空車両が横風飛行からホバー飛行に移行するさらに別の例を示す図である。 [0022]実施形態例によるテザー球を示す図である。 実施形態例によるテザー球を示す図である。 [0023]実施形態例による方法を示す流れ図である。 [0024]実施形態例による別の方法を示す流れ図である。 [0025]実施形態例によるさらに別の方法を示す流れ図である。
[0027] 本明細書では、例示的な方法およびシステムについて述べる。本明細書では、「例示的な」という言葉は、「1つの例、1つの場合、または1つの例証の役割を果たす」という意味で使用されていることを理解されたい。本明細書において「例示的な」または「例証的な」として述べられる任意の実施形態または特徴は、必ずしも他の実施形態または特徴よりも好ましい、または有利であるものと解釈すべきではない。さらに一般的に言えば、本明細書に記載する実施形態は、限定を意味するものではない。開示する方法およびシステムの特定の態様は、幅広い様々な構成で配列および結合することができ、それらの様々な構成は全て本明細書で企図されていることは容易に理解されるであろう。
I.概要
[0028] 例証的な実施形態は、空中風力タービン(AWT)などの風力エネルギーシステム
で使用することができる航空車両に関する。特に、例証的な実施形態は、航空車両を、運動エネルギーから電気エネルギーへの変換を容易にする特定の飛行モード間で移行させる方法およびシステムに関する、またはそれらの形態を取り得る。
[0029] 背景として、AWTは、実質的に円形の経路など、閉じた経路で飛行して風の運動エネルギーを電気エネルギーに変換する航空車両を含むことができる。例証的な実施態様では、航空車両は、テザーを介して地上局に接続することができる。テザーで係留されている間、航空車両は、(i)ある範囲の仰角で実質的に上記の経路に沿って飛行して地上に戻ることができ、かつ(ii)電気エネルギーをテザーを介して地上局に伝送することができる。(いくつかの実施態様では、地上局が、離陸および/または着陸のために航空車両に電気を伝送することもできる。)
[0030] AWTでは、航空車両は、発電に使える風がないときには、地上局内および/または地上局上に休止する(または止まる)ことができる。高度200メートル(m)における風速が毎秒3.5メートル(m/s)になり得るときなど、発電に使える風があるときには、地上局は、航空車両を展開する(または打ち上げる)ことができる。さらに、航空車両が展開されているが、発電に使える風がないときには、航空車両は地上局に戻ることができる。
[0031] さらに、AWTでは、航空車両は、ホバー飛行および横風飛行用に構成することができる。横風飛行は、実質的に円形の動きなど、ある動きで進行するために使用することができるので、電気エネルギーを生成するために使用される一次技術になり得る。ホバー飛行の方は、航空車両が横風飛行に備えて車両自体を準備および位置決めするために使用することができる。特に、航空車両は、少なくとも部分的にはホバー飛行に基づいて、横風飛行の位置まで上昇することもできる。さらに、航空車両は、ホバー飛行によって離陸および/または着陸することもできる。
[0032] ホバー飛行では、航空車両の主翼の翼幅は、実質的に地面と平行に配向することができ、航空車両の1つまたは複数のプロペラによって、航空車両を地面の上方でホバリングさせることができる。いくつかの実施態様では、航空車両は、ホバー飛行で垂直に上昇または下降することができる。
[0033] 横風飛行では、航空車両は、風によって閉じた経路に実質的に沿って推進することができるように配向することができ、これにより、上述のように、風の運動エネルギーを電気エネルギーに変換することができる。いくつかの実施態様では、航空車両の1つまたは複数のロータは、入射風を減速することによって電気エネルギーを生成することができる。さらに、いくつかの実施態様では、閉じた経路は、上昇行程および下降行程を含むことができる。航空車両は、上昇行程中には実質的に上向きに推進することができ、下降行程中には実質的に下向きに推進することができる。さらに、上昇行程における航空車両の速度は、下降行程における航空車両の速度未満にすることもできる。
[0034] 航空車両は、(i)航空車両が付着流(例えば定常流および/または無失速状態(これはエーロフォイルからの気流の分離がない状態を指すこともある))を有するとき、および(ii)テザーが引っ張られているときに、横風飛行に入ることができる。さらに、航空車両は、実質的に地上局の風下の位置で横風飛行に入ることができる。また、航空車両は、付着流を有していないときにホバー飛行に入ることができる。
[0035] いくつかの実施態様では、横風飛行中のテザーの張力は、ホバー飛行中のテザーの張力より大きくなり得る。例えば、横風飛行中のテザーの張力は、15キロニュートン(KN)になり得、ホバー飛行中のテザーの張力は1KNになり得る。
[0036] 本明細書に記載する実施形態は、航空車両を横風飛行からホバー飛行に移行させることに関する。例証的な実施態様では、方法は、航空車両を、横風飛行配向に配向されている間にテザー球上の第1の閉じた経路に沿って進行するように動作させることであって、ここで、テザーは、第1の端部が航空車両に接続され、第2の端部が地上局に接続されており、テザー球は、テザーの長さに対応する半径を有していることと、航空車両が横風飛行配向にあるときに、航空車両を、テザー球上の第2の閉じた経路に沿って進行するように動作させて、航空車両の速度が低下するようにすることと、航空車両の速度が低下した後、または低下している間に、航空車両を、横風飛行配向である間に第2の閉じた経路に沿って進行している状態から、ホバー飛行配向に移行させることとを含むことができる。
[0037] さらに、別の例証的な実施態様では、方法は、航空車両を、横風飛行配向に配向されている間にテザー球上の閉じた経路に沿って進行するように動作させることであって、ここで、テザーは、第1の端部が航空車両に接続され、第2の端部が地上局に接続されており、テザー球は、テザーの長さに対応する半径を有していることと、航空車両が横風飛行配向で閉じた経路に沿って進行している間に、航空車両にかかる抗力が増加する、または航空車両にかかる揚力が低下するように航空車両を動作させることによって航空車両の速度を低下させることと、航空車両の速度が低下した後、または低下している間に、航空車両を、横風飛行配向である間に閉じた経路に沿って進行している状態から、ホバー飛行配向に移行させることとを含むことができる。
[0038] このような実施態様は、低高度で航空車両の速度を急速に低下させることによってホバー飛行に入ることを改善することができるので有利である。さらに、このような実施態様は、航空車両が別の飛行モードに入ることなく横風飛行からホバー飛行に移行することを可能にすることができる。さらに、このような実施態様は、横風飛行とホバー飛行の間のテザーの張力の変化を平滑化する助けになり得る。
II.例証的なシステム
A.空中風力タービン(AWT)
[0039] 図1は、実施形態例によるAWT100を示す図である。具体的には、AWT100は、地上局110、テザー120、および航空車両130を含む。図1に示すように、テザー120は、第1の端部を航空車両に接続し、第2の端部を地上局110に接続することができる。この例では、テザー120は、地上局110には地上局110上の1箇所で取り付けることができ、航空車両130には航空車両130上の2箇所で取り付けることができる。ただし、他の例では、テザー120は、地上局110および/または航空車両130の任意の部分に複数箇所で取り付けることができる。
[0040] 地上局110は、航空車両130が動作モードになるまで、航空車両130を保持および/または支持するために使用することができる。地上局110は、航空車両130を展開することが可能となるようにこのデバイスの再位置決めを可能にするように構成することもできる。さらに、地上局110は、着陸中に航空車両130を受けるように構成することもできる。地上局110は、ホバー飛行、横風飛行、および前進飛行(航空機様飛行と呼ぶこともある)などその他の飛行モード時に航空車両130を地上に取り付けられた状態および/またはアンカリングされた状態で適当に保つことができる任意の材料で構成することができる。いくつかの実施態様では、地上局110は、陸上で使用するように構成することができる。ただし、地上局110は、湖、河川、海または海洋など、水体上で実施することもできる。例えば、地上局は、特に、浮遊型海上プラットフォームもしくはボートを含む、またはこれらの上に配置することもできる。さらに、地上局110は、地面もしくは水体表面に対して静止した状態で維持されるように構成することもできるし、または地面もしくは水体表面に対して相対的に移動するように構成することもできる。
[0041] さらに、地上局110は、ウィンチなど、テザー120の長さを変化させることができる1つまたは複数の構成要素(図示せず)を含むことができる。例えば、航空車両130を展開するときに、この1つまたは複数の構成要素は、テザー120を繰り出す、かつ/または巻き出すように構成することができる。いくつかの実施態様では、この1つまたは複数の構成要素は、所定の長さまでテザー120を繰り出す、かつ/または巻き出すように構成することができる。例えば、この所定の長さは、テザー120の最大長さ以下とすることができる。さらに、航空車両130が地上局110に着陸するときには、この1つまたは複数の構成要素は、テザー120を巻き取るように構成することができる。
[0042] テザー120は、航空車両130が生成した電気エネルギーを地上局110に伝送することができる。さらに、テザー120は、離陸、着陸、ホバー飛行および/または前進飛行のために航空車両130に給電するために航空車両130に電気を伝送することもできる。テザー120は、航空車両130が生成した電気エネルギーの伝送、送達および/もしくはハーネシングならびに/または航空車両130への電気の伝送を可能にし得る任意の材料を使用して、任意の形態で構築することができる。テザー120は、航空車両130が動作モードであるときに、航空車両130による1種類または複数種類の力に耐えるように構成することもできる。例えば、テザー120は、航空車両130がホバー飛行、前進飛行および/または横風飛行しているときに航空車両130による1種類または複数種類の力に耐えるように構成されたコアを含むことができる。このコアは、任意の高強度ファイバで構成することができる。いくつかの例では、テザー120は、一定の長さおよび/または可変の長さを有することができる。例えば、このような例の少なくとも1つでは、テザー120は、140メートルの長さを有することがある。
[0043] 航空車両130は、実質的に閉じた経路150に沿って飛行して電気エネルギーを生成するように構成することができる。本開示で使用する「実質的に沿って」という表現は、厳密に沿っている状態、および/または厳密に沿っている状態から、本明細書で述べる電気エネルギーの生成および/または本明細書で述べる特定の飛行モード間での航空車両の移行に有意な影響を与えない程度の1箇所もしくは複数箇所のずれがある状態を指す。
[0044] 航空車両130は、特に、凧、ヘリコプタ、翼および/または飛行機など、様々なタイプのデバイスを含む、またはそれらの形態をとることができる。航空車両130は、金属、プラスチックおよび/またはその他のポリマーの固体構造で構成することができる。航空車両130は、高いスラスト重量比および公益事業分野で使用することができる電気エネルギーの生成を可能にする任意の材料で構成することができる。さらに、これらの材料は、風速および風向の大きな、および/または突然の変化に対応することができる可能性がある、耐雷強化された、冗長な、および/またはフォールトトレラントな設計が可能になるように選択することができる。その他の材料も、可能であり得る。
[0045] 閉じた経路150は、様々な異なる実施形態で様々な異なる形状にすることができる。例えば、閉じた経路150は、実質的に円形にすることができる。そのような例の少なくとも1つでは、閉じた経路150は、最大265メートルの半径を有することができる。本開示で使用する「実質的に円形」という表現は、厳密な円形、および/または厳密な円形から本明細書で述べる電気エネルギーの生成に有意な影響を与えない程度の1箇所もしくは複数箇所のずれがある状態を指す。閉じた経路150のその他の形状として、楕円形などの長円形、ジェリービーンズ形、8の字形などであってもよい。
[0046] 図1に示すように、航空車両130は、主翼131、前部132、ロータコネクタ133A〜133B、ロータ134A〜134D、テールブーム135、尾翼136および垂直安定板137を含むことができる。これらの構成要素はいずれも、重力に抵抗し、かつ/または航空車両130を前方に移動させるために揚力の成分を使用することを可能にする任意の形状に成形することができる。
[0047] 主翼131は、航空車両130の主揚力を提供することができる。主翼131は、1つまたは複数の剛性または可撓性のエーロフォイルとすることができ、ウィングレット、フラップ(例えばファウラフラップ、ヘレナフラップ、スプリットフラップなど)、方向舵、昇降舵、スポイラ、急降下ブレーキなど、様々な制御表面を含むことができる。制御表面は、ホバー飛行、前進飛行および/または横風飛行中に、航空車両130を安定させ、かつ/または航空車両にかかる抗力を低減するように動作させることができる。さらに、いくつかの例では、制御表面は、横風飛行中に航空車両130にかかる抗力を増大させ、かつ/または航空車両130にかかる揚力を低減させるように動作させることができる。いくつかの例では、1つまたは複数の制御表面は、主翼131の前縁部に位置することができる。さらに、いくつかの例では、1つまたは複数の他の制御表面は、主翼131の後縁部に位置することができる。
[0048] 主翼131は、航空車両130がホバー飛行、前進飛行および/または横風飛行を行うのに適した任意の材料とすることができる。例えば、主翼131は、炭素繊維および/またはEガラスを含むことができる。さらに、主翼131は、様々な寸法を有することができる。例えば、主翼131は、従来の風力タービンのブレードに対応する寸法を1つまたは複数有することができる。別の例では、主翼131は、8mの翼幅、4平方メートルの面積、および縦横比15を有することができる。前部132は、ノーズなど、飛行中に航空車両130にかかる抗力を低減する1つまたは複数の構成要素を含むことができる。
[0049] ロータコネクタ133A〜133Bは、ロータ134A〜134Dを主翼131に接続することができる。いくつかの例では、ロータコネクタ133A〜133Bは、ロータ134A〜134Dを主翼131に接続するように構成された1つもしくは複数のパイロンの形態をとる、または1つもしくは複数のパイロンに類似した形態とすることができる。この例では、ロータコネクタ133A〜133Bは、ロータ134A〜134Dが主翼131の間で離間するように配置される。対応するロータどうし(例えばロータ134Aとロータ134B、またはロータ134Cとロータ134D)の間の垂直方向の間隔は、0.9メートルとすることができる。
[0050] ロータ134A〜134Dは、電気エネルギーの生成のために1つまたは複数の発電機を駆動するように構成することができる。この例では、ロータ134A〜134Dは、それぞれ、3つのブレードなど、1つまたは複数のブレードを含むことができる。これらの1つまたは複数のロータブレードは、風との相互作用によって回転することができ、これを使用して、上記の1つまたは複数の発電機を駆動することができる。さらに、ロータ134A〜134Dは、飛行中に航空車両130にスラストを提供するように構成することもできる。この構成では、ロータ134A〜134Dは、プロペラなど、1つまたは複数の推進ユニットとして機能することができる。いくつかの例では、ロータ134A〜134Dは、横風飛行中に航空車両130にかかる抗力を増大させるように動作させることができる。ロータ134A〜134Dは、この例では4つのロータとして示しているが、他の例では、航空車両130は、4つ未満のロータまたは4つ超のロータなど、任意数のロータを含むことができる。
[0051] テールブーム135は、主翼131を尾翼136に接続することができる。テールブーム135は、様々な寸法を有することができる。例えば、テールブーム135は、2メートルの長さを有することができる。さらに、いくつかの実施態様では、テールブーム135は、航空車両130の機体および/または胴体の形態をとることもできる。また、そのような実施態様では、テールブーム135は、ペイロードを担持することができる。
[0052] 尾翼136および/または垂直安定板137を使用して、ホバー飛行、前進飛行および/または横風飛行中に航空車両を安定させ、かつ/または航空車両130にかかる抗力を低減することができる。例えば、尾翼136および/または垂直安定板137を使用して、ホバー飛行、前進飛行および/または横風飛行中に航空車両130のピッチを維持することができる。この例では、垂直安定板137は、テールブーム135に取り付けられ、尾翼136は、垂直安定板137の頂部に位置している。尾翼136は、様々な寸法を有することができる。例えば、尾翼136は、2メートルの長さを有することができる。さらに、いくつかの例では、尾翼136は、表面積0.45平方メートルの表面積を有することができる。さらに、いくつかの例では、尾翼136は、航空車両130の質量中心の1メートル上方に位置づけることができる。
[0053] 上記では航空車両130について説明したが、本明細書に記載する方法およびシステムは、テザー120など任意のテザーに接続された任意の適当な航空車両を含むことができることを理解されたい。
B.AWTの例証的な構成要素
[0054] 図2は、AWT200の構成要素を示す簡略ブロック図である。AWT200は、AWT100の形態をとる、またはAWT100に類似した形態とすることができる。具体的には、AWT200は、地上局210、テザー220および航空車両230を含む。地上局210は、地上局110の形態をとる、または地上局110と類似した形態とすることができ、テザー220は、テザー120の形態をとる、またはテザー120と類似した形態とすることができ、航空車両230は、航空車両130の形態をとる、または航空車両130と類似した形態とすることができる。
[0055] 図2に示すように、地上局210は、1つまたは複数のプロセッサ212、データ記憶装置214およびプログラム命令216を含むことができる。プロセッサ212は、汎用プロセッサであっても、または特殊目的プロセッサ(例えばデジタル信号プロセッサ、特定用途向け集積回路など)であってもよい。この1つまたは複数のプロセッサ212は、データ記憶装置214に記憶された、実行すると本明細書に記載する機能の少なくとも一部を実現することができるコンピュータ可読プログラム命令216を実行するように構成することができる。
[0056] データ記憶装置214は、少なくとも1つのプロセッサ212によって読み取る、またはアクセスすることができる1つまたは複数のコンピュータ可読記憶媒体を含む、またはそのようなコンピュータ可読記憶媒体の形態をとることができる。この1つまたは複数のコンピュータ可読記憶媒体は、光学的、磁気的、有機的またはその他のメモリまたはディスク記憶装置など、その全体または一部を上記の1つまたは複数のプロセッサ212のうちの少なくとも1つと一体化することができる、揮発性および/または不揮発性記憶構成要素を含むことができる。いくつかの実施形態では、データ記憶装置214は、単一の物理的デバイス(例えば1つの光学的、磁気的、有機的またはその他のメモリまたはディスク記憶ユニット)を用いて実装することができるが、他の実施形態では、データ記憶装置214は、2つ以上の物理的デバイスを用いて実装することもできる。
[0057] 上記のように、データ記憶装置214は、コンピュータ可読プログラム命令216と、場合によっては地上局210の診断データなどの追加データとを含むことができる。したがって、データ記憶装置214は、本明細書に記載する機能の一部または全てを実行する、または容易にするプログラム命令を含むことができる。
[0058] 別の点では、地上局210は、通信システム218を含むことができる。通信システム218は、地上局210が1つまたは複数のネットワークを介して通信することを可能にする、1つもしくは複数のワイヤレスインタフェースおよび/または1つもしくは複数のワイヤラインインタフェースを含むことができる。このワイヤレスインタフェース
は、Bluetooth(登録商標)、WiFi(例えばIEEE802.11プロトコル)、ロングタームエボリューション(LTE)、WiMAX(例えばIEEE802.16標準)、無線周波ID(RFID)プロトコル、近距離場通信(NFC)および/またはその他のワイヤレス通信プロトコルなど、1つまたは複数のワイヤレス通信プロトコルの下での通信を実現することができる。このワイヤラインインタフェースは、ワイヤ、撚り線対、同軸ケーブル、光リンク、光ファイバリンクまたはその他のワイヤラインネットワークとの物理的接続を介して通信する、イーサネット(登録商標)インタフェース、汎用シリアルバス(USB)インタフェースまたはそれに類するインタフェースを含むことができる。地上局210は、通信システム218を介して、航空車両230、他の地上局および/または他のエンティティ(例えば司令センター)と通信することができる。
[0059] 実施形態例では、地上局210は、短距離通信および長距離通信の両方を可能にする通信システム218を含むことができる。例えば、地上局210は、Bluetooth(登録商標)を用いた短距離通信用、およびCDMAプロトコルによる長距離通信用に構成することができる。このような実施形態では、地上局210は、「ホットスポット」として機能するように、あるいは、換言すれば、遠隔のサポートデバイス(例えばテザー220、航空車両230および他の地上局)と、セルラネットワークおよび/またはインターネットなど1つまたは複数のデータネットワークとの間のゲートウェイまたはプロキシとして機能するように構成することができる。このように構成されているので、地上局210は、遠隔のサポートデバイスが普通ならそれ自体では実行することができないようなデータ通信を容易にすることができる。
[0060] 例えば、地上局210は、遠隔デバイスへのWiFi接続を提供し、地上局210が例えばLTEまたは3Gプロトコルの下で接続する可能性があるセルラサービスプロバイダのデータネットワークへのプロキシまたはゲートウェイとして機能することができる。地上局210は、また、遠隔デバイスが普通ならアクセスすることができない可能性がある他の地上局またはコマンドセンターへのプロキシまたはゲートウェイとして機能することもできる。
[0061] さらに、図2に示すように、テザー220は、伝送構成要素222および通信リンク224を含むことができる。伝送構成要素222は、航空車両230から地上局210に電気エネルギーを伝送し、かつ/または地上局210から航空車両230に電気エネルギーを伝送するように構成することができる。伝送構成要素222は、様々な異なる実施形態で様々な異なる形態をとることができる。例えば、伝送構成要素222は、電気を伝送するように構成された1つまたは複数の導体を含むことができる。このような例の少なくとも1つでは、この1つまたは複数の導体は、電流の伝導を可能にするアルミニウムおよび/またはその他の任意の材料を含むことができる。さらに、いくつかの実施態様では、伝送構成要素222は、テザー220のコア(図示せず)を取り囲むことができる。
[0062] 地上局210は、通信リンク224を介して航空車両230と通信することができる。通信リンク224は、双方向とすることができ、1つまたは複数の有線および/またはワイヤレスインタフェースを含むことができる。また、通信リンク224の少なくとも一部を構成する1つまたは複数のルータ、スイッチおよび/またはデバイスもしくはネットワークがあることもある。
[0063] さらに、図2に示すように、航空車両230は、1つまたは複数のセンサ232と、電力システム234と、発電/変換構成要素236と、通信システム238と、1つまたは複数のプロセッサ242と、データ記憶装置244およびプログラム命令246と、制御システム248とを含むことができる。
[0064] センサ232は、様々な異なる実施形態で様々な異なるセンサを含むことができる。例えば、センサ232は、全地球測位システム(GPS)受信機を含むことができる。GPS受信機は、航空車両230のGPS座標など、周知のGPSシステム(全地球航法衛星システム(GNNS)と呼ばれることもある)に特有のデータを提供するように構成することができる。このようなGPSデータをAWT200が利用して、本明細書に記載する様々な機能を実現することができる。
[0065] 別の例として、センサ232は、1つまたは複数のピトー管など、1つまたは複数の風センサを含むことができる。この1つまたは複数の風センサは、見かけの、および/または相対的な風を検出するように構成することができる。このような風データをAWT200が利用して、本明細書に記載する様々な機能を実現することができる。
[0066] さらに別の例として、慣性測定ユニット(IMU)を含むことができる。IMUは、併せて使用して航空車両230の配向を決定することができる加速度計およびジャイロスコープの両方を含むことができる。具体的には、加速度計は地球に対する航空車両230の配向を測定することができ、ジャイロスコープは、航空車両230の中心線などの軸の周りの回転速度を測定する。IMUは、低コストな低電力パッケージで市販されている。例えば、IMUは、小型の微小電気機械システム(MEMS)もしくはナノ電気機械システム(NEMS)の形態をとる、またはこれらを含むことができる。その他のタイプのIMUを利用することもできる。IMUは、加速度計およびジャイロスコープに加えて、より良好に位置を決定する助けとなり得る他のセンサを含むこともできる。このようなセンサの2つの例は、磁力計および圧力センサである。その他の例も、可能である。
[0067] 加速度計およびジャイロスコープは、航空車両230の配向を決定するのに有効であり得るが、わずかな測定誤差が、時間とともに積み重なり、さらに重大な誤差をもたらす恐れがある。しかし、航空車両230の一例は、磁力計を使用して方向を測定することによって、このような誤差を軽減または低減することができる可能性がある。磁力計の1つの例は、正確な機首方位情報を得るための配向に依存しない電子コンパスを実現するために使用することができる、低電力のデジタル3軸磁力計である。ただし、他のタイプの磁力計を利用することもできる。
[0068] 航空車両230は、航空車両230の高度を決定するために使用することができる圧力センサまたは気圧計を含むこともできる。あるいは、音響高度計またはレーダー高度計など他のセンサを使用して、IMUの精度を向上させ、かつ/またはIMUのドリフトを防止する助けとなり得る、高度の指示を提供することもできる。さらに、航空車両230は、テザー220の航空車両230との接続部の間に分散している力を検出するように構成された1つまたは複数のロードセルを含むこともできる。
[0069] 上記のように、航空車両230は、電力システム234を含むことができる。電力システム234は、様々な異なる実施形態で様々な異なる形態をとることができる。例えば、電力システム234は、航空車両230に電力を供給する1つまたは複数のバッテリを含むことができる。いくつかの実施態様では、この1つまたは複数のバッテリは、充電式とすることもでき、各バッテリを、そのバッテリと電源との間の有線接続を介して、および/または内部バッテリに外部時間変動磁場を印加するインダクティブ充電システムおよび/または1つまたは複数のソーラーパネルから集めたエネルギーを使用する充電システムなどのワイヤレス充電システムを介して、充電することができる。
[0070] 別の例としては、電力システム234は、航空車両230に電力を供給する1つまたは複数のモータまたはエンジンを含むことができる。いくつかの実施態様では、この1つまたは複数のモータまたはエンジンは、炭化水素系燃料などの燃料によって給電することができる。そのような実施態様では、燃料は、航空車両230に蓄積しておき、配管など1つまたは複数の流体導管を介して1つまたは複数のモータまたはエンジンに送達することができる。いくつかの実施態様では、電力システム234は、その全体または一部を、地上局210上に実装することもできる。
[0071] 上記のように、航空車両230は、発電/変換構成要素236を含むことができる。発電/変換構成要素236は、様々な異なる実施形態で様々な異なる形態をとることができる。例えば、発電/変換構成要素236は、高速の直動発電機など、1つまたは複数の発電機を含むことができる。この構成では、この1つまたは複数の発電機は、ロータ134A〜134Dなど、1つまたは複数のロータによって駆動することができる。このような例の少なくとも1つでは、この1つまたは複数の発電機は、60パーセントを超えることもある利用率で、毎秒11.5メートルの最大定格出力風速で動作することができ、この1つまたは複数の発電機は、40キロワット〜600メガワットの電力を生成することができる。
[0072] さらに、上記のように、航空車両230は、通信システム238を含むことができる。通信システム238は、通信システム218の形態をとる、または通信システム218と類似した形態とすることができる。航空車両230は、通信システム238を介して、地上局210、他の航空車両および/またはその他のエンティティ(例えば司令センター)と通信することができる。
[0073] いくつかの実施態様では、航空車両230は、「ホットスポット」として機能するように、あるいは、換言すれば、遠隔のサポートデバイス(例えば地上局210、テザー220、他の航空車両)と、セルラネットワークおよび/またはインターネットなど1つまたは複数のデータネットワークとの間のゲートウェイまたはプロキシとして機能するように構成することができる。このように構成されているので、航空車両230は、遠隔のサポートデバイスが普通ならそれ自体では実行することができないようなデータ通信を容易にすることができる。
[0074] 例えば、航空車両230は、遠隔デバイスへのWiFi接続を提供し、航空車両230が例えばLTEまたは3Gプロトコルの下で接続する可能性があるセルラサービスプロバイダのデータネットワークへのプロキシまたはゲートウェイとして機能することができる。航空車両230は、また、遠隔デバイスが普通ならアクセスすることができない可能性がある他の航空車両またはコマンドステーションへのプロキシまたはゲートウェイとして機能することもできる。
[0075] 上記のように、航空車両230は、1つまたは複数のプロセッサ242、プログラム命令244およびデータ記憶装置246を含むことができる。この1つまたは複数のプロセッサ242は、データ記憶装置244に記憶された、実行すると本明細書に記載する機能の少なくとも一部を実現することができるコンピュータ可読プログラム命令246を実行するように構成することができる。1つまたは複数のプロセッサ242は、上記の1つまたは複数のプロセッサ212の形態をとる、またはそれらに類似した形態とすることができ、データ記憶装置244は、上記のデータ記憶装置214の形態をとる、またはそれに類似した形態とすることができ、プログラム命令246は、上記のプログラム命令216の形態をとる、またはそれに類似した形態とすることができる。
[0076] さらに、上記のように、航空車両230は、制御システム248を含むことができる。いくつかの実施態様では、制御システム248は、本明細書に記載する1つまたは複数の機能を実行するように構成することができる。制御システム248は、機械的システム、ならびに/またはハードウェア、ファームウェアおよび/もしくはソフトウェアによって実装することができる。1つの例として、制御システム248は、非一時的コンピュータ可読媒体に記憶されたプログラム命令、およびそれらの命令を実行するプロセッサの形態をとることができる。制御システム248は、その全体またはその一部を、航空車両230、および/または地上局210など航空車両230から遠隔に位置した少なくとも1つのエンティティ上に実装することができる。一般に、制御システム248を実装する方法は、ここの適用分野に応じて様々な方法とすることができる。
[0077] 上記では航空車両230について説明したが、本明細書に記載する方法およびシステムは、テザー230および/またはテザー120などのテザーに接続された任意の適当な航空車両を含むことができることを理解されたい。
C.横風飛行
[0078] 図3は、横風飛行の一例300を示す図である。例300は、全体として、例示的に、図1に関連して上述した航空車両130によって実行されるものとして説明する。例証のために、例300について図3に示すようにアクションで説明するが、例300は、任意数のアクションおよび/またはアクションの組合せで実行することができる。
[0079] 具体的には、図3は、地面302の上方を飛行している航空車両130を地上局110から見た図を示している。この図示の例では、風303が、テザー球304に接触する可能性がある。風303は、紙面の奥側に向いていることもある(時計回りの矢印で示す)。さらに、テザー球304は、テザー120の長さに対応する半径を有することができる。例300は、実質的にテザー球304の一部分304Aの上で実行することができる。本開示で使用する「実質的にその上」という表現は、厳密にその上にある状態にある状態、または厳密にその上にある状態から、本明細書で述べる横風飛行からホバー飛行への航空車両の移行に有意な影響を与えない程度の1箇所もしくは複数箇所のずれがある状態を指す。テザー球304の部分304Aでは、第1の軸306Aが方位方向に対応し、第2の軸306Bが仰角方向に対応する。
[0080] さらに、図3に示すように、テザー120は、第1の端部が航空車両130に接続されている。この図示の例では、テザー120の一部分は、紙面から手前側に向いていることがある(半時計回りの矢印で示す)。
[0081] 例300は、点308において、航空車両130を横風飛行配向でテザー球304上の閉じた経路350に沿って進行するように動作させることから開始する。横風飛行配向では、航空車両130は、本明細書で記載するように横風飛行用の構成にすることができる。このようにすることで、点308において、航空車両130は、電気エネルギーを生成することができる。閉じた経路350は、閉じた経路150の形態をとる、または閉じた経路150に類似した形態とすることができる。例えば、この図示の例では、閉じた経路350は、実質的に円形とすることができる。ただし、他の例では、閉じた経路350は、閉じた経路150に関連して述べた様々な異なる形状のうちのいずれかであってもよい。
[0082] 点308において、航空車両130は、風303によって閉じた経路350に沿って推進される可能性がある。図3に示すように、閉じた経路350は、上昇行程352および下降行程354を含む可能性がある。例300では、上昇行程352は、航空車両130が反時計回りに進行する閉じた経路350の一部分を含む可能性があり、下降行程354は、航空車両が時計回りに進行する経路350の一部分を含むことができる。この配列で、航空車両130は、上昇行程352中には風303によって実質的に上向きに推進される可能性があり、下降行程354中には風303によって実質的に下向きに推進される可能性がある。さらに、上昇行程352における航空車両130の速度は、下降行程
354における航空車両130の速度未満である可能性がある。
[0083] 本開示で使用する「実質的に上向き」という表現は、厳密な上向き、および/または厳密な上向きから、本明細書で述べる横風飛行からホバー飛行への移行に有意な影響を与えない程度の1箇所もしくは複数箇所のずれがある状態を指す。本開示で使用する「実質的に下向き」という表現は、厳密な下向き、および/または厳密な下向きから、本明細書で述べる横風飛行からホバー飛行への移行に有意な影響を与えない程度の1箇所もしくは複数箇所のずれがある状態を指す。
[0084] 点308において、航空車両130は、閉じた経路350の実質的に全体に沿って進行するように動作させることができる(これは、閉じた経路350の1周と呼ぶこともある)。本開示で使用する「実質的に全体」という表現は、厳密な全体、および/または厳密な全体から、本明細書で述べる横風飛行からホバー飛行への移行に有意な影響を与えない程度の1箇所もしくは複数箇所のずれがある状態を指す。
[0085] さらに、点308において、航空車両130は、閉じた経路350に沿って1周または複数周するように動作させることもできる。例えば、航空車両130は、閉じた経路350に沿って1周するように、閉じた経路350に沿って2周するように、閉じた経路350に沿って3周するようになどのように動作させることもできる。
[0086] さらに、点308において、航空車両130は、閉じた経路350の一部分に沿って進行するように動作させることもできる。例えば、航空車両130は、閉じた経路350の2分の1、閉じた経路の4分の1などに沿って進行するように動作させることもできる。
[0087] さらに、点308において、航空車両130は、閉じた経路350の1周または複数周と閉じた経路350の一部分または複数部分の組合せに沿って進行するように動作させることもできる。例えば、航空車両130は、閉じた経路350に沿って2周した後に、閉じた経路350の一部分に沿って進行するように動作させることもできる。
[0088] 別の態様では、軸360が閉じた経路350と交差することもある。この図示の例では、軸360は、地上局10の実質的に風下になることがある。本開示で使用する「実質的に風下」という表現は、厳密な風下、または厳密な風下から、本明細書で述べる航空車両の横風飛行からホバー飛行への移行に有意な影響を与えない程度の1箇所もしくは複数箇所のずれがある状態を指す。
[0089] 点308に対応する1つまたは複数のアクションは、様々な異なる実施形態で、様々な異なる期間に実行することができる。例えば、点308に対応する1つまたは複数のアクションは、第1の期間に実行することができる。
[0090] 地面302上に位置する地上局110を用いて例300について説明したが、他の例では、地上局110は可動型であってもよい。例えば、地上局110は、地面302または水体の表面に対して相対的に移動するように構成することもできる。このようにすることで、風303は、地上局110の視点から見た相対風であってもよい。
E.航空車両の横風飛行からホバー飛行への移行
[0091] 図4は、実施形態例による、航空車両を横風飛行からホバー飛行に移行させる一例400を示す図である。具体的には、例400は、航空車両を第2の閉じた経路450Bに沿って進行して、航空車両の速度が低下するように動作させることを含む。例400は、全体として、例示的に、図1に関連して上述した航空車両130によって実行されるものとして説明する。例証のために、航空車両130は、図4には示していない。さらに、例400について図4に示すように一連のアクションで説明するが、例400は、任意数のアクションおよび/またはアクションの組合せで実行することができる。
[0092] また、図3と同様に、図4は、地面302の上方の地上局110から見た図を示しており、風303は紙面の奥側に向いている可能性があり、第1の軸306Aは方位方向に対応し、第2の軸306Bは仰角方向に対応する。
[0093] 例400は、点408において、航空車両130を横風飛行配向で配向されている間にテザー球304上の第1の閉じた経路450Aに沿って進行するように動作させることから開始する。このようにすることで、点408において、航空車両130は、電気エネルギーを生成することもできる。第1の閉じた経路450Aは、閉じた経路150および/もしくは閉じた経路350の形態をとる、または閉じた経路150および/もしくは閉じた経路350に類似した形態とすることができる。例えば、この図示の例では、第1の閉じた経路450Aは、実質的に円形とすることができる。ただし、他の例では、第1の閉じた経路450Aは、閉じた経路150に関連して上述した様々な異なる形状のうちのいずれかであってもよい。
[0094] 点408において、航空車両130は、風303によって第1の閉じた経路450Aに沿って推進される可能性がある。図4に示すように、経路450は、上昇行程452Aおよび下降行程454Aを含む可能性がある。上昇行程452Aは、上昇行程352の形態をとる、または上昇行程352と類似した形態とすることができ、下降行程454Aは、下降行程354の形態をとる、または下降行程354と類似した形態とすることができる。
[0095] 図3に関して説明した、点308において航空車両130を閉じた経路350の実質的に全体に沿って、閉じた経路350の一部分に沿って、および/または閉じた経路350の1周または複数周と閉じた経路350の一部分または複数部分の組合せに沿って進行するように動作させることができるのと同じ、またはそれと類似した方法で、点408において、航空車両130は、第1の閉じた経路450Aの実質的に全体に沿って(これは、第1の閉じた経路450Aの1周と呼ぶこともある)、第1の閉じた経路450Aの一部分に沿って、および/または第1の閉じた経路450Aの1周または複数周と第1の閉じた経路450Aの一部分または複数部分の組合せに沿って進行するように動作させることができる。
[0096] 例400は、続いて点410において、航空車両130を横風飛行配向である間にテザー球304上の第2の閉じた経路450Bに沿って進行するように動作させる。第2の閉じた経路450Bは、上昇行程452Bおよび下降行程454Bを含む可能性がある。この図示の例では、第2の閉じた経路450Bは、実質的に円形とすることができる。ただし、他の例では、第2の閉じた経路450Bは、閉じた経路150について上述した様々な異なる形態のうちのいずれかであってもよい。
[0097] 点410では、航空車両130を、点408において風303によって第1の閉じた経路450Aに沿って推進させたより少なく、風303によって第2の閉じた経路450Bに沿って推進することができる。その結果として、点410における航空車両130の速度は、点408における航空車両130の速度未満となることがある。
[0098] さらに、いくつかの例では、点410において、航空車両130は、電気エネルギーを生成することができる。いくつかのこのような例では、点410において航空車両130によって生成される電気エネルギーは、点408において航空車両130によって生成される電気エネルギーより少ないことがある。ただし、他の例では、点410において、航空車両130が電気エネルギーを生成しないこともある。
[0099] 図4に示すように、第1の軸460は、第1の閉じた経路450Aと交差することもあり、第2の軸470は、第2の閉じた経路450Bと交差することもあり、第1の軸460は、地上局110の実質的に風下になることがあり、第2の軸470は、第1の軸460ほどではないが地上局110の実質的に風下になることがある。このようにすることで、第2の閉じた経路450B上の点456Bは、地上局110の実質的に風下の方向に対して角度をなすことがある。いくつかの例では、この角度は、30度から60度の間の方位など、30度から90度の間の方位とすることができる。さらに、少なくとも1つのこのような例では、この角度は、航空車両130またはAWT100の1つもしくは複数の他の構成要素の1つまたは複数のパラメータに基づいて選択することができる。
[00100] さらに、いくつかの例では、第2の閉じた経路450B上の点(例えば点456B)が地上局110の実質的に風下の方向に対して90度未満の方位角など特定の角度をなす場合に、点410において航空機130が電気エネルギーを生成しないこともある。
[00101] さらに、第2の閉じた経路450B上の点456Bは、第1の閉じた経路45
0Aの対応する点456Aの高度未満の高度に位置することができる。いくつかの例では、第2の閉じた経路450B上の点456Bは、地面302の上方の所定の高度414とすることができる。この所定の高度414は、航空車両130またはAWT100の1つもしくは複数の他の構成要素の1つまたは複数のパラメータに基づいて選択することができる。
[00102] さらに、図4に示すように、第2の軸470は、第1の軸460の右側に位置することがある。このようにすることで、第2の閉じた経路450Bの上昇行程452Bの少なくとも一部分は、第2の閉じた経路450Bの下降行程454Bの少なくとも一部分より地上局110の風下側に位置することがある。したがって、横風飛行配向からホバー飛行配向への移行中の航空車両130の安定性を向上させることができる。ただし、他の例では、第2の軸470は、第1の軸460の左側に位置することもある。このようにすることで、航空車両130は、第2の閉じた経路450Bの上昇行程中に風303によって推進されないこともある。したがって、航空車両130の速度の低下を増大させることができる。
[00103] 点410において、航空車両130は、第2の閉じた経路450Bの実質的に全体に沿って進行するように動作させることができる(これは、第2の閉じた経路450Bの1周と呼ぶこともある)。さらに、点410において、航空車両130は、第2の閉じた経路450Bに沿って1周または複数周するように動作させることもできる。例えば、航空車両130は、第2の閉じた経路450Bに沿って1周するように、第2の閉じた経路450Bに沿って2周するように、第2の閉じた経路450Bに沿って3周するようになどのように動作させることもできる。
[00104] さらに、点410において、航空車両130は、第2の閉じた経路450Bの一部分に沿って進行するように動作させることもできる。例えば、航空車両130は、第2の閉じた経路450Bの2分の1、第2の閉じた経路450Bの4分の1などに沿って進行するように動作させることもできる。
[00105] さらに、航空車両130は、第2の閉じた経路450Bの1周または複数周と第2の閉じた経路450Bの一部分または複数部分の組合せに沿って進行するように動作させることもできる。例えば、航空車両130は、第2の閉じた経路450Bに沿って2周した後に、第2の閉じた経路450Bの一部分に沿って進行するように動作させることもできる。
[00106] いくつかの例では、航空車両130の速度の低下は、航空車両130をそれに沿って進行するように動作させる第2の閉じた経路450Bの周回数が増加するにつれて増大するようにすることができる。例えば、航空車両130を第2の閉じた経路450Bに沿って1周を超えて進行するように動作させるときの航空車両130の速度の低下を、航空車両130を第2の閉じた経路450Bに沿って1周するように動作させるときの航空車両130の速度の低下より大きくすることができる。
[00107] さらに、いくつかの例では、航空車両130の速度の低下は、航空車両130をそれに沿って進行するように動作させる第2の閉じた経路450Bの部分の数が増加するにつれて増大するようにすることができる。例えば、航空車両130を第2の閉じた経路450Bの複数部分に沿って進行するように動作させるときの航空車両130の速度の低下を、航空車両130を第2の閉じた経路450Bの一部分に沿って進行するように動作させるときの航空車両130の速度の低下より大きくすることができる。
[00108] 例400は、続いて点412において、航空車両130の速度が低下した後、または低下している間に、航空車両130を横風飛行配向である間に第2の閉じた経路450Bに沿って進行している状態からホバー飛行配向に移行させる。ホバー飛行配向では、航空車両130は、本明細書に記載するようにホバー飛行用の構成にすることができる。
[00109] いくつかの例では、航空車両130を横風飛行配向である間に第2の閉じた経路450Bに沿って進行している状態からホバー飛行配向に移行させることが、飛行操作を含むことがある。
[00110] さらに、いくつかの例では、航空車両130は、第2の閉じた経路450Bの上昇行程452B中に、横風飛行配向である間に第2の閉じた経路450Bに沿って進行している状態からホバー飛行配向に移行することができる。
[00111] さらに、いくつかの例では、航空車両130は、しきい値速度で、横風飛行配向である間に第2の閉じた経路450Bに沿って進行している状態からホバー飛行配向に移行することができる。さらに、いくつかのこのような例では、しきい値速度は、20m/sなど、10から30m/sの間とすることができる。
[00112] さらに、いくつかの例では、横風飛行配向からホバー飛行配向に移行するためのしきい値速度は、航空車両130が横風飛行配向からホバー飛行配向に移行する第2の閉じた経路450Bに沿った位置に基づいて変化することもできる。一例として、しきい値速度は、航空車両130が横風飛行配向からホバー飛行配向に移行する第2の閉じた経路450Bに沿った点の高度が増大するにつれて減少することもできる。
[00113] 点408〜412に対応する1つまたは複数のアクションは、様々な異なる実施形態で、様々な異なる期間に実行することができる。例えば、点408に対応する1つまたは複数のアクションは第1の期間に実行し、点410に対応する1つまたは複数のアクションは第2の期間に実行し、点412に対応する1つまたは複数のアクションは第3の期間に実行することもできる。
[00114] いくつかの例では、航空車両130は、第1の閉じた経路450Aに沿って進行している状態から第2の閉じた経路450Bに沿って進行している状態に移行することができる。さらに、いくつかのこのような例では、この移行は、第1の閉じた経路450Aと第2の閉じた経路450Bの間にそれぞれ位置する1つまたは複数の他の経路(例えば、テザー球304上の1つまたは複数の他の閉じた経路)に沿って進行することを含むこともできる。さらに、いくつかのこのような例では、この移行は、第1の期間と第2の期間の間に起こることができる。
[00115] 図5は、実施形態例による、航空車両を横風飛行からホバー飛行に移行させる別の例500を示す図である。具体的には、例500は、航空車両を第2の閉じた経路550Bに沿って進行して、航空車両の速度が低下するように動作させることを含む。例500は、全体として、例示的に、図1に関連して上述した航空車両130によって実行されるものとして説明する。例証のために、航空車両130は、図5には示していない。さらに、例500について図5に示すように一連のアクションで説明するが、例500は、任意数のアクションおよび/またはアクションの組合せで実行することができる。
[00116] また、図3および図4と同様に、図5は、地面302の上方の地上局110から見た図を示しており、風303は紙面の奥側に向いている可能性があり、第1の軸306Aは方位方向に対応し、第2の軸306Bは仰角方向に対応する。
[00117] 例500は、点508において、航空車両130を横風飛行配向で配向されている間にテザー球304上の第1の閉じた経路550Aに沿って進行するように動作させることから開始する。このようにすることで、点508において、航空車両130は、電気エネルギーを生成することもできる。第1の閉じた経路550Aは、閉じた経路150、閉じた経路350、および/もしくは第1の閉じた経路450Aの形態をとる、または閉じた経路150、閉じた経路350、および/もしくは第1の閉じた経路450Aに類似した形態とすることができる。例えば、この図示の例では、第1の閉じた経路550Aは、実質的に円形とすることができる。ただし、他の例では、第1の閉じた経路550Aは、閉じた経路150に関連して上述した様々な異なる形状のうちのいずれかであってもよい。
[00118] 航空車両130は、風303によって第1の閉じた経路550Aに沿って推進される可能性がある。図5に示すように、第1の閉じた経路550Aは、上昇行程552Aおよび下降行程554Aを含む可能性がある。上昇行程552Aは、上昇行程352および/もしくは上昇行程452Aの形態をとる、または上昇行程352および/もしくは上昇行程452Aと類似した形態とすることができ、下降行程554Aは、上昇行程354および/もしくは下降行程454Aの形態をとる、または上昇行程354および/もしくは下降行程454Aと類似した形態とすることができる。
[00119] さらに、図5に示すように、軸560は、第1の閉じた経路550Aと交差することもあり、軸560は、地上局110の実質的に風下になることがある。軸560は、軸360および/もしくは第1の軸460の形態をとる、または軸360および/もしくは第1の軸460に類似した形態とすることができる。
[00120] 例300で点308において航空車両130を閉じた経路350の実質的に全体、閉じた経路350の一部分に沿って、および/または閉じた経路350の1周または複数周と閉じた経路350の一部分または複数部分の組合せに沿って進行するように動作させることができるのと同じ、またはそれと類似した方法で、および/または例400で点408において航空車両130を第1の閉じた経路450Aの実質的に全体、第1の閉じた経路450Aの一部分、および/または第1の閉じた経路450Aの1周または複数周と閉じた経路350の一部分または複数部分の組合せに沿って進行するように動作させることができるのと同じ、またはそれと類似した方法で、点508において、航空車両130は、第1の閉じた経路550Aの実質的に全体(これは、第1の閉じた経路550Aの1周と呼ぶこともある)、第1の閉じた経路550Aの一部分、および/または第1の閉じた経路550Aの1周または複数周と第1の閉じた経路550Aの一部分または複数部分の組合せに沿って進行するように動作させることができる。
[00121] 例500は、続いて点510において、航空車両130を横風飛行配向である間にテザー球304上の第2の閉じた経路550Bに沿って進行するように動作させる。第2の閉じた経路550Bは、上昇行程552Bおよび下降行程554Bを含む可能性がある。
[00122] 図5に示すように、第2の閉じた経路550Bは、第1の閉じた経路550Aとは異なる形状を有することがある。このようにすることで、第2の閉じた経路550Bの上昇行程554Bの長さは、第1の閉じた経路550Aの上昇行程554Aの長さより大きいことがある。その結果として、点510において、航空車両130の速度は、点508における航空車両130の速度未満となることがある。
[00123] この図示の例では、第2の閉じた経路550Bは、実質的に長円形(例えば楕円形)であり、第1の閉じた経路550Aは、実質的に円形である。ジェリービーン形や8の字形など、経路550Aおよび第2の閉じた経路550Bのその他の形状も可能である。いくつかの例では、第2の閉じた経路550Bの形状は、上昇行程554Aの長さが増大するように選択することもできる。
[00124] さらに、いくつかの例では、点510において、航空車両130は、電気エネルギーを生成することができる。さらに、いくつかのこのような例では、点510において航空車両130によって生成される電気エネルギーは、点508において航空車両130によって生成される電気エネルギーより少ないことがある。ただし、他の例では、点510において、航空車両130が電気エネルギーを生成しないこともある。さらに、いくつかの例では、第2の閉じた経路550B上の点が地上局110の実質的に風下の方向に対して90度未満の方位角など特定の角度をなす場合に、点510において、航空車両130が電気エネルギーを生成しないこともある。
[00125] 例400で点408において航空車両130を第2の閉じた経路450Bの実質的に全体、第2の閉じた経路450Bの一部分、および/または第2の閉じた経路450Bの1周または複数周と第2の閉じた経路450Bの一部分の組合せに沿って進行するように動作させることができるのと同じ、またはそれと類似した方法で、点510において、航空車両130は、第2の閉じた経路550Bの実質的に全体(これは、第2の閉じた経路550Bの1周と呼ぶこともある)、第2の閉じた経路550Bの一部分、および/または第2の閉じた経路550Bの1周または複数周と第2の閉じた経路550Bの一部分または複数部分の組合せに沿って進行するように動作させることができる。
[00126] このようにすることで、航空車両130の速度の低下は、航空車両130をそれに沿って進行するように動作させる第2の閉じた経路550Bの周回数が増加するにつれて増大するようにすることができる。例えば、航空車両130を第2の閉じた経路550Bに沿って1周を超えて進行するように動作させるときの航空車両130の速度の低下を、航空車両130を第2の閉じた経路550Bに沿って1周するように動作させるときの航空車両130の速度の低下より大きくすることができる。
[00127] さらに、いくつかの例では、航空車両130の速度の低下は、航空車両130をそれに沿って進行するように動作させる第2の閉じた経路550Bの部分の数が増加するにつれて増大するようにすることができる。例えば、航空車両130を第2の閉じた経路550Bの複数部分に沿って進行するように動作させるときの航空車両130の速度の低下を、航空車両130を第2の閉じた経路550Bの一部分に沿って進行するように動作させるときの航空車両130の速度の低下より大きくすることができる。
[00128] 例500は、続いて点512において、航空車両130の速度が低下した後、または低下している間に、航空車両130を横風飛行配向である間に第2の閉じた経路550Bに沿って進行している状態からホバー飛行配向に移行させる。
[00129] 例400で点412において、航空車両130の速度が低下した後、または低下している間に、航空車両130が横風飛行配向である間に第2の閉じた経路450Bに沿って進行している状態から移行することができるのと同じ、またはそれと類似した方法で、点512において、航空車両130の速度が低下した後、または低下している間に、航空車両130は、横風飛行配向である間に第2の閉じた経路550Bに沿って進行している状態からホバー飛行配向に移行することができる。
[00130] 例えば、いくつかの例では、航空車両130を横風飛行配向である間に第2の閉じた経路550Bに沿って進行している状態からホバー飛行配向に移行させることが、飛行操作を含むことがある。飛行操作は、例400の点412における飛行操作の形態をとる、またはその飛行操作に類似した形態とすることができる。
[00131] さらに、いくつかの例では、航空車両130は、第2の閉じた経路550Bの上昇行程552B中に、横風飛行配向である間に第2の閉じた経路550Bに沿って進行している状態からホバー飛行配向に移行することができる。
[00132] さらに、いくつかの例では、航空車両130は、しきい値速度で、横風飛行配向である間に第2の閉じた経路550Bに沿って進行している状態からホバー飛行配向に移行することができる。このしきい値速度は、例400の点412におけるしきい値速度の形態をとる、またはそのしきい値速度に類似した形態とすることができる。
[00133] さらに、いくつかの例では、横風飛行配向からホバー飛行配向に移行するためのしきい値速度は、航空車両130が横風飛行配向からホバー飛行配向に移行する第2の閉じた経路550Bに沿った位置に基づいて変化することもできる。一例として、しきい値速度は、航空車両130が横風飛行配向からホバー飛行配向に移行する第2の閉じた経路550Bに沿った点の高度が増大するにつれて減少することもできる。
[00134] 点508〜512に対応する1つまたは複数のアクションは、様々な異なる実施形態で、様々な異なる期間に実行することができる。例えば、点508に対応する1つまたは複数のアクションは第1の期間に実行し、点510に対応する1つまたは複数のアクションは第2の期間に実行し、点512に対応する1つまたは複数のアクションは第3の期間に実行することもできる。
[00135] いくつかの例では、航空車両130は、第1の閉じた経路550Aに沿って進行している状態から第2の閉じた経路550Bに沿って進行している状態に移行することができる。さらに、いくつかのこのような例では、この移行は、1つまたは複数の他の経路(例えば、テザー球304上の1つまたは複数の他の閉じた経路)に沿って進行することを含むこともできる。さらに、いくつかのこのような例では、この移行は、第1の期間と第2の期間の間に起こることができる。
[00136] さらに、例500の1つまたは複数のアクションは、例400の1つまたは複数のアクションと関連して実行することもできる。このようにすることで、航空車両130の速度は、第2の閉じた経路450Bに沿って進行することによって低下させることができ、この航空車両130の速度を、第2の閉じた経路550Bに沿って進行することによってさらに低下させることができる。例えば、航空車両130は、例400の点410と同様に、横風飛行配向である間に第2の閉じた経路450Bに沿って進行して、航空車両130の速度が低下するように動作させることができる。航空車両130の速度が低下した後、または低下している間に、航空車両130を、例500の点510と同様に、横風飛行配向である間に第2の閉じた経路550Bに沿って進行して、航空車両130の速度がさらに低下するように動作させることができる。
[00137] さらに、航空車両130の速度を、第2の閉じた経路550Bに沿って進行することによって低下させることができ、この航空車両130の速度を、第2の閉じた経路450Bに沿って進行することによってさらに低下させることもできる。例えば、航空車両130は、例500の点510と同様に、横風飛行配向である間に第2の閉じた経路550Bに沿って進行して、航空車両130の速度が低下するように動作させることができる。航空車両130の速度が低下した後、または低下している間に、航空車両130を、例400の点410と同様に、横風飛行配向である間に第2の閉じた経路450Bに沿って進行して、航空車両130の速度がさらに低下するように動作させることができる。
[00138] さらに、いくつかの例では、航空車両130は、第2の閉じた経路550Bに沿って進行し、(i)第2の閉じた経路450Bに沿って進行し、かつ(ii)第1の閉じた経路550Aまたは第1の閉じた経路450Aに沿って進行することができる。例えば、航空車両130は、横風飛行配向である間に第2の閉じた経路550Bに沿って進行して、航空130の速度が低下するように動作させることができる。いくつかのこのような例では、点512に対応する1つまたは複数のアクションが実行されないときに、航空車両130は、例400の点410と同様に横風飛行配向である間に第2の閉じた経路450Bに沿って進行するように動作させることができ、かつ航空車両130は例400の点408と同様に、第1の閉じた経路550Aまたは第1の閉じた経路450Aに沿って進行するように動作させることができる。
[00139] 図6は、実施形態例による、航空車両を横風飛行からホバー飛行に移行させるさらに別の例600を示す図である。具体的には、例600は、航空車両を第2の閉じた経路650Bに沿って進行するように動作させることを含む。例600は、全体として、例示的に、図1に関連して上述した航空車両130によって実行されるものとして説明する。例証のために、航空車両130は、図6には示していない。さらに、例600について図6に示すように一連のアクションで説明するが、例600は、任意数のアクションおよび/またはアクションの組合せで実行することができる。
[00140] また、図3〜図5と同様に、図6は、地面302の上方の地上局110から見た図を示しており、風303は紙面の奥側に向いている可能性があり、第1の軸306Aは方位方向に対応し、第2の軸306Bは仰角方向に対応する。
[00141] 例600は、点608において、航空車両130を横風飛行配向で配向されている間にテザー球304上の第1の閉じた経路650Aに沿って進行するように動作させることから開始する。このようにすることで、航空車両130は、電気エネルギーを生成することもできる。第1の閉じた経路650Aは、閉じた経路150、閉じた経路350、第1の閉じた経路450A、および/もしくは第1の閉じた経路550Aの形態をとる、または閉じた経路150、閉じた経路350、第1の閉じた経路450Aおよび/もしくは第1の閉じた経路550Aに類似した形態とすることができる。例えば、この図示の例では、第1の閉じた経路650Aは、実質的に円形とすることができる。ただし、他の例では、第1の閉じた経路650Aは、閉じた経路150に関連して上述した様々な異なる形状のうちのいずれかであってもよい。
[00142] 航空車両130は、風303によって第1の閉じた経路650Aに沿って推進される可能性がある。図6に示すように、第1の閉じた経路650Aは、上昇行程652Aおよび下降行程654Aを含む可能性がある。上昇行程652Aは、上昇行程352、上昇行程452A、および/もしくは上昇行程552Aの形態をとる、または上昇行程352、上昇行程452A、および/もしくは上昇行程552Aと類似した形態とすることができ、下降行程654Aは、下降行程354、下降行程454A、および/もしくは下降行程554Aの形態をとる、または下降行程354、下降行程454A、および/もしくは下降行程554Aと類似した形態とすることができる。
[00143] さらに、図6に示すように、軸660は、第1の閉じた経路650Aと交差することもあり、軸660は、地上局110の実質的に風下になることがある。軸660は、軸360、第1の軸460、および/もしくは第1の軸560の形態をとる、または軸360、第1の軸460、および/もしくは第1の軸560に類似した形態とすることができる。
[00144] 例300で点308において航空車両130を閉じた経路350の実質的に全体および/または閉じた経路350の一部分に沿って進行するように動作させることができるのと同じ、またはそれと類似した方法で、例400で点408において航空車両103を第1の閉じた経路450Aの実質的に全体および/または第1の閉じた経路450Aの一部分に沿って進行するように動作させることができるのと同じ、またはそれと類似した方法で、および/または例500で点508において航空車両130を第1の閉じた経路550Aの実質的に全体および/または第1の閉じた経路550Aの一部分に沿って進行するように動作させることができるのと同じ、またはそれと類似した方法で、点608において、航空車両130は、第1の閉じた経路550Aの実質的に全体および/または第1の閉じた経路550Aの一部分に沿って進行するように動作させることができる。
[00145] 例600は、続いて点610において、航空車両130を横風飛行配向である間にテザー球304上の第2の閉じた経路650Bに沿って進行するように動作させる。第2の閉じた経路650Bは、上昇行程652Bおよび下降行程654Bを含む。
[00146] 図6に示すように、第2の閉じた経路650Bは、第1の閉じた経路650Aとは異なる形状を有することがある。このようにすることで、第2の閉じた経路650Bの上昇行程652Bの長さは、第1の閉じた経路650Aの上昇行程652Aの長さより大きいことがある。その結果として、点610において、航空車両130の速度は、点608における航空車両130の速度未満となることがある。


[00147] 具体的には、第2の閉じた経路650Bは、第1の部分662および第2の部分664を有する。図6に示すように、第2の閉じた経路650Bの第1の部分662は、実質的に一定の仰角とすることができ、第2の閉じた経路650Bの第2の部分664は、実質的に一定の方位とすることができる。さらに、いくつかの例では、第2の閉じた経路650Bの第1の部分662は、地面302の上方の所定の高度614に位置することができる。この所定の高度614は、航空車両130またはAWT100の1つもしくは複数の他の構成要素の1つまたは複数のパラメータに基づいて選択することができる。
[00148] さらに、図6に示すように、第2の閉じた経路650Bの第2の部分664は、実質的に軸660上にあることもある。他の例では、第2の閉じた経路650Bの第2の部分664は、実質的に軸660と平行であることもある。
[00149] いくつかの例では、上昇行程652Bは、第2の閉じた部分650Bの第1の部分662および第2の部分664に沿って位置することもある。このようにすることで、第2の閉じた経路650Bの上昇行程652Bの長さは、例400の第2の閉じた経路450Bの上昇行程452Bおよび例500の第2の閉じた経路550Bの上昇行程552Bなど、本明細書に記載するその他の第2の閉じた経路の上昇行程の長さより、大きいことがある。
[00150] さらに、図6に示すように、第2の閉じた経路650Bは、第2の閉じた経路650Bの第1の部分662を第2の閉じた経路650Bの第2の部分664に接続する円弧668をさらに含むこともある。このようにすることで、航空車両130を第2の閉じた経路650Bに沿って進行するように動作させることは、航空車両130を円弧668に沿って進行するように動作させることを含むことがある。いくつかの例では、円弧668は、所定の曲率を有することができる。さらに、いくつかのこのような例では、この所定の曲率は、航空車両130が進行するように構成された最大の曲率とすることができる。いくつかの例では、航空車両130を第2の閉じた経路650Bに沿って進行するように動作させることは、航空車両130を第2の閉じた経路650Bの第2の部分664に向けて上方に急速に転回させることを含むことがある。
[00151] さらに、図6に示すように、第2の閉じた経路650Bは、第2の閉じた経路650Bの第3の部分666をさらに含むこともできる。いくつかの例では、下降行程654Bは、第2の閉じた経路650の第3の部分666に沿って位置することもある。
[00152] さらに、いくつかの例では、点610において、航空車両130は、電気エネルギーを生成することができる。さらに、いくつかのこのような例では、点610において航空車両130によって生成される電気エネルギーは、点608において航空車両130によって生成される電気エネルギーより少ないことがある。ただし、他の例では、点610において、航空車両130が電気エネルギーを生成しないこともある。さらに、いくつかの例では、第2の閉じた経路650B上の点が地上局110の実質的に風下の方向に対して90度未満の方位角など特定の角度をなす場合に、点610において、航空車両130が電気エネルギーを生成しないこともある。
[00153] 例400で点408において航空車両130を第2の閉じた経路450Bの実質的に全体、第2の閉じた経路450Bの一部分、および/または第2の閉じた経路450Bの1周または複数周と第2の閉じた経路450Bの一部分の組合せに沿って進行するように動作させることができるのと同じ、またはそれと類似した方法で、および/または例500で点508において航空車両130を第2の閉じた経路550Bの実質的に全体、第2の閉じた経路550Bの一部分、および/または第2の閉じた経路550Bの1周または複数周と第2の閉じた経路550Bの一部分の組合せに沿って進行するように動作させることができるのと同じ、またはそれと類似した方法で、点610において、航空車両130は、第2の閉じた経路650Bの実質的に全体(これは、第2の閉じた経路550Bの1周と呼ぶこともある)、第2の閉じた経路550Bの一部分(例えば第1の部分662、第2の部分664、および第3の部分666)、および/または第2の閉じた経路650Bの1周または複数周と第2の閉じた経路650Bの一部分または複数部分の組合せに沿って進行するように動作させることができる。
[00154] このようにすることで、航空車両130の速度の低下は、航空車両130をそれに沿って進行するように動作させる第2の閉じた経路650Bの周回数が増加するにつれて増大するようにすることができる。例えば、航空車両130を第2の閉じた経路650Bに沿って1周を超えて進行するように動作させるときの航空車両130の速度の低下を、航空車両130を第2の閉じた経路650Bに沿って1周するように動作させるときの航空車両130の速度の低下より大きくすることができる。
[00155] さらに、いくつかの例では、航空車両130の速度の低下は、航空車両130をそれに沿って進行するように動作させる第2の閉じた経路550Bの部分の数が増加するにつれて増大するようにすることができる。例えば、航空車両130を第2の閉じた経路650Bの複数部分に沿って進行するように動作させるときの航空車両130の速度の低下を、航空車両130を第2の閉じた経路650Bの一部分に沿って進行するように動作させるときの航空車両130の速度の低下より大きくすることができる。
[00156] 例600は、続いて点612において、航空車両130の速度が低下した後、または低下している間に、航空車両130を横風飛行配向である間に第2の閉じた経路650Bに沿って進行している状態からホバー飛行配向に移行させる。
[00157] 例400で点412において、航空車両130の速度が低下した後、または低下している間に、航空車両130が横風飛行配向である間に第2の閉じた経路450Bに沿って進行している状態から移行することができるのと同じ、またはそれと類似した方法で、および/または例500で点512において、航空車両130の速度が低下した後、または低下している間に、航空車両130が横風飛行配向である間に第2の閉じた経路550Bに沿って進行している状態から移行することができるのと同じ、またはそれと類似した方法で、点612において、航空車両130の速度が低下した後、または低下している間に、航空車両130は、横風飛行配向である間に第2の閉じた経路650Bに沿って進行している状態からホバー飛行配向に移行することができる。
[00158] 例えば、いくつかの例では、航空車両130を横風飛行配向である間に第2の閉じた経路650Bに沿って進行している状態からホバー飛行配向に移行させることが、飛行操作を含むことがある。飛行操作は、例400の点412における飛行操作または例500の点512における飛行操作の形態をとる、またはその飛行操作に類似した形態とすることができる。
[00159] さらに、いくつかの例では、航空車両130は、第2の閉じた経路650Bの上昇行程652B中に、横風飛行配向である間に第2の閉じた経路650Bに沿って進行している状態からホバー飛行配向に移行することができる。
[00160] さらに、いくつかの例では、航空車両130は、しきい値速度で、横風飛行配向である間に第2の閉じた経路650Bに沿って進行している状態からホバー飛行配向に移行することができる。点612におけるしきい値速度は、例400の点412におけるしきい値速度または例500の点512におけるしきい値速度の形態をとる、またはそのしきい値速度に類似した形態とすることができる。
[00161] さらに、いくつかの例では、横風飛行配向からホバー飛行配向に移行するためのしきい値速度は、航空車両130が横風飛行配向からホバー飛行配向に移行する第2の閉じた経路650Bに沿った位置に基づいて変化することもできる。一例として、しきい値速度は、航空車両130が横風飛行配向からホバー飛行配向に移行する第2の閉じた経路650Bに沿った点の高度が増大するにつれて減少することもできる。
[00162] 点608〜612に対応する1つまたは複数のアクションは、様々な異なる実施形態で、様々な異なる期間に実行することができる。例えば、点608に対応する1つまたは複数のアクションは第1の期間に実行し、点610に対応する1つまたは複数のアクションは第2の期間に実行し、点612に対応する1つまたは複数のアクションは第3の期間に実行することもできる。
[00163] いくつかの例では、航空車両130は、第1の閉じた経路650Aに沿って進行している状態から第2の閉じた経路650Bに沿って進行している状態に移行することができる。さらに、いくつかのこのような例では、この移行は、1つまたは複数の他の経路(例えば、テザー球304上の1つまたは複数の他の閉じた経路)に沿って進行することを含むこともできる。さらに、いくつかのこのような例では、この移行は、第1の期間と第2の期間の間に起こることができる。
[00164] さらに、例600は、例400の1つもしくは複数のアクションおよび/または例500の1つもしくは複数のアクションと関連して実行することもできる。このようにすることで、航空車両130の速度は、第2の閉じた経路450Bおよび/または第2の閉じた経路550Bに沿って進行することによって低下させることができ、この航空車両130の速度を、第2の閉じた経路650Bに沿って進行することによってさらに低下させることができる。例えば、航空車両130は、例400の点410と同様に横風飛行配向である間に第2の閉じた経路450Bに沿って、および/または例500の点510と同様に横風飛行配向である間に第2の閉じた経路550Bに沿って進行して、航空車両130の速度が低下するように動作させることができる。航空車両130の速度が低下した後、または低下している間に、航空車両130を、例600の点610と同様に、横風飛行配向である間に第2の閉じた経路650Bに沿って進行して、航空車両130の速度がさらに低下するように動作させることができる。
[00165] さらに、航空車両130は、横風飛行配向である間に第2の閉じた経路650Bに沿って進行して、航空車両130の速度が低下するように動作させることができる。航空車両130の速度が低下した後、または低下している間に、航空車両130を、例400の点410と同様に、横風飛行配向である間に第2の閉じた経路450Bに沿って進行して、航空車両130の速度がさらに低下するように、および/または例500の点510と同様に、横風飛行配向である間に第2の閉じた経路550Bに沿って進行して、航空車両130の速度がさらに低下するように、動作させることができる。
[00166] さらに、いくつかの例では、航空車両130は、第2の閉じた経路650Bに沿って進行し、(i)第2の閉じた経路450Bおよび/または第2の閉じた経路550Bに沿って進行し、かつ(ii)第1の閉じた経路650A、第1の閉じた経路450A、または第1の閉じた経路550Aに沿って進行することができる。例えば、航空車両130は、例600の点610と同様に、横風飛行配向である間に第2の閉じた経路650Bに沿って進行して、航空130の速度が低下するように動作させることができる。また、いくつかのこのような例では、点612に対応する1つまたは複数のアクションが実行されないときに、航空車両130は、例400の点410と同様に横風飛行配向である間に第2の閉じた経路450Bに沿って進行し、かつ/または例500の点510と同様に横風飛行配向である間に第2の閉じた経路550Bに沿って進行するように動作させることができ、かつ例400の点408と同様に第1の閉じた経路650A、第1の閉じた経路450Aに沿って進行し、かつ/または例500の点508と同様に第1の閉じた経路550Aに沿って進行するように動作させることができる。
[00167] さらに、いくつかの例では、航空車両130などの航空車両は、第2の閉じた経路に沿って進行することなく横風飛行からホバー飛行に移行して、航空車両の速度が低下するようにすることもできる。代わりに、航空車両の速度は、航空車両にかかる抗力が増加する、または航空車両にかかる揚力が低下するように航空車両を動作させることによって、低下させることができる。
[00168] 図7aおよび図7bは、実施形態例による、迎角に関するグラフ表現である。具体的には、図7aは、グラフ表現702であり、図7bは、グラフ表現706である。
[00169] 図7aに示すように、グラフ表現702は、迎角に対する揚力係数(CL)を表している。Cは、航空車両にかかる揚力を示すことができ、迎角は、航空車両の第1の軸(例えば長手方向軸)と、航空車両の第1の軸および航空車両の第2の軸(例えば垂直軸)によって画定される(例えば展開される)平面に投影される見かけの風ベクトルとの間の角度とすることができる。さらに、迎角は、αと呼ばれることもある。
[00170] グラフ表現702は、第1の部分702Aおよび第2の部分702Bを含む。第1の部分702Aは、本明細書に記載する横風飛行のCの値の範囲に対応し、第2の部分702Bは、本明細書に記載する失速状態のCの値の範囲に対応する。軸704Aは、横風飛行のCの値の範囲と失速状態のCの値の範囲の境界を表している。図7aに示すように、迎角が増大するにつれて、Cは減少することがある。
[00171] 図7bに示すように、グラフ表現706は、迎角に対する抗力係数(CD)を表している。Cは、航空車両にかかる抗力を示すことができる。
[00172] グラフ表現706は、第1の部分706Aおよび第2の部分706Bを含む。第1の部分706Aは、本明細書に記載する横風飛行のCの値の範囲に対応し、第2の部分706Bは、本明細書に記載する失速状態のCの値の範囲に対応する。軸704Bは、横風飛行のCの値の範囲と失速状態のCの値の範囲の境界を表している。図7bに示すように、迎角が増大するにつれて、Cは増加することがある。
[00173] 図8は、実施形態例による、航空車両を横風飛行からホバー飛行に移行させるさらに別の例800を示す図である。具体的には、例800は、点810で、航空車両130にかかる抗力が増加するように、または航空機130にかかる揚力が低下するように航空車両130を動作させることによって航空車両130の速度を低下させることを含む。例800は、全体として、例示的に、図1に関連して上述した航空車両130によって実行されるものとして説明する。例証のために、航空車両130は、図8には示していない。さらに、例800について図8に示すように一連のアクションで説明するが、例800は、任意数のアクションおよび/またはアクションの組合せで実行することができる。
[00174] また、図3〜図6と同様に、図8は、地面302の上方の地上局110から見た図を示しており、風303は紙面の奥側に向いている可能性があり、第1の軸306Aは方位方向に対応し、第2の軸306Bは仰角方向に対応する。
[00175] 例800は、点808において、航空車両130を横風飛行配向で配向されている間にテザー球304上の閉じた経路850に沿って進行するように動作させることから開始する。このようにすることで、点808において、航空車両130は、電気エネルギーを生成することもできる。閉じた経路850は、閉じた経路150、閉じた経路350、第1の閉じた経路450A、第1の閉じた経路550A、および/もしくは第1の閉じた経路650Aの形態をとる、または閉じた経路150、閉じた経路350、第1の閉じた経路450A、第1の閉じた経路550Aおよび/もしくは第1の閉じた経路650Aに類似した形態とすることができる。例えば、この図示の例では、閉じた経路850は、実質的に円形とすることができる。ただし、他の例では、閉じた経路850は、閉じた経路150に関連して上述した様々な異なる形状のうちのいずれかであってもよい。
[00176] 航空車両130は、風303によって閉じた経路850に沿って推進される可能性がある。図5に示すように、閉じた経路850は、上昇行程852および下降行程854を含む可能性がある。上昇行程852は、上昇行程352、上昇行程452A、上昇行程552A、および/もしくは上昇行程652Aの形態をとる、または上昇行程352、上昇行程452A、上昇行程552A、および/もしくは上昇行程652Aと類似した形態とすることができ、下降行程854は、下降行程354、下降行程454A、下降行程554A、および/もしくは下降行程654Bの形態をとる、または下降行程354、下降行程454A、下降行程554A、および/もしくは下降行程654Bと類似した形態とすることができる。
[00177] さらに、図8に示すように、軸860は、第1の閉じた経路550Aと交差することもあり、軸560は、地上局110の実質的に風下になることがある。軸860は、軸360、第1の軸460、第1の軸560、および/もしくは第1の軸660の形態をとる、または軸360、第1の軸460、第1の軸560、および/もしくは第1の軸660に類似した形態とすることができる。
[00178] 例300で点308において航空車両130を閉じた経路350の実質的に全体、閉じた経路350の一部分、および/または閉じた経路350の1周または複数周と閉じた経路850の一部分または複数部分の組合せに沿って進行するように動作させることができるのと同じ、またはそれと類似した方法で、例400で点408において航空車両130を第1の閉じた経路450Aの実質的に全体、第1の閉じた経路450Aの一部分、および/または第1の閉じた経路450Aの1周または複数周と第1の閉じた経路450Aの一部分または複数部分の組合せに沿って進行するように動作させることができるのと同じ、またはそれと類似した方法で、例500で点508において航空車両130を第1の閉じた経路550Aの実質的に全体、第1の閉じた経路550Aの一部分、および/または第1の閉じた経路550Aの1周または複数周と第1の閉じた経路550Aの一部分または複数部分の組合せに沿って進行するように動作させることができるのと同じ、またはそれと類似した方法で、および/または例600で点608において航空車両130を第1の閉じた経路650Aの実質的に全体、第1の閉じた経路650Aの一部分、および/または第1の閉じた経路650Aの1周または複数周と第1の閉じた経路650Aの一部分または複数部分の組合せに沿って進行するように動作させることができるのと同じ、またはそれと類似した方法で、点808において、航空車両130は、閉じた経路850の実質的に全体(これは、閉じた経路850の1周と呼ぶこともある)、閉じた経路850の一部分、および/または閉じた経路850の1周または複数周と閉じた経路850の一部分または複数部分の組合せに沿って進行するように動作させることができる。
[00179] 例800は、続いて点810において、航空車両130が横風飛行配向で閉じた経路850に沿って進行している間に、航空車両130にかかる抗力が増加するように、または航空車両130にかかる揚力が低下するように航空車両130を動作させることによって航空車両130の速度を低下させる。いくつかの例では、航空車両130にかかる抗力および/または揚力は、航空車両130の長手方向軸に作用することがある。
[00180] 航空車両130は、航空車両130にかかる抗力が様々な方法で増加するように動作させることができる。一例として、航空車両130は、航空車両130の迎角を増大させて主翼131の少なくとも一部分が失速するようにすることによって航空車両130にかかる抗力が増大するように動作させることができる。このようにすることで、主翼131の上記一部分に基づく航空車両130にかかる抗力を増大させることができ、航空車両130は、少なくとも主翼131の上記一部分の周囲では付着流を有さないことがある。
[00181] さらに、航空車両130は、航空車両130の迎角を増大させて主翼131が失速するようにすることによって航空車両130にかかる抗力が増大するように動作させることができる。このようにすることで、主翼131に基づく航空車両130にかかる抗力を増大させることができ、航空車両130は、少なくとも主翼131の周囲では付着流を有さないことがある。
[00182] さらに、いくつかのこのような例では、航空車両130の迎角を増大させることが、ピッチアップなどの飛行操作を含むことがある。さらに、いくつかのこのような例では、飛行操作は、数秒以内など、特定の期間内に実行されることがある。
[00183] 別の例として、航空車両130は、航空車両130にかかる抗力を増加させるように主翼131の本明細書に記載する1つまたは複数の制御表面を動作させることによって、航空車両130にかかる抗力が増加するように動作させることができる。さらに、航空車両130にかかる抗力を増加させるように1つまたは複数の制御表面を動作させることが、航空車両130の境界層に逆流を注入することを含むことがある。
[00184] 別の例として、航空車両130は、航空車両130にかかる抗力が増加するようにロータ134A〜134Dのうちの1つまたは複数のロータを動作させることによって、航空車両130にかかる抗力が増加するように動作させることができる。さらに、いくつかのこのような例では、ロータ134A〜134Dのうちの1つまたは複数のロータを動作させることが、1つまたは複数のロータを最大抗力に設定することを含むことがある。さらに、いくつかのこのような例では、ロータ134A〜134Dのうちの1つまたは複数のロータを動作させることが、それらの1つまたは複数のロータが横風飛行中にスピンする方向とは実質的に反対の方向にそれらの1つまたは複数のロータをスピンさせることを含むことがある。
[00185] 本開示で使用する「実質的に反対」という表現は、厳密な反対、または厳密な反対から、本明細書で述べる横風飛行とホバー飛行の間の航空車両の移行に有意な影響を与えない程度の1箇所もしくは複数箇所のずれがある状態を指す。
[00186] さらに別の例として、航空車両130は、ロータコネクタ133A〜133Bのうちの1つまたは複数が失速するように航空車両130の横滑り角度を増加させることによって、航空車両130にかかる抗力が増加するように動作させることができる。このようにすることで、ロータコネクタに基づく航空車両130にかかる抗力を増加させることができ、航空車両130は、少なくともロータコネクタ133A〜133Bの周囲以外では付着流を有さないことがある。横滑り角度は、見かけの風ベクトルと、航空車両130の第1の軸(例えば長手方向軸)および航空車両130の第2の軸(例えば垂直軸)によって画定される(例えば展開される)平面との間の角度とすることができる。さらに、横滑り角度は、βと呼ばれることもある。
[00187] 本開示で使用する「実質的に直交」という表現は、厳密な直交、および/または厳密な直交から、本明細書で述べる横風飛行とホバー飛行の間の航空車両の移行に有意な影響を与えない程度の1箇所もしくは複数箇所のずれがある状態を指す。
[00188] さらに、航空車両130の速度は、航空車両130にかかる抗力が増加するように航空車両130を動作させる上述の例のうちの任意の2つ以上を実行することによって低下させることができる。このようにすることで、点810における航空車両の速度の低下を増大させることができる。
[00189] 例えば、点810で、航空車両130にかかる抗力は、(i)航空車両130の迎角を増大させて主翼130の少なくとも一部分が失速するようにし、(ii)航空車両130にかかる抗力を増加させるように主翼130の1つまたは複数の制御表面を動作させ、(iii)航空車両130にかかる抗力を増加させるようにロータ134A〜134Dのうちの1つまたは複数を動作させ、かつ/または(iv)航空車両130の横滑り角度を増加させてロータコネクタ133A〜133Bのうちの1つまたは複数が失速するようにすることによって、増加させることができる。
[00190] さらに、航空車両130は、航空車両130にかかる揚力が様々な方法で低下するように動作させることができる。一例として、航空車両130は、航空車両130の揚力を低下させるように主翼131の本明細書に記載する1つまたは複数の制御表面を動作させることによって、航空車両にかかる揚力が低下するように動作させることができる。例えば、主翼131の後縁部に位置する1つまたは複数の制御表面を、航空車両130にかかる揚力を低下させるように動作させることができる。
[00191] 別の例として、航空車両130は、航空車両130の迎角を減少させることによって、航空車両130にかかる揚力が低下するように動作させることができる。例えば、航空車両130の迎角は、主翼131の少なくとも1つの昇降舵など主翼131の1つまたは複数の制御表面を調節することによって、減少させることができる。
[00192] さらに別の例として、航空車両130は、主翼131の少なくとも一部分を失速させることによって、航空車両130にかかる揚力が低下するように動作させることができる。このようにすることで、主翼131の上記一部分に基づく航空車両130にかかる揚力を低下させることができ、航空車両130は、少なくとも主翼131の上記一部分の周囲では付着流を有さないことがある。
[00193] さらに、航空車両130は、主翼131を失速させることによって、航空車両130にかかる揚力が低下するように動作させることができる。このようにすることで、主翼131に基づく航空車両130にかかる揚力を低下させることができ、航空車両130は、少なくとも主翼131の周囲では付着流を有さないことがある。
[00194] さらに、航空車両130の速度は、航空車両130にかかる揚力が低下するように航空車両130を動作させる上述の例のうちの任意の2つ以上を実行することによって低下させることができる。このようにすることで、点810における航空車両130の速度の低下を増大させることができる。
[00195] 例えば、点810で、航空車両にかかる揚力は、(i)航空車両130にかかる揚力を低下させるように主翼131の1つまたは複数の制御表面を動作させ、(ii)航空車両130の迎角を減少させ、かつ/または(iii)主翼131の少なくとも一部分を失速させることによって、低下させることができる。
[00196] さらに、航空車両130の速度は、航空車両130にかかる抗力が増加し、航空車両130にかかる揚力が低下するように航空車両130を動作させることによって低下させることができる。このようにすることで、点810における航空車両130の速度の低下を増大させることができる。
[00197] 例えば、点810において、航空車両130にかかる抗力を増加させるように航空車両130を動作させる上述の例のうちの1つまたは複数を、航空車両130にかかる揚力を低下させるように航空車両130を動作させる上述の例のうちの1つまたは複数と関連して実行することができる。
[00198] さらに、いくつかの例では、点810において、航空車両130は、電気エネルギーを生成することができる。さらに、いくつかのこのような例では、点810において航空車両130によって生成される電気エネルギーは、点808において航空車両130によって生成される電気エネルギーより少ないことがある。ただし、他の例では、点810において、航空車両130が電気エネルギーを生成しないこともある。
[00199] さらに、点810において、航空車両130が静的な力平衡状態になるように航空車両130を動作させることによって、航空車両130は、航空車両130にかかる抗力が増加するように、または航空車両130にかかる揚力が低下するように動作させることができる。このようにすることで、航空車両130の速度の水平成分を低下させることができる。
[00200] 例800は、続いて点812において、航空車両130の速度が低下した後、または低下している間に、航空車両130を横風飛行配向である間に閉じた経路850に沿って進行している状態からホバー飛行配向に移行させる。
[00201] 例400で点412において、航空車両130の速度が低下した後、または低下している間に、航空車両130が横風飛行配向である間に第2の閉じた経路450Bに沿って進行している状態から移行することができるのと同じ、またはそれと類似した方法で、例500で点512において、航空車両130の速度が低下した後、または低下している間に、航空車両130が横風飛行配向である間に第2の閉じた経路550Bに沿って進行している状態から移行することができるのと同じ、またはそれと類似した方法で、および/または例500で点512において、航空車両130の速度が低下した後、または低下している間に、航空車両130が横風飛行配向である間に第2の閉じた経路550Bに沿って進行している状態から移行することができるのと同じ、またはそれと類似した方法で、点812において、航空車両130の速度が低下した後、または低下している間に、航空車両130は、横風飛行配向である間に閉じた経路850に沿って進行している状態からホバー飛行配向に移行することができる。
[00202] 例えば、いくつかの例では、航空車両130を横風飛行配向である間に閉じた経路850に沿って進行している状態からホバー飛行配向に移行させることが、飛行操作を含むことがある。飛行操作は、例400の点412における飛行操作、例500の点512における飛行操作、および/または点612における飛行操作の形態をとる、またはその飛行操作に類似した形態とすることができる。
[00203] さらに、いくつかの例では、航空車両130は、閉じた経路850の上昇行程852中に、横風飛行配向である間に閉じた経路850に沿って進行している状態からホバー飛行配向に移行することができる。
[00204] さらに、いくつかの例では、航空車両130は、しきい値速度で、横風飛行配向である間に閉じた経路850に沿って進行している状態からホバー飛行配向に移行することができる。点812におけるしきい値速度は、例400の点412におけるしきい値速度、例500の点512におけるしきい値速度、および/または点612におけるしきい値速度の形態をとる、またはそのしきい値速度に類似した形態とすることができる。
[00205] さらに、いくつかの例では、横風飛行配向からホバー飛行配向に移行するためのしきい値速度は、航空車両130が横風飛行配向からホバー飛行配向に移行する閉じた経路850に沿った位置に基づいて変化することもできる。一例として、しきい値速度は、航空車両130が横風飛行配向からホバー飛行配向に移行する閉じた経路850に沿った点の高度が増大するにつれて減少することもできる。
[00206] 点808〜812に対応する1つまたは複数のアクションは、様々な異なる実施形態で、様々な異なる期間に実行することができる。例えば、点808に対応する1つまたは複数のアクションは第1の期間に実行し、点810に対応する1つまたは複数のアクションは第2の期間に実行し、点812に対応する1つまたは複数のアクションは第3の期間に実行することもできる。
[00207] さらに、例800の1つまたは複数のアクションは、例400の1つもしくは複数のアクション、例500の1つもしくは複数のアクション、および/または例600の1つもしくは複数のアクションと関連して実行することもできる。このようにすることで、航空車両130の速度は、第2の閉じた経路450B、第2の閉じた経路550B、および/または第2の閉じた経路650Bに沿って進行することによって低下させることができ、この航空車両130の速度を、航空車両130にかかる抗力が増加するように、または航空車両130にかかる揚力が低下するように航空車両を動作させることによってさらに低下させることができる。例えば、航空車両130は、例400の点410と同様に横風飛行配向である間に第2の閉じた経路450Bに沿って、例500の点510と同様に横風飛行配向である間に第2の閉じた経路550Bに沿って、および/または例600の点610と同様に横風飛行配向である間に第2の閉じた経路650Bに沿って進行するように動作させることができる。航空車両130の速度が低下した後、または低下している間に、例800の点810と同様に、航空車両130にかかる抗力が増加する、または航空車両130にかかる揚力が低下するように航空車両130を動作させることによって、航空車両130の速度をさらに低下させることができる。
[00208] さらに、航空車両130にかかる抗力が増加するように、または航空車両130にかかる揚力が低下するように航空車両130を動作させることによって航空車両130の速度を低下させることができ、この速度を、第2の閉じた経路450B、第2の閉じた経路550B、および/または第2の閉じた経路650Bに沿って進行することによって低下させることができる。例えば、航空車両130の速度は、例800の点810と同様に、航空車両130にかかる抗力が増加するように、または航空車両130にかかる揚力が低下するように航空車両130を動作させることによって低下させることができる。航空車両130の速度が低下した後、または低下している間に、航空車両130の速度を、例400の点410と同様に横風飛行配向である間に第2の閉じた経路450Bに沿って、例500の点510と同様に横風飛行配向である間に第2の閉じた経路550Bに沿って、および/または例600の点610と同様に横風飛行配向である間に第2の閉じた経路650Bに沿って進行するように動作させることができる。
[00209] 例400、500、600、および800のうちのいずれかまたは全ては、1つまたは複数のセンサから提供される情報がなくても実行することができる。いくつかのこのような例では、これらの1つまたは複数のセンサは、ロードセルまたはピトー管のうちの少なくとも1つを含むことができる。
[00210] 地面302上に位置する地上局110を用いて例400、500、600、および800について説明したが、他の例では、地上局110は可動型であってもよい。例えば、地上局110は、地面302または水体の表面に対して相対的に移動するように構成することもできる。このようにすることで、風303は、地上局110の視点から見た相対風であってもよい。
[00211] 図9aおよび図9bは、実施形態例による、テザー球904を示す図である。具体的には、テザー球904は、テザー920の長さに対応する半径を有する。図9aおよび図9bでは、テザー920は、第1の端部が航空車両(例えば航空車両130)に接続され、第2の端部が地上局910に接続されており、地上局910は、地面902上に位置している。説明のために、航空車両は、図9aおよび図9bには示していない。さらに、図9aおよび図9bに示すように、風903が、テザー球904と接触する。図9aおよび図9bでは、地面902より上方のテザー球904の一部分のみを示している。この部分は、テザー球904の半分として説明することができる。
[00212] 地面902は、地面302の形態をとる、または地面302と類似した形態とすることができ、風903は、風303の形態をとる、または風303と類似した形態とすることができ、テザー球904は、テザー球304の形態をとる、またはテザー球304と類似した形態とすることができ、地上局910は、地上局110および/もしくは地上局210の形態をとる、または地上局110および/もしくは地上局210と類似した形態とすることができ、かつテザー920は、テザー120および/もしくはテザー220の形態をとる、またはテザー120および/もしくはテザー220と類似した形態とすることができる。
[00213] 例えば、いくつかの例では、地上局910は、本明細書に記載するように可動型とすることができ、風903は、地上局910の視点から見た相対風とすることができる。
[00214] 本明細書に記載する航空車両の横風飛行とホバー飛行との間の移行の例は、実質的にテザー球904の第1の部分904Aの上で実行することができる。図9aおよび図9bに示すように、テザー球904の第1の部分904Aの位置は、地上局910の実質的に風下であり得る。テザー球904の第1の部分904Aは、テザー球904の4分の1と表現することもできる。テザー球904の第1の部分904Aは、テザー球904の一部分904Aの形態をとる、またはテザー球904の一部分904Aと類似した形態とすることができる。
[00215] さらに、本明細書に記載する航空車両の横風飛行とホバー飛行との間の移行の例は、テザー球904の第1の部分904A上の様々な位置で実行することができる。例えば、図9aに示すように、点908において、航空車両が横風飛行配向にあるときには、航空車両は、実質的にテザー球904の第1の部分904A上にある閉じた経路(例えば、第1の閉じた経路450A、第1の閉じた経路550A、第1の閉じた経路650A、および/または閉じた経路850)に沿って進行するように動作させることができる。
[00216] さらに、図9bに示すように、点910において、航空車両が横風飛行配向にあるときには、航空車両は、実質的にテザー球904の第1の部分904A上にある別の閉じた経路(例えば、第2の閉じた経路450B、第2の閉じた経路550B、および/または第2の閉じた経路650B)に沿って進行するように動作させることができる。さらに、点910において、航空車両が横風飛行配向にある間に、航空車両を、航空車両にかかる抗力が増加するように、または航空車両にかかる揚力が低下するように動作させることができる。
[00217] 点908は、例300における点308、例400における点408、例500における点508、例600における点608、および/または例800における点808に対応することができ、点910は、例400における点410、例500における点510、例600における点610、および/または例800における点810に対応することができる。
[00218] さらに、本開示によれば、点908および点910は、実質的にテザー球904の第1の部分904Aの上にある様々な位置に位置することができる。
[00219] さらに、本明細書に記載する航空車両を横風飛行とホバー飛行の間で移行させる例は、実質的にテザー球904の第2の部分904B上で実行することができる。図9aおよび図9bに示すように、テザー球904の第2の部分904B上の位置は、地上局910の実質的に風上になることがある。テザー球904の第2の部分904Bは、テザー球904の4分の1として説明することができる。
[00220] 本開示で使用する「実質的に風上」という表現は、厳密な風上、および/または厳密な風上から、本明細書で述べる横風飛行からホバー飛行への航空車両の移行に有意な影響を与えない程度の1箇所もしくは複数箇所のずれがある状態を指す。
[00221] 例えば、本開示によれば、点910は、実質的にテザー球904の第2の部分904B上の様々な位置に位置することができる。
III.例証的な方法
[00222] 図10は、実施形態例による方法1000を示す流れ図である。方法1000は、航空車両を横風飛行からホバー飛行に移行させる際に使用することができる。方法1000などの例証的な方法は、その全体または一部を、図1に示す航空車両130、図2に示す航空車両230、図1に示す地上局110および図2に示す地上局210の1つまたは複数の構成要素など、航空車両の1つまたは複数の構成要素によって実行することができる。例えば、方法1000は、制御システム248によって実行することができる。簡略にするために、方法1000は、概略的に航空車両130および/または航空車両230などの航空車両によって実行されるものとして説明することができる。ただし、方法1000などの方法例は、本開示の範囲を逸脱することなく、その他のエンティティまたはエンティティの組合せによって実行することもできることを理解されたい。
[00223] ブロック1002に示すように、方法1000は、航空車両を横風飛行配向に配向されている間にテザー球上の第1の閉じた経路に沿って進行するように動作させることを含み、ここで、テザーは、第1の端部が航空車両に接続され、第2の端部が地上局に接続されており、テザー球は、テザーの長さに対応する半径を有する。ブロック1002では、航空車両130を例400の点408において図4を参照して説明したように、例500の点508において図5を参照して説明したように、および/または点608において図6を参照して説明したように動作させることができるのと同じ、またはそれと類似した方法で、航空車両を動作させることができる。
[00224] ブロック1004に示すように、方法1000は、航空車両が横風飛行配向である間に、航空車両をテザー球上の第2の閉じた経路に沿って進行して、航空車両の速度が低下するように動作させることを含むことがある。ブロック1004では、航空車両130を例400の点410において図4を参照して説明したように、例500の点510において図5を参照して説明したように、および/または点608において図6を参照して説明したように動作させることができるのと同じ、またはそれと類似した方法で、航空車両を動作させることができる。
[00225] 例えば、いくつかの実施形態では、第1の軸は、第1の閉じた経路と交差することがあり、第2の軸は、第2の閉じた経路と交差することもあり、第1の軸は、地上局の実質的に風下になることがあり、第2の軸は、第1の軸ほどではないが地上局の風下になることがある。さらに、少なくともいくつかのこのような実施形態では、第2の軸は、第1の軸の左側に位置することがある。さらに、少なくともいくつかのこのような実施形態では、第2の軸は、第1の軸の右側に位置することがある。
[00226] さらに、いくつかの実施形態では、第2の閉じた経路上の点が、地上局の実質的に風下の方向に対して角度をなして位置することもある。さらに、いくつかの実施形態では、第2の閉じた経路上の点が、第1の閉じた経路上の対応する点の高度未満の高度に位置することもある。さらに、いくつかの実施形態では、第2の閉じた経路は、第1の閉じた経路の形状とは異なる形状を有することがある。
[00227] さらに、いくつかの実施形態では、航空車両を第2の閉じた経路に沿って進行するように動作させることが、航空車両を第2の閉じた経路の第1の部分に沿って進行するように動作させることであって、第2の閉じた経路の第1の部分が、実質的に一定の仰角にあることと、航空車両を第2の閉じた経路の第2の部分に沿って進行するように動作させることであって、第2の閉じた経路の第2の部分が実質的に一定の方位にあることとを含むことがある。いくつかのこのような実施形態では、第2の閉じた経路の第2の部分は、実質的に地上局の実質的に風下にある軸上にある、または実質的にこの軸と平行であることがある。
[00228] ブロック1006に示すように、方法1000は、航空車両の速度が低下した後、または低下している間に、航空車両を、横風飛行配向である間に第2の閉じた経路に沿って進行している状態からホバー飛行配向に移行させることを含むことができる。ブロック1006では、航空車両130を例400の点412において図4を参照して説明したように、例500の点512において図5を参照して説明したように、および/または点612において図6を参照して説明したように動作させることができるのと同じ、またはそれと類似した方法で、航空車両を動作させることができる。
[00229] 例えば、いくつかの実施形態では、航空車両を横風飛行配向である間に第2の閉じた経路に沿って進行している状態からホバー飛行配向に移行させることが、航空車両を、しきい値速度で、横風飛行配向である間に第2の閉じた経路に沿って進行している状態からホバー飛行配向に移行させることを含むことができる。さらに、少なくとも1つのこのような実施形態では、このしきい値速度は、第2の閉じた経路に沿った航空車両の位置に基づいて変化することができる。
[00230] さらに、いくつかの実施形態では、航空車両を第2の閉じた経路に沿って進行するように動作させることが、航空車両を上昇行程および下降行程で動作させることを含むことができ、ここで、航空車両を横風飛行配向である間に第2の閉じた経路に沿って進行している状態からホバー飛行配向に移行させることが、航空車両を、上昇行程中に、横風飛行配向である間に第2の閉じた経路に沿って進行している状態からホバー飛行配向に移行させることを含むことができる。
[00231] さらに、方法1000は、1つまたは複数のセンサから提供される情報がなくても実行することができる。例としては、これらの1つまたは複数のセンサは、ロードセルまたはピトー管のうちの少なくとも1つを含むことができる。
[00232] さらに、方法1000は、航空車両の速度が低下した後、または低下している間に、航空車両が横風飛行配向である間に、航空車両をテザー球上の第3の閉じた経路に沿って進行して、航空車両の速度がさらに低下するように動作させることを含むことができる。
[00233] 航空車両130を例400の点410において図4を参照して説明したように、例500の点510において図5を参照して説明したように、および/または例600の点608において図6を参照して説明したように動作させることができるのと同じ、またはそれと類似した方法で、航空車両は、テザー球上の第3の閉じた経路に沿って進行して、航空車両の速度がさらに低下するように動作させることができる。
[00234] 第3の閉じた経路は、本明細書に記載する第2の閉じた経路のうちのいずれかの形態をとる、またはそれらの経路のいずれかに類似した形態とすることができる。例えば、いくつかの実施形態では、第2の閉じた経路が第2の閉じた経路450Bの形態をとる、または第2の閉じた経路450Bに類似した形態であるときには、第3の閉じた経路は、第2の閉じた経路550Bおよび/もしくは第2の閉じた経路650Bの形態をとる、または第2の閉じた経路550Bおよび/もしくは第2の閉じた経路650Bに類似した形態とすることができる。同様に、第2の閉じた経路が第2の閉じた経路550Bの形態をとる、または第2の閉じた経路550Bに類似した形態であるときには、第3の閉じた経路は、第2の閉じた経路450Bおよび/もしくは第2の閉じた経路650Bの形態をとる、または第2の閉じた経路450Bおよび/もしくは第2の閉じた経路650Bに類似した形態とすることができる。同様に、第2の閉じた経路が第2の閉じた経路650Bの形態をとる、または第2の閉じた経路650Bに類似した形態であるときには、第3の閉じた経路は、第2の閉じた経路450Bおよび/もしくは第2の閉じた経路550Bの形態をとる、または第2の閉じた経路450Bおよび/もしくは第2の閉じた経路550Bに類似した形態とすることができる。
[00235] いくつかの例では、航空車両は、テザー球上の第2の閉じた経路に沿って進行するように動作させた後で、テザー球の第3の閉じた経路に沿って進行するように動作させることができる。また、いくつかの実施形態では、方法100は、速度がさらに低下した後、または低下している間に、航空車両を横風飛行配向である間に第3の閉じた経路に沿って進行している状態からホバー飛行配向に移行させることをさらに含むこともできる。
[00236] 航空車両130を例400の点412において図4を参照して説明したように、例500の点512において図5を参照して説明したように、および/または点612において図6を参照して説明したように動作させることができるのと同じ、またはそれと類似した方法で、航空車両は、横風飛行配向である間に第3の閉じた経路に沿って進行している状態からホバー飛行配向に移行させることができる。
[00237] 図11は、実施形態例による方法1100を示す流れ図である。方法1100は、航空車両を横風飛行からホバー飛行に移行させる際に使用することができる。方法1100などの例証的な方法は、その全体または一部を、図1に示す航空車両130、図2に示す航空車両230、図1に示す地上局110、および図2に示す地上局210の1つまたは複数の構成要素など、航空車両の1つまたは複数の構成要素によって実行することができる。例えば、方法1100は、制御システム248によって実行することができる。簡単にするために、方法1100は、概略的に航空車両130および/または航空車両230などの航空車両によって実行されるものとして説明することができる。ただし、方法1100などの方法例は、本開示の範囲を逸脱することなく、その他のエンティティまたはエンティティの組合せによって実行することもできることを理解されたい。
[00238] ブロック1102に示すように、方法1100は、航空車両を横風飛行配向に配向されている間にテザー球上の閉じた経路に沿って進行するように動作させることを含み、ここで、テザーは、第1の端部が航空車両に接続され、第2の端部が地上局に接続されており、テザー球は、テザーの長さに対応する半径を有する。ブロック1102では、航空車両130を例800の点808において図8を参照して説明したように動作させることができるのと同じ、またはそれと類似した方法で、航空車両を動作させることができる。
[00239] ブロック1104に示すように、方法1000は、航空車両が横風飛行配向である間に閉じた経路に沿って進行している間に、航空車両にかかる抗力が増加するように、または航空車両にかかる揚力が低下するように航空車両を動作させることによって航空車両の速度を低下させることを含むことができる。ブロック1104では、航空車両130を例800の点810において図8を参照して説明したように動作させることができるのと同じ、またはそれと類似した方法で、航空車両を動作させることができる。
[00240] 例えば、いくつかの実施形態では、航空車両は主翼を含むことができ、航空車両にかかる抗力が増加するように、または航空車両にかかる揚力が低下するように航空車両を動作させることによって航空車両の速度を低下させることが、航空車両の迎角を増大させて、主翼の少なくとも一部分が失速するようにすることを含むことができる。さらに、いくつかの実施形態では、航空車両は、1つまたは複数の制御表面を有する主翼を含むことができ、航空車両にかかる抗力が増加するように、または航空車両にかかる揚力が低下するように航空車両を動作させることによって航空車両の速度を低下させることが、航空車両にかかる抗力を増加させるようにそれらの1つまたは複数の制御表面を動作させることを含むことができる。
[00241] さらに、いくつかの実施形態では、航空車両は1つまたは複数のロータを含むことができ、航空車両にかかる抗力が増加するように、または航空車両にかかる揚力が低下するように航空車両を動作させることによって航空車両の速度を低下させることが、航空車両にかかる抗力を増加させるようにこれらの1つまたは複数のロータを動作させることを含むことができる。さらに、いくつかの実施形態では、航空車両は、1つまたは複数のロータコネクタを含むことができ、航空車両にかかる抗力が増加するように、または航空車両にかかる揚力が低下するように航空車両を動作させることによって航空車両の速度を低下させることが、航空車両の横滑り角度を増加させて、それらの1つまたは複数のロータコネクタが失速するようにすることを含むことができる。
[00242] さらに、いくつかの実施形態では、航空車両は、1つまたは複数の制御表面を有する主翼を含むことができ、航空車両にかかる抗力が増加するように、または航空車両にかかる揚力が低下するように航空車両を動作させることによって航空車両の速度を低下させることが、航空車両にかかる揚力を低下させるようにそれらの1つまたは複数の制御表面を動作させることを含むことができる。さらに、いくつかの実施形態では、航空車両は、1つまたは複数の制御表面を有する主翼を含むことができ、航空車両にかかる抗力が増加するように、または航空車両にかかる揚力が低下するように航空車両を動作させることによって航空車両の速度を低下させることが、それらの1つまたは複数の制御表面を調節することによって航空車両の迎角を減少させることを含むことができる。さらに、いくつかの実施形態では、航空車両は主翼を含むことができ、航空車両にかかる抗力が増加するように、または航空車両にかかる揚力が低下するように航空車両を動作させることによって航空車両の速度を低下させることが、主翼の少なくとも一部分を失速させることを含むことができる。
[00243] さらに、いくつかの実施形態では、航空車両にかかる抗力が増加するように、または航空車両にかかる揚力が低下するように航空車両を動作させることによって航空車両の速度を低下させることが、航空車両が静的な力平衡状態になるように航空車両を動作させることを含むことができる。
[00244] ブロック1106に示すように、方法1100は、航空車両の速度が低下した後、または低下している間に、航空車両を、横風飛行配向である間に閉じた経路に沿って進行している状態からホバー飛行配向に移行させることを含むことができる。ブロック1106では、航空車両130を点812において図6を参照して説明したように動作させることができるのと同じ、またはそれと類似した方法で、航空車両を動作させることができる。
[00245] 例えば、いくつかの実施形態では、航空車両を横風飛行配向である間に閉じた経路に沿って進行している状態からホバー飛行配向に移行させることが、航空車両を、しきい値速度で、横風飛行配向である間に閉じた経路に沿って進行している状態からホバー飛行配向に移行させることを含むことができる。さらに、少なくとも1つのこのような実施形態では、このしきい値速度は、閉じた経路に沿った航空車両の位置に基づいて変化することができる。
[00246] さらに、いくつかの実施形態では、航空車両を閉じた経路に沿って進行するように動作させることが、航空車両を上昇行程および下降行程で動作させることを含むことができ、ここで、航空車両を横風飛行配向である間に閉じた経路に沿って進行している状態からホバー飛行配向に移行させることが、航空車両を、上昇行程中に、横風飛行配向である間に閉じた経路に沿って進行している状態からホバー飛行配向に移行させることを含むことができる。
[00247] さらに、方法1100は、1つまたは複数のセンサから提供される情報がなくても実行することができる。例としては、これらの1つまたは複数のセンサは、ロードセルまたはピトー管のうちの少なくとも1つを含むことができる。
[00248] 図12は、実施形態例による方法1200を示す流れ図である。方法1200は、航空車両を横風飛行からホバー飛行に移行させる際に使用することができる。方法1200などの例証的な方法は、その全体または一部を、図1に示す航空車両130、図2に示す航空車両230、図1に示す地上局110、および図2に示す地上局210の1つまたは複数の構成要素など、航空車両の1つまたは複数の構成要素によって実行することができる。例えば、方法1200は、制御システム248によって実行することができる。簡単にするために、方法1200は、概略的に航空車両130および/または航空車両230などの航空車両によって実行されるものとして説明することができる。ただし、方法1200などの方法例は、本開示の範囲を逸脱することなく、その他のエンティティまたはエンティティの組合せによって実行することもできることを理解されたい。
[00249] ブロック1202に示すように、方法1200は、航空車両を横風飛行配向に配向されている間にテザー球上の第1の閉じた経路に沿って進行するように動作させることを含み、ここで、テザーは、第1の端部が航空車両に接続され、第2の端部が地上局に接続されており、テザー球は、テザーの長さに対応する半径を有する。ブロック1202は、方法1000のブロック1002を実行することができるのと同じ、またはそれと類似した方法で、実行することができる。
[00250] ブロック1204に示すように、方法1200は、航空車両が横風飛行配向である間に第1の閉じた経路に沿って進行している間に、航空車両にかかる抗力が増加するように、または航空車両にかかる揚力が低下するように航空車両を動作させることによって航空車両の速度を低下させることを含むことができる。ブロック1204は、方法1100のブロック1104を実行することができるのと同じ、またはそれと類似した方法で、実行することができる。
[00251] ブロック1206に示すように、方法1200は、航空車両の速度が低下した後、または低下している間に、航空車両が横風飛行配向にある間に、航空車両を、第2の閉じた経路に沿って進行して、航空車両の速度がさらに低下するように動作させることを含むことができる。ブロック1206は、方法1000のブロック1004を実行することができるのと同じ、またはそれと類似した方法で、実行することができる。
[00252] ブロック1208に示すように、方法1200は、航空車両の速度がさらに低下した後、またはさらに低下している間に、航空車両を、横風飛行配向である間に第2の閉じた経路に沿って進行している状態からホバー飛行配向に移行させることを含むことができる。ブロック1208は、ブロック1006を実行することができるのと同じ、またはそれと類似した方法で、実行することができる。
[00253] さらに、方法1200は、航空車両の速度がさらに低下した後、またはさらに低下している間に、航空車両が横風飛行配向で第2の閉じた経路に沿って進行している間に、航空車両にかかる抗力が増加するように、または航空車両にかかる揚力が低下するように航空車両を動作させることによって航空車両の速度をさらに低下させることを含むことができる。航空車両は、航空車両を例800の点810において図8を参照して説明したように動作させることができるのと同じ、またはそれと類似した方法で、航空車両にかかる抗力が増加するように、または航空車両にかかる揚力が低下するように動作させることができる。
[00254] いくつかの例では、航空車両は、航空車両がテザー球上の第2の閉じた経路に沿って進行するように動作した後で、航空車両にかかる抗力が増加するように、または航空車両にかかる揚力が低下するように航空車両が動作することによって、航空車両の速度をさらに低下させることができる。また、いくつかの実施形態では、方法1200は、速度がさらに低下した後、またはさらに低下している間に、航空車両を横風飛行配向である間に第2の閉じた経路に沿って進行している状態からホバー飛行配向に移行させることを含むことができる。
VI.例証的な非一時的コンピュータ可読媒体
[00255] 図10〜12に示し、上述した機能の一部または全ては、非一時的コンピュータ可読媒体に記憶された命令の実行に応答してコンピューティングデバイスによって実行することができる。非一時的コンピュータ可読媒体は、例えば、ランダムアクセスメモリ(RAM)、読取り専用メモリ(ROM)、フラッシュメモリ、キャッシュメモリ、1つもしくは複数の磁気符号化ディスク、1つもしくは複数の光学符号化ディスク、またはその他の任意の形態の非一次データ記憶装置とすることができる。非一時的コンピュータ可読媒体は、互いに遠隔に位置することができる複数のデータ記憶要素の間に分散させることもできる。記憶された命令を実行するコンピューティングデバイスは、図2を参照して説明および例示した制御システム248とすることができる。これに加えて、または別法として、コンピューティングデバイスは、サーバネットワーク中のサーバなど、別のコンピューティングデバイスを含むこともできる。
[00256] 非一時的コンピュータ可読媒体は、プロセッサ(例えば図2を参照して説明したプロセッサ242および/またはプロセッサ212)が実行して様々な機能を実行することができる命令を記憶することができる。これらの機能は、航空車両を横風飛行配向でテザー球上の第1の閉じた経路に沿って進行するように動作させることであって、ここで、テザーは、第1の端部が航空車両に接続され、第2の端部が地上局に接続されており、テザー球は、テザーの長さに対応する半径を有することと、航空車両が横風飛行配向にある間に、航空車両を、テザー球上の第2の閉じた経路に沿って進行して、航空車両の速度が低下するように動作させることと、航空車両の速度が低下した後、または低下している間に、航空車両を、横風飛行配向である間に第2の閉じた経路に沿って進行している状態からホバー飛行配向に移行させることとを含むことができる。
[00257] さらに、これらの機能は、航空車両を横風飛行配向でテザー球上の閉じた経路に沿って進行するように動作させることであって、ここで、テザーは、第1の端部が航空車両に接続され、第2の端部が地上局に接続されており、テザー球は、テザーの長さに対応する半径を有することと、航空車両が横風飛行配向で閉じた経路に沿って進行している間に、航空車両にかかる抗力が増加するように、または航空車両にかかる揚力が低下するように航空車両を動作させることによって航空車両の速度を低下させることと、航空車両の速度が低下した後、または低下している間に、航空車両を、横風飛行配向である間に閉じた経路に沿って進行している状態からホバー飛行配向に移行させることとを含むことができる。
VII.結論
[00258] 図面に示す具体的な構成は、限定的なものと見なすべきではない。他の実施形態では、所与の図面に示す各要素を、図示の数より多く、または少なく含むことができることを理解されたい。さらに、図示の要素のいくつかは、結合または省略することができる。さらに、例示的な実施形態は、図面に示していない要素を含むこともできる。
[00259] さらに、様々な態様および実施形態を本明細書に開示したが、その他の態様および実施形態も、当業者には明らかになるであろう。本明細書に開示した様々な態様および実施形態は、例証を目的としたものであり、限定のためのものではなく、厳密な範囲および趣旨は、以下の特許請求の範囲によって示される。本明細書に提示する主題の趣旨または範囲を逸脱することなく、他の実施形態を利用することもでき、また他の変更を加えることもできる。概略的に本明細書に記載し、図面に示した本開示の態様は、幅広い様々な構成で配列し、代用し、組み合わせ、分離し、かつ設計することができ、これらの様々な構成は全て、本明細書で企図されているものである。

Claims (19)

  1. コンピューティングデバイスによって実行可能な命令を記憶した非一時的コンピュータ可読媒体であって、前記命令は、前記コンピューティングデバイスに、
    航空車両を、横風飛行配向に配向されている間にテザー球上の第1の閉じた経路に沿って進行するように動作させることであって、テザーが、第1の端部で前記航空車両に接続され、第2の端部で地上局に接続されており、前記テザー球が、前記テザーの長さに対応する半径を有することと、
    前記航空車両が前記横風飛行配向にある間に、前記航空車両を、前記テザー球上の第2の閉じた経路に沿って進行して、前記航空車両の速度が低下するように動作させることと、
    前記航空車両を、前記横風飛行配向である間に前記第2の閉じた経路に沿って進行している状態からホバー飛行配向に移行させることとを含む機能を実行させる、
    非一時的コンピュータ可読媒体。
  2. 第1の軸が、前記第1の閉じた経路と交差し、第2の軸が、前記第2の閉じた経路と交差し、前記第1の軸が、前記地上局の実質的に風下にあり、前記第2の軸が、前記第1の軸ほどではないが前記地上局の風下にある、請求項1に記載の非一時的コンピュータ可読媒体。
  3. 風下を向いて前記第2の軸が前記第1の軸の左側に位置する、請求項2に記載の非一時的コンピュータ可読媒体。
  4. 風下を向いて前記第2の軸が前記第1の軸の右側に位置する、請求項2に記載の非一時的コンピュータ可読媒体。
  5. 前記第2の閉じた経路上の点が、前記地上局の実質的に風下の方向から角度をなして位置する、請求項1に記載の非一時的コンピュータ可読媒体。
  6. 前記第2の閉じた経路上の点が、前記第1の閉じた経路上の対応する点の第2の高度未満の第1の高度に位置する、請求項1に記載の非一時的コンピュータ可読媒体。
  7. 前記第2の閉じた経路が、前記第1の閉じた経路の形状とは異なる形状を有する、請求項1に記載の非一時的コンピュータ可読媒体。
  8. 前記航空車両を前記第2の閉じた経路に沿って進行するように動作させることが、
    前記航空車両を、前記第2の閉じた経路の第1の部分に沿って進行するように動作させることであって、前記第2の閉じた経路の前記第1の部分が、実質的に一定の仰角にあることと、
    前記航空車両を、前記第2の閉じた経路の第2の部分に沿って進行するように動作させることであって、前記第2の閉じた経路の前記第2の部分が、実質的に一定の方位にあることとを含む、請求項1に記載の非一時的コンピュータ可読媒体。
  9. 前記航空車両を前記第2の閉じた経路に沿って進行するように動作させることが、前記航空車両を上昇行程および下降行程で動作させることを含み、前記航空車両を前記横風飛行配向である間に前記第2の閉じた経路に沿って進行している状態から前記ホバー飛行配向に移行させることが、前記航空車両を、前記上昇行程中に、前記横風飛行配向である間に前記第2の閉じた経路に沿って進行している状態から前記ホバー飛行配向に移行させることを含む、請求項1に記載の非一時的コンピュータ可読媒体。
  10. 前記航空車両を前記横風飛行配向である間に前記第2の閉じた経路に沿って進行している状態から前記ホバー飛行配向に移行させることが、前記航空車両を、しきい値速度で、前記横風飛行配向である間に前記第2の閉じた経路に沿って進行している状態から前記ホバー飛行配向に移行させることを含む、請求項1に記載の非一時的コンピュータ可読媒体。
  11. 前記しきい値速度が、前記第2の閉じた経路に沿った前記航空車両の位置に基づいて変化する、請求項10に記載の非一時的コンピュータ可読媒体。
  12. 前記航空車両を前記第1の閉じた経路に沿って進行するように動作させることが、1つまたは複数のセンサから提供される情報無しに、前記航空車両を前記第1の閉じた経路に沿って進行するように動作させることを含み、
    前記航空車両が前記横風飛行配向にある間に、前記航空車両を前記第2の閉じた経路に沿って進行するように動作させることが、前記1つまたは複数のセンサから提供される情報無しに、前記航空車両を前記第2の閉じた経路に沿って進行するように動作させることを含み、
    前記航空車両を前記横風飛行配向である間に前記第2の閉じた経路に沿って進行している状態から前記ホバー飛行配向に移行させることが、前記1つまたは複数のセンサから提供される情報無しに、前記航空車両を前記横風飛行配向である間に前記第2の閉じた経路に沿って進行している状態から前記ホバー飛行配向に移行させることを含む、請求項1に記載の非一時的コンピュータ可読媒体。
  13. 前記1つまたは複数のセンサが、ロードセルまたはピトー管のうちの少なくとも1つを含む、請求項12に記載の非一時的コンピュータ可読媒体。
  14. 航空車両を、横風飛行配向に配向されている間にテザー球上の第1の閉じた経路に沿って進行するように動作させるステップであって、テザーが、第1の端部で前記航空車両に接続され、第2の端部で地上局に接続されており、前記テザー球が、前記テザーの長さに対応する半径を有するステップと、
    前記航空車両が前記横風飛行配向で前記第1の閉じた経路に沿って進行している間に、前記航空車両にかかる抗力が増加するように、または前記航空車両にかかる揚力が低下するように前記航空車両を動作させることによって、前記航空車両の速度を低下させるステップと、
    前記航空車両の速度が低下した後、または低下している間に、前記航空車両を、前記航空車両が前記横風飛行配向である間に第2の閉じた経路に沿って進行して、前記航空車両の速度がさらに低下するように動作させるステップと、
    前記航空車両を、前記横風飛行配向である間に前記第2の閉じた経路に沿って進行している状態からホバー飛行配向に移行させるステップとを含む、方法。
  15. 前記航空車両が主翼を含み、前記航空車両にかかる抗力が増加するように、または前記航空車両にかかる揚力が低下するように前記航空車両を動作させることによって前記航空車両の速度を低下させるステップが、前記航空車両の迎角を増大させて、前記主翼の少なくとも一部分が失速するようにするステップを含む、請求項14に記載の方法。
  16. 前記航空車両が、1つまたは複数の制御表面を有する主翼を含み、前記航空車両にかかる抗力が増加するように、または前記航空車両にかかる揚力が低下するように前記航空車両を動作させることによって前記航空車両の速度を低下させるステップが、前記航空車両にかかる前記抗力を増加させるように前記1つまたは複数の制御表面を動作させるステップを含む、請求項14に記載の方法。
  17. 前記航空車両が、1つまたは複数のロータを含み、前記航空車両にかかる抗力が増加するように、または前記航空車両にかかる揚力が低下するように前記航空車両を動作させることによって前記航空車両の速度を低下させるステップが、前記航空車両にかかる前記抗力を増加させるように前記1つまたは複数のロータを動作させるステップを含む、請求項14に記載の方法。
  18. 前記航空車両にかかる抗力が増加するように、または前記航空車両にかかる揚力が低下するように前記航空車両を動作させることによって前記航空車両の速度を低下させるステップが、前記航空車両が静的な力平衡状態になるように前記航空車両を動作させるステップを含む、請求項14に記載の方法。
  19. テザーの第1の端部に接続された航空車両と、
    前記テザーの第2の端部に接続された地上局と、
    制御システムと、を含むシステムであって、
    前記制御システムは、
    航空車両を、横風飛行配向に配向されている間にテザー球上の第1の閉じた経路に沿って進行するように動作させ、ここで、テザーが、第1の端部で前記航空車両に接続され、第2の端部で地上局に接続されており、前記テザー球が、前記テザーの長さに対応する半径を有しており、
    前記航空車両が前記横風飛行配向で前記第1の閉じた経路に沿って進行している間に、前記航空車両にかかる抗力が増加するように、または前記航空車両にかかる揚力が低下するように前記航空車両を動作させることによって、前記航空車両の速度を低下させ、
    前記航空車両の速度が低下した後、または低下している間に、前記航空車両を、前記航空車両が前記横風飛行配向である間に第2の閉じた経路に沿って進行して、前記航空車両の速度がさらに低下するように動作させ、
    前記航空車両を、前記横風飛行配向である間に前記第2の閉じた経路に沿って進行している状態からホバー飛行配向に移行させるように構成される、
    システム。

JP2017216487A 2013-12-30 2017-11-09 横風飛行とホバー飛行の間で航空車両を移行させる方法およびシステム Expired - Fee Related JP6423943B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/144,146 US9174732B2 (en) 2013-12-30 2013-12-30 Methods and systems for transitioning an aerial vehicle between crosswind flight and hover flight
US14/144,146 2013-12-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016531980A Division JP6243532B2 (ja) 2013-12-30 2014-12-22 横風飛行とホバー飛行の間で航空車両を移行させる方法およびシステム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018197247A Division JP2019048630A (ja) 2013-12-30 2018-10-19 横風飛行とホバー飛行の間で航空車両を移行させる方法およびシステム

Publications (2)

Publication Number Publication Date
JP2018047898A JP2018047898A (ja) 2018-03-29
JP6423943B2 true JP6423943B2 (ja) 2018-11-14

Family

ID=53480906

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016531980A Expired - Fee Related JP6243532B2 (ja) 2013-12-30 2014-12-22 横風飛行とホバー飛行の間で航空車両を移行させる方法およびシステム
JP2017216487A Expired - Fee Related JP6423943B2 (ja) 2013-12-30 2017-11-09 横風飛行とホバー飛行の間で航空車両を移行させる方法およびシステム
JP2018197247A Pending JP2019048630A (ja) 2013-12-30 2018-10-19 横風飛行とホバー飛行の間で航空車両を移行させる方法およびシステム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016531980A Expired - Fee Related JP6243532B2 (ja) 2013-12-30 2014-12-22 横風飛行とホバー飛行の間で航空車両を移行させる方法およびシステム

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018197247A Pending JP2019048630A (ja) 2013-12-30 2018-10-19 横風飛行とホバー飛行の間で航空車両を移行させる方法およびシステム

Country Status (9)

Country Link
US (2) US9174732B2 (ja)
EP (2) EP3483072B1 (ja)
JP (3) JP6243532B2 (ja)
KR (2) KR101690676B1 (ja)
CN (2) CN110077621A (ja)
AU (3) AU2014374087B2 (ja)
ES (1) ES2717009T3 (ja)
PT (1) PT3089911T (ja)
WO (1) WO2015103013A1 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012061598A1 (en) * 2010-11-03 2012-05-10 Makani Power, Inc. Flight configuration and flight strategy for flight wind speeds
SG194257A1 (en) * 2012-04-26 2013-11-29 Yik Hei Sia Power generating windbags and water-bags
US9126675B2 (en) 2013-09-16 2015-09-08 Google Inc. Methods and systems for transitioning an aerial vehicle between crosswind flight and hover flight
US9879655B1 (en) * 2014-06-30 2018-01-30 X Development Llc Attachment apparatus for an aerial vehicle
DE102014215969A1 (de) * 2014-08-12 2016-02-18 Wobben Properties Gmbh Verfahren zum Installieren eines Rotorblattes an einer Windenergieanlage
US10963749B2 (en) * 2014-12-12 2021-03-30 Cox Automotive, Inc. Systems and methods for automatic vehicle imaging
US10719080B2 (en) 2015-01-04 2020-07-21 Hangzhou Zero Zero Technology Co., Ltd. Aerial system and detachable housing
US10126745B2 (en) 2015-01-04 2018-11-13 Hangzhou Zero Zero Technology Co., Ltd. System and method for automated aerial system operation
US10220954B2 (en) 2015-01-04 2019-03-05 Zero Zero Robotics Inc Aerial system thermal control system and method
US9836053B2 (en) 2015-01-04 2017-12-05 Zero Zero Robotics Inc. System and method for automated aerial system operation
US10358214B2 (en) 2015-01-04 2019-07-23 Hangzhou Zero Zro Technology Co., Ltd. Aerial vehicle and method of operation
CA2947688C (en) * 2015-11-06 2023-08-01 David RANCOURT Tethered wing structures complex flight path
EP3374263A4 (en) * 2015-11-10 2019-05-08 Matternet, Inc. METHODS AND TRANSPORT SYSTEMS USING PILOT-FREE AIR VEHICLES
US9767700B1 (en) * 2015-11-25 2017-09-19 X Development Llc Control strategy for multiple kites on a single ground power unit
EP3199803B1 (de) * 2016-02-01 2018-03-28 IMPaC Offshore Engineering GmbH Offshore-höhenwindkraftanlage
US10967970B2 (en) * 2016-02-05 2021-04-06 Vantage Robotics, Llc Durable modular unmanned aerial vehicle
US9703288B1 (en) 2016-04-22 2017-07-11 Zero Zero Robotics Inc. System and method for aerial system control
WO2017187275A2 (en) 2016-04-24 2017-11-02 Hangzhou Zero Zero Technology Co., Ltd. Aerial system propulsion assembly and method of use
US10279918B2 (en) * 2016-08-31 2019-05-07 The Boeing Company Methods and apparatus to control thrust ramping of an aircraft engine
KR20240025054A (ko) 2016-11-29 2024-02-26 하이윈드 에이에스 부유식 풍력 터빈 구조체를 위한 제어 시스템
US10309374B2 (en) * 2016-12-01 2019-06-04 Makani Technologies Llc Energy kite winching using buoyancy
US10934008B2 (en) * 2017-02-10 2021-03-02 General Electric Company Dual function aircraft
US11214365B2 (en) * 2017-11-28 2022-01-04 Facebook, Inc. Dual-kite aerial vehicle
JP6986686B2 (ja) * 2018-07-03 2021-12-22 パナソニックIpマネジメント株式会社 情報処理方法、制御装置及び係留移動体
US20200208608A1 (en) * 2018-12-27 2020-07-02 X Development Llc Constructive Dynamic Interaction Between Energy Kite and Floating Platform
US11984038B2 (en) 2019-03-26 2024-05-14 Sony Corporation Concept for designing and using an UAV controller model for controlling an UAV
US11884175B2 (en) * 2019-06-26 2024-01-30 Robotic Research Opco, Llc Self-powered drone tether
CN110687927A (zh) * 2019-09-05 2020-01-14 深圳市道通智能航空技术有限公司 一种飞行控制方法、飞行器及飞行系统
CN111077903B (zh) * 2019-12-12 2021-11-16 南京航空航天大学 一种基于窗口决策的高容错性的天钩回收方法
CN110979663B (zh) * 2019-12-31 2023-06-20 天津梦佳智创科技发展有限公司 一种滑翔机自动寻找上升气流控制装置的控制方法

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2453857A (en) * 1941-11-14 1948-11-16 Mcdonnell Aircraft Corp Aircraft mooring device
US2528268A (en) * 1950-01-31 1950-10-31 Norman E Dickinson Toy whip airplane
US3383791A (en) * 1965-09-01 1968-05-21 Marcel O. De Vos Control for captive toy airplanes
US3987987A (en) * 1975-01-28 1976-10-26 Payne Peter R Self-erecting windmill
US4161843A (en) * 1978-09-01 1979-07-24 Hui Danny C T Electrically powered toy aircraft
US4251040A (en) * 1978-12-11 1981-02-17 Loyd Miles L Wind driven apparatus for power generation
GB2081594B (en) * 1980-08-15 1984-02-08 Dulake Robert Frank Tethered flying models
US4981456A (en) * 1988-06-20 1991-01-01 Yamaha Hatsudoki Kabushiki Kaisha Remote controlled helicopter
JPH0224295A (ja) * 1988-07-09 1990-01-26 Kiyoshi Tada 地上とワイヤーで結ばれた空中飛行体
US5115996A (en) * 1990-01-31 1992-05-26 Moller International, Inc. Vtol aircraft
CA2359374C (fr) * 1996-05-22 2005-11-15 Jean Soulez-Lariviere Aerodyne a decollage et atterrissage verticaux
US6254034B1 (en) * 1999-09-20 2001-07-03 Howard G. Carpenter Tethered aircraft system for gathering energy from wind
US6523781B2 (en) * 2000-08-30 2003-02-25 Gary Dean Ragner Axial-mode linear wind-turbine
US20020109045A1 (en) 2000-11-21 2002-08-15 Cargolifter, Inc. Spherical LTA cargo transport system
US6572482B1 (en) * 2002-03-20 2003-06-03 Thomas J. Lewis, Jr. Radio frequency controlled tethered aircraft
GB2411209A (en) * 2004-02-20 2005-08-24 Rolls Royce Plc Wind-driven power generating apparatus
US20070063099A1 (en) 2005-09-20 2007-03-22 Mobodyne Corporation Buoyancy-assisted air vehicle and system and method thereof
US20070120005A1 (en) 2005-11-28 2007-05-31 Olson Gaylord G Aerial wind power generation system
EP2295792B1 (en) * 2006-02-02 2016-11-02 Minesto AB A submersible plant
US8055395B1 (en) 2007-06-21 2011-11-08 Rockwell Collins, Inc. Methods and devices of an aircraft crosswind component indicating system
WO2009066073A1 (en) 2007-11-21 2009-05-28 Qinetiq Limited Aircraft
US20100032947A1 (en) 2008-03-06 2010-02-11 Bevirt Joeben Apparatus for generating power using jet stream wind power
US8028952B2 (en) * 2008-03-31 2011-10-04 The Boeing Company System for shipboard launch and recovery of unmanned aerial vehicle (UAV) aircraft and method therefor
US20100026007A1 (en) 2008-06-19 2010-02-04 Bevirt Joeben Apparatus and method for harvesting wind power using tethered airfoil
US20100032948A1 (en) 2008-06-25 2010-02-11 Bevirt Joeben Method and apparatus for operating and controlling airborne wind energy generation craft and the generation of electrical energy using such craft
CA2730939A1 (en) * 2008-07-18 2010-01-21 Baseload Energy, Inc. Tether handling for airborne electricity generators
US20100230546A1 (en) 2008-10-01 2010-09-16 Bevirt Joeben Control system and control method for airborne flight
US20100283253A1 (en) 2009-03-06 2010-11-11 Bevirt Joeben Tethered Airborne Power Generation System With Vertical Take-Off and Landing Capability
GB0906829D0 (en) * 2009-04-21 2009-06-03 Kitetech Energy Systems Ltd Extraction of energy from the wind
US20100295320A1 (en) 2009-05-20 2010-11-25 Bevirt Joeben Airborne Power Generation System With Modular Electrical Elements
WO2010135604A2 (en) 2009-05-20 2010-11-25 Joby Energy, Inc. System and method for generating electrical power using a tethered airborne power generation system
US20100295303A1 (en) * 2009-05-21 2010-11-25 Makani Power, Inc. Tethered system for power generation
US8894001B2 (en) * 2009-06-03 2014-11-25 Grant Calverley Gyroglider power-generation, control apparatus and method
US20100308174A1 (en) * 2009-06-03 2010-12-09 Grant Calverley Rotocraft power-generation, control apparatus and method
US20110121570A1 (en) 2009-06-19 2011-05-26 Bevirt Joeben System and method for controlling a tethered flying craft using tether attachment point manipulation
US8733690B2 (en) 2009-08-24 2014-05-27 Joby Aviation, Inc. Lightweight vertical take-off and landing aircraft and flight control paradigm using thrust differentials
US20110042508A1 (en) 2009-08-24 2011-02-24 Bevirt Joeben Controlled take-off and flight system using thrust differentials
US20110266395A1 (en) 2010-03-15 2011-11-03 Bevirt Joeben Tether sheaths and aerodynamic tether assemblies
US8800931B2 (en) * 2010-03-24 2014-08-12 Google Inc. Planform configuration for stability of a powered kite and a system and method for use of same
US8544797B2 (en) 2010-03-29 2013-10-01 Dale Clifford Kramer Cargo carrying air vehicle
WO2012061598A1 (en) * 2010-11-03 2012-05-10 Makani Power, Inc. Flight configuration and flight strategy for flight wind speeds
US8931727B2 (en) * 2011-03-07 2015-01-13 William A. Engblom Dual-aircraft atmospheric platform
US9930298B2 (en) 2011-04-19 2018-03-27 JoeBen Bevirt Tracking of dynamic object of interest and active stabilization of an autonomous airborne platform mounted camera
WO2013049732A1 (en) 2011-09-28 2013-04-04 Case Western Reserve University Airborne wind energy system
US8864545B2 (en) * 2011-09-30 2014-10-21 Orestes R. Perdomo Radio frequency controlled aircraft
US20130130586A1 (en) * 2011-09-30 2013-05-23 Perdomo R. Orestes Tether assembly for a radio frequency controlled aircraft
US9080550B2 (en) * 2011-11-30 2015-07-14 Leonid Goldstein Airborne wind energy conversion system with fast motion transfer
US8888049B2 (en) * 2011-12-18 2014-11-18 Google Inc. Kite ground station and system using same
US8955795B2 (en) * 2012-01-02 2015-02-17 Google Inc. Motor pylons for a kite and airborne power generation system using same
US20130206921A1 (en) 2012-02-15 2013-08-15 Aurora Flight Sciences Corporation System, apparatus and method for long endurance vertical takeoff and landing vehicle
ES2605421T3 (es) * 2012-02-27 2017-03-14 Ampyx Power B.V. Sistema y procedimiento de producción de energía eólica en vuelo
CN103144779B (zh) * 2012-11-30 2016-01-13 中国电子科技集团公司第七研究所 多旋翼无人飞行器系留系统

Also Published As

Publication number Publication date
KR20160085356A (ko) 2016-07-15
JP6243532B2 (ja) 2017-12-06
AU2018286597A1 (en) 2019-01-24
KR20160150124A (ko) 2016-12-28
CN105873824A (zh) 2016-08-17
AU2017202978B2 (en) 2018-10-18
AU2017202978A1 (en) 2017-05-25
AU2014374087A1 (en) 2016-06-09
US20150183517A1 (en) 2015-07-02
EP3483072B1 (en) 2020-06-24
AU2018286597B2 (en) 2019-12-05
KR101798353B1 (ko) 2017-11-15
JP2017507053A (ja) 2017-03-16
KR101690676B1 (ko) 2016-12-29
EP3089911A1 (en) 2016-11-09
EP3089911A4 (en) 2017-08-16
CN110077621A (zh) 2019-08-02
US9174732B2 (en) 2015-11-03
JP2018047898A (ja) 2018-03-29
PT3089911T (pt) 2019-03-27
EP3483072A1 (en) 2019-05-15
AU2014374087B2 (en) 2017-03-16
WO2015103013A1 (en) 2015-07-09
ES2717009T3 (es) 2019-06-18
US20150183512A1 (en) 2015-07-02
EP3089911B1 (en) 2019-02-20
JP2019048630A (ja) 2019-03-28
US9169013B2 (en) 2015-10-27
CN105873824B (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
JP6423943B2 (ja) 横風飛行とホバー飛行の間で航空車両を移行させる方法およびシステム
JP6582072B2 (ja) 横風飛行とホバー飛行の間で航空車両を移行させる方法およびシステム
JP6609290B2 (ja) 航空車両のための経路に基づく発電制御
US20150076284A1 (en) Methods and Systems for Transitioning an Aerial Vehicle Between Hover Flight and Crosswind Flight

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181019

R150 Certificate of patent or registration of utility model

Ref document number: 6423943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees