JP6423763B2 - 高分子素子の製造方法、導電性積層構造体の製造方法、集電層の製造方法、高分子素子、アクチュエータ素子、センサ素子および導電性積層構造体 - Google Patents

高分子素子の製造方法、導電性積層構造体の製造方法、集電層の製造方法、高分子素子、アクチュエータ素子、センサ素子および導電性積層構造体 Download PDF

Info

Publication number
JP6423763B2
JP6423763B2 JP2015142108A JP2015142108A JP6423763B2 JP 6423763 B2 JP6423763 B2 JP 6423763B2 JP 2015142108 A JP2015142108 A JP 2015142108A JP 2015142108 A JP2015142108 A JP 2015142108A JP 6423763 B2 JP6423763 B2 JP 6423763B2
Authority
JP
Japan
Prior art keywords
current collecting
forming
layer
collecting layer
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015142108A
Other languages
English (en)
Other versions
JP2017028769A (ja
Inventor
高橋 功
高橋  功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2015142108A priority Critical patent/JP6423763B2/ja
Publication of JP2017028769A publication Critical patent/JP2017028769A/ja
Application granted granted Critical
Publication of JP6423763B2 publication Critical patent/JP6423763B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、高分子素子の製造方法、導電性積層構造体の製造方法、集電層の製造方法、高分子素子、アクチュエータ素子、センサ素子および導電性積層構造体に関し、詳しくは、電解質層と電極層とを備えた高分子アクチュエータ素子などに使用されうる高分子素子の製造方法、導電性積層構造体の製造方法、集電層の製造方法、高分子素子、アクチュエータ素子、センサ素子および導電性積層構造体に関する。
特許文献1には、イオン液体とベースポリマーとを含む電解質層と、イオン液体とベースポリマーとカーボンナノチューブとを含む電極とを備えた高分子アクチュエータ素子が開示されている。高分子アクチュエータ素子の一端を固定した状態で電極層に電圧を印加すると、イオン移動などにより電極間に容積の差が生じる。これより高分子アクチュエータ素子が変形する。
また、特許文献2には、高分子アクチュエータ素子の電極層に集電層を設けた構成が開示されている。電極層に比べて比抵抗の低い集電層から電解質層に効率良く電圧を印加して、高分子アクチュエータ素子の応答性などの特性を向上させることができる。
特開2013−017340号公報 特開2011−201933号公報
しかしながら、高分子アクチュエータ素子の電極層の組成や構造、または厚さなどによっては、集電層を設けると、集電層の剛性などによって高分子アクチュエータ素子の湾曲変位に対する負荷が増加してしまい、本来の集電層の効果を十分に発揮出来ないという問題が生じる場合がある。
例えば、高分子アクチュエータ素子の厚さが薄くなると(電極層の厚さが薄くなると)、アクチュエータ素子の変位量は大きくなるが、発生力が小さくなってしまい、集電膜の剛性若しくは弾性力、または自重の影響が強くなってしまうケース、PTFEバインダ製法で作られた電極膜など、元々伸縮性に富む電極膜で高変位が得られる場合、集電膜を付けることで、その電極膜の膨張性を損ねてしまうケースなどがある。
本発明は、高分子素子の電極層に集電層を形成する場合に湾曲変位に対する負荷を軽減して集電層の効果を十分に発揮することができる高分子素子の製造方法、導電性積層構造体の製造方法、集電層の製造方法、高分子素子、アクチュエータ素子、センサ素子および導電性積層構造体を提供することを目的とする。
上記課題を解決するため、本発明は、電解質層と、電解質層を間にして設けられた一対の電極層と、一対の電極層のそれぞれに設けられた集電層と、を備える高分子素子の製造方法であって、電解質層に一対の電極層を形成した積層部材を形成する工程と、積層部材の少なくとも一方の表面を伸張させる工程と、伸張した表面に露出する電極層に集電層を形成する工程と、を備えたことを特徴とする。
このような構成によれば、積層部材の少なくとも一方の表面を伸張させた状態で電極層に集電層を形成することから、高分子素子の通常の状態(湾曲していない状態)において集電層に伸びる余裕が与えられる。これにより、高分子素子が通常の状態から湾曲する状態に移行する際に、集電層から積層部材に対して加わる負荷を軽減することができる。
本発明において、積層部材の表面を伸張させる工程は、湾曲した凸型に沿って積層部材を載置したり、積層部材の両端を互いに反対方向に引っ張ったりすればよい。この状態で積層部材の表面に集電層が形成される。
本発明において、集電層を形成する工程は、スパッタまたは蒸着により金属を成膜することを含む。また、集電層は、第1金属膜と、第2金属膜とを有し、集電層を形成する工程は、表面に露出する電極層の上に第1金属膜を形成した後、第1金属膜の上に第2金属膜を形成することを含む。集電層を形成する工程は、導電性高分子樹脂を蒸着により成膜することを含む。また、集電層を形成する工程は、導電性インクの塗布により成膜することを含む。
本発明において、表面を伸張させる工程は、電極層にイオン液体を含浸させた状態で表面を伸張することを含む。また、本発明は、集電層を形成した後、集電層にイオン液体を含浸させる工程をさらに備えていてもよい。また、集電層を形成する工程は、電極層の上に導電性材料層を形成した後、導電性材料層の上で集電層を形成することを含んでいてもよい。
本発明は、ベースポリマーと導電性フィラーとを含む電極層と、電極層の比抵抗よりも低い比抵抗を有する集電層とが積層された導電性積層構造体の製造方法であって、セパレータフィルムの一方の表面に電極層を形成する工程と、セパレータフィルムの電極層が形成された表面を伸張させる工程と、セパレータフィルムを伸張した状態で電極層の上に集電層を形成する工程と、を備えたことを特徴とする。
このような構成によれば、セパレータフィルムの電極層が形成された表面を伸張させた状態で、電極層に集電層を形成することから、導電性積層構造体の通常の状態(湾曲していない状態)において集電層に伸びる余裕が与えられる。これにより、導電性積層構造体が適用される素子等が通常の状態から湾曲する状態に移行する際に、集電層から素子等に対して加わる負荷を軽減することができる。
本発明において、セパレータフィルムの表面を伸張させる工程は、湾曲した凸型に沿ってセパレータフィルムを載置したり、セパレータフィルムの両端を互いに反対方向に引っ張ったりすればよい。この状態でセパレータフィルムの電極層の表面に集電層が形成される。
本発明において、集電層を形成する工程は、スパッタまたは蒸着により金属を成膜することを含む。また、集電層は、第1金属膜と、第2金属膜とを有し、集電層を形成する工程は、表面に露出する電極層の上に第1金属膜を形成した後、第1金属膜の上に第2金属膜を形成することを含む。集電層を形成する工程は、導電性高分子樹脂を蒸着により成膜することを含む。また、集電層を形成する工程は、導電性インクの塗布により成膜することを含む。
本発明において、表面を伸張させる工程は、電極層にイオン液体を含浸させた状態で表面を伸張することを含む。また、本発明は、集電層を形成した後、集電層にイオン液体を含浸させる工程をさらに備えていてもよい。また、集電層を形成する工程は、電極層の上に導電性材料層を形成した後、導電性材料層の上で集電層を形成することを含んでいてもよい。
本発明は、ベースポリマーと導電性フィラーとを含む電極層の比抵抗よりも低い比抵抗を有する集電層の製造方法であって、セパレータフィルムの少なくとも一方の表面を伸張させる工程と、伸張した表面に集電層を形成する工程と、を備えたことを特徴とする。
このような構成によれば、セパレータフィルムの電極層が形成された表面を伸張させた状態で、電極層に集電層を形成することから、集電層の通常の状態(湾曲していない状態)において集電層に伸びる余裕が与えられる。これにより、集電層が適用される素子等が通常の状態から湾曲する状態に移行する際に、集電層から素子等に対して加わる負荷を軽減することができる。
本発明において、セパレータフィルムの表面を伸張させる工程は、湾曲した凸型に沿ってセパレータフィルムを載置したり、セパレータフィルムの両端を互いに反対方向に引っ張ったりすればよい。この状態でセパレータフィルムの電極層の表面に集電層が形成される。
本発明において、集電層を形成する工程は、スパッタまたは蒸着により金属を成膜することを含む。また、集電層は、第1金属膜と、第2金属膜とを有し、集電層を形成する工程は、表面に露出する電極層の上に第1金属膜を形成した後、第1金属膜の上に第2金属膜を形成することを含む。集電層を形成する工程は、導電性高分子樹脂を蒸着により成膜することを含む。また、集電層を形成する工程は、導電性インクの塗布により成膜することを含む。
本発明は、電解質層と、電解質層を間にして設けられた一対の電極層と、一対の電極層のそれぞれに設けられた集電層と、を備える高分子素子であって、集電層は、電解質層に一対の電極層を形成した積層部材の少なくとも一方の表面を伸張させて、伸張した前記表面に露出する電極層に形成されたことを特徴とする。
このような構成によれば、積層部材の少なくとも一方の表面を伸張させた状態で電極層に集電層を形成することから、高分子素子の通常の状態(湾曲していない状態)において集電層に伸びる余裕が与えられる。これにより、高分子素子が通常の状態から湾曲する状態に移行する際に、集電層から積層部材に対して加わる負荷を軽減することができる。
本発明は、上記の本発明に係る高分子素子を可動部として備えることを特徴とするアクチュエータ素子である。また、本発明は、上記の本発明に係る高分子素子をセンサ部として備えることを特徴とするセンサ素子である。
本発明は、ベースポリマーと導電性フィラーとを含む電極層と、電極層の比抵抗よりも低い比抵抗を有する集電層とが積層された導電性積層構造体であって、電極層は、セパレータフィルムの一方の表面に形成され、集電層は、セパレータフィルムの電極層が形成された表面を伸張させて、伸張した電極層の上に形成されたことを特徴とする。
このような構成によれば、セパレータフィルムの電極層が形成された表面を伸張させた状態で、電極層に集電層を形成することから、集電層の通常の状態(湾曲していない状態)において集電層に伸びる余裕が与えられる。これにより、集電層が適用される素子等が通常の状態から湾曲する状態に移行する際に、集電層から素子等に対して加わる負荷を軽減することができる。
本発明によれば、高分子素子の電極層に集電層を形成する場合に湾曲変位に対する負荷を軽減して集電層の効果を十分に発揮することができる高分子素子の製造方法、導電性積層構造体の製造方法、集電層の製造方法、高分子素子、アクチュエータ素子、センサ素子および導電性積層構造体を提供することが可能になる。
本実施形態に係る高分子素子の断面図である。 (a)〜(c)は、集電層形成工程を例示する模式図である。 (a)〜(d)は、集電層形成工程の他の例を示す模式図である。 本実施形態に係る導電性積層構造体を例示する模式断面図である。 (a)〜(c)は、本実施形態に係る導電性積層構造体の製造方法を例示する模式図である。 本実施形態に係る集電層を例示する模式断面図である。
以下、本発明の実施形態を図面に基づいて説明する。なお、以下の説明では、同一の部材には同一の符号を付し、一度説明した部材については適宜その説明を省略する。
(高分子素子の構造)
図1は、本実施形態に係る高分子素子の断面図である。
高分子素子1は、電解質層2と、電解質層2の厚さ方向(図1のZ方向)の両側表面に形成される一対の電極層3、4と、一対の電極層3、4のそれぞれに設けられた集電層31、41とを備える。本実施形態では、高分子素子1の構成のうち、電解質層2と一対の電極層3、4との積層構造を積層部材10と称し、電極層3と集電層31との積層構造、または電極層4と集電層41との積層構造を導電性積層構造体20と称する。
高分子素子1の基端部5は固定端部である。基端部5は固定支持部6、6にて片持ちで固定支持される。両面の集電層31、41から電極層3、4間に駆動電圧を印加すると、図1の破線に示すように、電解質層2と電極層3、4との間のイオン移動などによって電極層3と電極層4との間に容積差が生じる。これにより曲げ応力が発生して、高分子素子1の自由端部である先端部7を湾曲変形させることができる。すなわち、本実施形態に係る高分子素子1は、高分子アクチュエータ素子である。
高分子素子1の電解質層2は、イオン液体および電解質用ベースポリマーを有する。この電解質層2の厚さは、例えば10μm以上30μm以下程度である。イオン液体の種類は限定されない。高分子素子1の動作安定性を高める観点などから、通常、電極層3、4が備えるイオン液体と同種の材料からなる。
電解質用ベースポリマーの材料は限定されない。電解質用ベースポリマーの材料の例として、ポリフッ化ビニリデン、フィブリル化されたポリテトラフルオロエチレン(Fb−PTFE)、フィブリル化されていないポリテトラフルオロエチレンなどが挙げられる。ここで、フィブリル化とは、フィブリル構造さらにはミクロフィブリル構造を形成するための繊維化または紡糸化のことであって、例えば、固体の対象物を粉体とともに混練して剪断力を与えることによってフィブリル化し、さらにはミクロフィブリル化する。
電極層3、4には、例えば炭素含有フィルムが用いられる。炭素含有フィルムは、ベースポリマーとカーボン材料とイオン液体とを備える。炭素含有フィルムの厚さは限定されない。炭素含有フィルムの厚さは、例えば50μm以上250μm程度である。
炭素含有フィルムが備えるベースポリマーは、Fb−PTFEを含有する。かかるベースポリマーはFb−PTFEからなることが好ましい。炭素含有フィルムがベースポリマーの少なくとも一部として備えるFb−PTFEは、炭素含有フィルムの主面内方向に配向している。このような構造上の特徴を有することにより、炭素含有フィルムの機械特性(撓みやすさ)は主面内異方性を有する。この機械特性(撓みやすさ)の主面内異方性を利用することにより、高分子素子1は、変形量および剛性の異方性を有することができる。
本発明の一実施形態に係る炭素含有フィルムは、Fb−PTFE以外の材料をベースポリマーの一部として含有していてもよい。かかる材料の例として、フィブリル化されていないポリテトラフルオロエチレン、ポリフッ化ビニリデンなどが例示される。
本発明の一実施形態に係る炭素含有フィルムが備えるカーボン材料の種類は限定されない。カーボン材料として、活性炭、カーボンブラック、カーボンナノファイバ、カーボンナノチューブ、ナノ炭素材、などが例示される。
集電層31、41は、電極層3、4の比抵抗よりも低い比抵抗を有する。本実施形態に係る高分子素子1の集電層31、41は、後述するように、積層部材10の少なくとも一方の表面を伸張させた状態で電極層3、4の上に形成されたものである。
集電層31、41には金属、導電性高分子樹脂、導電性インクが用いられる。集電層31、41として金属を用いる場合、例えばスパッタや蒸着によって電極層3、4の上に成膜される。金属の集電層31、41としては、多層膜であってもよい。多層膜としては、例えば、電極層3、4に近位な位置から順に、第1金属膜(Ti)/第2金属膜(Au)の積層膜が用いられる。
集電層31、41として導電性高分子樹脂を用いる場合、例えば蒸着によって電極層3、4の上に成膜される。導電性インクの場合、例えば塗布によって電極層3、4の上に成膜される。
高分子素子1は、アクチュエータ素子の可動部として用いられることができる。この場合には、図1に示されるように、両面の集電層31、41から電極層3、4間に駆動電圧を印加することにより、高分子素子1を変形させることができる。
高分子素子1は、センサ素子のセンサ部として用いられることができる。この場合には、高分子素子1に外力が付与されて変形することにより、電極層3、4間に起電力が発生する。集電層31、41を介して接続される測定装置にてこの起電力に基づく電圧を測定することにより、高分子素子1に付与された外力を定量的に評価することができる。
(高分子素子の製造方法)
本実施形態に係る高分子素子1の製造方法は、積層工程、集電層形成工程、切断工程を有する。
積層工程では、電解質層2の主面のそれぞれに電極層3、4の主面が対向するように2つの電極層3、4と電解質層2とを積層して積層部材10を得る。各層の積層方法は限定されない。通常、一方の電極層3、4を平面上に載置し、その上に電解質層2を載置し、さらに他方の電極層4、3を載置する。得られた積層体を加圧することにより一体化して、積層部材10が得られる。
集電層形成工程では、電解質層2および電極層3、4を積層した積層部材10の少なくとも一方の表面を伸張させ、この伸張した表面に露出する電極層3、4に集電層31、41を形成する。集電層形成工程の詳細については後述する。
切断工程では、上記の積層工程および集電層形成工程により得られた積層構造体の積層方向に沿う方向に積層構造体を切断して、積層部材10を得る。切断方法は限定されない。切断刃や抜き型を用いてもよいし、水などの流体を高圧で噴射して切断してもよい。あるいは、レーザやイオンビームなどエネルギー線を用いて切断してもよい。
切断工程における積層構造体の切断方向を調整することによって、得られた積層部材10を備える高分子素子1の変位量および剛性の異方性を制御することができる場合もある。この場合には、異なる特性の高分子素子1を、切断工程の作業を変更することだけで作り分けることができ、生産性に優れる。
次に、集電層形成工程の詳細について説明する。
図2(a)〜(c)は、集電層形成工程を例示する模式図である。
先ず、図2(a)に示すように、治具100を用意する。治具100は、基台101と、基台101の上に設けられた略半円筒型の湾曲台102とを備える。湾曲台102の湾曲面は上に向けられている。次に、治具100に積層部材10を載置する。この際、湾曲台102の湾曲面に沿って積層部材10を載置することにより、積層部材10の一方の表面が伸ばされる。図2(a)に示す例では、積層部材10の電極層3側の表面が伸ばされている。
次に、図2(b)に示すように、積層部材10を治具100に載置した状態で、スパッタや蒸着等によって集電層31を形成する。集電層31は、TiやAuによる多層金属膜であってもよい。また、導電性高分子樹脂の蒸着や導電性インクの塗布によって集電層31を成膜してもよい。集電層31は、伸ばされた電極層3の上に成膜される。
集電層31を成膜した後は、図2(c)に示すように、積層部材10を治具100から取り外す。これにより湾曲していた積層部材10は真っ直ぐな状態に戻される。集電層31は伸張された電極層3の上に形成され、その後で真っ直ぐな状態に戻されている。したがって、真っ直ぐになった集電層31には真っ直ぐな状態から湾曲する状態まで伸びる余裕が与えられる。
上記では電極層3の上に集電層31を成膜する例を示したが、積層部材10の表裏を反転して治具100に載置し、電極層4側の表面を伸張した状態で電極層4の上に集電層41を成膜してもよい。
このように集電層31、41を形成することで、集電層31、41に伸張の余裕が生じ、高分子素子1に駆動電圧を印加して湾曲変形させる際、集電層31、41から積層部材10に対して加わる負荷が軽減される。したがって、集電層31、41から電解質層2に効率良く電圧が印加され、電解質層2は集電層31、41から大きな負荷を受けることなく湾曲変位することになる。
集電層形成工程では、電解質層2および電極層3、4を積層した積層部材10の両端を互いに反対方向に引っ張り、この状態で電極層3、4に集電層31、41を形成してもよい。
図3(a)〜(d)は、集電層形成工程の他の例を示す模式図である。
先ず、図3(a)に示すように、積層部材10の両端部にそれぞれ治具200を取り付ける。
次に、図3(b)に示すように、2つの治具200を引っ張ることで積層部材10の両端を互いに反対方向に引っ張り、積層部材10を伸張する。次に、図3(c)に示すように、積層部材10を伸張した状態で、スパッタや蒸着等によって集電層31を形成する。集電層31は、TiやAuによる多層金属膜であってもよい。また、導電性高分子樹脂の蒸着や導電性インクの塗布によって集電層31を成膜してもよい。集電層31は、伸ばされた電極層3の上に成膜される。
集電層31を成膜した後は、図3(d)に示すように、積層部材10の引っ張りを解除する。集電層31は伸張された電極層3の上に形成され、その後で縮めされることになる。したがって、集電層31にはその状態から伸びるまでの余裕が与えられる。
上記では電極層3の上に集電層31を成膜する例を示したが、積層部材10を伸張した状態で電極層4の上に集電層41を成膜してもよい。このように集電層31、41を形成することで、集電層31、41に伸張の余裕が生じ、高分子素子1に駆動電圧を印加して湾曲変形させる際に集電層31、41から積層部材10に対して加わる負荷が軽減される。したがって、集電層31、41から電解質層2に効率良く電圧が印加され、電解質層2は集電層31、41から大きな負荷を受けることなく湾曲変位することになる。
上記のように、積層部材10を伸張した状態で集電層31、41を成膜する際、電極層3、4にイオン液体を含浸させた状態で積層部材10を伸張するようにしてもよい。また、電極層3、4にイオン液体を含浸させる前に積層部材10を伸張して集電層31、41を形成した後、集電層31、41にイオン液体を含浸させるようにしてもよい。電極層3、4、集電層31、41にイオン液体を含浸させることで、高分子素子1の変位量を向上させることができる。
また、集電層31、41を成膜する際、電極層3、4の上に導電性材料層を形成した後、この導電性材料層の上に集電層31、41を形成するようにしてもよい。導電性材料層としては、導電性を有し、集電層31、41に比べて弾性率の低い材料(例えば、導電性粘着材)が用いられる。これにより、積層部材10の変位に与える影響を少なくして、積層部材10を保護することが可能である。集電層31、41の周囲に粘着剤層を設けてもよい。この場合には、粘着剤層は絶縁性とすれば、電極層3、4間の短絡を防ぐことができる。導電性粘着材や粘着剤層に透湿性の低い材料を用いることにより、積層部材10の水分による劣化を抑制することができる。
(導電性積層構造体)
図4は、本実施形態に係る導電性積層構造体を例示する模式断面図である。
図4に示すように、導電性積層構造体20は、電極層3と、電極層3の比抵抗よりも低い比抵抗を有する集電層31とが積層された構造体である。電極層3は、ベースポリマーと導電性フィラーとを含む。電極層3には、上記説明した炭素含有フィルムなどが用いられる。
電極層3はセパレータフィルム50の一方の表面に形成される。導電性積層構造体20は、セパレータフィルム50を剥離することで対象物に接続される。すなわち、導電性積層構造体20はセパレータフィルム50を付けた状態で流通する。セパレータフィルム50が設けられていることで流通性が向上する。また、対象物に接続される前にセパレータフィルム50が剥がされ、導電性積層構造体20のみが対象物に接続される。
このような導電性積層構造体20において、集電層31は、セパレータフィルム50の電極層3が形成された表面を伸張させて、伸張した電極層3の上に形成される。したがって、通常の状態(セパレータフィルム50が伸張していない状態)において、集電層31に伸びる余裕が与えられる。この導電性積層構造体20を対象物(例えば、高分子素子1の電解質層2)に接続することで、集電層31が適用される高分子素子1等の対象物が通常の状態から湾曲する状態に移行する際に、集電層31から高分子素子1等に対して加わる負荷を軽減することができる。
(導電性積層構造体の製造方法)
図5(a)〜(c)は、本実施形態に係る導電性積層構造体の製造方法を例示する模式図である。図5(a)には連続成膜の状態が示される。図5(b)には図5(a)のA部の拡大断面図が示され、図5(c)には図5(a)のB部の拡大断面図が示される。
図5(a)に示すように、セパレータフィルム50は第1ロールR1から湾曲用ローラR3を介して第2ロールR2に巻き取られる。セパレータフィルム50の表面には予め電極層3が形成されている(図5(b)参照)。
電極層3が形成されたセパレータフィルム50は第1ロールR1から湾曲用ローラR3に沿って湾曲し、第2ロールR2に送られる。この湾曲用ローラR3で湾曲している位置で電極層3の上に集電層31が成膜される。セパレータフィルム50は連続的に送られ、湾曲用ローラR3の位置で集電層31が成膜される。これにより、集電層31は、湾曲用ローラR3による湾曲によって伸張した電極層3の上に形成される。
集電層31は、スパッタや蒸着等によって成膜される。集電層31は、TiやAuによる多層金属膜であってもよい。また、導電性高分子樹脂の蒸着や導電性インクの塗布によって集電層31を成膜してもよい。
湾曲用ローラR3の下流側ではセパレータフィルム50の電極層3の上に所定の厚さの集電層31が成膜されている(図5(c)参照)。その後、集電層31が成膜されたセパレータフィルム50は第2ロールR2に順次巻き取られる。このようにして、集電層31の連続成膜を行うことができる。
なお、本実施形態に係る導電性積層構造体20の集電層31は、上記のような連続成膜以外にも、図2や図3に示すような治具100、200を用いてセパレータフィルム50を伸張した状態で電極層3の上に成膜されてもよい。
(集電層およびその製造方法)
図6は、本実施形態に係る集電層を例示する模式断面図である。
図6に示すように、本実施形態に係る集電層31は、セパレータフィルム50の少なくとも一方の表面に形成される。集電層31は、セパレータフィルム50の少なくとも一方の表面を伸張させて、この状態で形成されている。
集電層31は、セパレータフィルム50を剥離することで対象物に接続される。すなわち、集電層31はセパレータフィルム50を付けた状態で流通する。セパレータフィルム50が設けられていることで流通性が向上する。また、対象物に接続される前にセパレータフィルム50が剥がされ、集電層31のみが対象物に接続される。
集電層31を製造するには、図2および図3に示すような治具100、200を用いてセパレータフィルム50を伸張した状態で、伸張したセパレータフィルム50の表面に集電層31が成膜される。
集電層31は、スパッタや蒸着等によって成膜される。集電層31は、TiやAuによる多層金属膜であってもよい。また、導電性高分子樹脂の蒸着や導電性インクの塗布によって集電層31を成膜してもよい。
また、集電層31は、図5(a)に示すような第1ロールR1から湾曲用ローラR3を介して第2ロールR2にセパレータフィルム50を送りながら、湾曲用ローラR3の位置で伸張したセパレータフィルム50の表面に成膜されてもよい。
以上説明したように、実施形態によれば、高分子素子1の電極層3、4に集電層31、41を形成する場合に湾曲変位に対する負荷を軽減して集電層31、41の効果を十分に発揮させることが可能になる。
なお、上記に本実施形態を説明したが、本発明はこれらの例に限定されるものではない。例えば、前述の実施形態に対して、当業者が適宜、構成要素の追加、削除、設計変更を行ったものや、各実施形態の構成例の特徴を適宜組み合わせたものも、本発明の要旨を備えている限り、本発明の範囲に含有される。
1…高分子素子
2…電解質層
3,4…電極層
5…基端部
6…固定支持部
7…先端部
10…積層部材
20…導電性積層構造体
31,41…集電層
50…セパレータフィルム
100…治具
101…基台
102…湾曲台
200…治具
R1…第1ロール
R2…第2ロール
R3…湾曲用ローラ

Claims (31)

  1. 電解質層と、前記電解質層を間にして設けられた一対の電極層と、前記一対の電極層のそれぞれに設けられた集電層と、を備える高分子素子の製造方法であって、
    前記電解質層に前記一対の電極層を形成した積層部材を形成する工程と、
    前記積層部材の少なくとも一方の表面を伸張させる工程と、
    伸張した前記表面に露出する前記電極層に前記集電層を形成する工程と、
    を備えたことを特徴とする高分子素子の製造方法。
  2. 前記表面を伸張させる工程は、湾曲した凸型に沿って前記積層部材を載置することを含み、
    前記集電層を形成する工程は、前記凸型に沿って前記積層部材を載置した状態で凸状に湾曲した前記表面に露出する前記電極層に前記集電層を形成することを含む、請求項1記載の高分子素子の製造方法。
  3. 前記表面を伸張させる工程は、前記積層部材の両端を互いに反対方向に引っ張ることを含む、請求項1記載の高分子素子の製造方法。
  4. 前記集電層を形成する工程は、スパッタまたは蒸着により金属を成膜することを含む、請求項1から請求項3のいずれか1項に記載の高分子素子の製造方法。
  5. 前記集電層は、第1金属膜と、第2金属膜とを有し、
    前記集電層を形成する工程は、前記表面に露出する前記電極層の上に前記第1金属膜を形成した後、前記第1金属膜の上に前記第2金属膜を形成することを含む、請求項4記載の高分子素子の製造方法。
  6. 前記集電層を形成する工程は、導電性高分子樹脂を蒸着により成膜することを含む、請求項1から請求項3のいずれか1項に記載の高分子素子の製造方法。
  7. 前記集電層を形成する工程は、導電性インクの塗布により成膜することを含む、請求項1から請求項3のいずれか1項に記載の高分子素子の製造方法。
  8. 前記表面を伸張させる工程は、前記電極層にイオン液体を含浸させた状態で前記表面を伸張することを含む、請求項1から請求項7のいずれか1項に記載の高分子素子の製造方法。
  9. 前記集電層を形成した後、前記集電層にイオン液体を含浸させる工程をさらに備えた、請求項1から請求項8のいずれか1項に記載の高分子素子の製造方法。
  10. 前記集電層を形成する工程は、前記電極層の上に導電性材料層を形成した後、前記導電性材料層の上で前記集電層を形成することを含む、請求項1から請求項9のいずれか1項に記載の高分子素子の製造方法。
  11. ベースポリマーと導電性フィラーとを含む電極層と、前記電極層の比抵抗よりも低い比抵抗を有する集電層とが積層された導電性積層構造体の製造方法であって、
    セパレータフィルムの一方の表面に前記電極層を形成する工程と、
    前記セパレータフィルムの前記電極層が形成された前記表面を伸張させる工程と、
    前記セパレータフィルムを伸張した状態で前記電極層の上に前記集電層を形成する工程と、
    を備えたことを特徴とする導電性積層構造体の製造方法。
  12. 前記表面を伸張させる工程は、湾曲した凸型に沿って前記セパレータフィルムを載置することを含み、
    前記集電層を形成する工程は、前記凸型に沿って前記セパレータフィルムを載置した状態で凸状に湾曲した前記表面に露出する前記電極層に前記集電層を形成することを含む、請求項11記載の導電性積層構造体の製造方法。
  13. 前記表面を伸張させる工程は、前記セパレータフィルムの両端を互いに反対方向に引っ張ることを含む、請求項11記載の導電性積層構造体の製造方法。
  14. 前記集電層を形成する工程は、スパッタまたは蒸着により金属を成膜することを含む、請求項11から請求項13のいずれか1項に記載の導電性積層構造体の製造方法。
  15. 前記集電層は、第1金属膜と、第2金属膜とを有し、
    前記集電層を形成する工程は、前記表面に露出する前記電極層の上に前記第1金属膜を形成した後、前記第1金属膜の上に前記第2金属膜を形成することを含む、請求項14記載の導電性積層構造体の製造方法。
  16. 前記集電層を形成する工程は、導電性高分子樹脂を蒸着により成膜することを含む、請求項11から請求項13のいずれか1項に記載の導電性積層構造体の製造方法。
  17. 前記集電層を形成する工程は、導電性インクの塗布により成膜することを含む、請求項11から請求項13のいずれか1項に記載の導電性積層構造体の製造方法。
  18. 前記表面を伸張させる工程は、前記電極層にイオン液体を含浸させた状態で前記表面を伸張することを含む、請求項11から請求項17のいずれか1項に記載の導電性積層構造体の製造方法。
  19. 前記集電層を形成した後、前記集電層にイオン液体を含浸させる工程をさらに備えた、請求項11から請求項18のいずれか1項に記載の導電性積層構造体の製造方法。
  20. 前記集電層を形成する工程は、前記電極層の上に導電性材料層を形成した後、前記導電性材料層の上で前記集電層を形成することを含む、請求項11から請求項19のいずれか1項に記載の導電性積層構造体の製造方法。
  21. ベースポリマーと導電性フィラーとを含む電極層の比抵抗よりも低い比抵抗を有する集電層の製造方法であって、
    セパレータフィルムの少なくとも一方の表面を伸張させる工程と、
    伸張した前記表面に前記集電層を形成する工程と、
    を備えたことを特徴とする集電層の製造方法。
  22. 前記表面を伸張させる工程は、湾曲した凸型に沿って前記セパレータフィルムを載置することを含み、
    前記集電層を形成する工程は、前記凸型に沿って前記セパレータフィルムを載置した状態で凸状に湾曲した前記表面に前記集電層を形成することを含む、請求項21記載の集電層の製造方法。
  23. 前記表面を伸張させる工程は、前記セパレータフィルムの両端を互いに反対方向に引っ張ることを含む、請求項21記載の集電層の製造方法。
  24. 前記集電層を形成する工程は、スパッタまたは蒸着により金属を成膜することを含む、請求項21から請求項23のいずれか1項に記載の集電層の製造方法。
  25. 前記集電層は、第1金属膜と、第2金属膜とを有し、
    前記集電層を形成する工程は、前記表面に露出する前記電極層の上に前記第1金属膜を形成した後、前記第1金属膜の上に前記第2金属膜を形成することを含む、請求項24記載の集電層の製造方法。
  26. 前記集電層を形成する工程は、導電性高分子樹脂を蒸着により成膜することを含む、請求項21から請求項23のいずれか1項に記載の集電層の製造方法。
  27. 前記集電層を形成する工程は、導電性インクの塗布により成膜することを含む、請求項21から請求項23のいずれか1項に記載の集電層の製造方法。
  28. 電解質層と、前記電解質層を間にして設けられた一対の電極層と、前記一対の電極層のそれぞれに設けられた集電層と、を備える高分子素子であって、
    前記集電層は、
    前記電解質層に前記一対の電極層を形成した積層部材の少なくとも一方の表面を伸張させて、伸張した前記表面に露出する前記電極層に形成されたことを特徴とする高分子素子。
  29. 請求項28に記載される高分子素子を可動部として備えることを特徴とするアクチュエータ素子。
  30. 請求項28に記載される高分子素子をセンサ部として備えることを特徴とするセンサ素子。
  31. ベースポリマーと導電性フィラーとを含む電極層と、前記電極層の比抵抗よりも低い比抵抗を有する集電層とが積層された導電性積層構造体であって、
    前記電極層は、セパレータフィルムの一方の表面に形成され、
    前記集電層は、前記セパレータフィルムの前記電極層が形成された前記表面を伸張させて、伸張した前記電極層の上に形成されたことを特徴とする導電性積層構造体。
JP2015142108A 2015-07-16 2015-07-16 高分子素子の製造方法、導電性積層構造体の製造方法、集電層の製造方法、高分子素子、アクチュエータ素子、センサ素子および導電性積層構造体 Expired - Fee Related JP6423763B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015142108A JP6423763B2 (ja) 2015-07-16 2015-07-16 高分子素子の製造方法、導電性積層構造体の製造方法、集電層の製造方法、高分子素子、アクチュエータ素子、センサ素子および導電性積層構造体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015142108A JP6423763B2 (ja) 2015-07-16 2015-07-16 高分子素子の製造方法、導電性積層構造体の製造方法、集電層の製造方法、高分子素子、アクチュエータ素子、センサ素子および導電性積層構造体

Publications (2)

Publication Number Publication Date
JP2017028769A JP2017028769A (ja) 2017-02-02
JP6423763B2 true JP6423763B2 (ja) 2018-11-14

Family

ID=57946043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015142108A Expired - Fee Related JP6423763B2 (ja) 2015-07-16 2015-07-16 高分子素子の製造方法、導電性積層構造体の製造方法、集電層の製造方法、高分子素子、アクチュエータ素子、センサ素子および導電性積層構造体

Country Status (1)

Country Link
JP (1) JP6423763B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3745585B1 (en) 2018-01-26 2022-11-30 Seiki Chiba Method for manufacturing dielectric elastomer transducer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151818A (ja) * 2006-12-14 2008-07-03 Hitachi Ltd 表示装置
JP2010263750A (ja) * 2009-05-11 2010-11-18 Hyper Drive Corp 電場応答性高分子を用いた発電デバイス
JP6303495B2 (ja) * 2013-12-26 2018-04-04 カシオ計算機株式会社 アクチュエータ

Also Published As

Publication number Publication date
JP2017028769A (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
JP5959807B2 (ja) アクチュエータおよびアクチュエータ構造体
JP5539837B2 (ja) 電歪複合構造体及びアクチュエータ
CN101913130B (zh) 电致动夹持器
JP5243118B2 (ja) 高分子アクチュエータ及びその製造方法
US9863406B2 (en) Electrothermal actuators
US8994246B2 (en) Actuator
JP2011211888A (ja) カーボンナノチューブを利用した電歪構造体及び電歪アクチュエータ
JP5700992B2 (ja) アクチュエータおよびその製造方法
JP5733938B2 (ja) アクチュエータ
US20160025077A1 (en) Electrothermal composite material and electrothermal actuator using the same
US20130207510A1 (en) Polymer transducer and a connector for a transducer
US9862155B2 (en) Method for making electrothermal actuators
JP2011050195A (ja) アクチュエータ
JP6423763B2 (ja) 高分子素子の製造方法、導電性積層構造体の製造方法、集電層の製造方法、高分子素子、アクチュエータ素子、センサ素子および導電性積層構造体
JP6323948B2 (ja) アクチュエータ素子及びアクチュエータ
Oh et al. Graphene-based Ionic Polymer Actuators
KR102659116B1 (ko) 고신축성 복합 소재, 이를 포함하는 슈퍼 커패시터 및 그 제조 방법.
US9390876B2 (en) Laminate-type actuator
KR20220073087A (ko) 유연성 섬유형 전지 및 그의 제조방법
JP6338185B2 (ja) 高分子アクチュエータ及びその製造方法
JP6420192B2 (ja) 炭素含有フィルムおよび炭素含有フィルムの製造方法ならびに高分子アクチュエータ素子および高分子アクチュエータ素子の製造方法
JP2012080595A (ja) 高分子アクチュエータ及びその製造方法
JP5523553B2 (ja) 高分子アクチュエータおよびその製造方法
JP6626667B2 (ja) 高分子素子
JP5949927B2 (ja) 電歪アクチュエータおよびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181019

R150 Certificate of patent or registration of utility model

Ref document number: 6423763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees