JP6422814B2 - デカルバモイルサキシトキシン及びその類縁体の製造方法 - Google Patents

デカルバモイルサキシトキシン及びその類縁体の製造方法 Download PDF

Info

Publication number
JP6422814B2
JP6422814B2 JP2015084042A JP2015084042A JP6422814B2 JP 6422814 B2 JP6422814 B2 JP 6422814B2 JP 2015084042 A JP2015084042 A JP 2015084042A JP 2015084042 A JP2015084042 A JP 2015084042A JP 6422814 B2 JP6422814 B2 JP 6422814B2
Authority
JP
Japan
Prior art keywords
compound
group
represented
salt
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015084042A
Other languages
English (en)
Other versions
JP2016204270A (ja
Inventor
佐藤 繁
繁 佐藤
紗和衣 藤田
紗和衣 藤田
美貴 森
美貴 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitasato Institute
Original Assignee
Kitasato Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitasato Institute filed Critical Kitasato Institute
Priority to JP2015084042A priority Critical patent/JP6422814B2/ja
Publication of JP2016204270A publication Critical patent/JP2016204270A/ja
Application granted granted Critical
Publication of JP6422814B2 publication Critical patent/JP6422814B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)

Description

本発明は、デカルバモイルサキシトキシン及びその類縁体の製造方法に関する。
麻痺性貝毒は、サキシトキシン(STX)と、20を超えるその類縁体の総称である(図1参照)。毒化貝や貝毒原因プランクトンにはこれらのうちの複数の成分が含まれる。毒化貝による致死的な食中毒の発生を防ぐため、貝を食用とする各国では、検査機関によるマウス試験法、あるいはHPLC法などで貝類の毒性を監視する貝毒モニタリングが定期的に実施されている。STXは化学的に安定で毒性が強いため、合衆国食品医薬品局(FDA)から世界各地の検査機関に、STX溶液が毒分析用標準品として、配布されてきた。標準品は、マウス試験法でのマウスの感度を補正するために必須であり、また、マウス試験の代替となるHPLC法においても、STXの標準品は不可欠のものである。しかしSTXは、化学兵器禁止条約により特定化合物に指定され、現在その製造、譲渡、保管、使用が著しく制限されている。STX以外の麻痺性貝毒成分は安定性を欠くものが多いが、唯一デカルバモイルサキシトキシン(dcSTX)は、STXと同様に化学的に安定であり、STXに替わる麻痺性貝毒標準品の第1候補である。しかしdcSTXは毒化貝や有毒プランクトンにはほとんど含まれず、標準毒として供給する体制を整えるためには、他の麻痺性貝毒成分から化学的に変換して調製せざるを得ない。
主な麻痺性貝毒の化学構造は図1に示す一般式で表される。位置番号を図1の一般式中に示す。
STX、dcSTX、GTX群などの麻痺性貝毒成分は塩基性水溶液中では著しく不安定で、下記式に示すように、速やかに酸化され、別の骨格構造へと分解されてしまうことが知られている。
Figure 0006422814
非特許文献1(Ghazarossian et al. (1976))には、STXをdcSTXに変換して、dcSTXを製造する方法が記載されている。この方法は、側鎖のカルバメートのエステル加水分解を伴うものである。
Figure 0006422814
非特許文献2(Watanabe et al. (2011))には、有毒藍藻を大量培養してC−toxins (C1, C2)を分離し、既報の方法でデカルバモイルゴニオトキシン(dcGTX)2およびdcGTX3、もしくはGTX5に変換したのち、これらをさらに化学的に変換することによりdcSTXが調製する工程が提案されている(図2参照)。
Ghazarossian, V. E. et al. Biochem. Biophys. Res. Commun. 1976, 68, 776-780. Watanabe, R. et al. Mar. Drugs 2011, 9, 466-477.
しかし、非特許文献1に記載の方法では、得られるdcSTXの収率が低く、出発原料のSTXに対しておそらく10%未満しかdcSTXが得られないという問題がある。また、STXを出発原料としなければならないため、取扱い上不都合である。
また、非特許文献2に記載の方法では、藍藻を培養する手間や、変換反応の各段階での収率が低いこと、副産物として規制化合物のSTXが生じてしまうなどの点で、必要量のdcSTXを十分量確保することは困難である。
発明者らは、天然の毒化貝に多量に含まれており、毒化貝から容易に得ることが出来るゴニオトキシン群(GTXs)をdcSTXに変換することができれば、必要量のdcSTXの確保が容易となると考えた。
本発明は上記事情に鑑みてなされたものであり、dcSTX等の化合物を高効率に製造可能な化合物の製造方法の提供と、dcSTX等の化合物を製造するために有用な中間体の製造方法の提供を課題とする。
上記課題を解決するため、本発明は、下記の特徴を有する化合物の製造方法を提供する。
<1>下記一般式(2)で表される化合物又はそのイオン若しくは塩を、塩基性条件下で処理することにより下記一般式(3)で表される化合物又はそのイオン若しくは塩を得る工程Iと、
下記一般式(3)で表される化合物又はそのイオン若しくは塩と、SH基を有する化合物(S2)とを反応させることにより下記一般式(4)で表される化合物又はそのイオン若しくは塩を得る工程IIと、
を含むことを特徴とする、下記一般式(4)で表される化合物の製造方法。
Figure 0006422814
[式(2)中、Rは水素原子又は水酸基を表し、Rはアミノ基、−NHSOHで表される基、又は−NHR4aで表される基(R4aは一価の有機基を表す。)を表し、Rは一価の有機基を表す。]
Figure 0006422814
[式(3)中、R及びRは前記と同じ意味を表す。]
Figure 0006422814
[式(4)中、Rは前記と同じ意味を表す。]
<2>更に、下記一般式(1)で表される化合物又はそのイオン若しくは塩と、SH基を有する化合物(S1)とを反応させて、前記一般式(2)で表される化合物又はそのイオン若しくは塩を得る工程を含む、前記<1>に記載の化合物の製造方法。
Figure 0006422814
[式(1)中、R及びRはそれぞれ独立に水素原子、−OSOHで表される基、又は−OSO で表される基を表し(但し、R及びRの少なくとも一方は−OSOHで表される基、又は−OSO で表される基である)、R及びRは前記と同じ意味を表す。]
<3>前記SH基を有する化合物(S1)が下記一般式(5−1)又は下記一般式(5−2)で表される化合物であり、前記一般式(2)で表される化合物が下記一般式(2−1)又は下記一般式(2−2)で表される化合物である、前記<2>に記載の化合物の製造方法。
Figure 0006422814
[式(5−1)中、Rはアルキレン基を表す。]
Figure 0006422814
[式(5−2)中、Rはアルキレン基を表す。]
Figure 0006422814
[式(2−1)中、R、R、及びRは前記と同じ意味を表す。式(2−2)中、R、R、及びRは前記と同じ意味を表す。]
<4>前記一般式(2)で表される化合物を、pH9以上の条件下に置くことで、前記塩基性条件下で処理を行う、前記<1>〜<3>のいずれか一つに記載の化合物の製造方法。
本発明の化合物の製造方法によれば、前記一般式(4)で表されるdcSTX等の化合物を高効率に製造可能である。また、本発明の化合物の製造方法によれば、前記一般式(4)で表されるdcSTX等の化合物を製造するために有用な中間体を高効率に製造可能である。
代表的な麻痺性貝毒成分の構造を示す図である。 従来法による、dcSTXの製造方法のフローを示す図である。 実施例において製造されたME−dcSTX(及びdcSTX)の収量を示すグラフである。
<化合物(4)の製造方法>
一般式(4)で表される化合物(「化合物(4)」と略記することがある。)は、以下に示す一実施形態の製造方法により製造することができる。
1.化合物(2)の製造
まず、下記一般式(1)で表される化合物(以下「化合物(1)」と略記することがある。)又はそのイオン若しくは塩と、SH基を有する化合物(S1)とを反応させて、下記一般式(2)で表される化合物(以下「化合物(2)」と略記することがある。)又はそのイオン若しくは塩を得る工程を行う。
Figure 0006422814
[式中、Rは水素原子又は水酸基を表し、R及びRはそれぞれ独立に水素原子、−OSOHで表される基、又は−OSO で表される基を表し(但し、R及びRの少なくとも一方は−OSOHで表される基、又は−OSO で表される基である)、Rはアミノ基、−NHSOHで表される基、又は−NHR4aで表される基(R4aは一価の有機基を表す。)を表し、Rは一価の有機基を表す。]
4a、Rにおける一価の有機基は、それぞれ独立に、構成原子として炭素原子を含む1価の基であり、置換基を有していてもよい炭化水素基を例示できる。ここで「炭化水素基が置換基を有する」とは、炭化水素基を構成する1個以上の水素原子が、水素原子以外の基(置換基)で置換されているか、又は炭化水素基を構成する1個以上の炭素原子が、若しくは前記炭素原子がこれに結合している1個以上の水素原子と共に、これ(炭素原子又は1個以上の水素原子が結合している炭素原子)とは異なる基(置換基)で置換されていることを意味する。
4a、Rにおける前記炭化水素基は、脂肪族炭化水素基及び芳香族炭化水素基(アリール基)のいずれでもよく、前記脂肪族炭化水素基は、飽和脂肪族炭化水素基(アルキル基)及び不飽和脂肪族炭化水素基のいずれでもよい。
4a、Rにおける前記有機基を構成する原子は、前記工程Iの反応を阻害しない範囲において、その他の基と結合していてもよい。例えば、Rにおける前記有機基を構成する原子は12位の水酸基の両方又は片方と一緒になって環を形成していてもよい。形成される前記環は単環状および多環状のいずれでもよい。
SH基を有する化合物(S1)としては、分子内にSH基を有するものであれば特に制限されず、エタンチオール、2−プロパンチオール、1−ブタンチオール、2−ブタンチオール、アリルメルカプタン、チオ酢酸、ベンゼンチオール、1−ナフタレンチオール、2−メルカプトエタノール、N−アセチルシステイン、1,2−エタンジチオール、還元型グルタチオン等が挙げられる。
前記SH基を有する化合物(S1)は、下記一般式(5−1)で表される化合物(以下「化合物(5−1)」と略記することがある。)、又は下記一般式(5−2)で表される化合物(以下「化合物(5−2)」と略記することがある。)であることが好ましい。また、前記一般式(2)で表される化合物は、下記一般式(2−1)で表される化合物(以下「化合物(2−1)」と略記することがある。)又は下記一般式(2−2)で表される化合物(以下「化合物(2−2)」と略記することがある。)であることが好ましい。
Figure 0006422814
[式(5−1)中、Rはアルキレン基を表す。]
Figure 0006422814
[式(5−2)中、Rはアルキレン基を表す。]
Figure 0006422814
[式(2−1)中、R、R、及びRは前記と同じ意味を表す。式(2−2)中、R、R、及びRは前記と同じ意味を表す。]
、Rにおけるアルキレン基は、それぞれ独立に、置換基を有していてもよい2価の飽和炭化水素基であり、前記炭化水素基は直鎖状、分岐鎖状又は環状であってもよい。
前記アルキレン基は、炭素数が1〜20であることが好ましく、1〜10であることがより好ましく、1〜5であることが特に好ましく、前記アルキレン基としては、メチレン基、エチレン基、トリメチレン基、−CH(CH)−で表される基等が挙げられる。
化合物(5−1)としては、2−メルカプトエタノールが挙げられる。化合物(5−2)としては、1,2−エタンジチオールが挙げられる。
化合物(1)のイオンとしては、化合物(1)がカチオンとなったものでもよく、化合物(1)がアニオンとなったものでもよい。
化合物(1)がカチオンとなったものとしては、化合物(1)において「−NH−」で表される基の少なくとも一つにプロトンが付加して式「―NH −」で表されるカチオン部となったものや、化合物(1)において「=NH」で表される基の少なくとも一つにプロトンが付加して式「=NH 」で表されるカチオン部となったものが挙げられる。
化合物(1)のイオンとしては、例えば下記一般式(1−i)で表される化合物が挙げられる。
Figure 0006422814
[式(1−i)中、R、R、R及びRは前記と同じ意味を表す。]
化合物(1)の塩としては、化合物(1)がカチオンとなってアニオン(無機アニオン又は有機アニオン)とともに形成された塩であってもよく、化合物(1)がアニオンとなってカチオン(無機カチオン又は有機カチオン)とともに形成された塩であってもよい。
化合物(1)がカチオンとなったものと共に化合物(1)の塩を形成する前記アニオンは、特に限定されない。
前記アニオンのうち、好ましい無機アニオンとしては、水酸化物イオン、硝酸イオン、硫酸イオン、炭酸イオン、炭酸水素イオン、ハロゲン化物イオン等が例示できる。
前記アニオンのうち、好ましい有機アニオンとしては、カルボン酸のアニオン等が例示できる。
化合物(1)がアニオンとなったものと共に化合物(1)の塩を形成する前記カチオンは、特に限定されない。
前記カチオンのうち、好ましい無機カチオンとしては、水素イオン、ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン等が例示できる。
化合物(2)のイオンとしては、化合物(2)がカチオンとなったものでもよく、化合物(2)がアニオンとなったものでもよい。
化合物(2)がカチオンとなったものとしては、化合物(2)において「−NH−」で表される基の少なくとも一つにプロトンが付加して式「―NH −」で表されるカチオン部となったものや、化合物(2)において「=NH」で表される基の少なくとも一つにプロトンが付加して式「=NH 」で表されるカチオン部となったものが挙げられる。
化合物(2)のイオンとしては、例えば下記一般式(2−i)で表される化合物が挙げられる。
Figure 0006422814
[式(2−i)中、R、R及びRは前記と同じ意味を表す。]
化合物(2)の塩としては、化合物(2)がカチオンとなってアニオン(無機アニオン又は有機アニオン)とともに形成された塩であってもよく、化合物(2)がアニオンとなってカチオン(無機カチオン又は有機カチオン)とともに形成された塩であってもよい。
化合物(2)がカチオンとなったものと共に化合物(2)の塩を形成する前記アニオンは、特に限定されず、前記化合物(1)がカチオンとなったものと共に塩を形成するアニオンと同様のものが例示できる。
化合物(2)がアニオンとなったものと共に化合物(2)の塩を形成する前記カチオンは、特に限定されず、前記化合物(1)がアニオンとなったものと共に塩を形成するカチオンと同様のものが例示できる。
原料物質である化合物(1)として代表されるGTX2、GTX3等のゴニオトキシン群(GTXs)は天然の毒化貝に多量に含まれており、入手可能であるという利点がある。なお、デカルバモイルゴニオトキシンであるdcGTX2やdcGTX3は、天然にはほとんど存在しない。
化合物(1)又はそのイオン若しくは塩と、SH基を有する化合物(S1)との反応は、適当な溶媒中で行うことができ、溶媒としては、水を含む溶媒が好ましい。化合物(1)又はそのイオン若しくは塩と、SH基を有する化合物(S1)との反応は、リン酸緩衝液、リン酸アンモニウム緩衝液等の生化学分野において一般に使用される緩衝液中で行うことができる。
化合物(1)又はそのイオン若しくは塩と、SH基を有する化合物(S1)との反応は、pH3〜9の範囲内で行うことが好ましく、pH6〜8の範囲内で行うことがより好ましい。
反応時の化合物(1)又はそのイオン若しくは塩、並びにSH基を有する化合物(S1)の総使用量は、これらの化合物の種類を考慮し、目的とする反応に応じて適宜調節すればよい。
SH基を有する化合物(S1)の総使用量は、例えば、化合物(1)中の、R及びRにおける−OSOHで表される基又は−OSO で表される基のモル数に対して、1〜100000倍モル量であることが好ましく、10〜10000モル量であることがより好ましく、100〜1000倍モル量であることが特に好ましい。
化合物(1)又はそのイオン若しくは塩と、SH基を有する化合物(S1)とを反応させるときの温度(反応温度)は、これら化合物の種類に応じて適宜調節すればよい。なかでも、前記反応温度は0〜100℃の範囲であることが好ましく、20〜40℃の範囲であることがより好ましい。
化合物(1)又はそのイオン若しくは塩と、SH基を有する化合物(S1)とを反応させる時間(反応時間)は、反応温度等、その他の条件に応じて適宜調節すればよいが、1分〜72時間であることが好ましく、6〜42時間であることがより好ましい。
2.化合物(3)の製造: (工程I)
次いで、下記一般式(2)で表される化合物又はそのイオン若しくは塩を、塩基性条件下で処理することにより下記一般式(3)で表される化合物(以下「化合物(3)」と略記することがある。)又はそのイオン若しくは塩を得る工程Iを行う。
Figure 0006422814
[式中、R、R及びRは前記と同じ意味を表す。]
前記一般式(2)で表される化合物が前記一般式(2−1)で表される化合物である場合、次のようにして下記一般式(3−1)で表される化合物を得ることができる。
Figure 0006422814
[式中、R、R及びRは前記と同じ意味を表す。]
本実施形態において、工程Iは塩基性条件下で行われる。
麻痺性貝毒成分はpH8以上の塩基性条件下では著しく不安定であり、容易に酸化され分解されてしまう。したがって、麻痺性貝毒成分の製造にあたり、麻痺性貝毒成分を塩基性条件下に置くことはなされてこなかった。
しかし、発明者らは、麻痺性貝毒成分を包含する前記化合物(1)を、前記化合物(2)へと変換することにより、非常に驚くべきことに、前記化合物(2)の塩基性条件下での安定性が著しく向上することを見出した。そして、骨格部分の分解を伴うことなしに、前記化合物(2)におけるエステルのアルカリ加水分解が可能となることを見出した。
一般に、塩基性条件下での加水分解は、酸性条件下での加水分解よりも反応効率がよい。したがって、前記化合物(1)を、前記化合物(2)へと変換することにより、これを塩基性条件下で処理することが可能となり、非特許文献1及び2で示される従来法よりも格段に高効率で、前記化合物(1)から前記化合物(3)への製造を行うことができる。
なお、このことは、前記化合物(1)のイオン若しくは塩、化合物(2)のイオン若しくは塩、及び化合物(3)のイオン若しくは塩についても、同様にあてはめることができる。
工程Iにおける、化合物(2)のイオン及び塩としては、前記と同様のものが例示できる。
化合物(3)のイオンとしては、化合物(3)がカチオンとなったものでもよく、化合物(3)がアニオンとなったものでもよい。
化合物(3)がカチオンとなったものとしては、化合物(3)において「−NH−」で表される基の少なくとも一つにプロトンが付加して式「―NH −」で表されるカチオン部となったものや、化合物(3)において「=NH」で表される基の少なくとも一つにプロトンが付加して式「=NH 」で表されるカチオン部となったものが挙げられる。
化合物(3)のイオンとしては、例えば下記一般式(3−i)で表される化合物が挙げられる。
Figure 0006422814
[式(3−i)中、R、R及びRは前記と同じ意味を表す。]
化合物(3)の塩としては、化合物(3)がカチオンとなってアニオン(無機アニオン又は有機アニオン)とともに形成された塩であってもよく、化合物(3)がアニオンとなってカチオン(無機カチオン又は有機カチオン)とともに形成された塩であってもよい。
化合物(3)がカチオンとなったものと共に化合物(3)の塩を形成する前記アニオンは、特に限定されない。
前記アニオンのうち、好ましい無機アニオンとしては、水酸化物イオン、硝酸イオン、硫酸イオン、炭酸イオン、炭酸水素イオン、ハロゲン化物イオン等が例示できる。
前記アニオンのうち、好ましい有機アニオンとしては、カルボン酸のアニオン等が例示できる。
化合物(3)がアニオンとなったものと共に化合物(3)の塩を形成する前記カチオンは、特に限定されない。
前記カチオンのうち、好ましい無機カチオンとしては、水素イオン、ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン等が例示できる。
工程Iにおける反応時の化合物(2)の反応は、適当な溶媒中で行うことができ、溶媒としては、水を含む溶媒が好ましい。工程Iにおける反応時の化合物(2)の反応は、リン酸緩衝液、リン酸アンモニウム緩衝液等の生化学分野において一般に使用される緩衝液中で行うことができる。
工程Iにおける反応時の化合物(2)又はそのイオン若しくは塩の総使用量は、これらの化合物の種類を考慮し、目的とする反応に応じて適宜調節すればよい。
化合物(2)又はそのイオン若しくは塩を、塩基性条件下で処理するにあたり、前記化合物(2)又はそのイオン若しくは塩を反応させる塩基性条件は、反応温度等、その他の条件に応じて適宜調節すればよい。塩基性条件とは、エステルの加水分解が進行可能な塩基性条件であり、前記塩基性条件は、エステルの加水分解を効率よく進行させるとの観点から、pH9以上とすることが好ましく、pH9以上pH13以下とすることがより好ましく、pH11以上pH12以下とすることがさらに好ましい。特にpHが11以上であれば、目的物の収率の顕著な低下を伴わずに、短時間に高収率に化合物(3)又はそのイオン若しくは塩を得ることができる。
化合物(2)又はそのイオン若しくは塩を、塩基性条件下で処理するにあたり、前記化合物(2)又はそのイオン若しくは塩を塩基性条件下に置く時間(反応時間)は、反応温度等、その他の条件に応じて適宜調節すればよいが、1分〜24時間であることが好ましく、5分〜1時間であることがより好ましく、7〜15分であることがさらに好ましい。
塩基性条件下とは、塩基性条件を達成可能な適当な塩基の存在下であってもよく、塩基としては、例えば、水酸化ナトリウム、炭酸ナトリウムが挙げられ、これらに制限されない。
化合物(2)又はそのイオン若しくは塩を、塩基性条件下で処理するときの温度(反応温度)は、これら化合物の種類に応じて適宜調節すればよい。なかでも、前記反応温度は50〜100℃の範囲であることが好ましく、95〜100℃の範囲であることがより好ましい。
3.化合物(4)の製造: (工程II)
続いて、化合物(3)又はそのイオン若しくは塩と、SH基を有する化合物(S2)とを反応させることにより下記一般式(4)で表される化合物(以下「化合物(4)」と略記することがある。)又はそのイオン若しくは塩を得る工程IIを行う。
Figure 0006422814
[式中、Rは前記と同じ意味を表し、Rは一価の有機基を表す。]
SH基を有する化合物(S2)のRは、SH基を有する化合物(S1)のRと同じ意味を表し、前記Rと前記Rはそれぞれ互いに同一であってもよく、互いに異なっていてもよい。
SH基を有する化合物(S2)としては、前記SH基を有する化合物(S1)と同様のものが例示できる。
化合物(3)と、SH基を有する化合物(S2)とを反応させることにより、式(3)における−S−R基中のS原子とSH−R(S2)中のS原子とがジスルフィド結合を形成してR−S−S−Rで表される化合物(S3)となり、化合物(4)が得られる。
なお、このことは、前記化合物(3)のイオン若しくは塩、及び化合物(4)のイオン若しくは塩についても、同様にあてはめることができる。
化合物(4)のイオンとしては、化合物(4)がカチオンとなったものでもよく、化合物(4)がアニオンとなったものでもよい。
化合物(4)がカチオンとなったものとしては、化合物(4)において「−NH−」で表される基の少なくとも一つにプロトンが付加して式「―NH −」で表されるカチオン部となったものや、化合物(4)において「=NH」で表される基の少なくとも一つにプロトンが付加して式「=NH 」で表されるカチオン部となったものが挙げられる。
化合物(4)のイオンとしては、例えば下記一般式(4−i)で表される化合物が挙げられる。
Figure 0006422814
[式(4−i)中、Rは前記と同じ意味を表す。]
化合物(4)の塩としては、化合物(4)がカチオンとなってアニオン(無機アニオン又は有機アニオン)とともに形成された塩であってもよく、化合物(4)がアニオンとなってカチオン(無機カチオン又は有機カチオン)とともに形成された塩であってもよい。
化合物(4)がカチオンとなったものと共に化合物(4)の塩を形成する前記アニオンは、特に限定されない。
前記アニオンのうち、好ましい無機アニオンとしては、水酸化物イオン、硝酸イオン、硫酸イオン、炭酸イオン、炭酸水素イオン、ハロゲン化物イオン等が例示できる。
前記アニオンのうち、好ましい有機アニオンとしては、カルボン酸のアニオン等が例示できる。
化合物(4)がアニオンとなったものと共に化合物(4)の塩を形成する前記カチオンは、特に限定されない。
前記カチオンのうち、好ましい無機カチオンとしては、水素イオン、ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン等が例示できる。
化合物(3)又はそのイオン若しくは塩と、SH基を有する化合物(S2)との反応は、適当な溶媒中で行うことができ、溶媒としては、水を含む溶媒が好ましい。化合物(3)又はそのイオン若しくは塩と、SH基を有する化合物(S2)との反応は、リン酸緩衝液リン酸アンモニウム緩衝液等の生化学分野において一般に使用される緩衝液中で行うことができる。
化合物(3)又はそのイオン若しくは塩と、SH基を有する化合物(S2)との反応は、pH5〜8の範囲内で行うことが好ましく、pH7〜7.5の範囲内で行うことがより好ましい。
反応時の化合物(3)又はそのイオン若しくは塩、並びにSH基を有する化合物(S2)の総使用量は、これらの化合物の種類を考慮し、目的とする反応に応じて適宜調節すればよい。
SH基を有する化合物(S2)の総使用量は、例えば、化合物(3)中の、−S−Rで表される基のモル数に対して、過剰に使用することが好ましく、10〜100000倍モル量であることが好ましく、100〜100000倍モル量であることがより好ましく、1000〜10000倍モル量であることが特に好ましい。
化合物(3)又はそのイオン若しくは塩と、SH基を有する化合物(S2)とを反応させるときの温度(反応温度)は、これら化合物の種類に応じて適宜調節すればよい。なかでも、前記反応温度は30〜100℃の範囲であることが好ましく、90〜100℃の範囲であることがより好ましい。
化合物(3)又はそのイオン若しくは塩と、SH基を有する化合物(S2)とを反応させる時間(反応時間)は、反応温度等、その他の条件に応じて適宜調節すればよいが、1分〜1時間であることが好ましく、3〜10分であることがより好ましい。
以上で説明した本実施形態の化合物(4)の製造方法において、生成物の存在及び構造は、NMR、IR、マス等の解析により得られたスペクトルの測定や、元素分析等によって確認可能である。また、必要に応じて、生成物を精製してもよく、精製方法としては、蒸留、抽出、再結晶、カラムクロマトグラフィー等によって生成可能である。
本実施形態の化合物(4)の製造方法によれば、貝類の毒性を監視する際に使用される標品化合物として使用可能な前記化合物(4)を、高効率に製造することが可能である。
<化合物(3)の製造方法>
一般式(3)で表される化合物(「化合物(3)」と略記することがある。)は、以下に示す一実施形態の製造方法により製造することができる。
下記一般式(2)で表される化合物又はそのイオン若しくは塩を、塩基性条件下で処理することにより下記一般式(3)で表される化合物又はそのイオン若しくは塩を得る工程Iを行う。
Figure 0006422814
[式中、R、R、及びRは前記と同じ意味を表す。]
本実施形態における、工程Iについては、前記<化合物(4)の製造方法>において説明した前記工程Iの方法により行うことができるため、説明を省略する。
本実施形態の化合物(3)の製造方法によれば、貝類の毒性の監視に使用される標品化合物として使用可能な前記化合物(4)を製造するための、中間体として有用な化合物(3)を、高効率に製造することが可能である。
次に実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
<1> 試料(出発物質)
出発物質には、毒化ホタテガイ抽出液から、活性炭、Bio−Gel−P−2およびBio−Rex 70各カラムクロマトグラフィーを用いて単離したゴニオトキシン2+3(GTX2+3) (GTX2とGTX3との混合物)を使用した。以下、試薬には、特に断りがない限り和光純薬製の特級を使用した。
<2> 毒の分析
麻痺性貝毒の検出には文献(Oshima Y (1995) Post-column derivatization HPLC methods for paralytic shellfish poisons. In: Hallegraeff GM, Anderson, DM, Cembella AD (eds) Manual on harmful marine microalgae. IOC (Intergovnt Oceanogr Comm) Manuals and Guides No 33, UNESCO, Rome, p 81-94)に記載のHPLC蛍光法を一部改変して使用した。検出に用いたHPLC蛍光分析装置の構成を下記に示す。
(装置構成)
移動相用ポンプ:PU−2080 (Jasco)
反応液用ポンプ:PU−1580 (Jasco)
中和液用ポンプ:PU−2080 (Jasco)
蛍光検出計:FP−1520S (Jasco)
反応ヒーター:2329 (Unity)、湯浴65℃
反応コイル:テフロン(登録商標) i.d.0.5 mm x 10m
HPLCカラム: Wakosil−II 5C18HG, 4.6 x 150mm (Wako)
移動相(GTX群用):2mM 1−ヘプタンスルホン酸ナトリウム/10mM リン酸アンモニウム (pH 7.1):アセトニトリル (HPLC用、Wako) = 100:1、流速0,8mL/min 水産庁貝毒安全対策事業配布標準品(GTX1:3.01μM、GTX2 :1.02μM、GTX3: 0.38μM、GTX4: 1.16μMの混合液)を比較標準として使用
移動相(STX群用):2mM 1−ヘプタンスルホン酸ナトリウム/30mM リン酸アンモニウム (pH 7.1):アセトニトリル (HPLC用、Wako) = 100:5、流速0.8mL/min 水産庁貝毒安全対策事業配布標準品(dcSTX: 2.0μM、neoSTX: 1.51μMの混合液)を比較標準として使用
反応液:7mM 過ヨウ素酸/50mM リン酸カリウム (pH 9.0)、流速0.4mL/min
中和液:0.5M酢酸、流速 0.4 mL/min
<3> ME−STXの合成
凍結乾燥したGTX2+3 (約40μmol)を、50mLの0.05Mリン酸アンモニウム緩衝液(pH 7.2)に溶解した。これに200μLの2−メルカプトエタノール(ME, Wako 1級)を添加混合して、20℃付近の室温で1晩静置した。これを水で充てんしたBio−Gel P−2(Bio−Rad, fine)のカラム(2.5 × 15cm)に添加した後、カラムを水300mLで洗浄後、0.1M酢酸で溶出する成分を10mLずつ分取した。各画分をHPLC蛍光法で分析し、GTX2およびGTX3がカラムから溶出したのを確認後、0.5M酢酸300mLを流しME−STX結合体を溶出させて凍結乾燥したところ、12.6mgの黄色粉末を得た。
ME−STX結合体は、GTX2にMEを作用させてSTXに還元される一連の反応の中間体であるが、上記の条件下では最終産物であるSTXは生じず、60%程度の収率でME−STXを回収することができた。
<4> ME−dcSTXの合成
凍結乾燥したME−STX2μmolをそれぞれ、0.05M重炭酸ナトリウムに0.05M炭酸ナトリウムまたは0.05M水酸化ナトリウムを加えて作製したpH9.5〜11.5の水溶液1mLに溶解し、沸騰浴中で5ないし10分加熱した後、濃塩酸10μLを添加して反応を停止した。冷却後、下記の手順で生じたME−dcSTXを定量した。
<5> ME−dcSTXの定量、及びdcSTXの合成
上記<4>において、ME−STXを塩基性条件下で加温処理して得られた各溶液(煮沸前に2000μMのME−STXを含む) 5μLを、995μLの0.1Mリン酸アンモニウム緩衝液(pH7.2):2−メルカプトエタノール(Wako1級)(9:1 v/v)と混合し、沸騰浴中で5分間加温した後、上述のSTX群分析用HPLC蛍光法で生じたdcSTX量を測定した。チオール(RSH)とSTXの11位での結合体(RS−STX)は、過剰量のチオールで処理するとSTXとなる。上記の条件ではこの変換は定量的に進行することが知られている。
Figure 0006422814
結果を図3に示す。図3は沸騰浴中で5分加熱後、又は10分間加熱後のME−dcSTXの収率を継時的に示したグラフである。図3に示す結果から、係る方法によりdcSTXが高収率に得られることが明らかとなった。また、ME−STXの処理pHの上昇に伴いdcSTXの収率が向上することが明らかとなった。特に、pH11又はpH11.5の条件下では、ME−STX添加量までME−dcSTXが生成しており、反応系中のME−STXのほとんどが、ME−dcSTXへと変換されたことが明らかとなった。
本発明によれば、貝類の毒性を監視する貝毒モニタリングのために実施され、マウス試験法、HPLC法などで使用可能な標品化合物を、高効率に製造可能とすることができ、毒化貝による食中毒の発生防止に資する。

Claims (4)

  1. 下記一般式(2)で表される化合物又はそのイオン若しくは塩を、塩基性条件下で処理することにより下記一般式(3)で表される化合物又はそのイオン若しくは塩を得る工程Iと、
    下記一般式(3)で表される化合物又はそのイオン若しくは塩と、SH基を有する化合物(S2)とを反応させることにより下記一般式(4)で表される化合物又はそのイオン若しくは塩を得る工程IIと、
    を含むことを特徴とする、下記一般式(4)で表される化合物の製造方法。
    Figure 0006422814
    [式(2)中、Rは水素原子又は水酸基を表し、Rはアミノ基、−NHSOHで表される基、又は−NHR4aで表される基(R4aは一価の有機基を表す。)を表し、Rは一価の有機基を表す。]
    Figure 0006422814
    [式(3)中、R及びRは前記と同じ意味を表す。]
    Figure 0006422814
    [式(4)中、Rは前記と同じ意味を表す。]
  2. 更に、下記一般式(1)で表される化合物又はそのイオン若しくは塩と、SH基を有する化合物(S1)とを反応させて、前記一般式(2)で表される化合物又はそのイオン若しくは塩を得る工程を含む、請求項1に記載の化合物の製造方法。
    Figure 0006422814
    [式(1)中、R及びRはそれぞれ独立に水素原子、−OSOHで表される基、又は−OSO で表される基を表し(但し、R及びRの少なくとも一方は−OSOHで表される基、又は−OSO で表される基である)、R及びRは前記と同じ意味を表す。]
  3. 前記SH基を有する化合物(S1)が下記一般式(5−1)又は下記一般式(5−2)で表される化合物であり、前記一般式(2)で表される化合物が下記一般式(2−1)又は下記一般式(2−2)で表される化合物である、請求項2に記載の化合物の製造方法。
    Figure 0006422814
    [式(5−1)中、Rはアルキレン基を表す。]
    Figure 0006422814
    [式(5−2)中、Rはアルキレン基を表す。]
    Figure 0006422814
    [式(2−1)中、R、R、及びRは前記と同じ意味を表す。式(2−2)中、R、R、及びRは前記と同じ意味を表す。]
  4. 前記一般式(2)で表される化合物を、pH9以上の条件下に置くことで、前記塩基性条件下で処理を行う、請求項1〜3のいずれか一項に記載の化合物の製造方法。
JP2015084042A 2015-04-16 2015-04-16 デカルバモイルサキシトキシン及びその類縁体の製造方法 Expired - Fee Related JP6422814B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015084042A JP6422814B2 (ja) 2015-04-16 2015-04-16 デカルバモイルサキシトキシン及びその類縁体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015084042A JP6422814B2 (ja) 2015-04-16 2015-04-16 デカルバモイルサキシトキシン及びその類縁体の製造方法

Publications (2)

Publication Number Publication Date
JP2016204270A JP2016204270A (ja) 2016-12-08
JP6422814B2 true JP6422814B2 (ja) 2018-11-14

Family

ID=57488699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015084042A Expired - Fee Related JP6422814B2 (ja) 2015-04-16 2015-04-16 デカルバモイルサキシトキシン及びその類縁体の製造方法

Country Status (1)

Country Link
JP (1) JP6422814B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12018034B2 (en) 2018-09-21 2024-06-25 The Cawthron Institute Trust Board Semisynthetic methods of preparing GTX1,4 and neosaxitoxin
CA3113727A1 (en) * 2018-09-21 2020-03-26 The Cawthron Institute Trust Board A semisynthetic method of preparing neosaxitoxin
AR125239A1 (es) 2021-04-02 2023-06-28 Kumiai Chemical Industry Co Compuesto heterocíclico y uso del mismo

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4289694B2 (ja) * 1998-04-03 2009-07-01 正昭 児玉 新規のサキシトキシン誘導体およびその製造方法
JP2003012699A (ja) * 2001-07-04 2003-01-15 Japan Science & Technology Corp 抗麻酔性貝毒抗体の製法、新規抗体、該抗体を用いるelisa測定キット、該製法による系標識毒標品

Also Published As

Publication number Publication date
JP2016204270A (ja) 2016-12-08

Similar Documents

Publication Publication Date Title
Gu et al. Synthesis of chiral γ-aminophosphonates through the organocatalytic hydrophosphonylation of azadienes with phosphites
JP6422814B2 (ja) デカルバモイルサキシトキシン及びその類縁体の製造方法
Chauhan et al. Novel β-carboline–quinazolinone hybrid as an inhibitor of Leishmania donovani trypanothione reductase: synthesis, molecular docking and bioevaluation
US20120136159A1 (en) The method of synthesizing ergothioneine and analogs
Lucas et al. Molecular determinants for selective C 25-hydroxylation of vitamins D 2 and D 3 by fungal peroxygenases
CN103304437A (zh) 一种无叠氮合成磷酸奥司他韦的方法
Turrini et al. Biosynthesis and isolation of selenoneine from genetically modified fission yeast
Takeda et al. Second-order asymmetric transformation and its application for the practical synthesis of α-amino acids
Brown et al. Improved access to linear tetrameric hydroxamic acids with potential as radiochemical ligands for zirconium (IV)-89 PET imaging
EP3112356A1 (en) Method for manufacturing 1,1-disubstituted hydrazine compound
Spork et al. Analogues of muraymycin nucleoside antibiotics with epimeric uridine-derived core structures
Li et al. Acyl fluorides as direct precursors to fluoride ketyl radicals: reductive deuteration using SmI 2 and D 2 O
CN113735751B (zh) 一种制备芳基异硫脲的方法
Shmal'ko et al. Cyanide free contraction of disclosed 1, 4-dioxane ring as a route to cobalt bis (dicarbollide) derivatives with short spacer between the boron cage and terminal functional group
Gugkaeva et al. A general asymmetric synthesis of artificial aliphatic and perfluoroalkylated α-amino acids by Luche's cross-electrophile coupling reaction
CN104130195A (zh) 一种多菌灵半抗原的合成方法
Adamovich et al. New Method of Synthesis of Biologically Active Get (aryl) chalcogenylacetates of Tris (2-hydroxyethyl) ammonium
JP2017088530A (ja) ホスホリルコリン修飾アミド化合物の製造方法
Zyuzin Azido derivatives of geminal bis (alkoxy-NNO-azoxy) compounds
RU2551682C1 (ru) Способ получения 1-адамантилизотиоцианата
Alekseeva et al. p-tert-Butylcalix [4] arenes containing azacrown ether substituents at the lower rim as potential polytopic receptors
RU2488577C1 (ru) Способ получения 3-амино-1-адамантанола и его кислотно-аддитивных солей
Sanz-Vidal et al. Unexpected metal-free synthesis of trifluoromethyl arenes via tandem coupling of dicyanoalkenes and conjugated fluorinated sulfinyl imines
Ibba Hydrogen bonding phase-transfer catalysis: a new approach to asymmetric fluorination
JP2018162218A (ja) 新規な環状尿素誘導体−三臭化水素酸塩

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181017

R150 Certificate of patent or registration of utility model

Ref document number: 6422814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees