JP6422348B2 - Radiation shielding concrete composition and radioactive material storage container formed of radiation shielding concrete composition - Google Patents

Radiation shielding concrete composition and radioactive material storage container formed of radiation shielding concrete composition Download PDF

Info

Publication number
JP6422348B2
JP6422348B2 JP2015003117A JP2015003117A JP6422348B2 JP 6422348 B2 JP6422348 B2 JP 6422348B2 JP 2015003117 A JP2015003117 A JP 2015003117A JP 2015003117 A JP2015003117 A JP 2015003117A JP 6422348 B2 JP6422348 B2 JP 6422348B2
Authority
JP
Japan
Prior art keywords
radiation shielding
concrete composition
fine
ceramic
sieve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015003117A
Other languages
Japanese (ja)
Other versions
JP2016128761A (en
Inventor
紘治 ▲高▼木
紘治 ▲高▼木
恭志 大饗
恭志 大饗
好夫 渡辺
好夫 渡辺
Original Assignee
有限会社豊栄産業
株式会社隠岐商事
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社豊栄産業, 株式会社隠岐商事 filed Critical 有限会社豊栄産業
Priority to JP2015003117A priority Critical patent/JP6422348B2/en
Publication of JP2016128761A publication Critical patent/JP2016128761A/en
Application granted granted Critical
Publication of JP6422348B2 publication Critical patent/JP6422348B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

本発明は、放射線遮蔽用コンクリート組成物及び放射線遮蔽用コンクリート組成物により形成された放射性物質保管用容器に関するものである。   The present invention relates to a radiation shielding concrete composition and a radioactive substance storage container formed of the radiation shielding concrete composition.

特開2009−276194号公報には、平均粒径100〜250μmの小鋼球群と、平均粒径600〜850μmの大鋼球群と、セメントとを含む放射線遮蔽用コンクリート組成物が開示されている。特許文献1のコンクリート組成物では、高い放射線遮蔽能力を均一に発揮できるように、小鋼球群及び大鋼球群の平均粒径を小さくしている。   Japanese Unexamined Patent Application Publication No. 2009-276194 discloses a radiation shielding concrete composition including a group of small steel balls having an average particle diameter of 100 to 250 μm, a group of large steel balls having an average particle diameter of 600 to 850 μm, and cement. Yes. In the concrete composition of patent document 1, the average particle diameter of the small steel ball group and the large steel ball group is made small so that high radiation shielding ability can be exhibited uniformly.

特開2009−276194号公報JP 2009-276194 A

近年、放射線量の高い放射性廃棄物が大量に発生している。このような高い放射線量の放射性廃棄物を収容・保管するために、放射性物質保管用容器には、90%以上の高い放射線遮蔽率が要求されている。特許文献1に示す従来のコンクリート組成物では、小鋼球群(細骨材)及び大鋼球群(粗骨材)の平均粒径を小さくすることで放射線遮蔽率を高めているため、放射線遮蔽用コンクリート組成物の硬化後の密度(重量密度)は、4.0g/cm3以上と高くなる。そのため、放射性物質保管用容器の重量が大きくなってしまい、放射性物質保管用容器の移動や設置が容易に行えないという問題が生じている。また、特許文献1の放射線遮蔽用コンクリート組成物では、平均粒径がマイクロメートルレベルの小さな材料を準備する必要があるため、放射線遮蔽用コンクリート組成物が高価になるという問題点がある。 In recent years, a large amount of radioactive waste with a high radiation dose has been generated. In order to store and store such radioactive waste with a high radiation dose, the radioactive material storage container is required to have a high radiation shielding rate of 90% or more. In the conventional concrete composition shown in Patent Document 1, the radiation shielding rate is increased by reducing the average particle size of the small steel ball group (fine aggregate) and the large steel ball group (coarse aggregate). The density (weight density) after curing of the shielding concrete composition is as high as 4.0 g / cm 3 or more. Therefore, the weight of the radioactive substance storage container is increased, and there is a problem that the radioactive substance storage container cannot be easily moved or installed. Moreover, in the radiation shielding concrete composition of Patent Document 1, it is necessary to prepare a small material having an average particle size of a micrometer level, so that there is a problem that the radiation shielding concrete composition becomes expensive.

本発明の目的は、放射線遮蔽能力を高くしても重量密度が小さい放射線遮蔽用コンクリート組成物及び放射性物質保管用容器を安価に提供することにある。   An object of the present invention is to provide a radiation shielding concrete composition and a radioactive substance storage container having a low weight density even when the radiation shielding ability is increased, at a low cost.

上記課題を解決するために、発明者らは鋭意研究、検討の結果、放射線遮蔽用コンクリート組成物を構成する粗骨材及び細骨材の材料の組み合わせを変更すると、放射線遮蔽用コンクリート組成物の放射線遮蔽能力を向上させることができることを見いだした。この知見に基づき、発明者らは、放射線遮蔽用コンクリート組成物を構成する粗骨材及び細骨材の組み合わせと、粗骨材及び細骨材に要求される平均粒径と、放射線遮蔽能力との関係について研究を行った。   In order to solve the above problems, the inventors have intensively studied and studied, and as a result of changing the combination of the coarse aggregate and the fine aggregate constituting the radiation shielding concrete composition, It was found that the radiation shielding ability can be improved. Based on this knowledge, the inventors have determined the combination of the coarse aggregate and fine aggregate constituting the radiation shielding concrete composition, the average particle size required for the coarse aggregate and fine aggregate, and the radiation shielding ability. The relationship was studied.

本発明は、粗骨材と、細骨材と、セメントを主成分とするバインダとを含む放射線遮蔽用コンクリート組成物及び該組成物から形成した放射性物質保管容器を改良の対象とする。本発明の組成物で用いる粗骨材は、製鉄集塵ダスト及びセラミック塊を少なくとも有する。また本発明の組成物で用いる細骨材は、セラミックサンド、細粒るつぼ及びセラミック細粒を有する。   An object of the present invention is to improve a radiation shielding concrete composition including a coarse aggregate, a fine aggregate, and a binder mainly composed of cement, and a radioactive substance storage container formed from the composition. The coarse aggregate used in the composition of the present invention has at least iron dust collection dust and ceramic lump. The fine aggregate used in the composition of the present invention has a ceramic sand, a fine crucible and a ceramic fine particle.

本明細書において製鉄集塵ダストとは、製鉄所で大量に発生する亜鉛を含む鉄系集塵ダストである、対象となる製鉄集塵ダストは電気炉ダスト、高炉ダスト、転炉ダスト、焼結ダストなど広範囲なダストを原料として使用しても良い。   In this specification, iron dust collection dust is iron-based dust collection dust containing zinc that is generated in large quantities at steelworks. The target iron dust collection dust is electric furnace dust, blast furnace dust, converter dust, and sintering. A wide range of dust such as dust may be used as a raw material.

本明細書においてセラミックとは、陶磁器等の伝統的なセラミックだけでなく、無機化合物の成形体、粉末、膜などの無機固体材料等のいわゆるセラミックスを含むものである。   In the present specification, the ceramic includes not only traditional ceramics such as ceramics but also so-called ceramics such as inorganic solid materials such as compacts, powders and films of inorganic compounds.

本明細書においてセラミック塊、セラミック細粒及びセラミックサンドとは、例えば、セラミック成形製品及びセラミック成形製品の不適格品等のセラミック成形品を破砕したセラミック破砕物を、大きさごとに分別したものである。本願明細書において、粉砕物の粒度は、粗骨材が公称目開き26.5mmの篩を100%通過するもののうち公称目開き9.5mmの篩を85%通過しないものである。また細骨材は公称目開き9.5mmの篩を100%通過し、公称目開き4.75mmの篩を85%通過するものとする。セラミックサンドとは、原料である粘土や珪石を1200℃で高温焼成された良質なセラミック製品である和瓦の規格外品を公称目開き1.18mmアンダーに粉砕したものである。セラミック塊、セラミック細粒は、精選又は合成された原料粉末を成形・焼結加工法によって製造された高精密なセラミックス成形品の不適格品を破砕したものである。   In this specification, ceramic lump, ceramic fine grain, and ceramic sand are, for example, ceramic crushed products obtained by crushing ceramic molded products such as ceramic molded products and non-qualified ceramic molded products. is there. In the present specification, the particle size of the pulverized product is such that the coarse aggregate does not pass through a sieve having a nominal opening of 9.5 mm out of 85% passing through a sieve having a nominal opening of 26.5 mm. The fine aggregate shall pass 100% through a sieve having a nominal opening of 9.5 mm and pass through 85% through a sieve having a nominal opening of 4.75 mm. The ceramic sand is obtained by pulverizing a non-standard product of Japanese tile, which is a high-quality ceramic product obtained by firing high-temperature ceramic or silica as a raw material at 1200 ° C. to a nominal opening of 1.18 mm. The ceramic lump and ceramic fine grain are obtained by crushing unqualified products of high-precision ceramics molded products produced by molding and sintering a raw material powder that has been selected or synthesized.

細粒るつぼとは、磁器、セラミックス、石英、黒鉛、白金、ニッケルなどの金属、ガラス等の材料を高温加熱するための容器である使用済みるつぼを破砕したものである。   The fine-grained crucible is obtained by crushing a used crucible, which is a container for heating materials such as porcelain, ceramics, quartz, graphite, platinum, nickel, and glass, and other materials at a high temperature.

本発明によれば、製鉄集塵ダスト及びセラミック塊を有する粗骨材と、セラミックサンド、細粒るつぼ及びセラミック細粒を有する細骨材とを使用しているので、細骨材及び粗骨材の大きさを(平均粒径)をマイクロメートルレベルまで小さくしなくとも90%以上の高い放射線遮蔽率を有する放射線遮蔽用コンクリート組成物を得ることができる。そのため、本発明によれば、高い放射線遮蔽能力を有する放射線遮蔽用コンクリート組成物を少ない作業工程で簡単に得ることができる。また従来の高い放射線遮蔽能力を有する放射線遮蔽用コンクリート組成物よりも、細骨材及び粗骨材の大きさが大きいので、放射線遮蔽用コンクリート組成物の硬化後の重量密度を従来よりも低くすることができる。そのため、放射性物質保管用容器を従来よりも軽量とすることができ、放射性物質保管用容器の移動や設置を容易に行うことができる。さらに、粗骨材及び細骨材に、それぞれ産業廃棄物を破砕したものを使用できるので、放射線遮蔽用コンクリート組成物を安価に製造することができる。   According to the present invention, the coarse aggregate having iron dust collection dust and ceramic lump, and the fine aggregate having ceramic sand, fine crucible and ceramic fine grain are used. A radiation shielding concrete composition having a high radiation shielding ratio of 90% or more can be obtained without reducing the size of (average particle diameter) to the micrometer level. Therefore, according to the present invention, a radiation shielding concrete composition having a high radiation shielding ability can be easily obtained with fewer work steps. Moreover, since the size of fine aggregate and coarse aggregate is larger than the conventional radiation shielding concrete composition having high radiation shielding ability, the weight density after curing of the radiation shielding concrete composition is made lower than before. be able to. Therefore, the radioactive substance storage container can be made lighter than before, and the radioactive substance storage container can be easily moved and installed. Furthermore, since the thing which crushed industrial waste can be used for a coarse aggregate and a fine aggregate, respectively, the concrete composition for radiation shielding can be manufactured at low cost.

粗骨材の含有率が46.2〜53.6重量%であり、細骨材の含有率が28.1〜32.7重量%であり、バインダの含有率が12.7〜13.8重量%であり、水の含有率が5.1〜6.8重量%であることが好ましい。粗骨材、細骨材及びバインダ、水の含有率をこのような範囲とすると、放射線遮蔽用コンクリート組成物内における粗骨材及び細骨材の流動性を高めることができ、放射線遮蔽用コンクリート組成物全体に亘って粗骨材及び細骨材を均一に分散させることができ、放射線遮蔽用コンクリート組成物の放射線遮蔽能力を均一にすることができる。   The coarse aggregate content is 46.2 to 53.6% by weight, the fine aggregate content is 28.1 to 32.7% by weight, and the binder content is 12.7 to 13.8. The water content is preferably 5.1 to 6.8% by weight. When the contents of the coarse aggregate, fine aggregate and binder, and water are within such ranges, the fluidity of the coarse aggregate and fine aggregate in the radiation shielding concrete composition can be improved, and the radiation shielding concrete. Coarse aggregates and fine aggregates can be uniformly dispersed throughout the composition, and the radiation shielding ability of the radiation shielding concrete composition can be made uniform.

本発明では、粗骨材の粒度は、公称目開き26.5mmの篩を100%通過するもののうち公称目開き9.5mmの篩を85%通過しないものであり、細骨材の粒度は公称目開き9.5mmの篩を100%通過し、公称目開き4.75mm篩を85%通過するものであるのが好ましい。本発明では、製鉄集塵ダスト及びセラミック塊の粒度をこのような範囲としても、十分に高い放射線遮蔽能力を発揮できるので、放射線遮蔽用コンクリート組成物の硬化後の重量密度を従来よりも低くすることができる。   In the present invention, the coarse aggregate has a particle size of 100% passing through a sieve having a nominal opening of 26.5 mm, and does not pass through 85% of a sieve having a nominal opening of 9.5 mm, and the particle size of the fine aggregate is nominal. It is preferable that 100% pass through a 9.5 mm sieve and 85% pass through a nominal 4.75 mm sieve. In the present invention, even if the particle size of the steel dust collection dust and the ceramic lump is in such a range, a sufficiently high radiation shielding ability can be exhibited, so that the weight density after curing of the radiation shielding concrete composition is made lower than before. be able to.

放射線遮蔽用コンクリート組成物における製鉄集塵ダストの含有率は25.5〜29.5重量%であり、セラミック塊の含有率は20.7〜24.1重量%であることが好ましい。放射線遮蔽用コンクリート組成物における集塵ダスト及びセラミック塊の含有率をこのような範囲にすると、硬化後の放射線遮蔽用コンクリート組成物の強度を十分に確保することができる。   The content of the iron dust collection dust in the radiation shielding concrete composition is preferably 25.5 to 29.5% by weight, and the content of the ceramic mass is preferably 20.7 to 24.1% by weight. When the contents of the dust collection dust and the ceramic lump in the radiation shielding concrete composition are in such a range, the strength of the radiation shielding concrete composition after curing can be sufficiently secured.

なお、製鉄集塵ダストは、Feの含有率が40%〜65%であることが好ましい。製鉄集塵ダストはその組成として概ねFe30%〜65%、Zn10%〜35%、Mn1.0〜10%、Ni1.0%〜5.0%、Pb0.1%〜5.0%、Cr他を含んでいる。しかし、Zn、Cr、Pbを含んでいるため、このままでは再資源化としてのリサイクルが困難であるが、射線遮蔽用コンクリート組成物の材料としては利用可能である。   The iron dust collection dust preferably has a Fe content of 40% to 65%. Iron dust collection dust composition is generally Fe 30% -65%, Zn 10% -35%, Mn 1.0-10%, Ni 1.0% -5.0%, Pb 0.1% -5.0%, Cr and others Is included. However, since it contains Zn, Cr, and Pb, it is difficult to recycle as it is, but it can be used as a material for the radiation shielding concrete composition.

本発明では例えば、セラミックサンドは、呼び寸法1mmの篩を通過したものであり、細粒るつぼは、呼び寸法10mmの篩を通過したものであり、細粒セラミックは、呼び寸法10mmの篩を通過したものである。本発明では、セラミックサンド、細粒るつぼ及び細粒セラミックの平均粒子径をこのような範囲としても、十分に高い放射線遮蔽能力を発揮できるので、放射線遮蔽用コンクリート組成物の硬化後の重量密度を従来よりも低くすることができる。   In the present invention, for example, the ceramic sand has passed through a sieve having a nominal size of 1 mm, the fine crucible has passed through a sieve having a nominal size of 10 mm, and the fine grain ceramic has passed through a sieve having a nominal size of 10 mm. It is a thing. In the present invention, even if the average particle diameter of the ceramic sand, fine-grained crucible and fine-grained ceramic is in such a range, a sufficiently high radiation shielding ability can be exhibited, so the weight density after curing of the radiation shielding concrete composition can be reduced. It can be made lower than before.

放射線遮蔽用コンクリート組成物におけるセラミックサンドの含有率は8.1〜10.3重量%であり、るつぼの含有率は5.1〜5.2重量%であり、細粒セラミックの含有率は14.9〜17.2重量%であることが好ましい。放射線遮蔽用コンクリート組成物におけるセラミックサンド、細粒るつぼ及び細粒セラミックの含有率をこのような範囲にすると、放射線遮蔽用コンクリート組成物の強度を十分に確保し、放射線遮蔽能力をより高めることができる。   The ceramic sand content in the radiation shielding concrete composition is 8.1 to 10.3 wt%, the crucible content is 5.1 to 5.2 wt%, and the fine ceramic content is 14%. It is preferable that it is 9-17.1 weight%. When the content of ceramic sand, fine crucible and fine ceramic in the radiation shielding concrete composition is within such a range, the strength of the radiation shielding concrete composition can be sufficiently secured and the radiation shielding ability can be further enhanced. it can.

細骨材は、2重量%未満のホウ砂をさらに含有していることが好ましい。細骨材がホウ砂を含有することにより、放射線遮蔽用コンクリート組成物は、より高い放射線遮蔽能力を有することとなる。   The fine aggregate preferably further contains less than 2% by weight of borax. When the fine aggregate contains borax, the concrete composition for radiation shielding has a higher radiation shielding ability.

なお、バインダの主成分は、ポルトランドセメントとすることができる。   The main component of the binder can be Portland cement.

本発明は、本発明の放射線遮蔽用コンクリート組成物により形成された放射性物質保管用容器として把握することもできる。   This invention can also be grasped | ascertained as a radioactive substance storage container formed with the concrete composition for radiation shielding of this invention.

(A)は本発明の一実施の形態の放射性物質保管用容器の正面図であり、(B)は右側面図である。(A) is a front view of the radioactive substance storage container of one embodiment of the present invention, (B) is a right side view. 図1のII−II線断面図である。It is the II-II sectional view taken on the line of FIG.

以下図面を参照して本発明の一実施の形態について説明する。図1(A)は、本発明の一実施の形態の放射性物質保管用容器1の正面図であり、(B)は右側面図であり、図2は図1のII−II線断面図である。放射性物質保管用容器1は、一方の端部に開口部3aを有する角型の容器本体部3と、容器本体部3の開口部3aに取り付けられる蓋部材5とを備えている。容器本体部3は、矩形状の底壁部31と、底壁部31と一体に設けられた周壁部33とから構成されている。底壁部31と周壁部33とにより、放射性物質を収容する収容空間Sが構成されている。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 1A is a front view of a radioactive substance storage container 1 according to an embodiment of the present invention, FIG. 1B is a right side view, and FIG. 2 is a cross-sectional view taken along line II-II in FIG. is there. The radioactive substance storage container 1 includes a rectangular container main body 3 having an opening 3 a at one end, and a lid member 5 attached to the opening 3 a of the container main body 3. The container main body 3 includes a rectangular bottom wall 31 and a peripheral wall 33 provided integrally with the bottom wall 31. The bottom wall portion 31 and the peripheral wall portion 33 constitute an accommodation space S for accommodating a radioactive substance.

蓋部材5は、容器本体部3の底壁部31と完全に対向する大きさを有する矩形状の蓋本体51と、蓋本体51の内壁面51aに一体に設けられた張り出し部53とを有している。張り出し部53の外周形状は、容器本体部3の周壁部33の内周形状よりも僅かに小さく形成されている。この張り出し部53は、蓋部材5を容器本体部3の開口部3aに取り付けたときに、一部が収容空間Sに嵌って、収容空間Sの開口部3a側の端部を実質的に塞ぐ。蓋本体51には、外壁面51bに2つの取っ手部材55が設けられている。蓋部材5は、容器本体部3と同じ材料により形成されている。蓋部材5は、放射性物質保管用容器1の水密性を高めるために、図示しないシール部材を介して容器本体部3に取り付けられる。   The lid member 5 has a rectangular lid body 51 having a size that completely faces the bottom wall portion 31 of the container body portion 3, and an overhang portion 53 that is integrally provided on the inner wall surface 51 a of the lid body 51. doing. The outer peripheral shape of the overhang portion 53 is slightly smaller than the inner peripheral shape of the peripheral wall portion 33 of the container main body portion 3. When the lid member 5 is attached to the opening 3 a of the container body 3, a part of the protruding portion 53 fits in the storage space S and substantially closes the end of the storage space S on the opening 3 a side. . The lid main body 51 is provided with two handle members 55 on the outer wall surface 51b. The lid member 5 is formed of the same material as that of the container body 3. The lid member 5 is attached to the container body 3 via a seal member (not shown) in order to improve the water tightness of the radioactive substance storage container 1.

次に本発明の実施例について説明する。なお本発明は、下記の実施例に制限されるものではない。   Next, examples of the present invention will be described. In addition, this invention is not restrict | limited to the following Example.

表1に示す細骨材及び粗骨材を準備し、セメント、水と混練して放射線遮蔽用コンクリート組成物を得た。   Fine aggregates and coarse aggregates shown in Table 1 were prepared and kneaded with cement and water to obtain a radiation shielding concrete composition.

細骨材及び粗骨材に使用した各材料の詳細は以下の通りである。
・使用した粗骨材の粒度は、公称目開き26.5mmの篩を100%通過するもののうち公称目開き9.5mmの篩を85%通過しないものであり、細骨材の粒度は公称目開き9.5mmの篩を100%通過し、公称目開き4.75mm篩を85%通過するものである。
・製鉄集塵ダスト:組成(Fe63.7%、Zn26%、Mn6.3%、Ni1.5%、Cr1.2%)
・セラミックス塊:ファインセラミックスの硬度はステンレスの約3倍であり高強度な金属と比し同体積で約半分の重さである。
・セラミックサンド:(株)丸惣社製規格外瓦を1mmアンダーにした破砕品、石州瓦は高温焼成により強度が強く耐寒性に優れ又、多孔質なため吸水率は5〜8%である。
・細粒るつぼ:石英製るつぼの使用済み品を粉砕し、呼び寸法の10mmの篩を通過した物。
・細粒セラミックス:セラミックス魂(ファインセラミックス魂)を粉砕し、呼び寸法10mmの篩を通過した物。
・ホウ砂:ホウ酸塩鉱物の一種、耐熱ガラスなどの原料と原子炉の放射線遮蔽材としての用途がある。
・ポルトランドセメント:太平洋セメント(株)社製普通ポルトランドセメント。
Details of each material used for the fine aggregate and the coarse aggregate are as follows.
-The coarse aggregate used has a particle size of 100% passing through a sieve with a nominal opening of 26.5 mm, and does not pass through a sieve with a nominal opening of 9.5 mm, and the particle size of the fine aggregate is nominal. It passes 100% through a sieve with an opening of 9.5 mm and passes through a sieve with a nominal opening of 4.75 mm through 85%.
-Steel dust collection dust: Composition (Fe 63.7%, Zn 26%, Mn 6.3%, Ni 1.5%, Cr 1.2%)
・ Ceramic lump: The hardness of fine ceramics is about 3 times that of stainless steel, and is about half the weight of the same volume as high-strength metals.
・ Ceramic sand: A crushed product made by submerging nonstandard roof tiles manufactured by Maruho Co., Ltd., and stone roof tiles have high strength and high cold resistance due to high-temperature firing, and have a water absorption rate of 5 to 8% because they are porous. .
Fine-grained crucible: A product obtained by pulverizing a used quartz crucible and passing it through a 10-mm sieve having a nominal size
・ Fine-grain ceramics: A ceramic soul (fine ceramic soul) crushed and passed through a sieve with a nominal size of 10 mm.
Borax: A kind of borate mineral, used as a raw material such as heat-resistant glass and as a radiation shielding material for nuclear reactors.
Portland cement: Ordinary Portland cement manufactured by Taiheiyo Cement Co., Ltd.

Figure 0006422348
得られた放射線遮蔽用コンクリート組成物を適量の水と混和して、高さ54cm×長さ44cm×幅37cmの外形寸法を有し、容器本体部3の底壁部及び側壁部の厚み並びに蓋本体51の厚みが7cmの直方体形状箱形の放射性物質保管用容器を製造した。即ち製造した放射性物質保管用容器の容器本体部3は、高さ40cm×長さ30cm×幅23cmの収容空間を有している。
Figure 0006422348
The obtained radiation shielding concrete composition is mixed with an appropriate amount of water, has an outer dimension of 54 cm in height × 44 cm in length × 37 cm in width, the thickness of the bottom wall portion and the side wall portion of the container main body 3, and the lid A rectangular box-shaped radioactive substance storage container having a main body 51 thickness of 7 cm was manufactured. That is, the manufactured container main body 3 of the radioactive substance storage container has a storage space of height 40 cm × length 30 cm × width 23 cm.

製造した各放射性物質保管用容器について、収容空間に何も収容していない状態で容器本体部3の開口部3aにおける放射線量(空気線量)、放射性物質で汚染された土壌を脱水処理した汚染土壌脱水ケーキを収容して蓋部材を取り付けない状態の容器本体部の開口部における放射線量(開口状態の線量)及び汚染土壌脱水ケーキを収容して蓋部材を取り付けた状態の蓋部材の外面における放射線量(収納後の線量)をそれぞれ測定した。   About each manufactured radioactive substance storage container, the radiation dose (air dose) in the opening part 3a of the container main-body part 3 in the state which is not accommodated in the accommodation space, the contaminated soil which dehydrated the soil contaminated with the radioactive substance Radiation dose (opening dose) in the container main body in a state where the dehydrated cake is accommodated and the lid member is not attached, and radiation on the outer surface of the lid member in which the contaminated soil dehydrated cake is accommodated and the lid member is attached Each amount (dose after storage) was measured.

表2に、実施例1〜3及び比較例1の放射線遮蔽用コンクリート組成物により製造した放射性物質保管用容器において測定した空気線量、脱水ケーキの線量及び容器へ収納後の線量の測定結果並びに遮蔽線量及び遮蔽率を示す。   Table 2 shows the results of measurement and shielding of air dose, dehydrated cake dose and dose after storage in the radioactive material storage container manufactured with the radiation shielding concrete compositions of Examples 1 to 3 and Comparative Example 1. Shows dose and shielding rate.

比較例1は、配合比(セメント:14.2、水:7.8、細骨材(砂):32、粗骨材(砂利):46)壁厚:150mmの普通コンクリート製。   Comparative Example 1 is made of ordinary concrete with a compounding ratio (cement: 14.2, water: 7.8, fine aggregate (sand): 32, coarse aggregate (gravel): 46) wall thickness: 150 mm.

Figure 0006422348
実施例1〜3では、容器壁厚が70mmであっても90%以上の高い放射線遮蔽率を示した。また、重量密度が3,500kg/m3以下であるため、放射性物質保管用容器の移動や設置を容易に行うことができた。特に、ホウ砂を含む実施例3では、放射線遮蔽率を95%以上とすることができた。
Figure 0006422348
In Examples 1 to 3, a high radiation shielding rate of 90% or more was exhibited even when the container wall thickness was 70 mm. Moreover, since the weight density was 3,500 kg / m 3 or less, the radioactive substance storage container could be easily moved and installed. In particular, in Example 3 containing borax, the radiation shielding rate could be 95% or more.

比較例1では、の放射線遮蔽率は90%以上とすることができなかった。また、比較例1の壁厚は150mmであり実施例1〜3の遮蔽率を求めるには普通コンクリートの壁厚は200〜250mm必要とし、その質量は4000〜5000kg/m3となり放射性物質保管用容器の移動や設置を容易に行うことができない。 In Comparative Example 1, the radiation shielding rate could not be 90% or more. Moreover, the wall thickness of Comparative Example 1 is 150 mm, and the wall thickness of ordinary concrete is 200 to 250 mm to obtain the shielding ratios of Examples 1 to 3, and its mass is 4000 to 5000 kg / m 3 for storing radioactive materials. The container cannot be easily moved or installed.

上記実施の形態では、直方体形状箱形の放射性物質保管用容器について説明をしたが、本発明は上記実施の形態に限定されるものではない。   Although the rectangular parallelepiped box-shaped radioactive substance storage container has been described in the above embodiment, the present invention is not limited to the above embodiment.

本発明によれば、製鉄集塵ダスト及びセラミック塊を有する粗骨材と、セラミックサンド、細粒るつぼ及びセラミック細粒を有する細骨材とを使用しているので、細骨材及び粗骨材の平均粒径をナノメートルレベルまで小さくしなくとも、90%以上の高い放射線遮蔽率を有する放射線遮蔽用コンクリート組成物を得ることができる。そのため、本発明によれば、高い放射線遮蔽能力を有する放射線遮蔽用コンクリート組成物を少ない作業工程で簡単に得ることができる。また従来の高い放射線遮蔽能力を有する放射線遮蔽用コンクリート組成物よりも、細骨材及び粗骨材の平均粒径を小さくする必要がないので、放射線遮蔽用コンクリート組成物の硬化後の重量密度を従来よりも低くすることができる。そのため、放射性物質保管用容器を従来よりも軽量とすることができ、放射性物質保管用容器の移動や設置を容易に行うことができる。さらに、粗骨材及び細骨材に、それぞれ産業廃棄物を破砕したものを使用できるので、放射線遮蔽用コンクリート組成物を安価に製造することができる。   According to the present invention, the coarse aggregate having iron dust collection dust and ceramic lump, and the fine aggregate having ceramic sand, fine crucible and ceramic fine grain are used. A radiation shielding concrete composition having a high radiation shielding rate of 90% or more can be obtained without reducing the average particle size of the material to a nanometer level. Therefore, according to the present invention, a radiation shielding concrete composition having a high radiation shielding ability can be easily obtained with fewer work steps. In addition, it is not necessary to reduce the average particle size of fine aggregates and coarse aggregates compared to conventional radiation shielding concrete compositions having high radiation shielding ability, so the weight density after curing of the radiation shielding concrete composition is reduced. It can be made lower than before. Therefore, the radioactive substance storage container can be made lighter than before, and the radioactive substance storage container can be easily moved and installed. Furthermore, since the thing which crushed industrial waste can be used for a coarse aggregate and a fine aggregate, respectively, the concrete composition for radiation shielding can be manufactured at low cost.

1 放射性物質保管用容器
3 容器本体部
5 蓋部材
1 Radioactive material storage container 3 Container body 5 Lid member

Claims (9)

製鉄集塵ダスト及びセラミック塊を少なくとも有する粗骨材と、
セラミックサンド、細粒るつぼ及び細粒セラミックを有する細骨材と、
セメントを主成分とするバインダとを含むことを特徴とする放射線遮蔽用コンクリート組成物。
Coarse aggregate having at least iron dust collection dust and ceramic lump,
Fine aggregate with ceramic sand, fine crucible and fine ceramic,
A radiation shielding concrete composition comprising a binder mainly composed of cement.
前記粗骨材の含有率が46.2〜53.6重量%であり、
前記細骨材の含有率が28.1〜32.7重量%であり、
前記バインダの含有率が12.7〜13.8重量%である請求項1に記載の放射線遮蔽用コンクリート組成物。
The content of the coarse aggregate is 46.2 to 53.6% by weight,
The content of the fine aggregate is 28.1 to 32.7% by weight,
The concrete composition for radiation shielding according to claim 1, wherein the content of the binder is 12.7 to 13.8% by weight.
前記粗骨材の粒度は、公称目開き26.5mmの篩を100%通過するもののうち公称目開き9.5mmの篩を85%通過しないものであり、
前記細骨材の粒度は公称目開き9.5mmの篩を100%通過し、公称目開き4.75mm篩を85%通過するものである請求項1または2に記載の放射線遮蔽用コンクリート組成物。
The coarse aggregate has a particle size of 100% passing through a sieve having a nominal opening of 26.5 mm, and 85% passing through a sieve having a nominal opening of 9.5 mm,
The concrete composition for radiation shielding according to claim 1 or 2, wherein the fine aggregate has a particle size of 100% passing through a sieve having a nominal opening of 9.5 mm and 85% passing through a sieve having a nominal opening of 4.75 mm. .
前記製鉄集塵ダストの含有率が25.5〜29.5重量%であり、
前記セラミック塊の含有率が20.7〜24.1重量%である請求項1乃至3のいずれか1項に記載の放射線遮蔽用コンクリート組成物。
The content of the iron dust collection dust is 25.5 to 29.5% by weight,
The concrete composition for radiation shielding according to any one of claims 1 to 3, wherein a content of the ceramic mass is 20.7 to 24.1% by weight.
前記セラミックサンドは、呼び寸法1mmの篩を通過したものであり、
前記細粒るつぼは、呼び寸法10mmの篩を通過したものであり、
前記細粒セラミックは、呼び寸法10mmの篩を通過したものである請求項1乃至4のいずれか1項に記載の放射線遮蔽用コンクリート組成物。
The ceramic sand has passed through a sieve having a nominal size of 1 mm,
The fine-grained crucible passes through a sieve having a nominal size of 10 mm,
The concrete composition for radiation shielding according to any one of claims 1 to 4, wherein the fine-grained ceramic has passed through a sieve having a nominal size of 10 mm.
前記セラミックサンドの含有率が8.1〜10.3重量%であり、
前記細粒るつぼ含有率が5.1〜5.2重量%であり、
前記細粒セラミックの含有率が14.9〜17.2重量%である請求項5に記載の放射線遮蔽用コンクリート組成物。
The ceramic sand content is 8.1 to 10.3 wt%,
The fine crucible content is 5.1-5.2 wt%,
The concrete composition for radiation shielding according to claim 5, wherein the content of the fine-grained ceramic is 14.9 to 17.2% by weight.
前記細骨材は、2重量%未満のホウ砂をさらに含有している請求項6に記載の放射線遮蔽用コンクリート組成物。   The concrete composition for radiation shielding according to claim 6, wherein the fine aggregate further contains less than 2% by weight of borax. 前記バインダの主成分は、ポルトランドセメントである請求項1乃至7のいずれか1項に記載の放射線遮蔽用コンクリート組成物。   The radiation shielding concrete composition according to any one of claims 1 to 7, wherein a main component of the binder is Portland cement. 請求項1乃至8のいずれか1項に記載の放射線遮蔽用コンクリート組成物により形成された放射性物質保管用容器。   A radioactive substance storage container formed of the radiation shielding concrete composition according to any one of claims 1 to 8.
JP2015003117A 2015-01-09 2015-01-09 Radiation shielding concrete composition and radioactive material storage container formed of radiation shielding concrete composition Expired - Fee Related JP6422348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015003117A JP6422348B2 (en) 2015-01-09 2015-01-09 Radiation shielding concrete composition and radioactive material storage container formed of radiation shielding concrete composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015003117A JP6422348B2 (en) 2015-01-09 2015-01-09 Radiation shielding concrete composition and radioactive material storage container formed of radiation shielding concrete composition

Publications (2)

Publication Number Publication Date
JP2016128761A JP2016128761A (en) 2016-07-14
JP6422348B2 true JP6422348B2 (en) 2018-11-14

Family

ID=56384255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015003117A Expired - Fee Related JP6422348B2 (en) 2015-01-09 2015-01-09 Radiation shielding concrete composition and radioactive material storage container formed of radiation shielding concrete composition

Country Status (1)

Country Link
JP (1) JP6422348B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6640665B2 (en) 2016-06-29 2020-02-05 株式会社Soken Gas sensor
JP7082038B2 (en) * 2018-12-14 2022-06-07 デンカ株式会社 Method for manufacturing non-shrink mortar composition and heavy-duty concrete

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035033Y2 (en) * 1981-11-27 1985-10-18 北芝電機株式会社 Crucible induction furnace
JPS6035298A (en) * 1983-08-05 1985-02-23 工業技術院長 Radioactive waste vessel
JP3185980B2 (en) * 1999-02-10 2001-07-11 鹿島建設株式会社 Building electromagnetic shielding method
JP5313514B2 (en) * 2008-02-05 2013-10-09 太平洋セメント株式会社 Counterweight manufacturing method
JP2009276194A (en) * 2008-05-14 2009-11-26 Toden Kogyo Co Ltd Radiation shielding concrete composition and placement apparatus for the same, and radioactive waste container
JP5866731B2 (en) * 2012-02-23 2016-02-17 太平洋セメント株式会社 Heavy concrete

Also Published As

Publication number Publication date
JP2016128761A (en) 2016-07-14

Similar Documents

Publication Publication Date Title
Adeosun et al. Physical and mechanical properties of aluminum dross
CN103739299B (en) Fire-resistant self-flow castable
KR100930658B1 (en) Heavy-weight aggregate and heavy-weight concrete
JP6422348B2 (en) Radiation shielding concrete composition and radioactive material storage container formed of radiation shielding concrete composition
JP4796170B2 (en) Chromium castable refractories and precast blocks using the same
JP4166269B2 (en) Heavy aggregate
CN107098710A (en) One kind does not burn magnesia carbon brick and preparation method thereof
KR101612615B1 (en) Concrete Composition Using Fe-Si Industrial By-products
JP6962222B2 (en) Alumina-Magnesian Castable Refractory Durability Evaluation Method
JP6901833B2 (en) Concrete composition and hardened concrete
JP6853438B2 (en) Method for Producing Highly Active Copper Slag Fine Powder, Highly Active Copper Slag Fine Powder and Cement Composition
US20170081244A1 (en) Unshaped refractory material
JP6182929B2 (en) Manufacturing method of steelmaking slag roadbed material
Agunsoye et al. The development and characterisation of epoxy-foundry basic slag particulate composite materials
CN108101556A (en) A kind of carbonaceous unshape refractory and its production method applied to ladle
EP3919461B1 (en) Dry offset and offset fresh mass for the production of a coarse-ceramic fired refractory product, in particular of a pipe protection plate, from nitride-bonded silicon carbide, such product and method for its manufacture and refuse incineration plant, flue gas desulfurization system and melting tank with such a product
Eromasov et al. Forecasting properties of facing construction ceramics on the base of industrial wastes
JPH11130548A (en) Basic monolithic refractory material
JP6927054B2 (en) Alumina-magnesian castable refractory and its manufacturing method
JP2009215096A (en) Hot filling material
KR101678157B1 (en) Refractory for slag dart and slag dart including the same
JP2000203931A (en) Magnesia-carbon slide gate plate
JP2001247377A (en) Silicon iron nitride powder, method for evaluation of the powder and use
JP2014102088A (en) Stone container for radioactive waste
Oraon et al. Sustainable Development of Alkali-Activated Bricks using Cinders

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181016

R150 Certificate of patent or registration of utility model

Ref document number: 6422348

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees