JP2009215096A - Hot filling material - Google Patents
Hot filling material Download PDFInfo
- Publication number
- JP2009215096A JP2009215096A JP2008058224A JP2008058224A JP2009215096A JP 2009215096 A JP2009215096 A JP 2009215096A JP 2008058224 A JP2008058224 A JP 2008058224A JP 2008058224 A JP2008058224 A JP 2008058224A JP 2009215096 A JP2009215096 A JP 2009215096A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- phosphate
- particle region
- dolomite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Ceramic Products (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
本発明は、工業窯炉又は溶融金属容器等の水平部分、水平にすることのできる部分、又は中子等を使用して熱間充填材を溜めることのできる部分に熱間で充填され、沸騰を生じた後に硬化する熱間充填材に関する。 In the present invention, a horizontal part such as an industrial kiln furnace or a molten metal container, a part that can be leveled, or a part that can store hot filler using a core or the like is hot filled and boiled. The present invention relates to a hot filler that hardens after having been formed.
転炉出鋼口スリーブの交換作業を例に挙げて、熱間充填材の一使用形態を説明する。 An example of the usage of the hot filler will be described with reference to an example of exchanging the steel outlet sleeve of the converter.
図1(A)に示すように、まず、出鋼を終えた転炉1を、トラニオン2を軸として、出鋼口3が作業床4に近づくように傾動させる。作業者は、ブレーカー5によって、古いスリーブ6を解体し、これを出鋼口3から除去する。
As shown in FIG. 1A, first, the
図1(B)に示すように、次に、トラニオン2を軸として、出鋼口3が下方を向くように転炉1を傾動させ、出鋼口3に新しいスリーブ7を嵌め込む。次に、吹付け施工装置9を用いて、新しいスリーブ7と転炉1本体との間の隙間(以下、対象箇所という。)に熱間充填材8を吹付け、対象箇所を熱間充填材8で充填する。
Next, as shown in FIG. 1B, the
熱間充填材8は、塩基性耐火粉体とリン酸塩とよりなる配合組成物に、施工水を加えてなる。図1(B)の例では、施工水は、吹付け施工装置9の吹付けパイプ10内で加えられる。対象箇所の温度は例えば600〜1000℃程度であり、熱間充填材8は充填直後に沸騰を生じる。
The hot filler 8 is obtained by adding construction water to a blended composition composed of basic refractory powder and phosphate. In the example of FIG. 1 (B), construction water is added in the
この沸騰する力により、熱間補修材8が対象箇所内で攪拌され、対象箇所に密に充填される。沸騰が沈静化した後、リン酸塩の結合作用により熱間充填材8が硬化する。このような熱間充填材8としては、具体的には、以下のものが知られている。 By this boiling force, the hot repair material 8 is agitated in the target portion and is densely filled in the target portion. After boiling subsides, the hot filler 8 is cured by the binding action of the phosphate. Specific examples of such hot filler 8 are as follows.
特許文献1は、粒径32μm未満の超微粒域の割合が15質量%以上となるように粒度調整された塩基性耐火粉体とリン酸塩とよりなる配合組成物に、施工水を加えてなる熱間充填材を開示している。実施例では、塩基性耐火粉体にマグネシア質原料のみを用い、リン酸塩の添加量は、塩基性耐火粉体に対する外掛けで4質量%としている。
In
特許文献2は、粒径1mm未満の微粒域がマグネシア質原料よりなり、粒径1mm以上の粗粒域がドロマイト質原料よりなる塩基性耐火粉体と、リン酸塩とよりなる配合組成物に、施工水を加えてなる熱間充填材を開示している。実施例では、リン酸塩の添加量は、塩基性耐火粉体に対する外掛けで4質量%としている。
特許文献1は、塩基性耐火粉体に用いる原料としてドロマイト質原料も例示するが、ドロマイト質原料はリン酸塩による硬化を早める性質をもつ。この性質は、ドロマイト質原料を配合する粒度が細かい程顕著となる。特許文献1の塩基性耐火粉体は、粒径32μm未満の超微粒域を多く含むため、この塩基性耐火粉体にドロマイト質原料を用いると、対象箇所に充填した際に、施工水が充分に蒸発していない粗充填の段階でリン酸塩による硬化が発現する結果、多孔質な施工体が形成されやすくなる。
特許文献2は、まさにこの問題を防止するために、粒径1mm未満の微粒域には、ドロマイト質原料を配合しないことを推奨する(特許文献2の段落0009参照)。しかし、耐スラグ湿潤性という観点からは、マグネシア質原料よりもドロマイト質原料の方が優れる。マトリクスとなる粒径1mm未満の微粒域にドロマイト質原料を配合しない場合、粗充填の段階で沸騰が沈静化することは防止できても、耐スラグ湿潤性を改善することに限界が生じることになる。
In order to prevent this problem,
本発明の目的は、優れた耐スラグ浸潤性を発揮でき、かつ粗充填の段階で沸騰が沈静化することを防止できる熱間充填材を提供することにある。 An object of the present invention is to provide a hot filler capable of exhibiting excellent slag infiltration resistance and preventing boiling from subside in the coarse filling stage.
本発明の一観点によれば、粒径32μm未満の超微粒域の割合を15質量%未満に抑え、かつ粒径1mm未満の微粒域の20質量%以上をドロマイト質原料で構成した塩基性耐火粉体と、この塩基性耐火粉体100質量%に対する外掛けで3.5質量%未満の量のリン酸塩とよりなる配合組成物に、施工水を加えてなる熱間充填材が提供される。 According to one aspect of the present invention, a basic refractory composition in which the proportion of ultrafine particles having a particle size of less than 32 μm is suppressed to less than 15% by mass, and 20% by mass or more of the fine particles having a particle size of less than 1 mm is composed of a dolomite raw material. There is provided a hot filler obtained by adding construction water to a blended composition comprising powder and a phosphate having an amount of less than 3.5% by mass with respect to 100% by mass of the basic refractory powder. The
リン酸塩の添加量を上記のように抑えることでリン酸塩による硬化を緩和し、かつ塩基性耐火粉体に占める超微粒域の割合を上記のように抑えることでリン酸塩に対するドロマイト質原料の硬化促進作用を緩和したことにより、粗充填の段階で沸騰が沈静化してしまう問題が生じにくくなる。 By suppressing the addition amount of phosphate as described above, hardening due to phosphate is alleviated, and by controlling the proportion of ultrafine particles in the basic refractory powder as described above, dolomite to phosphate By relaxing the hardening promoting action of the raw material, it becomes difficult to cause a problem that the boiling subsides at the stage of rough filling.
リン酸塩の添加量を抑えた場合、施工体の強度が犠牲になりやすいが、併せて超微粒域の割合も上記のように抑えると、施工体の強度が低下しにくいことが判った。 When the amount of phosphate added was suppressed, the strength of the construction body was liable to be sacrificed, but it was also found that when the proportion of the ultrafine particle region was also suppressed as described above, the strength of the construction body was difficult to decrease.
粗充填の段階で沸騰が沈静化するといった弊害を生じさせることなく、マトリクスとなる微粒域の20質量%以上をドロマイト質原料で構成することが可能となるため、耐スラグ湿潤性向上の効果をいかんなく発揮することができる。 20% by mass or more of the fine particle area that becomes the matrix can be composed of the dolomite raw material without causing the harmful effect that the boiling subsides at the stage of the rough filling, thereby improving the slag wet resistance. It can be demonstrated without difficulty.
以下、一実施形態に沿って本発明をより具体的に説明する。 Hereinafter, the present invention will be described in more detail along one embodiment.
熱間充填材は、塩基性耐火粉体とリン酸塩とよりなる配合組成物に施工水を加えてなる。 The hot filler is obtained by adding construction water to a blended composition composed of basic refractory powder and phosphate.
塩基性耐火粉体は、その40〜70質量%、好ましくは50〜60質量%が粒径1mm未満の微粒域で構成され、残部が粒径1mm以上の粗粒域で構成される。 The basic refractory powder is composed of 40 to 70% by mass, preferably 50 to 60% by mass of a fine particle region having a particle size of less than 1 mm, and the remainder of a coarse particle region having a particle size of 1 mm or more.
本明細書において、数値範囲を表す「〜」の記号は両端点を含む意味で用いるものとする。また、本明細書において、粒子の粒径がd未満とは、その粒子がJIS−Z8801に規定する目開きdの標準ふるいを通過する粒度であることを意味し、粒子の粒径がd以上とは、その粒子が同ふるい上に残る粒度であることを意味する。 In this specification, the symbol “˜” representing a numerical range is used to include both end points. In the present specification, the particle size of the particle being less than d means that the particle has a particle size that passes through a standard sieve having an opening d defined in JIS-Z8801, and the particle size of the particle is not less than d. Means that the particles are of a size that remains on the same screen.
粗粒域は、骨材で構成され、その最大粒径は、例えば5mmである。骨材には、マグネシア質原料及びドロマイト質原料の少なくともいずれか一方を用いることができる。マグネシア質原料としては電融マグネシアやマグネシアクリンカーが挙げられ、ドロマイト質原料としてはドロマイトクリンカーが挙げられる。なお、骨材は粒径が1mm以上と粗いため、リン酸塩に対する硬化促進作用は無視できる程小さい。 The coarse grain region is composed of aggregate, and the maximum grain size is, for example, 5 mm. As the aggregate, at least one of a magnesia material and a dolomite material can be used. Examples of the magnesia material include electrofused magnesia and magnesia clinker, and examples of the dolomite material include dolomite clinker. Since the aggregate has a coarse particle size of 1 mm or more, the hardening accelerating action on the phosphate is negligibly small.
微粒域は、骨材間の隙間を埋めるマトリクスを構成する。マトリクスは、熱間充填材の耐スラグ浸潤性を大きく左右する部分である。このため、微粒域100質量%中の20質量%以上、好ましくは25質量%以上を、塩基性材料の中でも特に耐スラグ浸潤性に優れたドロマイト質原料で構成する。ドロマイト質原料としては、CaO含有量が15〜30質量%のものが好ましく、これにより、耐スラグ浸潤性を高める効果がより確実となる。 The fine grain region constitutes a matrix that fills the gaps between the aggregates. The matrix is a part that greatly influences the slag infiltration resistance of the hot filler. For this reason, 20% by mass or more, preferably 25% by mass or more in 100% by mass of the fine particle region is composed of a dolomite raw material particularly excellent in slag infiltration resistance among basic materials. As the dolomite raw material, those having a CaO content of 15 to 30% by mass are preferable, and thereby the effect of increasing the slag infiltration resistance is further ensured.
微粒域は、粒径32μm未満の超微粒域を含む。この超微粒域に属する粒子は細かく、反応性が高いため、微粒域に配合したドロマイト質原料のうち超微粒域に属するものは、リン酸に対して特に強い硬化促進作用を示す。リン酸に対する硬化促進作用が強すぎると、施工水が充分に蒸発していない粗充填の段階で沸騰が沈静化する結果、多孔質な施工体が形成されやすくなる。そこで、超微粒域の割合を少なく抑え、リン酸塩に対するドロマイト質原料の硬化促進作用を緩和する。 The fine particle region includes an ultra fine particle region having a particle size of less than 32 μm. Since the particles belonging to the ultrafine particle region are fine and highly reactive, those belonging to the ultrafine particle region among the dolomite raw materials blended in the fine particle region exhibit a particularly strong curing accelerating action against phosphoric acid. If the hardening accelerating action on phosphoric acid is too strong, boiling will subside at the stage of rough filling in which the construction water is not sufficiently evaporated, resulting in the formation of a porous construction body. Therefore, the ratio of the ultrafine particle region is suppressed to a low level and the hardening promoting action of the dolomite raw material on the phosphate is alleviated.
超微粒域は、具体的には、塩基性耐火粉体100質量%中に占める割合で15質量%未満に抑える。超微粒域の割合が15質量%以上であると、微粒域の20質量%以上にドロマイト質原料を配合する関係上、粗充填の段階で沸騰が沈静化する問題が起こりやすくなる。なお、塩基性耐火粉体の粒度構成を最密充填構造に近づけるという観点からは、塩基性耐火粉体に占める超微粒域の割合は、10質量%以上であることが好ましい。 Specifically, the ultrafine particle region is suppressed to less than 15% by mass in 100% by mass of the basic refractory powder. When the ratio of the ultrafine particle region is 15% by mass or more, the problem that the boiling subsides easily occurs in the coarse filling stage because of the relationship of mixing the dolomite raw material with 20% by mass or more of the fine particle region. In addition, from the viewpoint of bringing the particle size constitution of the basic refractory powder closer to the closest packed structure, the proportion of the ultrafine particle region in the basic refractory powder is preferably 10% by mass or more.
また、粗充填の段階で沸騰が沈静化する問題を防止する効果と、耐スラグ浸潤性を高める効果との兼ね合いを考慮すると、超微粒域の残部はマグネシア質原料で構成し、超微粒域におけるドロマイト質原料/マグネシア質原料の質量比を1/20〜1/10とすることが好ましく、1/14〜1/10とすることがより好ましい。 Also, considering the balance between the effect of preventing boiling calm down in the coarse filling stage and the effect of increasing the resistance to slag infiltration, the remainder of the ultrafine grain region is composed of magnesia material, The mass ratio of dolomite material / magnesia material is preferably 1/20 to 1/10, and more preferably 1/14 to 1/10.
リン酸塩としては、縮合リン酸塩が好ましい。縮合リン酸塩としては、ヘキサメタリン酸ソーダ、テトラポリリン酸ソーダ、ウルトラリン酸ソーダ、ピロリン酸ソーダ、トリポリリン酸ソーダといった縮合リン酸ソーダの他、リン酸一カリウムといった縮合リン酸カリウムも用いることができる。本明細書において、リン酸塩とは、複数種のリン酸を組み合わせたものを含む概念とする。 As the phosphate, a condensed phosphate is preferable. As the condensed phosphate, in addition to condensed sodium phosphate such as sodium hexametaphosphate, sodium tetrapolyphosphate, sodium ultraphosphate, sodium pyrophosphate and sodium tripolyphosphate, condensed potassium phosphate such as monopotassium phosphate can also be used. . In this specification, the term “phosphate” includes a concept including a combination of a plurality of types of phosphoric acid.
リン酸塩の添加量は、塩基性耐火粉体100質量%に対する外掛けで3.5質量%未満に抑える。このようにリン酸塩の添加量を抑えることでリン酸塩による硬化を緩和し、粗充填の段階で沸騰が沈静化してしまう問題を防止する効果を高めることができる。リン酸塩の添加量は、塩基性耐火粉体に対する外掛けで1.5〜3質量%であることが好ましい。 The addition amount of phosphate is suppressed to less than 3.5% by mass with respect to 100% by mass of basic refractory powder. In this way, by suppressing the amount of phosphate added, hardening due to phosphate can be relaxed, and the effect of preventing the problem of boiling down at the stage of rough filling can be enhanced. It is preferable that the addition amount of a phosphate is 1.5-3 mass% as an outer shell with respect to a basic refractory powder.
なお、リン酸塩の添加量を抑えた場合、施工体の強度が犠牲となりやすいが、本願発明者らの研究によると、併せて超微粒域の割合を上記のように抑えると、施工体の強度が低下しにくいことが判った。 In addition, when the addition amount of phosphate is suppressed, the strength of the construction body is likely to be sacrificed, but according to the study by the present inventors, when the proportion of the ultrafine particle region is suppressed as described above, It was found that the strength was difficult to decrease.
この理由は、次の如くと考えられる。即ち、リン酸塩は主に微粒域を凝固させ凝固ボンドを形成することで施工体に強度を付与する。超微粒域を減らさずにリン酸塩だけを減らした場合、微粒域中に凝固できないものが多く存在することとなり、これが強度低下の要因になる。ところが、リン酸塩を減らし超微粒域も減らした場合は、凝固ボンドの絶対量は減るものの、微粒域中の凝固できない粒子の割合が減るため、施工体の強度低下を抑えることができる。但し、リン酸塩の硬化メカニズムは充分に解明されていない。以上はあくまでもメカニズムの推定であり、本発明の解釈を拘束するものではない。 The reason is considered as follows. That is, the phosphate mainly imparts strength to the construction body by solidifying the fine particle region to form a solidified bond. When only the phosphate is reduced without reducing the ultrafine particle region, there are many things that cannot be solidified in the fine particle region, which causes a decrease in strength. However, when the phosphate is reduced and the ultrafine particle region is also reduced, although the absolute amount of solidified bonds is reduced, the proportion of particles that cannot be solidified in the fine particle region is reduced, so that a decrease in strength of the construction body can be suppressed. However, the cure mechanism of phosphate has not been fully elucidated. The above is only an estimation of the mechanism, and does not constrain the interpretation of the present invention.
以上のように、超微粒域の割合を抑えることは、リン酸塩に対するドロマイト質原料の硬化促進作用を緩和する効果だけでなく、施工体の強度低下を招くことなくリン酸の添加量を減らすことを可能にするという効果をもつ。 As described above, suppressing the ratio of the ultrafine particle region not only reduces the hardening promoting effect of the dolomite raw material on the phosphate, but also reduces the amount of phosphoric acid added without causing a decrease in the strength of the construction body. It has the effect of making things possible.
施工水の添加量は、例えば、塩基性耐火粉体に対する外掛けで20〜40質量%程度が好ましい。 The amount of construction water added is preferably about 20 to 40% by mass, for example, as an outer shell for the basic refractory powder.
熱間充填材の補修対象箇所への充填方法は、特に限定されない。図1(B)には乾式吹付け施工方法を例示したが、この他、湿式吹付け施工方法、流し込み施工方法、又は投げ込み施工方法等を用いてもよい。 There is no particular limitation on the method of filling the hot filler with the repair target part. Although FIG. 1B illustrates a dry spraying method, a wet spraying method, a casting method, a casting method, or the like may be used.
表1に、本発明の実施例及び比較例による熱間充填材の構成と評価結果とを示す。 Table 1 shows the configuration and evaluation results of hot fillers according to examples and comparative examples of the present invention.
表1の各例で、ドロマイトクリンカーにはCaO含有量が25質量%のものを用いた。施工水の添加量は、いずれの例も塩基性耐火粉体に対する外掛けで30質量%とした。以下、表1の評価項目について説明する。 In each example of Table 1, a dolomite clinker having a CaO content of 25% by mass was used. The amount of construction water added was 30% by mass in any case as an outer coating with respect to the basic refractory powder. Hereinafter, the evaluation items in Table 1 will be described.
曲げ強さ指数は、次の要領で測定した。各例の熱間充填材を、1000℃に加熱した型枠内に流し込み、沸騰及び硬化を経て常温に冷ました後に型枠から取り出す。次に、取り出した施工体を40mm×40mm×160mmの寸法に切り出したものを試験片とし、これ以外の条件はJIS−R2575に従って曲げ強さを測定する。各例の曲げ強さを、実施例6の曲げ強さで割って100倍した値が、曲げ強さ指数である。 The bending strength index was measured as follows. The hot filler of each example is poured into a mold heated to 1000 ° C., cooled to room temperature through boiling and curing, and taken out from the mold. Next, what cut out the taken-out construction body into the dimension of 40 mm x 40 mm x 160 mm is made into a test piece, and other conditions measure bending strength according to JIS-R2575. A value obtained by dividing the flexural strength of each example by the flexural strength of Example 6 and multiplying it by 100 is the flexural strength index.
曲げ強さ指数は、施工体の強度を評価する値であり、この値が大きい程、強度に優れることを意味する。 The bending strength index is a value for evaluating the strength of the construction body, and the larger the value, the better the strength.
スラグ浸潤深さ指数は、次の要領で測定した。回転式侵食試験装置において、侵食剤として転炉スラグを用い、上述した各例の試験片を、1650℃で5時間侵食させたときの最大スラグ浸潤深さを測定する。各試験片の最大スラグ浸潤深さを実施例6の最大スラグ浸潤深さで割って100倍した値がスラグ浸潤深さ指数である。 The slag infiltration depth index was measured as follows. In the rotary erosion test apparatus, converter slag is used as the erodant, and the maximum slag infiltration depth is measured when the test piece of each example described above is eroded at 1650 ° C. for 5 hours. A value obtained by dividing the maximum slag infiltration depth of each test piece by the maximum slag infiltration depth of Example 6 and multiplying by 100 is the slag infiltration depth index.
スラグ浸潤深さ指数は、施工体の耐スラグ浸潤性を評価する値であり、この値が小さい程、耐スラグ浸潤性に優れることを意味する。 The slag infiltration depth index is a value for evaluating the slag infiltration resistance of the construction body. The smaller this value, the better the slag infiltration resistance.
見掛け気孔率指数は、次の要領で測定した。上述した各例の試験片を測定対象としてJIS−R2205に従って見掛け気孔率を測定し、各例の見掛け気孔率を、実施例6の見掛け気孔率で割って100倍した値が、見掛け気孔率指数である。 The apparent porosity index was measured as follows. The apparent porosity was measured according to JIS-R2205 with the test piece of each example described above as a measurement target, and the apparent porosity of each example was divided by the apparent porosity of Example 6 and multiplied by 100 to obtain an apparent porosity index. It is.
見掛け気孔率指数は、施工体の緻密さを評価する値であり、この値が小さい程、充填時に充分な沸騰時間を確保できたことにより緻密な施工体が得られたことを意味する。 The apparent porosity index is a value for evaluating the denseness of the construction body. The smaller this value, the more dense the construction body was obtained because a sufficient boiling time could be secured during filling.
実施例1〜11は、いずれも本発明の規定を満たしており、大きな曲げ強さ指数、小さなスラグ浸潤深さ指数、及び小さな見掛け気孔率指数を達成した。 Examples 1 to 11 all satisfied the provisions of the present invention, and achieved a large bending strength index, a small slag infiltration depth index, and a small apparent porosity index.
比較例1及び2は、実施例7をベースとして、塩基性耐火粉体に占める超微粒域の割合を本発明の規定(15質量%未満)を上回る値に増やしたもので、超微粒域の割合を抑えることなくリン酸塩の添加量を1.5質量%に抑えたため、微粒域中に凝固できない粒子が多く生じたためか、曲げ強さ指数が小さい。 Comparative Examples 1 and 2 are based on Example 7, and the ratio of the ultrafine particle region in the basic refractory powder was increased to a value exceeding the provision of the present invention (less than 15% by mass). Since the addition amount of phosphate was suppressed to 1.5% by mass without suppressing the ratio, a large number of particles that cannot be solidified were generated in the fine particle region, or the bending strength index was small.
比較例3及び4は、微粒域に占めるドロマイトクリンカーの割合を本発明の規定(20質量%以上)よりも少なくしたもので、沸騰時間は充分に確保できたため見掛け気孔率指数は充分な値であったが、マトリクスに充分な量のドロマイトクリンカーが配合されなかったためスラグ浸潤深さ指数が大きい。 In Comparative Examples 3 and 4, the ratio of the dolomite clinker in the fine particle region was less than that of the present invention (20% by mass or more), and since the boiling time was sufficiently secured, the apparent porosity index was a sufficient value. However, since a sufficient amount of dolomite clinker was not blended in the matrix, the slag infiltration depth index was large.
比較例5は、実施例6をベースとして、ヘキサメタリン酸ソーダの添加量を本発明の規定(3.5質量%未満)よりも多くしたもので、ヘキサメタリン酸ソーダの硬化作用が強すぎて、沸騰時間を充分に確保できず、粗充填のまま沸騰が沈静化したため、見掛け気孔率指数が大きい。また、見掛け気孔率が大きいことに起因して、スラグ浸潤深さ指数も大きくなっている。 Comparative Example 5 is based on Example 6, and the amount of sodium hexametaphosphate added was larger than the provision of the present invention (less than 3.5% by mass), and the curing action of sodium hexametaphosphate was too strong, causing boiling. The apparent porosity index is large because sufficient time cannot be secured and boiling has subsided with coarse filling. Further, due to the high apparent porosity, the slag infiltration depth index is also increased.
比較例6も、実施例6をベースとして、ヘキサメタリン酸ソーダの添加量を本発明の規定(3.5質量%未満)よりも多くし、かつ塩基性耐火粉体に占める超微粒域の割合も本発明の規定(15質量%未満)よりも多くしたもので、ヘキサメタリン酸ソーダの硬化作用とドロマイトクリンカーの硬化促進作用とが強すぎたため、沸騰時間を充分に確保できず、見掛け気孔率指数が大きい。また、見掛け気孔率が大きいことに起因して、スラグ浸潤深さ指数も大きくなっている。 Comparative Example 6 is also based on Example 6, and the amount of sodium hexametaphosphate added is larger than the provision of the present invention (less than 3.5% by mass), and the proportion of the ultrafine particle region in the basic refractory powder is also More than the provisions of the present invention (less than 15% by mass), the curing action of sodium hexametaphosphate and the hardening accelerating action of dolomite clinker were too strong, so that the boiling time could not be sufficiently secured, and the apparent porosity index was large. Further, due to the high apparent porosity, the slag infiltration depth index is also increased.
以上、本発明の実施例について説明したが、本発明はこれに限られない。例えば、種々の組み合わせ及び改良が可能なことは当業者に自明であろう。 As mentioned above, although the Example of this invention was described, this invention is not limited to this. For example, it will be apparent to those skilled in the art that various combinations and improvements are possible.
本発明の熱間充填材は、各種窯炉又は溶融金属容器の水平部分、水平にすることのできる部分、又は中子等を使用して熱間充填材を溜めることのできる部分、例えば、転炉の出鋼口や炉底、脱ガス炉、取鍋、混銑車等の熱間補修に広く利用することができる。 The hot filler of the present invention is a horizontal part of various kilns or molten metal containers, a part that can be made horizontal, or a part that can store the hot filler using a core or the like, for example, a roller. It can be widely used for hot repair of furnace outlets, bottoms, degassing furnaces, ladle, kneading cars, etc.
1…転炉、2…トラニオン、3…出鋼口、4…作業床、5…ブレーカー、6…古いスリーブ、7…新しいスリーブ、8…熱間充填材、9…吹付け施工装置、10…吹付けパイプ。
DESCRIPTION OF
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008058224A JP4960906B2 (en) | 2008-03-07 | 2008-03-07 | Hot filler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008058224A JP4960906B2 (en) | 2008-03-07 | 2008-03-07 | Hot filler |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009215096A true JP2009215096A (en) | 2009-09-24 |
JP4960906B2 JP4960906B2 (en) | 2012-06-27 |
Family
ID=41187363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008058224A Active JP4960906B2 (en) | 2008-03-07 | 2008-03-07 | Hot filler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4960906B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012132063A (en) * | 2010-12-21 | 2012-07-12 | Jfe Steel Corp | Method for dismantling tuyere sleeve |
JP6470866B1 (en) * | 2018-10-22 | 2019-02-13 | 黒崎播磨株式会社 | Hot filler |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63156078A (en) * | 1986-12-17 | 1988-06-29 | 川崎炉材株式会社 | Spray mending material for metal refining furnace |
JPH02243571A (en) * | 1989-03-15 | 1990-09-27 | Kurosaki Refract Co Ltd | Spraying reparative material |
JPH0477367A (en) * | 1990-07-19 | 1992-03-11 | Kawasaki Refract Co Ltd | Hot spraying repairing material |
JPH05286772A (en) * | 1992-04-07 | 1993-11-02 | Kurosaki Refract Co Ltd | Hot spray repairing material |
JPH06227869A (en) * | 1993-02-05 | 1994-08-16 | Kurosaki Refract Co Ltd | Hot blowing repairing material for steel making furnace |
JP2000302561A (en) * | 1999-04-23 | 2000-10-31 | Kawasaki Refract Co Ltd | Basic spraying material |
-
2008
- 2008-03-07 JP JP2008058224A patent/JP4960906B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63156078A (en) * | 1986-12-17 | 1988-06-29 | 川崎炉材株式会社 | Spray mending material for metal refining furnace |
JPH02243571A (en) * | 1989-03-15 | 1990-09-27 | Kurosaki Refract Co Ltd | Spraying reparative material |
JPH0477367A (en) * | 1990-07-19 | 1992-03-11 | Kawasaki Refract Co Ltd | Hot spraying repairing material |
JPH05286772A (en) * | 1992-04-07 | 1993-11-02 | Kurosaki Refract Co Ltd | Hot spray repairing material |
JPH06227869A (en) * | 1993-02-05 | 1994-08-16 | Kurosaki Refract Co Ltd | Hot blowing repairing material for steel making furnace |
JP2000302561A (en) * | 1999-04-23 | 2000-10-31 | Kawasaki Refract Co Ltd | Basic spraying material |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012132063A (en) * | 2010-12-21 | 2012-07-12 | Jfe Steel Corp | Method for dismantling tuyere sleeve |
JP6470866B1 (en) * | 2018-10-22 | 2019-02-13 | 黒崎播磨株式会社 | Hot filler |
WO2020085191A1 (en) * | 2018-10-22 | 2020-04-30 | 黒崎播磨株式会社 | Hot filling material |
CN112823147A (en) * | 2018-10-22 | 2021-05-18 | 黑崎播磨株式会社 | Hot filling material |
TWI752363B (en) * | 2018-10-22 | 2022-01-11 | 日商黑崎播磨股份有限公司 | hot fill material |
CN112823147B (en) * | 2018-10-22 | 2022-06-03 | 黑崎播磨株式会社 | Hot filling material |
Also Published As
Publication number | Publication date |
---|---|
JP4960906B2 (en) | 2012-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BR112015016855B1 (en) | magnesia-carbon brick | |
CN102335738A (en) | Composite submerged nozzle and manufacturing method thereof | |
JP2007269605A (en) | Molten siliceous refractory and method for manufacturing the same | |
JP5336987B2 (en) | Method for producing fire-resistant molded body for metal casting and method for producing fire-resistant fired body for metal casting | |
JP4796170B2 (en) | Chromium castable refractories and precast blocks using the same | |
JP4960906B2 (en) | Hot filler | |
JP6179534B2 (en) | Unshaped refractories for blast furnace glazing | |
JP6427456B2 (en) | Unshaped refractory composition and unshaped refractory | |
CN110423103A (en) | A kind of middle water containing opening environmentally friendly chamotte and preparation method thereof | |
JP2008143757A (en) | Monolithic refractory | |
JP5126984B2 (en) | Method for producing SiC-containing castable refractory | |
JP2018154516A (en) | Manufacturing method of magnesia-spinel fired brick | |
JP2020050572A (en) | Castable refractory | |
JP6219751B2 (en) | Unshaped refractories for tundish lining | |
JP2008247720A (en) | Monolithic refractory forming material and monolithic refractory formed body | |
JP6202025B2 (en) | Irregular refractories for repair that can be painted | |
CN107879751A (en) | A kind of method that tundish dry material is manufactured using waste magnesia carbon brick | |
JP7247172B2 (en) | Refractory batch, method for producing monolithic refractory ceramic product from said batch, monolithic refractory ceramic product obtained by said method | |
KR101086841B1 (en) | Magnesia - Olivine Monolithic Refractory and Method for Preparing the Same | |
JP6470866B1 (en) | Hot filler | |
JP4470372B2 (en) | Graphite-containing amorphous refractory material | |
TWI597255B (en) | Silicon carbide refractory block | |
KR101672470B1 (en) | Refractory for slag dart, slag dart including the same and manufacturing method of slag dart | |
JP2003137665A (en) | Method of producing castable refractory | |
JPH0952755A (en) | Magnesia-chrome refractory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101012 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120224 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120323 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150330 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4960906 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |