JP6422188B2 - 水耕栽培方法、葉菜類の製造方法、培養液、及び培養液製造方法。 - Google Patents

水耕栽培方法、葉菜類の製造方法、培養液、及び培養液製造方法。 Download PDF

Info

Publication number
JP6422188B2
JP6422188B2 JP2015189881A JP2015189881A JP6422188B2 JP 6422188 B2 JP6422188 B2 JP 6422188B2 JP 2015189881 A JP2015189881 A JP 2015189881A JP 2015189881 A JP2015189881 A JP 2015189881A JP 6422188 B2 JP6422188 B2 JP 6422188B2
Authority
JP
Japan
Prior art keywords
zinc
culture solution
ppm
concentration
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015189881A
Other languages
English (en)
Other versions
JP2017063632A (ja
Inventor
敦史 小川
敦史 小川
育美 工藤
育美 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Prefectural University
Original Assignee
Akita Prefectural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Prefectural University filed Critical Akita Prefectural University
Priority to JP2015189881A priority Critical patent/JP6422188B2/ja
Publication of JP2017063632A publication Critical patent/JP2017063632A/ja
Application granted granted Critical
Publication of JP6422188B2 publication Critical patent/JP6422188B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hydroponics (AREA)
  • Fertilizers (AREA)
  • Cultivation Of Plants (AREA)

Description

本発明は、水耕栽培方法、葉菜類、培養液、及び培養液濃縮組成物に係り、特に葉菜類の亜鉛の含有量を増加させる水耕栽培方法、葉菜類、培養液、及び培養液濃縮組成物に関する。
亜鉛は人の必須元素の一つであり、不足すると皮膚炎や味覚障害、慢性下痢、低アルブミン血症、汎血球減少、免疫機能障害などを引き起こす。または、生活習慣病である糖尿病のリスクが高まることが報告されている(非特許文献1参照)。
また、生体にて唯一の血糖降下作用を示すホルモンであるインスリンは、膵β細胞から分泌される。膵β細胞は生体内でもっとも高い亜鉛含有量を示すため、亜鉛と糖尿病の関係は以前から関心が集まっている(非特許文献2参照)。
ここで、近年の日本人を始めとするヒトの食生活の変化は、食物からの亜鉛の摂取量の低下をもたらしている。非特許文献3によると、日本における18歳以上の日本人成人の亜鉛摂取量は男性が7.9〜8.9mg/日、女性が6.6〜7.3mg/日であり、「日本人の食事摂取基準」の推定平均必要量である男性9〜10mg/日、女性7〜8mg/日を下回っている。このことは、日本人成人の半数以上は、亜鉛摂取不足のリスクが高く、推奨量(成人男性11〜12mg/日、女性9mg/日)程度にまで亜鉛摂取量を増やすのが望ましい状態であることを意味している。
しかし、日本人の主な亜鉛供給源は、穀物、魚介類、肉類であり、カルシウムと同様に動物性食品への依存度が比較的高いため、通常の食生活において十分な亜鉛摂取を確保することは難しいと考えられる。したがって、日本において亜鉛は、公衆栄養的な意味で強化食品に存在意義がある数少ない栄養素と思われる。また、世界的に見ると約15億人が亜鉛欠乏状態にあると報告されている(非特許文献4参照)。
このような問題を解決するための手段としては、農作物の可食部分に蓄積する亜鉛の量を増やすことによって、十分な亜鉛の摂取量を確保することが考えられる。この技術が実用化されれば、現実的な野菜の摂取量で亜鉛の必要量を確保することが可能になり、亜鉛摂取量不足の問題の解決に繋げることが期待できる。
一般に農産物の機能性を変化させる手法としては、交雑育種や遺伝子組み換え技術、及び栽培方法の改良による手法が挙げられる。交雑育種や遺伝子組み換え技術は機能性を変化させるまでには時間とコストがかかる。
従来、亜鉛含有量の高いイネを育成する試みとして、植物への亜鉛の取り込みに関与するニコチアナミン合成酵素の遺伝子を過剰発現させた遺伝子組み換え植物を作成し、籾の亜鉛含有量が高いイネを作成した研究が報告されている(非特許文献5及び非特許文献6参照)。しかし、非特許文献5や非特許文献6のように遺伝子組み換え作物については、安全性に対する不安から消費者に受け入れられていないのが現状であった。
また、非特許文献7には、亜鉛含有量の高い植物のもやし(スプラウト)の栽培方法が報告されている。カイワレ大根種子を亜鉛の濃度が高い溶液に浸漬した後、栽培することで亜鉛含有量の高いカイワレ大根の栽培を可能にしている。このように種子からの栽培期間の短い場合は、亜鉛濃度の高い溶液への種子の浸漬よって亜鉛濃度の高いスプラウトの栽培が可能である。
一方で、亜鉛含有量の高い植物を栽培するために、種子からの栽培期間がスプラウトよりも長い野菜の栽培を亜鉛濃度が高い条件で植物を栽培すると、生育障害が起こることが明らかになっている。カラシナを硫酸亜鉛5mMと10mMを含む培地上で栽培した場合、生育の有意な抑制が引き起こされたことが報告されている(非特許文献8参照)。
一般に、葉菜類を水耕栽培する際には、栽培期間中に水耕液の電気伝導度(EC)を測定している。つまり、植物が養分を吸収することで電気伝導度が低下すると、養液成分を均一の割合で追加し、ECを維持する栽培方法が行われている。したがって、通常は、栽培期間中は均一の養液組成のもとで栽培される。このため、亜鉛濃度の高い水耕液の条件下で野菜の水耕栽培を行うと、生育障害が起こっていた。
ここで、特許文献1を参照すると、栽培方法の改良による手法として、アブラナ科植物の葉にチオール基を有する化学物質を与え、根圏の状況及び根の生理的な状態を変化させることにより、植物が吸収する亜鉛の量及び吸収された亜鉛の植物体の地上部への移行量を増加させる手法がある。特許文献1には、葉面に散布する溶液のpHを植物のアポスラストのpHと同等に保つための、pH緩衝能を持つMES−NaOH(pH=6.1)、溶液中の成分を葉に浸透させるための界面活性剤であるTritonX−100及びグルタチオン(還元型)の組成から成るグルタチオン溶液を、アブラナ科植物の葉表面に適量を適当回数、筆などの手段を用いて塗布、若しくは散布することによって葉に限定したグルタチオンの施用を行う手法が記載されている。
特許文献1の技術により、アブラナ科植物の葉に含まれる亜鉛含有量を増加させることができる。
特開2013−21928号公報
厚生労働省、日本人の食事摂取基準(2015年版)策定討論会 報告書〜ミネラル(微量ミネラル)亜鉛Zn〜 田蒔基行他、日本衛生学雑誌、2014、69、p.15〜23 厚生労働省の平成23年度国民健康・栄養調査報告 K.H. Brown他、International Zinc Nutrition Consultative Group (IZiNCG) technical document no. 1: Assessment of the risk of zinc deficiency in populations and options for its control、 Food and nutrition bulletin、2004、25、S99〜203 S. Lee他、 Iron fortification of rice seeds through activation of the nicotianamine synthase gene、Proc. Natl. Acad. Sci.、米国、2009、106、p.22014〜22019. H. Masuda他、Overexpression of the Barley Nicotianamine Synthase Gene HvNAS1 Increases Iron and Zinc Concentrations in Rice Grains、Rice、2009、2、p.155〜166 吉田宗弘他、亜鉛強化カイワレダイコンスプラウトの調製と栄養有効性の評価、Biomedical Research on Trace Elements、2014、25、p.8〜13. K. Prasad他、Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea、Environmental and Experimental Botany、1999、42、p.1〜10.
従来、亜鉛含有量の高い植物を栽培するために、種子からの栽培期間がスプラウトよりも長い野菜等の植物、特に葉菜類を亜鉛濃度が高い条件で栽培すると、生育障害が起こるという問題があった。しかしながら、一般に行われている栽培方法に加えて、亜鉛の施肥量を増やすだけでは、高い亜鉛含有量を持つ葉菜類を栽培することはできなかった。
また、特許文献1に記載されているグルタチオンだけを用いる方法では、亜鉛含有量を高める割合が低かった。
本発明は、このような状況に鑑みてなされたものであり、上述の問題を解消することを目的とする。
本発明の水耕栽培方法は、水耕栽培用の普通処方培養液により葉菜類を栽培し、収穫の3〜10日前から2ppm〜10ppmの亜鉛を含有する高亜鉛含有培養液により前記葉菜類を栽培することを特徴とする。
本発明の水耕栽培方法は、前記高亜鉛含有培養液は、2ppm〜50ppmのグルタチオンを更に含有することを特徴とする。
本発明の水耕栽培方法は、前記高亜鉛含有培養液は、硫酸亜鉛を含むことを特徴とする。
本発明の葉菜類の製造方法は、葉菜類を、請求項1乃至のいずれか1項に記載の水耕栽培方法により栽培することを特徴とする。
本発明の培養液は、葉菜類を栽培するための水耕栽培用の培養液であって、2ppm〜10ppmの亜鉛を含有し、収穫の3〜10日前から使用されることを特徴とする。
本発明の培養液は、2ppm〜50ppmのグルタチオンを更に含有することを特徴とする。
本発明の培養液製造方法は、培養液濃縮組成物を溶媒によ希釈請求項5又は6に記載の培養液を製造することを特徴とする。
本発明によれば、収穫前の特定期間だけ、高亜鉛含有培養液で前記葉菜類を栽培することで、可食部の亜鉛含有量を高めた葉菜類を栽培可能となる水耕栽培方法を提供することができる。
本発明の実施例に係る試験例1の実験I.における収穫時の可食部の新鮮重を示すグラフである。 本発明の実施例に係る試験例1の実験I.における可食部の亜鉛含有量を示すグラフである。 本発明の実施例に係る試験例1の実験II.における収穫時の可食部の新鮮重を示すグラフである。 本発明の実施例に係る試験例1の実験II.における可食部の亜鉛含有量を示すグラフである。 本発明の実施例に係る試験例1の実験III.における収穫時の可食部の新鮮重を示すグラフである。 本発明の実施例に係る試験例1の実験III.における可食部の亜鉛含有量を示すグラフである。 本発明の実施例に係る試験例2の実験I.における収穫時の可食部の新鮮重を示すグラフである。 本発明の実施例に係る試験例2の実験I.における可食部の亜鉛含有量を示すグラフである。 本発明の実施例に係る試験例2の実験II.における収穫時の可食部の新鮮重を示すグラフである。 本発明の実施例に係る試験例2の実験II.における可食部の亜鉛含有量を示すグラフである。 本発明の実施例に係る試験例3の実験I.における可食部の新鮮重を示すグラフである。 本発明の実施例に係る試験例3の実験I.における可食部の亜鉛含有量を示すグラフである。 本発明の実施例に係る試験例4のレッドリーフレタスにおける可食部の新鮮重を示すグラフである。 本発明の実施例に係る試験例4のレッドリーフレタスにおける可食部の亜鉛含有量を示すグラフである。 本発明の実施例に係る試験例4のコマツナにおける可食部の新鮮重を示すグラフである。 本発明の実施例に係る試験例4のコマツナにおける可食部の亜鉛含有量を示すグラフである。
<実施の形態>
上述したように、亜鉛含有量を高めるために、亜鉛濃度が高い条件下で植物を栽培した場合、生育障害(生理障害)が発生することが明らかになっている。このため、一般に行われている栽培方法に加えて亜鉛の施肥量を増やすだけでは、高い亜鉛含有量を持つ植物を栽培することはできなかった。
このため、本発明の発明者らは鋭意研究を行い、水耕栽培の栽培期間中に水耕液(培養液)の組成を変化させ、培養液の亜鉛濃度と亜鉛施用の時期を調節することで、従来の手法で栽培したものと比較して植物体内における亜鉛含有量の増加に伴う生長障害を起こさせず、収穫時の可食部における単位新鮮重あたりの亜鉛含有量を従来の栽培方法で栽培したものよりも増加させることが可能な葉菜類の栽培方法を確立するに至った。加えて、亜鉛濃度と亜鉛施用の時期において、グルタチオンで処理することにより、更に亜鉛含有量を増加させることを可能とした。
以下、本発明の実施の形態に係る水耕栽培方法(葉菜類の製造方法)、及びこの水耕栽培方法に使用する培養液の詳細、培養液の製造方法(並びに培養液濃縮組成物)、及び栽培される葉菜類について説明する。
本発明の水耕栽培方法は、水耕栽培用の普通処方培養液により葉菜類を栽培し、収穫前の特定期間だけ、水耕栽培用の普通処方培養液よりも亜鉛含有量が高い高亜鉛含有培養液で葉菜類を栽培することを特徴とする。
ここで、本発明の実施の形態に係る水耕栽培方法で栽培される葉菜類としては、例えば、レタス(Lactuca sativa)、ルッコラ(Eruca vesicaria)、水菜(Brassica rapa var. laciniifolia)、ほうれん草(Spinacia oleracea)、小松菜(Brassica rapa var. perviridis)、春菊(Glebionis coronaria)等が挙げられる。ここで、本実施形態のレタスは、ヘッドレタス(L.s.var.capitata)、リーフレタス (L.s.var.crispa)、立ちレタス(L.s.var.longifoli)、カッティングレタス(L.s.var.crispa)、ステムレタス (L.s.var.angustana)等を用いることが可能である。このヘッドレタスとしては、例えば、サラダ菜等を用いることが可能である。また、立ちレタスとしては、例えば、ロメインレタス等を用いることが可能である。また、リーフレタスとしては、例えば、グリーンリーフ、フリルレタス、シルクレタス、リボンレタス、フレアーリーフレタス、サニーリーフレタス等を用いることが可能である。また、カッティングレタスとしては、例えば、チマ・サンチェ等を用いることが可能である。
また、本発明の実施の形態に係る水耕栽培方法の栽培の葉菜類の植物体の生育ステージは、ベビーリーフ及び通常の大きさの植物体のどちらにも適用可能である。
また、本発明の実施の形態に係る葉菜類の栽培方法では、栽培期間中の培地の養分組成を容易に変更できる水耕栽培方法を用いて栽培することが好適である。つまり、土耕栽培では、収穫前の短期間だけ土壌中の亜鉛の含有量を増やすような処理を行うと、次の作付けの時に土壌の入れ替えを行わなければならず難しい。これに対して、水耕栽培方法では、高亜鉛含有培養液に培養液を取り換えるだけで済む。このため、本実施形態の葉菜類の栽培方法は、ビニールハウスや植物工場等の施設栽培での水耕栽培について、好適に用いることが可能である。
より具体的には、本実施形態の水耕栽培方法においては、後述する収穫前の特定期間の前までの栽培期間では、水耕栽培用の普通処方培養液によって葉菜類を水耕栽培する。
この普通処方培養液は、養液栽培で使われている通常の配合割合の培養液を使用可能である。たとえば、この普通処方培養液は、葉菜類の培養栽培向けの多量必須元素及び微量必須元素を含有する。このうち、多量必須元素は、例えば、窒素、リン、カリウム、カルシウム、マグネシウム、イオウの6元素である。また、微量必須元素は、例えば、鉄、マンガン、亜鉛、銅、モリブデン、ホウ素、塩素の7元素である。
このように、収穫前の特定期間になるまで、多量必須元素及び微量必須元素を含有する普通処方培養液だけで、葉菜類を通常の栽培方法で水耕栽培することができ、特に特別な処理をする必要がないため、コストを抑えることができる。
また、本実施形態の水耕栽培方法においては、葉菜類の種子を催芽させた後、この水耕栽培用の普通処方培養液によって水耕栽培する。この際、温度、日照時間、培養液の電気伝導度(EC)、pH等は、栽培する葉菜類の種類に合わせて適宜調整する。
また、本実施形態の水耕栽培方法として、例えば、噴霧水耕方式又は湛液方式で栽培してもよい。湛液方式の場合、培養液の流れを作らない静置状態で栽培してもよいし、流れのある培養液で栽培してもよい。これは、収穫前の特定期間でも同様である。
また、本実施形態の水耕栽培方法は、太陽光を利用した通常のハウス水耕栽培等に適用されても、LED(Light Emitting Diode)を利用した植物工場での水耕栽培等に適用されてもよい。
また、本発明の実施の形態に係る高亜鉛含有培養液は、普通処方培養液よりも亜鉛含有量が高いことを特徴とする。この高亜鉛含有培養液は、特に、普通処方培養液に対して、特定濃度である2ppm〜10ppmの亜鉛を含有することが好適である。この際、本実施形態の高亜鉛含有培養液において、特に最適な濃度は5ppm程度であり、葉菜類の種類により調整可能である。亜鉛の濃度が2ppm未満であると、亜鉛を十分に葉菜類の植物体に含ませることができず、濃度が10ppmより大きいと、生育障害を起こす確率が高まる。
また、本発明の実施の形態に係る高亜鉛含有培養液は、含有させる亜鉛として、硫酸亜鉛を含むことが好適である。本実施形態の高亜鉛含有培養液は、硫酸亜鉛(ZnSO4)、酸化亜鉛(ZnO)等、及びこれらの水和物並びに各種塩を溶解等させて、上述の濃度に調整する。
また、本発明の実施の形態に係る高亜鉛含有培養液は、2ppm〜50ppmのグルタチオンを更に含有してもよい。
具体的には、本実施形態の高亜鉛含有培養液に、グルタチオンを濃度が2ppm〜50ppmになるよう更に加える。この際、最適な濃度は5ppm程度であり、葉菜類の種類により調整可能である。これにより、栽培された葉菜類の亜鉛含有量を亜鉛のみ調整した場合よりも増加させることができる。グルタチオンの濃度が2ppm未満であると、亜鉛を十分に葉菜類の植物体に含ませることができず、濃度が50ppmより大きいと、生育障害を起こす確率が高まる。
なお、後述する実施例では、酸化型グルタチオン(Glutathione−S−S−Glutathione、以下、「GSSG」と呼ぶ。)を用いたが、本発明において用いるグルタチオンの種類は、酸化型グルタチオン若しくは還元型グルタチオン(Glutathione−SH、以下、「GSH」と呼ぶ。)のどちらでもよい。
上述したように、本発明の実施の形態に係る高亜鉛含有培養液は、葉菜類を栽培するための水耕栽培用の培養液であって、普通処方培養液よりも亜鉛含有量が高いことを特徴とする。具体的には、本実施形態の高亜鉛含有培養液は、例えば、2ppm〜10ppmの亜鉛を含有することが好適である。また、本実施形態の高亜鉛含有培養液は、例えば、2ppm〜50ppmのグルタチオンを含ませてもよい。
また、本実施形態の高亜鉛含有培養液は、他に、上述の普通処方培養液と同様に、葉菜類の栽培に用いられる通常量のカリウム、マグネシウム、リン、カルシウム、及び窒素の多量要素と、通常量の亜鉛、ホウ素、銅、モリブデンの微量要素を含有している。また、本実施形態の高亜鉛含有培養液は、pHが4.5〜7.5となることが好適である。
なお、本実施形態の高亜鉛含有培養液は、浸透圧等を下げ、葉菜類に亜鉛を多く含有させるため、葉菜類の種類に合わせて適宜、多量要素の濃度を上述の普通処方培養液よりも低くしてもよい。
また、本実施形態の高亜鉛含有培養液は、培養液濃縮組成物を溶媒により希釈して製造してもよい。
この培養液濃縮組成物は、溶媒による希釈により、水耕栽培用培養液を製造することが可能な水耕栽培用培養液の濃縮物である。この溶媒としては、普通処方培養液又は水が好適に用いられる。また、溶媒が水の場合、本実施形態の培養液濃縮組成物は、普通処方培養液と同様の多量要素及び微量要素を含める。
なお、本実施形態の高亜鉛含有培養液は、上述の普通処方培養液に上述の亜鉛を溶解する、又は、亜鉛が溶解された濃縮液を上述の普通処方培養液で希釈することで製造してもよい。
また、高亜鉛含有培養液及び培養液濃縮組成物は、各成分を高濃度で含有する溶液として提供されても、溶媒に溶解させるための粉末や顆粒等の固体形状で提供されてもよい。
また、本発明の実施の形態に係る高亜鉛含有培養液により葉菜類を栽培する特定期間は、3〜10日間であることを特徴とする。
具体的には、本実施形態の水耕栽培方法では、葉菜類を通常処方の水耕液(普通処方培養液)によって水耕栽培し、収穫の3日から10日前に養液内に亜鉛を溶解し、又は、亜鉛を溶解した濃縮液を養液に希釈することで、養液内の亜鉛濃度を上述のように調整した高亜鉛含有培養液で栽培する。加えて、高亜鉛含有培養液で栽培される特定期間においては、亜鉛の他にグルタチオンを溶解して含ませる等のグルタチオン処理を行ってもよい。また、この特定期間は、7日を最適期間として、葉菜類の種類、ベビーリーフか否か等により調整可能である。ここで、特定期間が3日より前だと十分に亜鉛の含有量を増やすことができず、10日より長いと生育障害を起こす可能性が高まる。
また、本発明の実施の形態に係る葉菜類は、上述の水耕栽培方法により栽培されたことを特徴とする。
本実施形態の水耕栽培方法で栽培された葉菜類中の成分は、公知の測定方法により分析することが可能である。この分析により、既存の通常の水耕栽培方法で栽培された亜鉛含有量が高くない葉菜類と区別可能である。この分析としては、例えば、生の野菜を手や撹拌機で物理的に潰し、絞り汁中の各成分を各種測定機器で分析する簡易分析や、野菜を乾燥機で乾燥して粉砕し、酸を加えて振とう、抽出ろ過し、分光光度計やクロマトグラフィー等の測定機器で分析する詳細分析や、これらの組み合わせが挙げられるものの、これに限定されない。
以上のように構成することで、以下のような効果を得ることができる。
従来、一般に農産物の機能性を変化させる手法としては、交雑育種や遺伝子組み換え技術が挙げられるが、両者とも長い時間と多くのコストがかかる。また遺伝子組み換え技術は、市場では受け入れられていなかった。
また、従来から、一般に野菜類を水耕栽培する際には、栽培期間中に水耕液の電気伝導度(EC)を測定し、植物が養分を吸収することで電気伝導度が低下すると、養液成分を均一の割合で追加し、ECを維持する栽培方法が行われている。
したがって、従来の水耕栽培方式では、栽培期間中は、均一の養液組成の下で野菜の栽培が行われる。このため、亜鉛濃度の高い水耕液で野菜の水耕栽培を行うと生育障害をおこしていた。
これに対して、本発明の実施の形態に係る水耕栽培方法においては、植物の生育に影響をあたえることなく、可食部の亜鉛含有量が高い葉菜類を栽培することができる。すなわち、本実施形態の水耕栽培方法によって、従来のものと比較して亜鉛過剰障害を起こすことなく、可食部の生長を維持しつつ、収穫時の亜鉛含有量が高い葉菜類を提供することが可能となる。
また、本発明の実施の形態に係る水耕栽培方法においては、亜鉛と同時にグルタチオンを適切な濃度で培養液に含有させることで、さらに亜鉛含有量を増加させることが可能になる。
また、本発明の実施の形態に係る水耕栽培方法では、収穫前の特定期間だけ栽培環境を変化させることで農作物の機能性を向上させることができる。また、水耕液成分の置換によって葉菜類において生育障害を出さず可食部の亜鉛含有量を増加させることが可能であり、既存の施設や水耕液成分以外の栽培技術をそのまま利用できる。
このため、機能性の葉菜類を栽培する際のコストを抑えることができ、環境への悪影響を少なくすることができる。
また、本実施形態の水耕栽培方法は植物工場等の栽培施設に適用することが可能であり、大規模なレベルで安定的、恒常的に葉菜類を生産させることが可能である。よって、亜鉛欠乏の消費者に向けて合理的な値段での葉菜類の提供が可能となる。
このため、本実施形態の水耕栽培方法で製造した高亜鉛含有葉菜類を提供することで、世界15億人の亜鉛欠乏性貧血の症状緩和に貢献できる。
以上のように、本発明の実施の形態に係る水耕栽培方法によって、植物の生育に影響を与えることなく、可食部の亜鉛含有量が高い葉菜類を栽培することが可能になる。すなわち、従来と比較して、亜鉛過剰障害を起こすことなく、可食部の生長を維持しつつ、収穫時の亜鉛含有量が高い葉菜類を栽培することができる。
なお、本実施形態の高亜鉛含有培養液は、必ずしもグルタチオンを含まなくてもよい。すなわち、上述したように、普通処方培養液より高い亜鉛含有量の高亜鉛含有培養液で特定期間、葉菜類を培養することで、亜鉛含有量を増加させることができる。また、この特定期間において、高亜鉛含有培養液に上述の濃度のグルタチオンを含ませて栽培すると、亜鉛のみを含有させたものよりも、更に葉菜類の亜鉛含有量を増加させることが可能となる。このように高亜鉛含有培養液にグルタチオンを含ませるか否かは、葉菜類の種類、ベビーリーフか否か、最終的に目標とする亜鉛含有量等により調整可能である。
また、上述の高亜鉛含有培養液に含有される亜鉛及び/又はグルタチオンの濃度は、特定期間内で培養する際に段階的に増加又は減少させることも可能である。このように構成することで、より生育障害を起こしにくく、亜鉛含有量を高めた葉菜類を栽培することが可能となる。
次に、図面に基づき本発明を実施例によりさらに説明するが、以下の具体例は本発明を限定するものではない。
〔試験例1:葉菜類への亜鉛処理による濃度と期間の検討〕
(実験目的)
リーフレタスを用いて、生育障害がなく、かつ亜鉛含有量が多くなるよう、硫酸亜鉛を含む高亜鉛含有培養液による栽培(以下、「亜鉛処理」という)の条件を検討した。
(材料と方法)
材料としてリーフレタス(学名:Lactuca sativa var. crispa、品種:ノーチップ、横浜植木株式会社製)を供試した。
(1)栽培条件
種子を葉菜用培地(スポンジ)に播種し、湿度70%、明期12時間(20℃)、暗期1時間(20℃)のグロースチャンバー(MLR−350、SANYO社製)内で10日間発芽処理をした。発芽した植物体を8個体選抜し、発砲スチロール板の穴に差し込み、培養液の入った7Lバットの上に移植した。空気ポンプを用いて培養液に十分に酸素を送った。人工気象室(KODIC−2100、KOITO社製)内で、湿度70%、明期12時間(18℃)、暗期12時間(14℃)の条件で、4週間水耕栽培した。普通処方培養液として、ハイポニカ肥料(A液とB液・協和株式会社製)の500倍希釈液を用いた。培養液は、1週間ごとに交換した。培養液には十分に通気を行った。栽培期間は移植後28日間とした。
(2)処理区
目的を達成するために以下のI.〜III.の実験を行い、それぞれにおいて培養液中の亜鉛濃度又は、亜鉛処理の期間が異なる処理区を設定した。なお、普通処方培養液(対照区、通常栽培の培養液)の亜鉛濃度は0.02ppmであった。
I.栽培期間(4週間)を通して、通常処方の水耕液に硫酸亜鉛を含有させた高亜鉛含有培養液中の亜鉛濃度を0.5ppm、5ppmに調整した亜鉛処理区、及び無処理区(対照区)。
II.収穫1、3、7、14日前から培養液中の亜鉛濃度が5ppmになるよう調整した高亜鉛含有培養液で栽培した亜鉛処理区、及び対照区。
III.収穫7日前から培養液中の亜鉛濃度が25ppm、50ppmになるよう調整した高亜鉛含有培養液で栽培した亜鉛処理区、及び対照区。
(3)測定方法
28日間栽培した後収穫し、植物の地上部の新鮮重を測定した。80℃の乾燥機(FC−610、ADVANTEC社製)で5日間乾燥し、乾物重を測定した後、50mL遠沈管にサンプルを入れ、アルミナボールを用いてサンプルを粉末状になるまで砕いた。粉末状になったサンプルを、るつぼに約0.3g入れ正確に定量し、550℃の電気マッフル炉(FUL220FA、ADVANTEC社製)で6時間焼いた。焼いたサンプルの入ったるつぼに1M硝酸5mL加え、15mL容遠心チューブに移した。これを2回行った後、さらに4mL加え合計14mLとした。この溶液700μLを別の15mL容遠心チューブに移し、さらに13.3mLの1M硝酸を加え、20倍希釈した。この溶液をICP発光分光分析装置(iCAP6000SERIES、Thermo社製)で測定し、亜鉛含有量を測定した。
(試験結果)
I.栽培期間を通して、培養液中の亜鉛濃度を0.5ppm、5ppmに調整した処理をした場合:
図1に、収穫時の可食部の新鮮重を示す。具体的には、栽培期間を通して培養液中に異なる濃度の亜鉛を処理した場合の新鮮重を示す。各値は、平均値±標準誤差を示す。***は、対照区とt検定で比較して0.1%水準で有意差があることを示す。
結果として、地上部の生長は対照区と比較して0.5ppm区では変化はみられず、5ppm区では対照区の約30%に減少した。
図2に、可食部の亜鉛含有量を示す。具体的には、栽培期間を通して培養液中に異なる濃度の亜鉛を処理した場合の収穫時の新鮮重100gあたりの亜鉛含有量を示す。各値は、平均値±標準誤差を示す。***は、対照区とt検定で比較して0.1%水準で有意差があることを示す。
結果として、可食部の亜鉛含有量は、0.5ppm区では対照区の約5倍、5ppm区では対照区の約43倍と、培養液中の亜鉛濃度が高くなるほど増加した。
これらの結果から、5ppm区では亜鉛含有量は大きく増加したが、過剰な亜鉛を処理し続けたことで生育障害が出たことが明らかになった。一方で0.5ppm区でも、亜鉛含有量は増加した。
これに対して、生育障害を起こすことなく亜鉛含有量をさらに増加させる方法を検討した。以下では、生育障害の出た培養液中の亜鉛濃度を5ppm、又は、それ以上とした場合の亜鉛処理の期間を検討した。
II.収穫1、3、7、14日前から培養液中の亜鉛濃度を5ppmに調整した処理をした場合:
図3に、収穫時の可食部の新鮮重を示す。具体的には、収穫前の異なる期間に培養液中の亜鉛濃度を5ppmに処理した場合の新鮮重を示す。各値は、平均値±標準誤差を示す。*及び***は、対照区とt検定で比較して、それぞれ5%及び0.1%水準で有意差があることを示す。
結果として、地上部の新鮮重は対照区と比較して1日前処理区では対照区の約1.8倍に、3日前処理区では対照区の約2.4倍に、7日前処理区では対照区の約1.5倍に増加した。一方、14日前処理区では、地上部の生長は対照区と比較して、対照区の約47%に減少し、葉が褐色になる可視障害も認められた。したがって、収穫7日前よりも早く亜鉛を処理すると、生育障害が出ることが明らかになった。
図4に、可食部の亜鉛含有量を示す。具体的には、収穫前の異なる期間に培養液中の亜鉛濃度を5ppmに処理した場合の収穫時の新鮮重100gあたりの亜鉛含有量を示す。各値は、平均値±標準誤差を示す。*及び***は、対照区とt検定で比較してそれぞれ5%及び0.1%水準で有意差があることを示す。
結果として、収穫1、3、7、14日前に処理した場合、可食部の亜鉛含有量は、対照区と比較して、それぞれ、約1.6倍、1.6倍、8倍、36倍と有意に増加した。
III.収穫7日前から培養液中の亜鉛濃度を25ppm、50ppmに調整した処理をした場合:
図5に、収穫時の可食部の新鮮重を示す。具体的には、収穫7日前に培養液中に異なる濃度の亜鉛を処理した場合の新鮮重を示す。各値は、平均値±標準誤差を示す。**及び***は、対照区とt検定で比較して、それぞれ1%及び0.1%水準で有意差があることを示す。
結果として、地上部の新鮮重は対照区と比較して、25ppm区では対照区の約16%に、50ppm区では対照区の約18%に減少した。したがって、高亜鉛処理では生育障害が出ることが明らかになった。
図6に、可食部の亜鉛含有量を示す。具体的には、収穫7日前に培養液中に異なる濃度の亜鉛を処理した場合の収穫時の新鮮重100gあたりの亜鉛含有量を示す。各値は、平均値±標準誤差を示す。***は、対照区とt検定で比較して0.1%水準で有意差があることを示す。
結果として、収穫7日前に培養液へ亜鉛25ppm、50ppmが含有されるよう処理した場合、対照区の約41倍、64倍であり、II.の実験で示した5ppm処理した場合と比較して、亜鉛含有量は約5倍、約7.8倍と有意に増加した。
II.の実験の結果より、亜鉛5ppmを収穫1、3、7日前に処理した場合、新鮮重、亜鉛含有量ともに有意に増加した。一方、14日前処理では亜鉛含有量は有意に増加したが、新鮮重が有意に減少したことから、亜鉛を7日前よりも早く処理すると、亜鉛含有量は顕著に増加するが、生育障害が出ることが明らになった。したがって、新鮮重約1.5倍、亜鉛含有量約8倍に増加した収穫7日前亜鉛5ppm区が栽培方法の最適条件であると判断した。
III.の実験の結果より、収穫7日前に培養液へ亜鉛25、50ppmの高濃度処理した場合、亜鉛含有量はいずれも有意に増加したが、新鮮重は有意に減少した。したがって、亜鉛処理が高濃度の場合、亜鉛含有量は顕著に増加するが、生育障害が出たと考えられる。このため、栽培条件として適切ではないと考えられた。
〔試験例2:葉菜類への酸化型グルタチオン処理による濃度と期間の検討〕
(実験目的)
リーフレタスを用いて、酸化型グルタチオン(GSSG)を培養液に含有させる処理した時、生育と亜鉛含有量の変化を検討した。
(材料と方法)
試験例1と同様に行った。
また、(1)栽培条件、(3)測定方法については、試験例1と同様に行った。
(2)処理区
以下のIとIIの実験を行い、普通処方培養液(通常栽培の培養液)にGSSGが特定濃度含有されるように加えて調整する処理(以下、「GSSG処理」という。)をした。普通処方培養液(対照区)の亜鉛濃度は0.02ppmであった。
I.栽培期間28日間(4週間)を通して、培養液中に10、100、1000ppmのGSSG処理した処理区、及び無処理区(対照区)。
II.収穫21、14、7日前に10ppmのGSSG処理をした処理区、及び無処理区(対照区)。
(試験結果)
I.栽培期間28日間(4週間)を通して、10、100、1000ppmの含有量のGSSG処理した場合:
図7に収穫時の可食部の新鮮重を示した。具体的には、栽培期間を通して培養液中に異なる濃度のGSSGを処理した場合の新鮮重を示す。各値は、平均値±標準誤差を示す。***は、対照区とt検定で比較して0.1%水準で有意差があることを示す。
結果として、対照区と比較すると、高濃度のGSSG処理ほど地上部の生育が阻害された。10ppm区では対照区の約56%に、100ppm区では対照区の約22%に、1000ppm区では対照区の約3%に減少した。したがって、栽培期間を通してGSSG処理し続けると、生育障害が出ることが明らかになった。
図8に可食部の亜鉛含有量を示した。具体的には、栽培期間を通して培養液中に異なる濃度のGSSG処理をした場合の収穫時の新鮮重100gあたりの亜鉛含有量。各値は、平均値±標準誤差を示す。***は対照区とt検定で比較して0.1%水準で有意差があることを示す。
結果として、可食部の亜鉛含有量は、100ppm区では対照区と有意差がなかったが、10ppm区、1000ppm区では対照区より有意に増加した。
以上の結果より、栽培期間全体でのGSSG処理では、亜鉛含有量が増加する場合もあるが、生育が阻害されるため有効でないことが明らかとなった。
(試験結果)
II.収穫21、14、7日前に10ppmのGSSG処理をした場合:
図9に、収穫時の可食部の新鮮重を示す。具体的には、収穫前の異なる期間に培養液中のGSSG濃度を10ppmとなるよう処理した場合の新鮮重を示す。各値は、新鮮重の平均値±標準誤差を示す。
結果として、地上部の生長は、いずれの処理区においても対照区と比較して有意差は認められなかった。
図10に可食部の亜鉛含有量を示した。具体的には、収穫前の異なる期間に培養液中のGSSG濃度を10ppmに処理した場合の収穫時の新鮮重100gあたりの亜鉛含有量を示す。各値は、平均値±標準誤差を示す。**及び***は、対照区とt検定で比較してそれぞれ1%及び0.1%水準で有意差があることを示す。
結果として、可食部の亜鉛含有量は、各処理区において、対照区よりも有意に低下した。
以上の結果より、収穫21、14、7日前にGSSG10ppmを培養液に処理した場合、生育には影響を与えないが亜鉛含有量が減少する。このため、有効でないことが明らかになった。
すなわち、I.とII.より、普通処方培養液での栽培時にGSSG処理すると、亜鉛含有量に有効な効果がない、又は生育が阻害されることが明らかになった。
〔試験例3:亜鉛とGSSGを組み合わせた処理による検討〕
(実験目的)
リーフレタスを用いて、試験例1で有効であった亜鉛処理と同時に、グルタチオン処理した際の生育と亜鉛含有量の変化を検討した。
(材料と方法)
試験例1、試験例2と同様に行った。
また、(1)栽培条件、(3)測定方法については、試験例1、試験例2と同様に行った。
(2)処理区
試験例1の結果より収穫7日前に通常の培養液(普通処方培養液)に亜鉛処理をし、さらにGSSG処理をした。
(処理区)
・収穫7日前に普通処方培養液に硫酸亜鉛を溶解し、亜鉛濃度を5ppmに調整し、同時にGSSGを溶解し濃度を10ppmに調整した処理区(処理区A)
・収穫7日前に普通処方培養液に硫酸亜鉛を溶解し、亜鉛濃度を5ppmに調整し、同時にGSSGを溶解し濃度を25ppmに調整した処理区(処理区B)
・無処理区(対照区)
(試験結果)
I.亜鉛処理とGSSG処理を同時行った場合:
図11に、収穫時の可食部の新鮮重を示す。具体的には、収穫7日前に培養液中の亜鉛濃度を5ppmに処理し同時にGSSGを溶解し濃度を10ppm(処理区A)又は、25ppmに調整した(処理区B)場合の新鮮重を示す。各値は、平均値±標準誤差を示す。
結果として、地上部の生長は、いずれの処理区においても、対照区と比較して有意差は認められなかった。
図12に、可食部の亜鉛含有量を示す。具体的には、収穫7日前に培養液中の亜鉛濃度を5ppmに処理し同時にGSSGを溶解し濃度を10ppm(処理区A)又は、25ppmに調整した(処理区B)場合の、収穫時の新鮮重100gあたりの亜鉛含有量。各値は、平均値±標準誤差を示す。***は、対照区とt検定で比較して0.1%水準で有意差があることを示す。
結果として、処理区A及び処理区Bでは、収穫時の可食部の亜鉛含有量が対照区の16倍になった。これを試験例1で収穫7日前に培養液中の亜鉛濃度のみを5ppmに調整した場合と比較すると、亜鉛含有量は2倍であった。
以上の結果より、収穫7日前に培養液中に亜鉛とGSSGを同時に処理し、亜鉛濃度を5ppm、GSSG濃度を10ppm又は、25ppmに調整することでリーフレタスにおける亜鉛含有量を、試験例1で示した最適条件の場合以上に上昇させることが可能になった。
I.の結果より、試験例1で示した亜鉛のみを処理したときよりも、亜鉛処理とGSSG処理を同時に行うことによって、生長に影響を与えず、亜鉛含有量をさらに増加させることが可能になった。この結果は、GSSGは亜鉛が過剰にある状態において、亜鉛含有量を増加させる働きがあることを示す。
〔試験例4:最適条件での他品種・他種への適用〕
(実験目的)
試験例1及び試験例3で示された条件を他品種、他種の葉菜類に適応して栽培し、生育と亜鉛含有量の変化を検討した。
(材料と方法)
材料として、レッドリーフレタス(学名:Lactuca sativa var. crispa、品種:ロザンナ、横浜植木株式会社製)、コマツナ(学名:Brassica rapa var.perviridis、品種:楽天、タキイ種苗株式会社製)を供試した。
(1)栽培条件
試験例1、試験例2と同様に行った。ただし、コマツナは栽培期間を移植後21日間とした。
(2)処理区
試験例1の結果より収穫7日前に亜鉛処理し、さらにGSSG処理した以下の処理区を設定した。また収穫3日前に亜鉛処理のみを行う処理区も設定した。
(処理区)
・収穫3日前に培養液に硫酸亜鉛を溶解し亜鉛濃度を5ppmに調整した処理区(処理区C)
・収穫7日前に培養液に硫酸亜鉛を溶解し亜鉛濃度を5ppmに調整した処理区(処理区D;試験例1の最適条件)
・収穫7日前に培養液に硫酸亜鉛とGSSGを溶解し亜鉛濃度を5ppm、GSSG濃度を10ppmに同時に調整した処理区(処理区E;試験例3の最適条件処理区Aと同じ)
・対照区
なお、普通処方培養液(対照区、通常栽培の培養液)の亜鉛濃度は0.02ppmであった。
(3)測定方法
試験例1と同様に行った。
(レッドリーフレタスの試験結果)
図13に、収穫時の可食部の新鮮重を示す。具体的には、レッドリーフレタスを用いて、収穫3日前に培養液中の亜鉛濃度を5ppmに処理(処理区C)、収穫7日前に培養液中の亜鉛濃度を5ppmに処理(処理区D)、及び収穫7日前に培養液中の亜鉛濃度を5ppmに処理し同時にGSSGを溶解し濃度を10ppmに処理(処理区E)した場合の新鮮重を示す。各値は、平均値±標準誤差を示す。*は、対照区とt検定で比較して5%水準で有意差があることを示す。
結果として、地上部の生長は、処理区C及び処理区Eでは対照区と比較して有意な差は認められなかった。一方で、処理区Dにおいては、対照区と比較して有意な減少が認められた。
図14に、可食部の亜鉛含有量を示す。具体的には、レッドリーフレタスを用いて、収穫3日前に培養液中の亜鉛濃度を5ppmに処理(処理区C)、収穫7日前に培養液中の亜鉛濃度を5ppmに処理(処理区D)、及び収穫7日前に培養液中の亜鉛濃度を5ppmに処理し同時にGSSGを溶解し濃度を10ppmに処理(処理区E)した場合の、収穫時の新鮮重100gあたりの亜鉛含有量を示す。各値は、平均値±標準誤差を示す。***は、対照区とt検定で比較して0.1%水準で有意差があることを示す。
結果として、亜鉛含有量は、対照区と比較して処理区Cで6.6倍、処理区Dで9.8倍、処理区Eで20倍と、いずれの処理区においても有意に増加した。
以上の結果より、処理区Eにおいて生育障害を起こさず亜鉛含有量を最も効率的に上昇させることができ、これは試験例3で示した結果と一致した。
(コマツナの試験結果)
図15に、収穫時の可食部の新鮮重を示す。具体的には、コマツナを用いて、収穫3日前に培養液中の亜鉛濃度を5ppmに処理(処理区C)、収穫7日前に培養液中の亜鉛濃度を5ppmに処理(処理区D)、及び収穫7日前に培養液中の亜鉛濃度を5ppmに処理し同時にGSSGを溶解し濃度を10ppmに処理(処理区E)した場合の新鮮重を示す。各値は、平均値±標準誤差を示す。*は、対照区とt検定で比較して5%水準で有意差があることを示す。
結果として、地上部の生長は、処理区Cでは対照区と比較して有意な差は認められなかった。一方、処理区D及び処理区Eにおいては、対照区と比較して有意な減少が認められた。
図16に、可食部の亜鉛含有量を示す。具体的には、コマツナを用いて、収穫3日前に培養液中の亜鉛濃度を5ppmに処理(処理区C)、収穫7日前に培養液中の亜鉛濃度を5ppmに処理(処理区D)、及び収穫7日前に培養液中の亜鉛濃度を5ppmに処理し同時にGSSGを溶解し濃度を10ppmに処理(処理区E)した場合の、収穫時の新鮮重100gあたりの亜鉛含有量を示す。各値は、平均値±標準誤差を示す。***は、対照区とt検定で比較して0.1%水準で有意差があることを示す。
結果として、亜鉛含有量は、対照区と比較して処理区Cで14倍、処理区Dで62倍、処理区Eで75倍と、いずれの処理区においても有意に増加した。
以上の結果により、亜鉛のみを収穫3日前に処理した処理区Cが生育障害を起こさず亜鉛含有量を上昇させることができた。この結果は、レタスを用いた場合の結果と異なった。
一方で収穫7日前に培養液に亜鉛を処理した処理区D及び培養液に亜鉛とGSSGを処理した処理区Eにおいても、生育は低下したが、対照区と比べて亜鉛含有量の増加率が大きく、利用価値があると考えられる。
なお、上記実施の形態の構成及び動作は例であって、本発明の趣旨を逸脱しない範囲で適宜変更して実行することができることは言うまでもない。
本発明では、亜鉛を多く含む機能的な葉菜類の水耕栽培方法及びその葉菜類を提供することが可能となり、産業上に利用することができる。

Claims (7)

  1. 水耕栽培用の普通処方培養液により葉菜類を栽培し、
    収穫の3〜10日前から2ppm〜10ppmの亜鉛を含有する高亜鉛含有培養液により前記葉菜類を栽培する
    ことを特徴とする水耕栽培方法。
  2. 前記高亜鉛含有培養液は、
    2ppm〜50ppmのグルタチオンを更に含有する
    ことを特徴とする請求項1に記載の水耕栽培方法。
  3. 前記高亜鉛含有培養液は、硫酸亜鉛を含む
    ことを特徴とする請求項1又は2に記載の水耕栽培方法。
  4. 葉菜類を、請求項1乃至のいずれか1項に記載の水耕栽培方法により栽培する
    ことを特徴とする葉菜類の製造方法
  5. 葉菜類を栽培するための水耕栽培用の培養液であって、
    2ppm〜10ppmの亜鉛を含有し、
    収穫の3〜10日前から使用される
    ことを特徴とする培養液。
  6. 2ppm〜50ppmのグルタチオンを更に含有する
    ことを特徴とする請求項に記載の培養液。
  7. 培養液濃縮組成物を溶媒によ希釈請求項5又は6に記載の培養液を製造する
    ことを特徴とする培養液製造方法。
JP2015189881A 2015-09-28 2015-09-28 水耕栽培方法、葉菜類の製造方法、培養液、及び培養液製造方法。 Active JP6422188B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015189881A JP6422188B2 (ja) 2015-09-28 2015-09-28 水耕栽培方法、葉菜類の製造方法、培養液、及び培養液製造方法。

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015189881A JP6422188B2 (ja) 2015-09-28 2015-09-28 水耕栽培方法、葉菜類の製造方法、培養液、及び培養液製造方法。

Publications (2)

Publication Number Publication Date
JP2017063632A JP2017063632A (ja) 2017-04-06
JP6422188B2 true JP6422188B2 (ja) 2018-11-14

Family

ID=58490771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015189881A Active JP6422188B2 (ja) 2015-09-28 2015-09-28 水耕栽培方法、葉菜類の製造方法、培養液、及び培養液製造方法。

Country Status (1)

Country Link
JP (1) JP6422188B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6714233B2 (ja) * 2018-11-20 2020-06-24 岡山県 葉物野菜の生産方法
JP7108316B2 (ja) * 2019-09-18 2022-07-28 株式会社エコタイプ次世代植物工場 高葉酸葉物野菜の製造方法
US20240040980A1 (en) 2020-12-25 2024-02-08 Kuraray Co., Ltd. Culture fluid, additive for culture fluid, and cultivation method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04108325A (ja) * 1990-08-29 1992-04-09 Fujisawa Pharmaceut Co Ltd 金属強化野菜
JP2531333B2 (ja) * 1993-02-05 1996-09-04 東洋製罐株式会社 包装容器入りホウレンソウおよびその製造方法
JPH1169920A (ja) * 1997-08-28 1999-03-16 Japan Tobacco Inc 養液栽培による低硝酸葉菜の生産方法
US6505439B2 (en) * 1999-07-20 2003-01-14 Jiangke Wang Process for producing natural organic trace element rich nutritional supplements
JP2010030939A (ja) * 2008-07-28 2010-02-12 Akita Prefectural Univ 植物の茎葉部分および子実へのカドミウム蓄積抑制農業資材、および抑制方法
JP2013048558A (ja) * 2009-12-14 2013-03-14 Ajinomoto Co Inc 酸可溶性亜鉛を高含有する野菜
JP6161020B2 (ja) * 2011-07-15 2017-07-12 公立大学法人秋田県立大学 植物体の茎葉部及び子実部への亜鉛蓄積促進栽培方法及び該方法により生産した農作物
US20140212975A1 (en) * 2013-01-25 2014-07-31 Provitro Bioscience LLC Compositions and methods for bioculture of wasabia japonica
US20150017252A1 (en) * 2013-07-15 2015-01-15 Wayne Garland Supplement and medication cultivated plant delivery system
JP2015050958A (ja) * 2013-09-06 2015-03-19 岩谷産業株式会社 低カリウム野菜の水耕栽培用培養液及びその培養液を用いた低カリウム野菜の水耕栽培方法
RU2654116C2 (ru) * 2014-02-27 2018-05-16 Мацунага Плант Лэборетери Ко, Лтд. Овощи с пониженным содержанием калия и способ их выращивания

Also Published As

Publication number Publication date
JP2017063632A (ja) 2017-04-06

Similar Documents

Publication Publication Date Title
KR101812553B1 (ko) 복합 펩티드 셀레노프로테인 양액 및 그 제조방법과 사용방법
JP6487304B2 (ja) 水耕栽培方法、葉菜類の製造方法、培養液、及び培養液製造方法。
Buck et al. Effects of nutrient solution EC, plant microclimate and cultivars on fruit quality and yield of hydroponic tomatoes (Lycopersicon esculentum)
JP7148241B2 (ja) 植物の生長促進や根伸長促進効果且つ付加価値向上効果を有する酵母抽出物
JP6422188B2 (ja) 水耕栽培方法、葉菜類の製造方法、培養液、及び培養液製造方法。
Mazhar et al. Zinc-aspartate-mediated drought amelioration in maize promises better growth and agronomic parameters than zinc sulfate and L-aspartate.
Wszelaczyńska et al. Effect of biostimulant application and long-term storage on the nutritional value of carrot
Conesa et al. The influence of nitrate/ammonium ratio on yield quality and nitrate, oxalate and vitamin C content of baby leaf spinach and bladder campion plants grown in a floating system
Khunte et al. Effect of different levels of PGRs with organic manure on growth characters and economics of strawberry (Fragaria x ananassa Duch.) cv. chandler in northern region
Żurawicz et al. Amelanchier-a new berry crop in Poland with good potential for commercial cultivation
Nicola et al. The floating growing system and new growing system® to grow leafy vegetables and herbs
Kondratenko et al. Microgreens-biologically complete product of the XXI century
Geoffriau Carrot root quality.
De Pascale et al. Chemical eustress and biofortification: Targeted nutrient solution management for enhancing quality in hydroponically grown vegetables
JP5906085B2 (ja) 水耕栽培における植物体の有用成分含有量向上方法
JP7166213B2 (ja) Sgs高含有アブラナ科野菜の生産方法、並びに、飲食品の製造方法及び飲食品
JP7182228B2 (ja) 植物活性化剤及びその製造方法、並びに肥料組成物及び植物生育方法
JP2013021928A (ja) 植物体の茎葉部及び子実部への亜鉛蓄積促進栽培方法及び該方法により生産した農作物
Gil et al. Water management and its effect on the postharvest quality of fresh-cut vegetables
Okonwu et al. Performance of Cucurbita moschata on soil and soilless media
Ceccherini et al. Agronomic biofortification of Eruca sativa L. with iron in nutrient film technique hydroponic cultivation
Dasgan et al. Selenium and silicon fertilization in soilless grown eggplant
Singh et al. Performance of NanoZinc Oxide and Iron Oxide on Growth, Flowering and Yield of Strawberry (Fragaria× ananassa Duch) cv. Winter Dawn
Ren et al. Accumulation of secondary metabolites and nitrate in basil as affected by light spectrum and nutrient amount in nutrient solution
Sholehah et al. Effect of salinity on growth, physiology, and production of groundcherry (Physalis angulata L.).

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180125

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180416

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181015

R150 Certificate of patent or registration of utility model

Ref document number: 6422188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250