JP6421593B2 - ハイブリッド車両 - Google Patents

ハイブリッド車両 Download PDF

Info

Publication number
JP6421593B2
JP6421593B2 JP2014264115A JP2014264115A JP6421593B2 JP 6421593 B2 JP6421593 B2 JP 6421593B2 JP 2014264115 A JP2014264115 A JP 2014264115A JP 2014264115 A JP2014264115 A JP 2014264115A JP 6421593 B2 JP6421593 B2 JP 6421593B2
Authority
JP
Japan
Prior art keywords
engine
vibration waveform
torque
torque fluctuation
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014264115A
Other languages
English (en)
Other versions
JP2016124314A (ja
Inventor
信彦 松原
信彦 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2014264115A priority Critical patent/JP6421593B2/ja
Publication of JP2016124314A publication Critical patent/JP2016124314A/ja
Application granted granted Critical
Publication of JP6421593B2 publication Critical patent/JP6421593B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、エンジンと電動機とを駆動源とするハイブリッド車両の制御に関する。
従来、エンジンと電動機とを駆動源とするハイブリッド車両の走行時においては、エンジンのトルク変動によってこもり音や低周波の振動が発生する場合があるため、エンジンのトルク変動を打ち消すように電動機の出力トルクを制御してこもり音や低周波の振動の発生を抑制する技術が公知である。たとえば、特開2013−208928号公報(特許文献1)には、電動モータを用いてエンジントルクの変動からエンジントルクの変動の1周期を360度としたときにおける15度進角した制振トルクを付加する技術が開示される。
特開2013−208928号公報
しかしながら、エンジンのトルク変動を打ち消すために逆位相のトルクを与える必要があるため、エンジンの個体ばらつきやエンジンの運転環境、エンジンの経年劣化等による要素を考慮して精度高く逆位相のトルクを算出する必要がある。特許文献1においては、このような点について考慮されていないため、エンジンのトルク変動を十分に打ち消すことができない場合がある。
本発明は、上述した課題を解決するためになされたものであって、その目的は、エンジンのトルク変動に起因するこもり音等の発生を抑制するハイブリッド車両を提供することである。
この発明のある局面に係るハイブリッド車両は、エンジンと、エンジンの出力軸に連結される電動機と、エンジン回転数を検出する第1検出装置と、エンジンと電動機とを制御する制御装置とを備える。制御装置は、第1検出装置によって検出されるエンジン回転数に基づいてエンジンの出力軸のトルク変動に対応する第1振動波形を算出し、算出された第1振動波形と逆位相の第2振動波形を算出し、算出された第2振動波形に対応するトルク変動が生じるように電動機の出力トルクを制御する。
このようにすると、第1検出装置によって検出されるエンジン回転数に基づいてエンジンのトルク変動に対応する第1振動波形を算出することによって、算出された第1振動波形に基づいて第1振動波形と逆位相の第2振動波形を精度高く算出することができる。そのため、第1振動波形によって示されるトルク変動を電動機で発生させる第2振動波形を用いて打ち消すことができる。したがって、エンジンのトルク変動に起因するこもり音等の発生を抑制することができる。
好ましくは、ハイブリッド車両は、電動機のモータ回転数を検出する第2検出装置をさらに備える。制御装置は、第2検出装置によって検出されるモータ回転数に基づいて第2振動波形を発生させる。制御装置は、第2振動波形と第1振動波形の逆位相の波形との位相のずれ量がしきい値よりも大きい場合に、第2振動波形の位相と第1振動波形の逆位相の波形の位相とが一致するように、第1振動波形と第2振動波形との合成波形の振幅がピークとなる回転角度に基づいて第2振動波形の位相を補正する。
このようにすると、第2振動波形を精度高く第1振動波形の逆位相の波形と一致させることができる。そのため、第1振動波形によって示されるトルク変動を、電動機で発生させる第2振動波形を用いて打ち消すことができる。
さらに好ましくは、制御装置は、第2振動波形の位相の補正後において、第1振動波形と第2振動波形との合成波形の振幅の大きさがしきい値を超える場合、合成波形の振幅がゼロになるように第2振動波形の振幅を補正する。
このようにすると、第2振動波形を精度高く第1振動波形の逆位相の波形と一致させることができる。そのため、第1振動波形によって示されるトルク変動を、電動機で発生させる第2振動波形を用いて打ち消すことができる。
さらに好ましくは、制御装置は、第1振動波形の振幅の大きさがしきい値よりも大きい場合には、電動機の出力トルクを緩やかに変化させて第2振動波形を第1振動波形の逆位相の波形に変化させる。
このようにすると、ユーザが違和感を覚える程度にエンジンのトルク変動が急激に減少することを抑制することができる。
さらに好ましくは、制御装置は、第2振動波形が生じるように電動機の出力トルクを制御している場合において、第1振動波形の振幅の大きさがしきい値よりも小さい場合には、電動機の出力トルクを緩やかに変化させて第2振動波形の発生を停止させる。
このようにすると、ユーザが違和感を覚える程度に電動機の出力トルクが変動することを抑制することができる。
本発明によると、第1検出装置によって検出されるエンジン回転数に基づいてエンジンのトルク変動に対応する第1振動波形を算出することによって、算出された第1振動波形に基づいて第1振動波形と逆位相の第2振動波形を精度高く算出することができる。そのため、第1振動波形によって示されるトルク変動を電動機で発生させる第2振動波形を用いて打ち消すことができる。したがって、エンジンのトルク変動に起因するこもり音等の発生を抑制するハイブリッド車両を提供することができる。
ハイブリッド車両の概略構成を示す図である。 エンジンの作動時における回転数の変化と各気筒における筒内圧の変化を示す図である。 エンジン回転数とトルクとトルク変動との関係を示す図である。 ECUの機能ブロック図である。 逆位相トルク制御を実行するエンジンの動作領域を示す図である。 第1振動波形と第2振動波形とを示す図(その1)である。 第1振動波形と第2振動波形とを示す図(その2)である。 ECUで実行される制御処理を示すフローチャートである。 徐変処理の実行時におけるエンジントルクの変化とモータジェネレータの出力トルクの変化とを示すタイミングチャートである。
以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号が付されている。それらの名称および機能も同じである。したがってそれらについての詳細な説明は繰返されない。
図1は、本実施の形態に係るハイブリッド車両(以下、単に車両と記載する)1の概略構成を示す図である。図1に示されるように、本実施の形態に係る車両1は、エンジン10と、モータジェネレータ(以下、単にMGと記載する)20と、トランスミッション(以下、単にT/Mと記載する)30と、インバータ40と、バッテリ50と、ECU(Electronic Control Unit)200とを含む。
エンジン10のクランク軸には、MG20の回転軸が接続される。MG20の回転軸には、T/M30の入力軸が接続される。T/M30の出力軸には、左右の駆動輪80が接続される。
T/M30は、変速機と、ディファレンシャルギヤとを含む。変速機は、遊星歯車装置等を用いて構成される有段式の自動変速機であってもよいし、無段式の自動変速機であってもよいし、手動変速機であってもよい。変速機が自動変速機である場合には、T/M30は、トルクコンバータを含むようにしてもよい。
エンジン10は、単数または複数の気筒を有する内燃機関である。エンジン10は、たとえば、ガソリンエンジンであってもよいし、ディーゼルエンジンであってもよい。
MG20は、バッテリ50からインバータ40を経由して供給される電力を用いてトルク(以下、出力トルクとも記載する)を発生させる。MG20は、出力トルクをT/M30の入力軸に伝達する。ECU200は、インバータ40からMG20に供給される電力を調整することによってMG20の出力トルクを調整する。
また、MG20は、出力トルクをエンジン10のクランク軸に伝達することも可能である。そのため、MG20は、車両1の走行時等においてエンジン10を始動することができる。MG20は、たとえば、T/M30に出力トルクを伝達して車両1を走行させるとともに、エンジン10に出力トルクを伝達して、エンジン10のクランク軸を回転させる。ECU200は、エンジン10の回転数(以下、エンジン回転数とも記載する)を始動可能回転数以上に回転したときに、燃料噴射制御および点火制御を実行することによってエンジン10を始動させる。
また、MG20は、車両1の走行時等において、T/M30から伝達される回転トルクやエンジン10が出力するトルク(以下、エンジントルクと記載する)を用いて発電する。MG20において発電された電力がインバータ40を経由してバッテリ50に供給されることによって、バッテリ50が充電される。
インバータ40は、スイッチング素子を複数個含む。インバータ40は、スイッチング素子のオン・オフ動作を制御することによってバッテリ50に蓄えられた直流電力をMG20を駆動するための交流電力に変換する。インバータ40は、ECU200からの制御信号に基づいて制御される。
バッテリ50は、蓄電装置であり、再充電可能な直流電源である。バッテリ50としては、たとえば、ニッケル水素電池やリチウムイオン電池等の二次電池が用いられる。バッテリ50は、上述したようにMG20発電された電力を用いて充電される他、外部電源(図示せず)から供給される電力を用いて充電されてもよい。なお、バッテリ50は、二次電池に限らず、直流電圧を生成できるもの、たとえば、キャパシタ、太陽電池、燃料電池等であってもよい。
ECU200は、プログラムとデータを記憶するROM(Read Only Memory)と、各種処理を行うCPU(Central Processing Unit)と、CPUの処理結果等を記憶するRAM(Random Access Memory)と、外部との情報のやり取りを行うための、入力ポートおよび出力ポートとを含む。入力ポートに上述したエンジン回転数センサ102と、MG回転数センサ104等の各種センサが接続される。
エンジン回転数センサ102は、タイミングロータと、センサ部(いずれも図示せず)とを含む。タイミングロータは、エンジン10のクランク軸に固定される。タイミングロータの外周部には、径方向外側に突出した複数の歯部が周方向に等間隔に設けられる。タイミングロータの外周部には、欠け歯部分を1か所または複数箇所に設けられる。なお、複数箇所の欠け歯部分は、連続していてもよい。
センサ部は、タイミングロータの外周部に設けられる複数の歯部の外周面に対向する位置に設けられる。センサ部は、タイミングロータの外周部との距離に応じた電圧(パルス信号)をECU200に出力する。タイミングロータの欠け歯部分がセンサ部を通過するときにセンサ部が出力する電圧波形は、欠け歯部分以外の部分がセンサ部を通過するときにセンサ部が出力する電圧波形と異なる。ECU200は、センサ部から出力される電圧波形のうちの欠け歯部分に対応する電圧波形が入力される毎にタイミングロータが1回転したことを認識することができる。ECU200は、センサ部から出力される電圧波形のうちの欠け歯部分に対応する電圧波形を基準位置としてクランク軸の回転角度(以下、クランク角と記載する)を算出したり、クランク軸の回転数(以下、エンジン回転数と記載する)を算出したりする。
MG回転数センサ104は、エンジン回転数センサ102と比較してタイミングロータがMG20の回転軸(図1においては、MG20とT/M30との間の回転軸)に設けられる点以外は、その構成および動作はエンジン回転数センサ102と同様であるため、その詳細な説明は繰り返さない。ECU200は、MG回転数センサ104のセンサ部から出力される電圧波形のうちの欠け歯部分に対応する電圧波形を基準として回転軸の回転角度を算出したり、回転軸の回転数(以下、MG回転数と記載する)を算出したりする。
ECU200は、入力ポートに接続された各機器から信号を受信し、受信した信号に基づいて出力ポートに接続されたエンジン10と、T/M30と、インバータ40等を制御する。ECU200は、たとえば、アクセル開度等に基づいて車両1の要求駆動力を算出し、算出された要求駆動力に応じてエンジン10およびMG20の出力を制御する。
以上のような構成を有する車両1の走行時や停車時等において、エンジン10が作動状態である場合には、エンジン10のトルク変動によってこもり音や低周波の振動を発生する場合がある。
図2に、エンジン回転数の時間変化と各気筒の筒内圧の時間変化とを示す。図2のいずれのグラフも横軸は、時間を示す。図2の最上段のグラフの縦軸は、エンジン回転数を示し、図2の最上段以外のグラフの縦軸は、1番気筒から4番気筒までの各気筒の筒内圧を示す。なお、図2においてエンジン10は、たとえば、直列4気筒エンジンである場合を一例とする。1番気筒、2番気筒、3番気筒および4番気筒に付与された番号は、直列に並んだ4つの気筒の一方端からの順番を示す。
図2に示すように、エンジン10においては、3番気筒、4番気筒、2番気筒、1番気筒の順序で燃焼が行なわれ、以下同様の順序での燃焼が繰り返される。図2に示すように、各気筒における燃焼のタイミングで筒内圧が上昇する。筒内圧の上昇に応じて気筒内のピストンが押し下げられることによってエンジン回転数が増加する。このようなエンジン回転数の変化が各気筒の燃焼のタイミングで行なわれることになるため、エンジン回転数が各気筒の筒内圧の上昇に応じて変動することとなり、これによってトルク変動が発生する。
図3にエンジン回転数とエンジントルクとの関係を示す。図3の横軸は、エンジン回転数を示す。図3の縦軸は、エンジントルクを示す。図3の上側の山型の形状を有する実線部分は、エンジン回転数に対するエンジントルクの上限値を示す。図3の等間隔に設けられる複数の斜線部分の各々は、同じ程度のトルク変動が生じる動作点を線で結んで形成される。複数の斜線において左側になるほどトルク変動量が大きくなることを示している。
図3に示すように、エンジントルクが大きいほど筒内圧のピーク値が大きくなることを示すため、トルク変動量は大きくなる傾向がある。また、エンジン回転数が低いほど燃焼間隔が長くなるため、トルク変動量は大きくなる傾向がある。そのため、エンジン回転数が低く、かつ、エンジントルクが高いほどエンジン10のトルク変動に起因したこもり音や低周波の振動が発生しやすくなる。
このようなこもり音や低周波の振動の発生を抑制するため、エンジン10のトルク変動を打ち消すようにMG20の出力トルクを制御して逆位相のトルクを発生させる場合がある。しかしながら、エンジン10の個体ばらつきやエンジン10の運転環境、エンジン10の経年劣化等による要素を考慮して精度高く逆位相のトルクを算出する必要がある。
そこで、本実施の形態においては、ECU200は、エンジン回転数センサ102によって検出されるエンジン回転数に基づいてエンジン10のトルク変動を示す第1振動波形を算出し、算出された第1振動波形と逆位相の第2振動波形を算出し、算出された第2振動波形が生じるようにMG20の出力トルクを制御する点を特徴とする。
このようにすると、エンジン回転数センサ102によって検出されるエンジン回転数に基づいてエンジン10のトルク変動に対応する第1振動波形を算出することによって、算出された第1振動波形に基づいて第1振動波形と逆位相の第2振動波形を精度高く算出することができる。そのため、第1振動波形によって示されるトルク変動をMG20で発生させる第2振動波形を用いて打ち消すことができる。
図4に、本実施の形態に係るハイブリッド車両1に搭載されるECU200の機能ブロック図を示す。図4に示すように、ECU200は、動作領域判定部202と、逆位相トルク制御部204と、補正値算出部206と、終了判定部208とを含む。なお、これらの構成は、プログラム等のソフトウェアにより実現されてもよいし、ハードウェアにより実現されてもよい。
動作領域判定部202は、エンジン10の動作点が予め定められた領域内であるか否かを判定する。エンジン10の動作点とは、縦軸をエンジントルクとし、横軸をエンジン回転数とする平面上においてエンジン回転数と、エンジントルクとによって特定される点である。
図5は、エンジン回転数とエンジントルクとの関係において予め定められた動作領域を示す図である。図5の横軸は、エンジン回転数を示し、図5の縦軸は、エンジントルクを示す。図5の上側の山型の形状を有する実線部分は、エンジン回転数に対するエンジントルクの上限値を示す。図5の等間隔に設けられる複数の斜線部分の各々は、同じ程度のトルク変動が生じる動作点を線で結んで形成される。複数の斜線において左側になるほどトルク変動量が大きくなることを示している。
図5に示すように、予め定められた領域は、エンジン回転数NE(0)よりも大きい領域であって、設計的あるいは実験的に設定される。エンジン回転数NE(0)よりも低い領域は、エンジン10による車両1の走行が不可となるエンジン回転数領域である。予め定められた領域は、トルク変動量が予め定められた量以上となる第1領域(図5の斜線領域)と、当該領域に隣接する領域であって(すなわち、トルク変動量が予め定められた量よりも小さくなる領域であって)、かつ、共振周波数に対応するエンジン回転数NE(1)に基づいて設定される第2領域(太破線で囲まれる斜線領域)とを含む。
第2領域において、エンジン回転数がエンジン回転数NE(1)であるときにおいて予め定められた量よりもさらに低いトルク変動量を第2領域の下限値として含む。第2領域は、当該下限値からトルク変動量が増加するほど領域が拡大するように設定される。第2領域は、トルク変動量が予め定められた量よりも小さくともエンジン回転数が共振周波数あるいはその周辺の周波数に対応するエンジン回転数領域内になることによってユーザが許容できる程度を超えた強度の振動が発生する領域であれば、特に図5に示す領域に限定されるものではない。
動作領域判定部202は、たとえば、エンジン回転数センサ102による検出結果と、エンジン10の制御値(たとえば、吸入空気量やスロットル開度や燃料噴射量等の制御値)に基づいて算出されるエンジントルクとに基づいてエンジン10の動作点が図5に示される予め定められた領域内の動作点であるか否かを判定する。なお、動作領域判定部202は、たとえば、エンジン10の動作点が予め定められた領域内であると判定される場合には、領域判定フラグをオンするようにしてもよい。
逆位相トルク制御部204は、動作領域判定部202によってエンジン10の動作点が予め定められた領域内であると判定される場合には(たとえば、領域判定フラグがオン状態である場合には)、以下のようにして、エンジン10において発生するトルク変動に対応する第1振動波形の逆位相となる第2振動波形を算出し、算出された第2振動波形に基づいてMG20の出力トルクを制御する。以下の説明においてこのような制御を逆位相トルク制御と記載する場合がある。
本実施の形態において、逆位相トルク制御部204は、エンジン10の回転エネルギーの変動量ΔErot(1)をエンジン10のトルク変動量として算出する。具体的には、逆位相トルク制御部204は、エンジン回転数に基づいてエンジン10のトルク変動の周波数feとエンジン10のクランク軸の角速度ωeの変動量Δωeを算出する。ある時間tにおけるエンジン10のクランク軸の角速度ωeの変動量Δωe(t)は、たとえば、以下の(式1)により算出される。
Δωe(t)=ωe(t)−ωe(t−1)…(式1)
逆位相トルク制御部204は、以下の(式2)を用いてエンジン10の回転エネルギーの変動量(以下、トルク変動量と記載する)ΔErot(1)を算出する。
ΔErot(1)=Ie×Δωe/2…(式2)
なお、Ieは、エンジン10のクランク軸の慣性モーメントを示す。慣性モーメントIeは、たとえば、実験的あるいは設計的に算出される。
逆位相トルク制御部204は、算出されたトルク変動量ΔErot(1)に基づいて、逆位相トルク変動量ΔErot(1)’=−Ie×Δωe/2を算出する。
逆位相トルク制御部204は、算出された周波数feと逆位相トルク変動量ΔErot(1)’とに基づいてトルク変動量ΔErot(1)に対応する第1振動波形の逆位相となる第2振動波形が発生するようにMG20を制御する。
逆位相トルク制御部204は、エンジン回転数センサ102のタイミングロータの欠け歯部分の設計位置とMG回転数センサ104のタイミングロータの欠け歯部分の設計位置との差を位相ずれの初期値として第2振動波形を発生させるタイミングを決定する。
逆位相トルク制御部204は、たとえば、第1振動波形の振幅がゼロかつ回転角度がゼロ(あるいは、180°)となるタイミングと、エンジン回転数センサ102の欠け歯部分の位置(設計値)との関係(クランク軸の回転角度差)を記憶しておく。逆位相トルク制御部204は、エンジン回転数センサ102の欠け歯部分の位置と、MG回転数センサ104の欠け歯部分の位置(設計値)とのずれ(エンジン10のクランク軸およびMG20の回転軸の回転角度差)を考慮して、第1振動波形の振幅がゼロかつ回転角度がゼロとなるタイミングと、MG回転数センサ104の欠け歯部分の位置との関係を特定する。逆位相トルク制御部204は、特定された関係と、MG回転数センサ104によって検出されるMG回転数とに基づいて第1振動波形の振幅がゼロかつ回転角度がゼロとなるタイミングで第2振動波形を発生させる。なお、上述の第2振動波形を発生させるタイミングの特定方法は一例であり、特に上述した方法に限定されるものではない。たとえば、エンジン回転数センサ102の欠け歯部分の位置に対応する第1振動波形の振幅および回転角度を第2振動波形を発生させるタイミングとしてもよい。
逆位相トルク制御部204は、MG20の回転軸における回転エネルギーの変動量(以下、出力軸トルク変動量と記載する)ΔErot(2)を算出する。具体的には、逆位相トルク制御部204は、(式3)を用いてMG20の出力軸トルク変動量を算出する。
ΔErot(2)=Im×Δωm/2…(式3)
なお、Imは、MG20の慣性モーメントを示す。慣性モーメントImは、たとえば、実験的あるいは設計的に算出される。Δωmは、MG20の角速度ωmの変動量を示す。ある時間tにおけるMG20の回転軸の角速度ωmの変動量Δωm(t)は、たとえば、以下の(式4)により算出される。
Δωm(t)=ωm(t)−ωm(t−1)…(式4)
図6に示すように、エンジン10において発生するトルク変動がMG20において発生する逆位相のトルク変動によって打ち消されている場合には、第1振動波形(図6の一点鎖線)と第2振動波形(図6の破線)との合成波形(図6の太線)であるΔErot(2)の振幅の値は、ほぼゼロとなる。
一方、図7に示すように、第2振動波形(図7の破線)と、第1振動波形(図7の一点鎖線)の逆位相の波形との間に位相ずれがある場合には、一定以上の振幅を有する合成波形(図7の太線)が形成され、エンジン10のトルク変動量ΔErot(1)をMG20の逆位相トルク変動量ΔErot(1)’によって十分に打ち消すことができない場合がある。
なお、図6および7の縦軸は、振幅を示し、図6および7の横軸は、回転角度を示す。図6および7の一点鎖線は、トルク変動量ΔErot(1)に対応する第1振動波形を示す。図6および7の破線は、逆位相トルク変動量ΔErot(1)’に対応する第2始動波形を示す。図6および7の太線は、第1振動波形と第2振動波形との合成波形であって、出力軸トルク変動量ΔErot(2)を示す。
そのため、このような場合には、後述する補正値算出部206によって位相の補正値あるいは逆位相トルク変動量ΔErot(1)’の補正係数が算出される。
逆位相トルク制御部204は、補正値算出部206によって位相の補正値が算出される場合には、第2振動波形の位相が補正値の分だけ進むように(図7において第2振動波形が矢印の方向にオフセットするように)第2振動波形を補正する。逆位相トルク制御部204は、補正値算出部206によって、逆位相トルク変動量ΔErot(1)’の補正係数が算出される場合には、算出された補正係数を逆位相トルク変動量ΔErot(1)’に乗算することによって第2振動波形を補正する。
さらに、逆位相トルク制御部204は、後述する終了判定部208によって、第2振動波形を発生させる制御を終了すると判定される場合に、第2振動波形を発生させる制御を停止させる。
補正値算出部206は、出力軸トルク変動量ΔErot(2)の値がしきい値Aよりも大きい場合には、エンジン10のトルク変動がMG20において発生された逆位相トルクによって打ち消されていないと判定し、位相の補正値を算出する。
エンジン回転数センサ102のタイミングロータの欠け歯部分の位置とMG回転数センサ104のタイミングとにおける欠け歯部分の位置とのずれは、寸法公差、組み付けばらつき、あるいは、経年劣化等により設計値に対してずれが生じる場合がある。そのため、補正値算出部206は、このずれ分を位相の補正値として算出する。
より具体的には、補正値算出部206は、ΔErot(2)のピーク値となる場合の回転角度に基づいて補正値を算出する。補正値算出部206は、図7に示すように、ΔErot(2)がピーク値となる回転角度と、第2振動波形において振幅がゼロとなる回転角度との差の2倍を位相の補正値として算出する。補正値算出部206は、第1回転角度と第2回転角度との差がたとえば、15度である場合には、30度を補正値として算出する。
補正値算出部206は、位相ずれを補正した後に、出力軸トルク変動量ΔErot(2)がしきい値Bを超える場合には、逆位相トルク変動量ΔErot(1)’を補正する。補正値算出部206は、たとえば、第2振動波形の振幅に対する第1振動波形の振幅の比を補正係数として算出する。なお、しきい値AおよびBは、同じ値であってもよいし、異なる値であってもよい。
終了判定部208は、エンジン10のトルク変動量ΔErot(1)の値がしきい値Cよりも小さいか否かを判定する。しきい値Cは、たとえば、こもり音や低周波の振動の発生を利用者が認識できない程度のトルク変動であるか否かを判定するためのしきい値であってもよいし、あるいは、こもり音や低周波の振動発生を利用者が認識できたとしても不快に感じない程度のトルク変動であるか否かを判定するためのしきい値であってもよい。しきい値Cは、たとえば、実験等により適合される。
図8を参照して、本実施の形態に係る車両1に搭載されるECU200で実行される制御処理について説明する。
ステップ(以下、ステップをSと記載する)100にて、ECU200は、エンジン10の動作点が予め定められた領域内であるか否かを判定する。エンジン10の動作点が予め定められた領域内であると判定される場合(S100にてYES)、処理はS102に移される。もしそうでない場合(S100にてNO)、処理はS100に戻される。
S102にて、ECU200は、エンジン回転数に基づいて周波数feおよび角速度ωeを算出する。S104にて、ECU200は、エンジン10のトルク変動量(=ΔErot(1))を算出する。
S108にて、ECU200は、逆位相トルク制御を実行する。逆位相トルク制御については、上述したとおりであるため、その詳細な説明は繰り返さない。S110にて、ECU200は、MG回転数センサ104からMG回転数を取得する。
S112にて、ECU200は、出力軸トルク変動量(=ΔErot(2))を算出する。出力軸トルク変動量の算出方法は、上述したとおりであるため、その詳細な説明は繰り返さない。
S114にて、ECU200は、位相ずれがしきい値D以下であるか否かを判定する。ECU200は、たとえば、上述したとおり、出力軸トルク変動量がしきい値Aよりも大きい場合に、位相ずれがしきい値D以下でないと判定してもよいし、あるいは、出力軸トルク変動量ΔErot(2)のピーク値となる回転角度と、直近の第1振動波形のピーク値となる回転角度との差がしきい値以下である場合、位相ずれがしきい値D以下でないと判定してもよい。位相ずれがしきい値D以下であると判定される場合(S114にてYES)、処理はS118に移される。もしそうでない場合(S114にてNO)、処理はS116に移される。
S116にて、ECU200は、位相の補正値を算出する。位相の補正値の算出方法については上述したとおりであるため、その詳細な説明は繰り返さない。
S118にて、ECU200は、出力軸トルク変動量ΔErot(2)がしきい値B以下であるか否かを判定する。出力軸トルク変動量ΔErot(2)がしきい値B以下であると判定される場合(S118にてYES)、処理はS122に移される。もしそうでない場合(S118にてNO)、処理はS120に移される。
S120にて、ECU200は、逆位相トルク変動量ΔErot(1)’の補正係数を算出する。補正係数の算出方法については上述したとおりであるため、その詳細な説明は繰り返さない。
S122にて、ECU200は、エンジン10のトルク変動量ΔErot(1)がしきい値Cよりも小さいか否かを判定する。エンジン10のトルク変動量ΔErot(1)がしきい値Cよりも小さいと判定される場合(S122にてYES)、処理はS124に移される。もしそうでない場合(S122にてNO)、処理はS100に戻される。S124にて、ECU200は、制御を停止する。
以上のような構造およびフローチャートに基づく本実施の形態に係る車両1に搭載されるECU200の動作について説明する。
たとえば、エンジン10の動力を用いて車両1が走行している場合を想定する。エンジン10の動作点が予め定められた領域内になると(S100にてYES)、エンジン回転数に基づいて周波数feとエンジン10のクランク軸の角速度ωeが算出されるとともに(S102)、エンジン10のトルク変動量ΔErot(1)が算出され(S104)、逆位相トルク制御が実行される(S108)。これにより、MG20において逆位相トルク変動量ΔErot(1)’と周波数feとに基づく第2振動波形が発生させられる。MG回転数が取得され(S110)、出力軸トルク変動量が算出されると(S112)、位相ずれがしきい値D以下であるか否かが判定される(S114)。
位相ずれがしきい値D以下であると判定され(S114にてYES)、かつ、算出された出力軸トルク変動量がしきい値B以下である場合には(S118にてYES)、第2振動波形は、第1振動波形の逆位相の波形とほぼ一致することとなるため、第1振動波形に対応するトルク変動量が第2振動波形に対応する逆位相トルク変動量によって打ち消される。
一方、位相ずれがしきい値D以下でないと判定されると(S114にてNO)、位相の補正値が算出される(S116)。算出された補正値は、その後の逆位相トルク制御において用いられる(S108)。すなわち、MG20において発生される第2振動波形の位相が補正値の分だけ進められることとなる。
位相ずれがしきい値D以下であっても(S114にてYES)、出力軸トルク変動量がしきい値B以下でない場合には(S118にてNO)、補正係数が算出される(S120)。算出された補正係数は、その後の逆位相トルク制御において用いられる(S108)。すなわち、逆位相トルク変動量ΔErot(1)’に補正係数が乗算されることによって逆位相トルク変動量ΔErot(1)’が補正される。
このように補正された結果、位相のずれおよび逆位相トルク変動量ΔErot(1)’の値が修正される。そのため、第2振動波形が、第1振動波形の逆位相の波形とほぼ一致することとなる場合には、第1振動波形に対応するトルク変動量が第2振動波形に対応する逆位相トルク変動量によって打ち消される。これにより、出力軸トルク変動量ΔErot(2)の振幅の値がほぼゼロとなることによって、こもり音や低周波の振動の発生が抑制されることとなる。
エンジン10のトルク変動量がしきい値Cよりも小さくなる場合には(S122にてYES)、逆位相トルク制御が停止される(S124)。
以上のようにして、本実施の形態に係る車両1によると、エンジン回転数センサ102によって検出されるエンジン回転数に基づいてエンジン10のトルク変動に対応する第1振動波形が算出されることによって、算出された第1振動波形に基づいて第1振動波形と逆位相の第2振動波形を精度高く算出することができる。そのため、第1振動波形によって示されるトルク変動をMG20で発生させる第2振動波形を用いて打ち消すことができる。したがって、エンジンのトルク変動に起因するこもり音等の発生を抑制するハイブリッド車両を提供することができる。
また、第2振動波形の位相と第1振動波形の逆位相の波形の位相とのずれ量がしきい値よりも大きい場合に、第2振動波形の位相と第1振動波形の逆位相の波形とが一致するように、第1振動波形と第2振動波形との合成波形の振幅がピークとなる回転角度に基づいて第2振動波形の位相が補正される。これにより、第2振動波形を精度高く第1振動波形の逆位相の波形と一致させることができる。
さらに、第2振動波形の位相と第1振動波形の逆位相の波形の位相とのずれ量がしきい値よりも大きい場合に、第1振動波形と第2振動波形との合成波形のピークとなる第1回転角度と、第1回転角度の直近の第2振動波形の振幅がゼロとなる第2回転角度との差の2倍を補正量として第2振動波形の位相が補正される。これにより、第2振動波形の位相を精度高く第1振動波形の逆位相の波形と一致させることができる。
さらに、第1振動波形と第2振動波形との合成波形の振幅の大きさがしきい値を超える場合、合成波形の振幅の値がゼロになるように第2振動波形の振幅の値が補正される。これにより、第1振動波形を示すトルク変動をMG20で発生させる第2振動波形を用いて打ち消すことができる。
以下、変形例について説明する。
本実施の形態においては、エンジン10を用いた走行中に、MG20の出力トルクを用いてエンジン10のトルク変動を打ち消すものとして説明したが、たとえば、エンジン10およびMG20を用いた走行中においても、MG20の駆動トルクにエンジン10のトルク変動を打ち消す逆位相トルク変動成分を重畳させることにより、エンジン10のトルク変動を打ち消すようにしてもよい。たとえば、エンジン10のクランク軸にトルクセンサあるいは加速度センサなどを取り付け、MG20の駆動トルクにエンジン10のトルク変動あるいは加速度変動を打ち消すトルク変動成分あるいは加速度変動成分を重畳させることにより、エンジン10のトルク変動を打ち消すようにしてもよい。
本実施の形態において、車両1は、エンジン10およびMG20ともに駆動力を発生するものとして説明するが、車両1は、エンジン10が発電にのみ用いられるシリーズ式のハイブリッド車両であってもよい。
本実施の形態において、エンジン10の動作点が予め定められた領域内である場合に逆位相トルク制御を実行するものとして説明したが、たとえば、エンジン10の動作点が予め定められた領域内である場合に代えてまたは加えてアクセルペダルの踏み込み量がしきい値を超える場合に逆位相トルク制御を実行してもよいし、あるいは、所定車速以下の低速かつ選択されている変速段が所定の変速段以上の高速段である場合に逆位相トルク制御を実行してもよい。
本実施の形態において、エンジン10とMG20とは直結される場合を一例として説明したが、たとえば、エンジン10とMG20との間に変速機が接続されるようにしてもよい。この場合において、MG20において与えられる逆位相トルク変動量および周波数は、エンジン回転数に基づく周波数と、エンジン10のトルク変動量と、変速機のギヤ比とに基づいて算出されることが望ましい。
本実施の形態において、逆位相トルク制御を実行する場合に、逆位相トルク変動量ΔErot(1)’が発生するようにMG20を制御するものとして説明したが、たとえば、図9の時間T(0)におけるMGトルクの変化に示されるように、MG20の出力トルクを緩やかに変化させて最終的に逆位相トルク変動量ΔErot(1)’が発生するようにMG20を制御するようにしてもよい。図9の上段のグラフの縦軸は、トルクの振幅(トルク変動発生時におけるトルクの最大ピーク値と最小ピーク値との差)を示し、図9の下段のグラフの縦軸は、アクセル開度を示す。図9の上段および下段のグラフの横軸は、時間を示す。
ECU200は、図9に示すように、アクセル開度が低い状態からアクセルペダルが踏み込まれることによってエンジン回転数およびエンジントルクを上昇させる。時間T(0)において、エンジン10の動作点が予め定められた領域内になり、かつ、エンジン10のトルク変動量がユーザが不快となるしきい値以上となる場合に、たとえば、MG20の出力トルクの単位時間当たり(あるいは、所定時間当たり)の変化量(低下量)に制限値が設定されることによって、MG20の出力トルクを実線に沿って発生させる場合よりもMG20の出力トルクの変化を緩やかにさせてもよい。
このようにすると、ユーザが違和感を覚える程度にエンジン10のトルク変動が急激に減少することを抑制することができる。
さらに、本実施の形態において、逆位相トルク制御を実行する場合に、逆位相トルク変動量ΔErot(1)’の発生が停止するようにMG20を制御するものとして説明したが、たとえば、図9の時間T(2)におけるMG20の出力トルクの変化に示されるように、MG20の出力トルクを緩やかに変化させて最終的に逆位相トルク変動量ΔErot(1)’の発生が停止するようにMG20を制御するようにしてもよい。
ECU200は、図9に示すように時間T(1)において、アクセルペダルの踏み込みが解除されるなどして、アクセル開度が低下すると、車両1に要求されるトルクが低下するため、エンジントルクが低下していく。時間T(2)において、エンジン10のトルク変動量がしきい値よりも小さくなる場合に、たとえば、MG20の出力トルクの単位時間当たり(あるいは、所定時間当たり)の変化量(増加量)に制限値が設定されることによって、MG20の出力トルクを実線に沿って発生させる場合よりもMG20の出力トルクの変化を緩やかにしてもよい。
このようにすると、ユーザが違和感を覚える程度にMG20の出力トルクが変動することを抑制することができる。
さらに、本実施の形態において、逆位相トルク変動量に補正係数を乗算して逆位相トルク変動量を補正するものとして説明したが、たとえば、逆位相トルク変動量に補正値を加算して逆位相トルク変動量を補正するものとしてもよい。なお、上記した変形例は、その全部または一部を組み合わせて実施してもよい。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 ハイブリッド車両、10 エンジン、20 MG、30 T/M、40 インバータ、50 バッテリ、80 駆動輪、102 エンジン回転数センサ、104 MG回転数センサ、200 ECU、202 動作領域判定部、204 逆位相トルク制御部、206 補正値算出部、208 終了判定部。

Claims (2)

  1. エンジンと、
    前記エンジンの出力軸に連結される電動機と、
    エンジン回転数を検出する第1検出装置と、
    前記エンジンと前記電動機とを制御する制御装置とを備え、
    前記制御装置は、前記第1検出装置によって検出される前記エンジン回転数に基づいて前記エンジンの出力軸のトルク変動に対応する第1振動波形を算出し、算出された前記第1振動波形と逆位相の第2振動波形を算出し、算出された前記第2振動波形に対応するトルク変動が生じるように前記電動機の出力トルクを制御し、
    前記制御装置は、前記第1振動波形の振幅の大きさがしきい値よりも大きい場合には、前記電動機の出力トルクの単位時間当たりの変化量に制限値を設定することにより、前記電動機の出力トルクを緩やかに変化させて前記第2振動波形を前記第1振動波形の逆位相の波形に変化させる、ハイブリッド車両。
  2. エンジンと、
    前記エンジンの出力軸に連結される電動機と、
    エンジン回転数を検出する第1検出装置と、
    前記エンジンと前記電動機とを制御する制御装置とを備え、
    前記制御装置は、前記第1検出装置によって検出される前記エンジン回転数に基づいて前記エンジンの出力軸のトルク変動に対応する第1振動波形を算出し、算出された前記第1振動波形と逆位相の第2振動波形を算出し、算出された前記第2振動波形に対応するトルク変動が生じるように前記電動機の出力トルクを制御し、
    前記制御装置は、前記第2振動波形が生じるように前記電動機の出力トルクを制御している場合において、前記第1振動波形の振幅の大きさがしきい値よりも小さい場合には、前記電動機の出力トルクの単位時間当たりの変化量に制限値を設定することにより、前記電動機の出力トルクを緩やかに変化させて前記第2振動波形の発生を停止させる、ハイブリッド車両。
JP2014264115A 2014-12-26 2014-12-26 ハイブリッド車両 Active JP6421593B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014264115A JP6421593B2 (ja) 2014-12-26 2014-12-26 ハイブリッド車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014264115A JP6421593B2 (ja) 2014-12-26 2014-12-26 ハイブリッド車両

Publications (2)

Publication Number Publication Date
JP2016124314A JP2016124314A (ja) 2016-07-11
JP6421593B2 true JP6421593B2 (ja) 2018-11-14

Family

ID=56357326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014264115A Active JP6421593B2 (ja) 2014-12-26 2014-12-26 ハイブリッド車両

Country Status (1)

Country Link
JP (1) JP6421593B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6519957B2 (ja) 2017-02-23 2019-05-29 マツダ株式会社 ハイブリッド車両の動力制御方法及び動力制御装置
JP6504527B2 (ja) 2017-02-23 2019-04-24 マツダ株式会社 ハイブリッド車両の動力制御方法及び動力制御装置
JP6489509B2 (ja) * 2017-02-23 2019-03-27 マツダ株式会社 ハイブリッド車両の動力制御方法及び動力制御装置
JP6521485B2 (ja) * 2017-02-23 2019-05-29 マツダ株式会社 ハイブリッド車両の動力制御方法及び動力制御装置
JP6521484B2 (ja) * 2017-02-23 2019-05-29 マツダ株式会社 ハイブリッド車両の動力制御方法及び動力制御装置
JP6489510B2 (ja) * 2017-02-23 2019-03-27 マツダ株式会社 ハイブリッド車両の動力制御方法及び動力制御装置
JP6691930B2 (ja) 2018-02-23 2020-05-13 本田技研工業株式会社 車両及び車両の制御方法
CN115773886A (zh) * 2022-10-31 2023-03-10 上汽通用五菱汽车股份有限公司 一种混动总成低频异响问题分析方法、装置和计算机设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364407A (ja) * 2001-06-01 2002-12-18 Mazda Motor Corp 車両用制御装置
JP5553162B2 (ja) * 2010-09-29 2014-07-16 アイシン・エィ・ダブリュ株式会社 制御装置
JP2012218696A (ja) * 2011-04-14 2012-11-12 Fuji Heavy Ind Ltd ハイブリッド車両の制振制御装置
JP5994231B2 (ja) * 2011-10-12 2016-09-21 アイシン・エィ・ダブリュ株式会社 駆動装置の制御装置

Also Published As

Publication number Publication date
JP2016124314A (ja) 2016-07-11

Similar Documents

Publication Publication Date Title
JP6421593B2 (ja) ハイブリッド車両
US6232733B1 (en) Engine-motor hybrid vehicle control apparatus and method having power transmission device operation compensation function
US20170203754A1 (en) Control apparatus for hybrid vehicle
JP2008024287A (ja) ハイブリッド電気自動車の制御装置
WO2018155624A1 (ja) ハイブリッド車両の動力制御方法及び動力制御装置
WO2018155625A1 (ja) ハイブリッド車両の動力制御方法及び動力制御装置
JP2019124143A (ja) 車両用制御装置
US7904230B2 (en) Control apparatus and control method for vehicle
WO2018155616A1 (ja) ハイブリッド車両の動力制御方法及び動力制御装置
JP2011230707A (ja) ハイブリッド車両の制御装置
WO2018155623A1 (ja) ハイブリッド車両の動力制御方法及び動力制御装置
JP5197528B2 (ja) エンジン負荷検知装置およびエンジン負荷検知方法
JP2014139040A (ja) ハイブリッド車両のエンジン始動制御装置
JP2010163060A (ja) ハイブリッド自動車
JP2010089747A (ja) ハイブリッド車およびその制御方法
JP6489509B2 (ja) ハイブリッド車両の動力制御方法及び動力制御装置
WO2018155617A1 (ja) ハイブリッド車両の動力制御方法及び動力制御装置
JP6489510B2 (ja) ハイブリッド車両の動力制御方法及び動力制御装置
JP6519958B2 (ja) ハイブリッド車両の動力制御方法及び動力制御装置
JP2013071674A (ja) ハイブリッド自動車
JP5609758B2 (ja) ハイブリッド車
JP2012020650A (ja) 車両の制御装置
JP6733527B2 (ja) 回転角度演算装置
JP2014218156A (ja) ハイブリッド車両の制御装置
JP2021110287A (ja) 車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181001

R151 Written notification of patent or utility model registration

Ref document number: 6421593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151