JP6417067B1 - Seismic composite wall - Google Patents

Seismic composite wall Download PDF

Info

Publication number
JP6417067B1
JP6417067B1 JP2018099736A JP2018099736A JP6417067B1 JP 6417067 B1 JP6417067 B1 JP 6417067B1 JP 2018099736 A JP2018099736 A JP 2018099736A JP 2018099736 A JP2018099736 A JP 2018099736A JP 6417067 B1 JP6417067 B1 JP 6417067B1
Authority
JP
Japan
Prior art keywords
reinforcing
reinforcing bar
bars
truss
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018099736A
Other languages
Japanese (ja)
Other versions
JP2019203330A (en
Inventor
文太 田中
文太 田中
Original Assignee
株式会社富士昭技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社富士昭技研 filed Critical 株式会社富士昭技研
Priority to JP2018099736A priority Critical patent/JP6417067B1/en
Application granted granted Critical
Publication of JP6417067B1 publication Critical patent/JP6417067B1/en
Publication of JP2019203330A publication Critical patent/JP2019203330A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Building Environments (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

【課題】コンクリートの打設に対してセパレータなどの部品を用いる必要がなく、また、薄い鉄板を用いて耐震性を確保することが可能であり、さらに、建築現場での配筋作業や壁型枠の撤去作業を必要とせずに効率良く施工できる耐震合成壁を提供する。
【解決手段】耐震合成壁は、対向する矩形状の鉄板2A,2Bのそれぞれを横方向に連ねて形成される対向する外面板と、外面板間の空間に打設されるコンクリート10とが、各鉄板2A,2B間の空間に所定の間隔をあけて並置される複数個の鉄筋トラス3および各鉄筋トラス3を鉄板2A,2B間の定位置に拘束する緊結部材4を介して一体化されている。各鉄筋トラス3は、上下に延びる2本の平行な鉄筋31A,31Bと、両鉄筋間に位置する波型のラチス筋32とを含む。ラチス筋32の波の一方の頂部は一方の鉄筋31Aに、波の他方の頂部は他方の鉄筋31Bに、それぞれ溶接により接合されている。
【選択図】図3
[PROBLEMS] It is not necessary to use parts such as separators for placing concrete, and it is possible to secure earthquake resistance by using a thin iron plate. To provide an earthquake-resistant composite wall that can be constructed efficiently without the need to remove the frame.
A seismic composite wall includes an opposing outer plate formed by connecting each of opposing rectangular iron plates 2A and 2B in a lateral direction, and concrete 10 placed in a space between the outer plates. A plurality of rebar trusses 3 juxtaposed at predetermined intervals in the space between the steel plates 2A and 2B, and a fastening member 4 that restrains the rebar trusses 3 at a fixed position between the steel plates 2A and 2B are integrated. ing. Each reinforcing bar truss 3 includes two parallel reinforcing bars 31 </ b> A and 31 </ b> B extending vertically and a wave-shaped lattice bar 32 positioned between both reinforcing bars. One top of the wave of the lattice 32 is joined to one reinforcing bar 31A, and the other top of the wave is joined to the other reinforcing bar 31B by welding.
[Selection] Figure 3

Description

この発明は、鉄筋コンクリート造の建造物において、地震による揺れに対抗できるよう構造設計された耐震壁に関するもので、この発明は特に、比較的薄い鉄板とコンクリートとを一体化して耐震性を発揮させるようにした耐震合成壁に関する。   TECHNICAL FIELD The present invention relates to a seismic wall that is structurally designed to resist earthquake shaking in a reinforced concrete structure. In particular, the present invention integrates a relatively thin steel plate and concrete to exhibit seismic resistance. It relates to the seismic composite wall.

従来の鉄筋コンクリート造の耐震壁は、仮設材である木製の壁型枠間にコンクリートを打設して形成されており、コンクリートの内部は縦横各方向に鉄筋が貫通するものである。壁型枠は角型鋼管とセパレータを使って外から固定されており、コンクリートが硬化した後は、壁型枠を解体して撤去する必要があるため、施工における作業効率が悪いという問題がある。   A conventional reinforced concrete seismic wall is formed by placing concrete between wooden wall forms, which are temporary materials, and the inside of the concrete penetrates the reinforcing bars in the vertical and horizontal directions. The wall formwork is fixed from the outside using square steel pipes and separators. After the concrete has hardened, it is necessary to disassemble the wall formwork and remove it. .

壁型枠として薄い鉄板を用いたものがあり、コンクリートの打設による鉄板の変形を防止するために、セパレータが鉄板を貫通させて取り付けられている。壁型枠用の鉄板は、コンクリートが硬化した後、撤去する必要があるため、作業効率を低下させる。   There is a thing using a thin iron plate as a wall formwork, and in order to prevent the deformation of the iron plate due to the placement of concrete, a separator is attached through the iron plate. Since the steel plate for wall formwork needs to be removed after the concrete has hardened, the work efficiency is lowered.

耐震壁として、2枚の鋼板を頭付きスタッドにより緊結し、鋼板間にコンクリートを充填して一体化した鋼板コンクリート構造壁がある。充填されたコンクリートは、建物剛性への寄与と鋼板の局部座屈を抑えるための拘束材の働きをするので、鋼板の耐力が最大限に引き出される。   As a seismic wall, there is a steel plate concrete structure wall in which two steel plates are fastened by a headed stud and concrete is filled between the steel plates and integrated. Filled concrete acts as a constraining material that contributes to building rigidity and suppresses local buckling of the steel sheet, so that the proof stress of the steel sheet is maximized.

鋼板コンクリート構造壁は、主に原子力関連施設の建屋などに用いられる。この種の鋼板コンクリート構造壁は、遮蔽性能が必要とされるため、一般の耐震壁より壁厚が厚く、鋼板の厚みも含めて比較的高い強度のものが要求される。また、頭付きスタッドを利用して鋼板とコンクリートとを一体化するため、鋼板として頭付きスタッドを溶接することが可能な厚さのものが要求され、薄い鋼板を使用することができない。   Steel plate concrete structure walls are mainly used for buildings of nuclear facilities. Since this type of steel plate concrete structural wall requires shielding performance, the wall thickness is thicker than that of a general earthquake resistant wall, and a relatively high strength is required including the thickness of the steel plate. Further, since the steel plate and the concrete are integrated using the headed stud, a steel plate having a thickness capable of welding the headed stud is required, and a thin steel plate cannot be used.

薄い鉄板を使用した耐震合成壁として、先般、仮設材としての役割を果たすトラス筋付き埋込み型枠を用いて構築される鋼板コンクリート構造壁が提案された。この鋼板コンクリート構造壁は、複数枚のトラス筋付き埋込み型枠を、鉄板(鋼板)間に適当間隔を隔てて背中合わせに、かつ一方のトラス筋付き埋込み型枠におけるトラス筋の上弦材が、他方のトラス筋付き埋込み型枠におけるトラス筋の上弦材の間に入り込んだ状態に配置して、壁型枠を構成するとともに、互いに入り込んだ両側の上弦材の間にジベル筋を挿入して壁型枠の間隔を規制した後、壁型枠の内部にコンクリートを打設して構築されるものである(例えば特許文献1参照)。トラス筋付き埋込型枠が背中合わせに配置される前に、一方のトラス緊付き埋込型枠に横筋を配筋して下弦材等に鉄線により結束する。   As a seismic composite wall using a thin steel plate, a steel plate concrete structure wall constructed using an embedded formwork with truss bars that plays a role as a temporary material has been proposed recently. This steel plate concrete structure wall has a plurality of embedded molds with truss bars back to back with appropriate spacing between steel plates (steel sheets), and the upper chord material of the truss bars in one embedded mold frame with truss bars, In the embedded form with truss bars, placed in the state of entering between the upper chord members of the truss bars, to constitute the wall formwork, and insert the dowel muscles between the upper chord members that have entered each other into the wall type After restricting the interval of the frames, the concrete is constructed by placing concrete inside the wall mold (see, for example, Patent Document 1). Before the embedded molds with truss bars are arranged back to back, the horizontal bars are arranged in one of the embedded molds with a truss tight and are bound to the lower chord material by iron wires.

特開平7−54428号公報Japanese Unexamined Patent Publication No. 7-54428

特許文献1に記載の鋼板コンクリート構造壁を構築するのに、一方のトラス筋付き埋込型枠を建て込み、他のトラス筋付き埋込型枠を建て込んだ後、互いに入り込んだ両側の上弦筋の間にジベル筋を挿入するが、このジベル筋の挿入作業は手数を要し、作業効率を著しく低下させる。また、ジベル筋を介してトラス筋を保持して型枠の間隔規制を行うため、ジベル筋の入り方やトラス筋との接触の仕方で壁厚方向の精度確保が難しい。また、横筋は型枠幅より長いものを使い、順次スライドさせる必要がある。さらに、横筋の最終の仕舞が難しく、作業が困難である。さらにまた、コンクリート打設時、各トラス筋付き埋込み型枠に掛かる側圧は、壁の下層ほど大きくなるが、特許文献1に記載の鋼板コンクリート構造壁は、そのようなコンクリートの側圧に十分に耐え得る構造となっているとはいえない。壁厚についても2枚のトラス筋高さで制約を受けるという問題がある。   In order to construct the steel plate concrete structure wall described in Patent Document 1, one embedding mold frame with truss bars is built in, and after the other embedding mold frame with truss bars is built in, the upper chords that enter each other Although the Giber muscle is inserted between the muscles, the operation of inserting the Giber muscle requires a lot of work, and the work efficiency is remarkably lowered. In addition, since the space between the formwork is regulated by holding the truss bars via the dowel bars, it is difficult to ensure accuracy in the wall thickness direction depending on how the dowel bars are inserted and how they contact the truss bars. In addition, it is necessary to slide the horizontal stripes one after the other using the one longer than the form width. Furthermore, the final action of the horizontal stripes is difficult and the work is difficult. Furthermore, when the concrete is placed, the side pressure applied to the embedded form with each truss bar increases as the lower layer of the wall. However, the steel plate concrete structure wall described in Patent Document 1 sufficiently withstands the side pressure of such concrete. It cannot be said that the structure is obtained. There is also a problem that the wall thickness is restricted by the height of the two truss bars.

この発明は、上記の問題に着目してなされたもので、コンクリートの打設に対してセパレータなどの部品を用いる必要がなく、また、薄い鉄板を用いて耐震性を確保することが可能であり、さらに、建築現場での配筋作業や壁型枠の撤去作業を必要とせずに効率良く施工できる耐震合成壁を提供することを目的とする。   The present invention has been made paying attention to the above problems, and it is not necessary to use parts such as a separator for placing concrete, and it is possible to ensure earthquake resistance using a thin iron plate. A further object of the present invention is to provide a seismic composite wall that can be efficiently constructed without the need for reinforcement work at the construction site or removal of the wall formwork.

この発明にかかる耐震合成壁は、対向する矩形状の鉄板のそれぞれを横方向に連ねて形成される対向する外面板と、外面板間の空間に打設されるコンクリートとが、各鉄板間の空間に所定の間隔をあけて並置される複数個の鉄筋トラスおよび各鉄筋トラスを鉄板間の定位置に拘束する緊結部材を介して一体化されている。各鉄筋トラスは、上下に延びる2本の平行な鉄筋と、両鉄筋間に位置する波型のラチス筋とを含み、ラチス筋の波の一方の頂部は一方の鉄筋に、波の他方の頂部は他方の鉄筋に、それぞれ溶接により接合されている。緊結部材は、一方の鉄板の内面に所定の上下の間隔毎にそれぞれ水平に配置される複数個の第1の緊結筋と、他方の鉄板の内面に所定の上下の間隔毎に水平に配置される複数個の第2の緊結筋とを含む。第1、第2の各緊結筋は、鉄板上に溶接により固定される直線状の谷部と、鉄筋トラスの配列間隔と一致する間隔で連なる複数の山部とを一体に備え、第1の緊結筋の山部と第2の緊結筋の山部との間に各鉄筋トラスが挟まれた状態で保持される。 The seismic composite wall according to the present invention includes an opposing outer surface plate formed by connecting the opposing rectangular iron plates in the lateral direction, and concrete placed in a space between the outer surface plates between the iron plates. A plurality of rebar trusses juxtaposed at a predetermined interval in the space and a fastening member that restrains each rebar truss at a fixed position between the steel plates are integrated. Each rebar truss includes two parallel rebars extending vertically and a corrugated lattice located between the two rebars, with one top of the lattice wave on one rebar and the other top of the wave Are joined to the other rebar by welding. The binding members are arranged horizontally on the inner surface of one iron plate at predetermined intervals, and horizontally on the inner surface of the other iron plate at predetermined intervals. A plurality of second binding muscles. Each of the first and second binding muscles is integrally provided with a linear valley portion fixed by welding on the steel plate and a plurality of peak portions that are continuous at intervals matching the array interval of the reinforcing bar trusses, Each reinforcing bar truss is held between the peak portion of the binding muscle and the peak portion of the second binding muscle.

この発明にかかる耐震合成壁は、例えば、対向する鉄板間の空間に複数個の鉄筋トラスを並置するとともに各鉄筋トラスを緊結部材により鉄板間に定位置に拘束したものを工場で複数生産し、これらを現場で連ねて建て込み、外面板を構築した後、コンクリートを打設することにより施工される。壁厚については、工場においてトラス筋が組み合わされ、位置を確保した上に、鉄板が抵抗溶接されるため、精度が確保されることになる。
コンクリートの打設時、トラス筋と緊結部材との組み合わせによって2枚の鉄板の変形を防止し、コンクリート打設時の側圧を受けるセパレータとしての役割を果たすもので、対向する鉄板間の距離が保たれる。対向する鉄板は半流動体のコンクリートが硬化し自立するまでの間、それを支えるために、形を確保する壁型枠として機能する。
コンクリートが硬化した後は、対向する鉄板とコンクリートとは複数個のトラスおよび各トラスを鉄板間の定位置に拘束する緊結部材を介して一体化され、圧縮力にはコンクリートが、引張力には鉄筋が、それぞれ主となって抵抗する。また、鉄筋トラスの各鉄筋とコンクリートとが一体となって鉄板の座屈を防止するので、鉄板によって剪断耐力が確保され、地震の水平荷重(側圧)に抵抗する能力が得られるもので、横方向の鉄筋を省略することができる。なお、隣合う鉄板同士が溶接されていると、鉄板の剪断耐力がアップする。
さらに、鉄筋トラスの鉄筋およびラチス筋はコンクリートの厚さの中に定置され、また、鉄板とコンクリートとが一体化されることで、コンクリートが鉄筋および鉄板の温度上昇を防止するので、耐火性能が確保される。
The seismic composite wall according to the present invention, for example, a plurality of rebar trusses arranged in parallel in the space between opposing steel plates and each rebar truss constrained at a fixed position between steel plates by a fastening member, These are built on site and constructed by placing concrete after building the outer plate. As for the wall thickness, the truss bars are combined in the factory, the position is secured, and the iron plate is resistance-welded, so that accuracy is secured.
When placing concrete, the combination of truss bars and binding members prevents the deformation of the two steel plates and acts as a separator that receives the lateral pressure during concrete placement. The distance between the opposing steel plates is maintained. Be drunk. The opposing iron plate functions as a wall form to secure the shape to support the semi-fluid concrete until it hardens and becomes self-supporting.
After the concrete is hardened, the opposing steel plate and concrete are integrated through a plurality of trusses and a fastening member that restrains each truss in place between the steel plates. Reinforcing bars resist each. In addition, since each steel bar of the reinforcing bar truss and the concrete are integrated to prevent buckling of the steel plate, shear strength is secured by the steel plate, and the ability to resist horizontal load (side pressure) of the earthquake is obtained. Directional rebar can be omitted. In addition, when the adjacent iron plates are welded, the shear strength of the iron plates is increased.
Furthermore, the reinforcing bars and lattice bars of the rebar truss are placed in the concrete thickness, and the steel plate and the concrete are integrated so that the concrete prevents the temperature of the reinforcing bar and the steel plate from rising. Secured.

この発明の一実施態様においては、鉄筋トラスのラチス筋は、波の各頂部が鉄筋の対向する面にそれぞれ溶接されているが、波の各頂部は鉄筋の側面に溶接されていてもよい。   In one embodiment of the present invention, the lattice truss of the reinforcing bar truss is welded to the opposing surface of the reinforcing bar, but each peak of the wave may be welded to the side of the reinforcing bar.

好ましい実施態様では、第1、第2の各緊結筋と鉄板との溶接量を高めて鉄板の座屈を防止するために、第1、第2の各緊結筋は、鉄板の内面に溶接により水平に固着された補強用鉄筋上に谷部が重ね合わされてフレア溶接により固着される。 In a preferred embodiment, the first and second binding bars are welded to the inner surface of the iron plate in order to increase the welding amount between the first and second binding bars and the iron plate to prevent buckling of the iron plate. The troughs are superimposed on the reinforcing bars that are fixed horizontally, and fixed by flare welding.

コンクリート打設時に壁型枠としての各鉄板にかかる側圧は、下層ほど大きくなるので、補強用鉄筋および第1、第2の各緊結筋は、上下の間隔が壁の上層に対して壁の下層側が小さくなるように配置されるのが望ましく、これにより壁の上層側より壁の下層側の溶接量が高められる。   Since the lateral pressure applied to each iron plate as a wall formwork when placing concrete increases in the lower layer, the reinforcing bars and the first and second binding bars have a vertical space below the upper layer of the wall. It is desirable to arrange the side to be smaller, so that the amount of welding on the lower layer side of the wall is higher than the upper layer side of the wall.

補強用鉄筋は、好ましくは、鉄板の内面に所定の間隔で形成された上下方向に沿うリブに抵抗溶接により固着される。さらに好ましくは、第1、第2の各緊結筋は、ラチス筋の頂部の位置で各鉄筋トラスのそれぞれの鉄筋を山部の頂部の内面に溶接することにより保持している。   The reinforcing reinforcing bars are preferably fixed by resistance welding to ribs extending in the vertical direction formed at predetermined intervals on the inner surface of the steel plate. More preferably, each 1st, 2nd binding muscle is hold | maintained by welding each rebar of each rebar truss to the inner surface of the top part of a peak part in the position of the top part of a lattice muscle.

この発明によれば、コンクリートの打設に対してセパレータなどの部品を用いる必要がない。また、薄い鉄板を用いて鉄筋トラスおよび緊結部材を介してコンクリートと一体化することで、耐震性を確保することが可能となった。さらに、建築現場での配筋作業や壁型枠の撤去作業を必要とせずに効率良く耐震合成壁を施工できる。   According to this invention, it is not necessary to use parts such as a separator for placing concrete. Moreover, it became possible to ensure earthquake resistance by using a thin iron plate and integrating with concrete through a reinforcing bar truss and a binding member. Furthermore, it is possible to construct an earthquake-resistant composite wall efficiently without the need for reinforcement work at the construction site or removal of the wall formwork.

一実施形態の耐震合成壁を一部を省略して示した正面図である。It is the front view which abbreviate | omitted and showed the seismic composite wall of one Embodiment. 一実施形態の耐震合成壁を一部を省略して示した背面図である。It is the rear view which abbreviate | omitted and showed the earthquake-resistant synthetic | combination wall of one Embodiment. 図1の実施形態の耐震合成壁を拡大して示す平面図である。It is a top view which expands and shows the earthquake-resistant synthetic | combination wall of embodiment of FIG. 図3のA−A線に沿う断面図である。It is sectional drawing which follows the AA line of FIG. 図3のB−B線に沿う断面図である。It is sectional drawing which follows the BB line of FIG. 緊結筋の谷部と補強用鉄筋との接合状態および補強用鉄筋と鉄板との接合状態を拡大して示す断面図である。It is sectional drawing which expands and shows the joining state of the trough part of a binding muscle, and a reinforcing steel bar, and the joining state of a reinforcing steel bar and a steel plate.

図1および図2は、この発明の一実施形態である耐震合成壁1の正面および背面の外観を示している。なお、同図は、耐震合成壁1の一部を示しており、同図において左右に連続するものである。耐震合成壁1は、図1,2および図3に示すように、対向する鉄板2A,2Bのそれぞれを横方向に連ねて形成される外面板1A,1Bと、外面板1A,1B間の空間に打設されるコンクリート10とが、鉄板2A,2B間の空間に一定の間隔pをあけて並置された複数個の鉄筋トラス3および各鉄筋トラス3を鉄板2A,2B間の定位置(図示例では中央位置)に拘束する緊結部材4を介して一体化されたものである。なお、以下の説明では、各鉄板2A,2Bが連なる方向を「幅方向」といい、幅方向と直交する方向、すなわち、鉄板2A,2Bの長手方向を「長さ方向」または「高さ方向」という。   FIG. 1 and FIG. 2 show the appearance of the front surface and the back surface of a seismic composite wall 1 according to an embodiment of the present invention. In addition, the figure has shown a part of earthquake-resistant synthetic | combination wall 1, and is continuing to right and left in the figure. As shown in FIGS. 1, 2, and 3, the seismic composite wall 1 is a space between the outer plates 1A, 1B formed by connecting the opposing iron plates 2A, 2B in the lateral direction and the outer plates 1A, 1B. The concrete 10 to be placed on the steel plate 2A, a plurality of rebar trusses 3 arranged side by side with a certain interval p in the space between the steel plates 2A and 2B, and the rebar trusses 3 are positioned between the steel plates 2A, 2B (see FIG. In the example shown, it is integrated through a fastening member 4 constrained to a central position). In the following description, the direction in which the iron plates 2A and 2B are connected is referred to as the “width direction”, and the direction orthogonal to the width direction, that is, the longitudinal direction of the iron plates 2A and 2B is referred to as the “length direction” or the “height direction”. "

各鉄板2A,2Bは、一定の距離dを隔てて対向する。隣合う一方の鉄板2A,2A間は、図1に示すように、連結すべき端縁間にプレート11を重ね、プレート11と各鉄板2Aの端縁との間を溶接することにより連結されているが、接合のための鉄筋を用いて連結することも可能である。隣合う他方の鉄板2B,2B間の連結も図2に示すとおりであり、ここでは説明を省略する。なお、以下の説明において、一方の鉄板2Aを「第1の鉄板2A」、他方の鉄板2Bを「第2の鉄板2B」という場合がある。   Each iron plate 2A, 2B opposes at a certain distance d. As shown in FIG. 1, the adjacent one of the iron plates 2A and 2A is connected by overlapping the plate 11 between the edges to be connected and welding between the plate 11 and the edge of each iron plate 2A. However, it is also possible to connect using reinforcing bars for joining. The connection between the other adjacent iron plates 2B, 2B is also as shown in FIG. 2, and the description thereof is omitted here. In the following description, one iron plate 2A may be referred to as “first iron plate 2A” and the other iron plate 2B may be referred to as “second iron plate 2B”.

各鉄板2A,2Bは、運搬と施工性によい幅を有し、長さ(高さ)は2000〜4000mm、厚さは0.8〜2.2mmの比較的薄い長方矩形状の鉄板であり、長年にわたって性能を維持するために、耐食性、防錆効果に優れたメッキ鋼板、具体的には、JIS規格に規定される溶融亜鉛メッキ鋼板が用いられている。各鉄板2A,2Bの対向する面(内面)には、上下方向に沿うリブ21が必要とする溶接量に合わせて一定の間隔tで全幅にわたって形成されている。図示例の各リブ21は、図6に示すように、鉄板2A,2Bを内側へ折り曲げかつ折り返すことにより形成されており、長さ方向と直交する断面の形状は先端縁が尖った三角形状である。   Each iron plate 2A, 2B is a relatively thin rectangular iron plate having a width that is good for transportation and workability, a length (height) of 2000 to 4000 mm, and a thickness of 0.8 to 2.2 mm. In order to maintain the performance for many years, a plated steel sheet excellent in corrosion resistance and rust prevention effect, specifically, a hot dip galvanized steel sheet specified in JIS standard is used. On opposite surfaces (inner surfaces) of the iron plates 2A and 2B, ribs 21 extending in the vertical direction are formed over the entire width at a constant interval t in accordance with the required welding amount. As shown in FIG. 6, each rib 21 in the illustrated example is formed by bending and folding the iron plates 2 </ b> A and 2 </ b> B inward, and the cross-sectional shape orthogonal to the length direction is a triangular shape with a sharp tip edge. is there.

第1の鉄板2Aの内面には、図3〜図5に示すように、複数本の補強用鉄筋22Aが所定の間隔s毎に、水平かつ互いに平行にそれぞれ固着されている。第2の鉄板2Bの内面には、複数本の補強用鉄筋22Bが、第1の鉄板2Aの補強用鉄筋22Aと高さを違えて、所定の間隔s毎に、水平かつ互いに平行にそれぞれ固着されている。これらの補強用鉄筋22A,22Bによって第1、第2の各鉄板2A,2Bは、座屈が防止されて剪断耐力が高められ、鉄板2A,2Bの耐震強度が一層高められる。なお、図4は図3のA−A線に沿う断面図、図5は図3のB−B線に沿う断面図であるが、各図にはコンクリート10の図示は省略している。   As shown in FIGS. 3 to 5, a plurality of reinforcing reinforcing bars 22 </ b> A are fixed to the inner surface of the first iron plate 2 </ b> A horizontally and in parallel with each other at a predetermined interval s. On the inner surface of the second iron plate 2B, a plurality of reinforcing bars 22B are fixed horizontally and parallel to each other at a predetermined interval s, differing in height from the reinforcing bars 22A of the first iron plate 2A. Has been. By these reinforcing reinforcing bars 22A and 22B, the first and second iron plates 2A and 2B are prevented from buckling, the shear strength is increased, and the seismic strength of the iron plates 2A and 2B is further increased. 4 is a cross-sectional view taken along the line AA in FIG. 3, and FIG. 5 is a cross-sectional view taken along the line BB in FIG. 3, but the illustration of the concrete 10 is omitted in each figure.

補強用鉄筋22A,22Bとして例えば直径が13mm程度のも棒鋼が用いられる。第1、第2の各鉄板2A,2Bに固定された各補強用鉄筋22A,22Bには、後述する第1、第2の各緊結筋5A,5Bの直線状の谷部51が溶接により固定される。各補強用鉄筋22A,22Bは、図6に示すように、各鉄板2A,2Bの内面より突き出た複数のリブ21との間で抵抗溶接(図中、Xで示す。)が施され、これにより鉄板2A,2Bに固着される。   For example, steel bars having a diameter of about 13 mm are used as the reinforcing bars 22A and 22B. The reinforcing troughs 22A and 22B fixed to the first and second iron plates 2A and 2B are fixed by welding the straight valley portions 51 of the first and second binding muscles 5A and 5B described later. Is done. As shown in FIG. 6, the reinforcing reinforcing bars 22 </ b> A and 22 </ b> B are subjected to resistance welding (indicated by X in the drawing) between the plurality of ribs 21 protruding from the inner surfaces of the iron plates 2 </ b> A and 2 </ b> B. Is fixed to the iron plates 2A and 2B.

各鉄板2A,2Bは、コンクリートの打設時、壁型枠としての役割を果たす。各鉄板2A,2Bにかかる側圧は下層ほど大きくなるので、各補強用鉄筋22A,22Bの上下の間隔sは、壁の上層に対して壁の下層側が小さくなるように設定するのが望ましく、これにより壁の上層より壁の下層側において補強用鉄筋22A,22Bの密度並びに溶接量が段階的に高められ、側圧に対して十分に対抗し得る。   Each iron plate 2A, 2B serves as a wall formwork when placing concrete. Since the lateral pressure applied to each iron plate 2A, 2B increases in the lower layer, it is desirable to set the vertical space s between the reinforcing reinforcing bars 22A, 22B so that the lower layer side of the wall is smaller than the upper layer of the wall. As a result, the density of the reinforcing bars 22A and 22B and the amount of welding are increased stepwise on the lower layer side of the wall from the upper layer of the wall, and can sufficiently counter the side pressure.

この実施態様では、鉄板2A,2B間に4個の鉄筋トラス3が並列に設けられ、隣合う鉄筋トラス3,3間の間隔pは等しい値に設定されている。各鉄筋トラス3は、上下に平行して延びる2本の真っ直ぐな鉄筋31A,31Bと、両鉄筋31A,31B間に位置するラチス筋32とを含む。なお、以下の説明において、第1の鉄板2Aに近い側の鉄筋トラス3の鉄筋3Aを「第1鉄筋3A」、第2の鉄板2Bに近い側の鉄筋トラス3の鉄筋3Bを「第2鉄筋3B」という場合がある。   In this embodiment, four rebar trusses 3 are provided in parallel between the steel plates 2A and 2B, and the interval p between the adjacent rebar trusses 3 and 3 is set to an equal value. Each reinforcing bar truss 3 includes two straight reinforcing bars 31A and 31B extending in parallel in the vertical direction and a lattice bar 32 positioned between both reinforcing bars 31A and 31B. In the following description, the reinforcing bar 3A of the reinforcing bar truss 3 near the first reinforcing plate 2A is referred to as "first reinforcing bar 3A", and the reinforcing bar 3B of the reinforcing bar truss 3 close to the second reinforcing plate 2B is referred to as "second reinforcing bar". 3B ".

各鉄筋31A,31Bは、断面形状が円形の真っ直ぐな鋼材であり、この実施態様では例えばJISG3112規格品の異形棒鋼が用いられる。また、ラチス筋32は、例えばJISG3532規格品の鉄線が用いられる。ラチス筋32は、同じ平面内を同じ振幅で振動する波形形状を呈している。波の一方の各頂部32aは第1鉄筋31Aに、波の他方の各頂部32bは第2鉄筋31Bに、それぞれ抵抗溶接により接合されている。波の周期は、各補強用鉄筋22A,22Bの上下の間隔sと一致し、壁の上層に対して壁の下層側が小さくなっている。   Each of the reinforcing bars 31A and 31B is a straight steel material having a circular cross-sectional shape. In this embodiment, for example, a deformed steel bar of JIS G3112 standard product is used. In addition, for the lattice muscle 32, for example, a JIS G3532 standard iron wire is used. The lattice muscle 32 has a waveform shape that vibrates in the same plane with the same amplitude. Each top 32a of the wave is joined to the first reinforcing bar 31A and each other top 32b of the wave is joined to the second reinforcing bar 31B by resistance welding. The period of the wave coincides with the vertical distance s between the reinforcing bars 22A and 22B, and the lower layer side of the wall is smaller than the upper layer of the wall.

各鉄筋トラス3は、緊結部材4により鉄板2A,2B間の中央位置に拘束される。緊結部材4は、第1の鉄板2Aの内面に補強用鉄筋22Aの間隔sと同じ間隔でそれぞれ水平に配置される複数個の第1の緊結筋5Aと、第2の鉄板2Bの内面に補強用鉄筋22Bの間隔sと同じ間隔でそれぞれ水平に配置される複数個の第2の緊結筋5Bとを含む。第1、第2の各緊結筋5A,5Bは、それぞれ補強用鉄筋22A,22Bを介して第1、第2の各鉄板2A,2Bの内面に固定されるので、第1の緊結筋5A,5A間の間隔s、および第2の緊結筋5B,5B間の間隔sは、壁の上層に対して壁の下層側が小さくなっている。   Each reinforcing bar truss 3 is constrained by a binding member 4 at a central position between the steel plates 2A and 2B. The binding member 4 reinforces the inner surface of the second iron plate 2B and a plurality of first binding muscles 5A arranged horizontally on the inner surface of the first iron plate 2A at the same interval as the interval s of the reinforcing reinforcing bars 22A. A plurality of second binding muscles 5B arranged horizontally at the same interval as the interval s of the reinforcing bars 22B. Since the first and second binding muscles 5A and 5B are fixed to the inner surfaces of the first and second iron plates 2A and 2B via the reinforcing reinforcing bars 22A and 22B, respectively, the first binding muscles 5A and 5B The space s between 5A and the space s between the second binding muscles 5B and 5B are smaller on the lower layer side of the wall than the upper layer of the wall.

第1、第2の各緊結筋5A,5Bは、直径が6mmの鉄線を屈曲して山が連なるよな形態に形成されており、第1、第2の各補強用鉄筋22A,22B上に重ね合わされてフレア溶接により固定される直線状の谷部51と、鉄筋トラス3の間隔pと一致する距離を隔てて連なる複数(この実施例では4個)の山部52とを一体に備えている。図6において、Wはフレア溶接による接合部を示す。各山部52の頂部52a,52bは鋭角をなし、頂部52aの内面は鉄筋トラス3の第2鉄筋31Bの外形に沿う曲面に形成され、頂部52bの内面は鉄筋トラス3の第1鉄筋31Aの外形に沿う曲面に形成されている。各頂部52a,52bの谷部51からの高さhは、各頂部52a,52bが鉄板2A,2B間の中央線cを超える高さ、具体的には、鉄筋トラス3の幅の2分の1に達する高さに設定されている。   Each of the first and second binding muscles 5A and 5B is formed in such a form that a mountain is bent by bending an iron wire having a diameter of 6 mm, and the first and second reinforcing reinforcing bars 22A and 22B are formed on the first and second reinforcing bars 22A and 22B. A linear trough portion 51 that is overlapped and fixed by flare welding and a plurality of (four in this embodiment) peak portions 52 that are connected at a distance that matches the interval p of the reinforcing bar truss 3 are integrally provided. Yes. In FIG. 6, W indicates a joint by flare welding. The top portions 52 a and 52 b of each mountain portion 52 form an acute angle, the inner surface of the top portion 52 a is formed in a curved surface that follows the outer shape of the second rebar 31 B of the reinforcing bar truss 3, and the inner surface of the top portion 52 b is the first reinforcing bar 31 A of the reinforcing bar truss 3. It is formed in a curved surface along the outer shape. The height h of each top 52a, 52b from the trough 51 is the height at which each top 52a, 52b exceeds the center line c between the steel plates 2A, 2B, specifically, half the width of the rebar truss 3. The height reaching 1 is set.

第1の緊結筋5Aは、鉄筋トラス3のラチス筋32の一方の頂部32bの位置で各鉄筋トラス3の第2の鉄筋31Bを頂部52aの内面に溶接することにより保持する。第2の緊結筋5Bは、鉄筋トラス3のラチス筋32の他方の頂部32aの位置で各鉄筋トラス3の第1の鉄筋31Aを頂部52bの内面に溶接することにより保持する。これにより各鉄筋トラス3は、第1の緊結筋5Aの山部52と第2の緊結筋5Bの山部52との間に挟まれた状態で保持される。   The first binding bar 5A is held by welding the second reinforcing bar 31B of each reinforcing bar truss 3 to the inner surface of the top part 52a at the position of one top part 32b of the lattice bar 32 of the reinforcing bar truss 3. The second binding muscle 5B is held by welding the first reinforcing bar 31A of each reinforcing bar truss 3 to the inner surface of the top part 52b at the position of the other apex 32a of the lattice 32 of the reinforcing bar truss 3. Thereby, each rebar truss 3 is hold | maintained in the state pinched | interposed between the peak part 52 of 5 A of 1st binding muscles, and the peak part 52 of 2nd binding muscles 5B.

上記した構成の耐震合成壁1は、対向する鉄板2A,2B間の空間に複数個の鉄筋トラス3を並置するとともに各鉄筋トラス3を緊結部材4により鉄板2A,2B間に定位置に拘束したものを工場で複数生産し、これらを現場で連ねて外面板1A,1Bを構築した後、コンクリートを打設することにより施工される。
このとき、トラス筋3と緊結部材4との組み合わせによって鉄板2A,2Bの変形を防止し、コンクリート打設時の側圧を受けるセパレータとしての役割を果たすもので、対向する鉄板2A,2B間の距離が保たれる。外面板1A,1B間の空間にコンクリートを打設するとき、対向する鉄板2A,2Bは半流動体のコンクリートが硬化し自立するまでの間、それを支えるために、形を確保する壁型枠として機能する。
The seismic composite wall 1 configured as described above has a plurality of rebar trusses 3 juxtaposed in a space between opposing steel plates 2A and 2B, and each rebar truss 3 is constrained to a fixed position between the steel plates 2A and 2B by a fastening member 4. A plurality of products are produced in a factory, and these are connected at the site to construct the outer plates 1A and 1B, and then are constructed by placing concrete.
At this time, the combination of the truss bar 3 and the binding member 4 serves to prevent deformation of the iron plates 2A and 2B and to serve as a separator that receives a side pressure when placing concrete. The distance between the opposing iron plates 2A and 2B Is preserved. When placing concrete in the space between the outer plates 1A and 1B, the opposing iron plates 2A and 2B are wall molds that secure the shape to support the semi-fluid concrete until it hardens and becomes self-supporting. Function as.

コンクリートが硬化した後は、鉄板2A,2Bは撤去することなく残置されるもので、対向する鉄板2A,2Bとコンクリート10とは複数個のトラス3および各トラス3を鉄板2A,2B間の定位置に拘束する緊結部材4の第1、第2の各緊結筋5A,5Bを介して一体化され、圧縮力にはコンクリート10が主となり、引張力には鉄筋31A,31Bが主となって抵抗する。また、鉄筋トラス3の各鉄筋31A,31Bとコンクリート10とが一体となって鉄板2A,2Bの座屈を防止するので、鉄板2A,2Bによって剪断耐力が確保され、地震の水平荷重(側圧)に抵抗する能力が得られるもので、横方向の鉄筋を省略することができる。   After the concrete has hardened, the iron plates 2A and 2B are left without being removed. The facing iron plates 2A and 2B and the concrete 10 are a plurality of trusses 3 and each truss 3 is fixed between the iron plates 2A and 2B. The first and second binding muscles 5A and 5B of the binding member 4 constrained in position are integrated with each other. Concrete is mainly used for compressive force, and reinforcing bars 31A and 31B are mainly used for tensile force. resist. Further, since the reinforcing bars 31A, 31B of the reinforcing bar truss 3 and the concrete 10 are integrated to prevent buckling of the steel plates 2A, 2B, the shear strength is secured by the iron plates 2A, 2B, and the horizontal load (side pressure) of the earthquake. The ability to withstand resistance is obtained, and the horizontal reinforcing bars can be omitted.

鉄筋トラス3の鉄筋31A,31Bおよびラチス筋32はコンクリート10の厚さの中に定置され、また、鉄板2A,2Bとコンクリート10とが鉄筋トラス3および緊結部材4の各緊結筋5A,5Bを介して一体化されることで、コンクリート10が鉄筋31A,31Bおよび鉄板2A,2Bの温度上昇を防止するので、耐火性能が確保される。   The reinforcing bars 31A and 31B and the lattice bars 32 of the reinforcing bar truss 3 are placed in the thickness of the concrete 10, and the steel plates 2A and 2B and the concrete 10 connect the reinforcing bars 5A and 5B of the reinforcing bar truss 3 and the binding member 4, respectively. Since the concrete 10 prevents the reinforcing bars 31A and 31B and the iron plates 2A and 2B from rising in temperature, the fire resistance is ensured.

1 耐震合成壁
1A,1B 外面板
2A,2B 鉄板
3 鉄筋トラス
4 緊結部材
5A,5B 緊結筋
21 リブ
22A,22B 補強用鉄筋
31A,31B 鉄筋
32 ラチス筋
DESCRIPTION OF SYMBOLS 1 Seismic composite wall 1A, 1B External plate 2A, 2B Iron plate 3 Reinforcement truss 4 Tightening member 5A, 5B Tightening muscle 21 Rib 22A, 22B Reinforcing bar 31A, 31B Reinforcement 32 Lattice muscle

Claims (6)

対向する矩形状の鉄板のそれぞれを横方向に連ねて形成される対向する外面板と、前記外面板間の空間に打設されるコンクリートとが、前記各鉄板間の空間に所定の間隔をあけて並置される複数個の鉄筋トラスおよび各鉄筋トラスを鉄板間の定位置に拘束する緊結部材を介して一体化されており、前記各鉄筋トラスは、上下に延びる2本の平行な鉄筋と、両鉄筋間に位置する波型のラチス筋とを含み、前記ラチス筋の波の一方の頂部は一方の鉄筋に、波の他方の頂部は他方の鉄筋に、それぞれ溶接により接合されてなり、
前記緊結部材は、一方の鉄板の内面に所定の上下の間隔毎にそれぞれ水平に配置される複数個の第1の緊結筋と、他方の鉄板の内面に所定の上下の間隔毎に水平に配置される複数個の第2の緊結筋とを含み、第1、第2の各緊結筋は、鉄板上に溶接により固定される直線状の谷部と、前記鉄筋トラスの配列間隔と一致する間隔で連なる複数の山部とを一体に備え、第1の緊結筋の山部と第2の緊結筋の山部との間に各鉄筋トラスが挟まれた状態で保持される耐震合成壁。
The opposing outer surface plates formed by connecting the opposing rectangular iron plates in the lateral direction and the concrete placed in the space between the outer surface plates form a predetermined interval in the space between the iron plates. A plurality of rebar trusses arranged side by side and a fastening member that restrains each rebar truss at a fixed position between steel plates, and each rebar truss includes two parallel rebars extending vertically, A wave-shaped lattice muscle located between the two reinforcing bars, one of the tops of the waves of the lattice muscle is joined to one of the reinforcing bars, the other top of the wave is joined to the other reinforcing bar by welding ,
The binding members are arranged horizontally on the inner surface of one iron plate at predetermined vertical intervals and horizontally on the inner surface of the other iron plate at predetermined vertical intervals. A plurality of second binding muscles, wherein each of the first and second binding muscles has a linear trough portion fixed by welding on the iron plate, and an interval that coincides with the arrangement interval of the reinforcing bar trusses. A seismic composite wall that is integrally provided with a plurality of ridges connected to each other and is held in a state where each reinforcing bar truss is sandwiched between the ridges of the first and second binding muscles .
前記鉄筋トラスのラチス筋は、波の各頂部が前記鉄筋の対向する面にそれぞれ溶接されている請求項1に記載の耐震合成壁。   The seismic composite wall according to claim 1, wherein the lattice bars of the reinforcing bar truss are welded to the opposing surfaces of the reinforcing bars, respectively. 前記第1、第2の各緊結筋は、前記鉄板の内面に溶接により水平に固着された補強用鉄筋上に前記谷部が重ね合わされてフレア溶接により固着される請求項1に記載の耐震合成壁。 2. The seismic composite according to claim 1 , wherein each of the first and second binding muscles is fixed by flare welding with the valleys overlapped on a reinforcing reinforcing bar horizontally fixed to the inner surface of the iron plate by welding. wall. 前記補強用鉄筋および第1、第2の各緊結筋は、上下の間隔が壁の上層に対して壁の下層側が小さくなるように配置される請求項3に記載の耐震合成壁。 The seismic composite wall according to claim 3, wherein the reinforcing reinforcing bars and the first and second binding bars are arranged such that the upper and lower intervals are smaller on the lower layer side of the wall than on the upper layer of the wall. 前記補強用鉄筋は、前記鉄板の内面に所定の間隔で形成された上下方向に沿うリブに抵抗溶接により固着される請求項3または4に記載の耐震合成壁。 The seismic composite wall according to claim 3 or 4 , wherein the reinforcing reinforcing bars are fixed by resistance welding to ribs along the vertical direction formed at predetermined intervals on the inner surface of the iron plate . 前記第1、第2の各緊結筋は、前記ラチス筋の頂部の位置で各鉄筋トラスのそれぞれの鉄筋を前記山部の頂部の内面に溶接することにより保持している請求項1〜5のいずれかに記載の耐震合成壁。 6. Each of the first and second binding muscles is held by welding each reinforcing bar of each reinforcing bar truss to the inner surface of the peak of the peak at the position of the top of the lattice. A seismic composite wall according to any one of the above.
JP2018099736A 2018-05-24 2018-05-24 Seismic composite wall Active JP6417067B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018099736A JP6417067B1 (en) 2018-05-24 2018-05-24 Seismic composite wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018099736A JP6417067B1 (en) 2018-05-24 2018-05-24 Seismic composite wall

Publications (2)

Publication Number Publication Date
JP6417067B1 true JP6417067B1 (en) 2018-10-31
JP2019203330A JP2019203330A (en) 2019-11-28

Family

ID=64017219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018099736A Active JP6417067B1 (en) 2018-05-24 2018-05-24 Seismic composite wall

Country Status (1)

Country Link
JP (1) JP6417067B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115726496A (en) * 2022-11-15 2023-03-03 海南大学 Anti-seismic superposed shear wall structure and construction method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4056728A1 (en) 2019-11-08 2022-09-14 Sumitomo Electric Hardmetal Corp. Diamond-coated tool and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238615A (en) * 1994-02-25 1995-09-12 Taisei Corp Reincorcing bar unit and reinforcing bar built-in type precast form and manufacture of this form
JP2581196Y2 (en) * 1992-06-05 1998-09-21 弘 近藤 Floor structural materials
JPH11303283A (en) * 1998-04-22 1999-11-02 Kajima Corp Construction method of flat slab and attaching structure of permanent form for capital used for same
JP2017223029A (en) * 2016-06-15 2017-12-21 ケンテック株式会社 Reinforcement structure for exterior wall

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2581196Y2 (en) * 1992-06-05 1998-09-21 弘 近藤 Floor structural materials
JPH07238615A (en) * 1994-02-25 1995-09-12 Taisei Corp Reincorcing bar unit and reinforcing bar built-in type precast form and manufacture of this form
JPH11303283A (en) * 1998-04-22 1999-11-02 Kajima Corp Construction method of flat slab and attaching structure of permanent form for capital used for same
JP2017223029A (en) * 2016-06-15 2017-12-21 ケンテック株式会社 Reinforcement structure for exterior wall

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115726496A (en) * 2022-11-15 2023-03-03 海南大学 Anti-seismic superposed shear wall structure and construction method thereof
CN115726496B (en) * 2022-11-15 2023-08-11 海南大学 Anti-seismic superimposed shear wall structure and construction method thereof

Also Published As

Publication number Publication date
JP2019203330A (en) 2019-11-28

Similar Documents

Publication Publication Date Title
KR101415253B1 (en) Hollow Core PC Composite Column for SRC Columns and SRC Structures Using the Same
JP2011127278A (en) Earthquake-resisting steel wall and building having the same
JP6417067B1 (en) Seismic composite wall
JP4279739B2 (en) Seismic retrofitting methods and walls for existing buildings
JP2972120B2 (en) Construction method of columnar structure using hybrid prefab segment
TW588138B (en) Wall panel
JP6633362B2 (en) Reinforcement structure of steel concrete frame
JP5291330B2 (en) Corrugated steel shear wall
KR101518621B1 (en) Concrete compisite column
KR101879034B1 (en) Bracket and joint structure of column and beam using same
KR102314546B1 (en) Reinforcing structure for Column and Beam
RU2637248C1 (en) Method for erecting large-span monolithic reinforced concrete floorings
JP2017128916A (en) Column-to-beam joint structure
JP6679261B2 (en) Reinforcement structure of steel beam support of slab
JP7049699B1 (en) Building
JP7062853B2 (en) Seismic retrofitting structure
JP6229995B2 (en) Seismic reinforcement structure for buildings
US9487954B2 (en) Laced composite system
KR101387035B1 (en) Flange type corrugated steelplate
JP2021055464A (en) Steel beam with floor slab and reinforcement method thereof
JP2007023712A (en) Columnar structure using shape steel, pier or foundation pile and its manufacturing method
JP2020033718A (en) Seismic control stud
KR101509175B1 (en) Steel Reinforcement Integrated Composite Bean System
JP7127244B2 (en) Seismic reinforcement structure
JP3786341B2 (en) Combined steel caisson structure of composite caisson

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180529

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180529

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181004

R150 Certificate of patent or registration of utility model

Ref document number: 6417067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250