JP7049699B1 - Building - Google Patents

Building Download PDF

Info

Publication number
JP7049699B1
JP7049699B1 JP2020167114A JP2020167114A JP7049699B1 JP 7049699 B1 JP7049699 B1 JP 7049699B1 JP 2020167114 A JP2020167114 A JP 2020167114A JP 2020167114 A JP2020167114 A JP 2020167114A JP 7049699 B1 JP7049699 B1 JP 7049699B1
Authority
JP
Japan
Prior art keywords
building
plate
length direction
linear
curved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020167114A
Other languages
Japanese (ja)
Other versions
JP2022060603A (en
Inventor
あおい 遠藤
Original Assignee
近未来建築社会実装機構株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 近未来建築社会実装機構株式会社 filed Critical 近未来建築社会実装機構株式会社
Priority to JP2020167114A priority Critical patent/JP7049699B1/en
Application granted granted Critical
Publication of JP7049699B1 publication Critical patent/JP7049699B1/en
Publication of JP2022060603A publication Critical patent/JP2022060603A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

【課題】本発明は、補強材や継ぎ手が不要で、構築がしやすく、かつ、十分な強度を備える湾曲状波形の建築材料及び当該建築材料からなる建築物を提供することを目的とする。【解決手段】本発明に係る建築物は、厚さが3mm以上、幅が80cm以上であり、幅方向に高低差が14cm以上で2周期以内の湾曲状波形の形状をなす金属板からなる建築材料10、20を、その長さ方向及び幅方向に連結して一体構造の壁面と屋根面とを形成し、高さが6m以上で間口の広さが17m以上の屋根面を支持する支柱(柱)及び横架材(梁)を設けないアーチ状に構築したことを特徴とする。【選択図】 図16PROBLEM TO BE SOLVED: To provide a building material having a curved corrugated shape, which does not require a reinforcing material or a joint, is easy to construct, and has sufficient strength, and a building made of the building material. A building according to the present invention is a building made of a metal plate having a thickness of 3 mm or more, a width of 80 cm or more, a height difference of 14 cm or more in the width direction, and a curved corrugated shape within two cycles. A pillar (a pillar) in which materials 10 and 20 are connected in the length direction and the width direction to form an integrated wall surface and a roof surface, and support a roof surface having a height of 6 m or more and a frontage width of 17 m or more. It is characterized by being constructed in an arch shape without providing pillars) and horizontal members (beams). [Selection diagram] FIG. 16

Description

本発明は、波形の金属製建築材料及び当該建築材料を使用して構築したアーチ状の建築物に関し、特に当該建築物を支持する支柱(建築用語では「柱」のこと。)及び横架材(建築用語では「梁」のこと。)が不要で、倉庫、工場、文化ホールや体育館などの大型の建物に適したアーチ状の建築物に関する。 The present invention relates to corrugated metal building materials and arched buildings constructed using the building materials, and in particular, columns (in building terms, "pillars") and horizontal members that support the building. It is related to arched buildings that do not require (in architectural terms, "beams") and are suitable for large buildings such as warehouses, factories, cultural halls and gymnasiums.

従来より、金属製の波板状の建築材として、下記特許文献1又は2に示されるように、建物の躯体に取り付けて使用されたり、建築物用外囲体として使用されるのが一般的である。 Conventionally, as a corrugated metal building material, as shown in Patent Document 1 or 2 below, it is generally used by being attached to a building frame or as a building enclosure. Is.

また、アーチ形の建築物としては、下記特許文献3~5に示されるものが知られている。すなわち、特許文献3には、所定曲率で曲げ加工された大型デッキプレートを対向せしめて下端を基礎上に固定し、それらの上端同士の上方に大型デッキプレートに適合する凹凸状角波形を有する曲板状継ぎ手を載置し、それぞれをボルトにより締結し、所要幅となるように連結したアーチ形デッキプレート構造体が示されている。 Further, as an arch-shaped building, those shown in the following Patent Documents 3 to 5 are known. That is, in Patent Document 3, a large deck plate bent with a predetermined curvature is opposed to each other and the lower ends are fixed on the foundation, and above the upper ends of the large deck plates, a song having an uneven angular waveform suitable for the large deck plate. An arched deck plate structure is shown in which plate joints are placed and each is bolted together and connected to the required width.

特許文献4には、長手方向に沿う複数の台形状波形が付与された、大きな断面係数を有する波状プレートであって、波付け方向と直交する方向に湾曲形状に曲げ加工された波状プレートからなる複数の壁部材の下端部を、所定間隔離隔して固定されるフランジ上に相互の頂部同士が対向する向きに立設し、該対向する頂部同士を連結することによって構成されるアーチ部を単位とし、同様のアーチ部を前記波付け方向と直交する方向の両縁部同士を所定単位数連結することによって構成されるアーチ状建築構造体において、前記アーチ状建築構造体の内面に対して同様の曲率で曲げ加工された、少なくとも一つの台形状波形を有する補強用波状プレートの谷部と、前記壁部材用波状プレートの山部とを、互いに対向する向きに組み合わせて両波状プレートの接触部同士を相互に連結し、該両波状プレート間に形成される湾曲した箱形補強部を設けたアーチ状建築構造体が示されている。 Patent Document 4 is a wavy plate having a large cross-sectional coefficient to which a plurality of trapezoidal waveforms along the longitudinal direction are given, and is composed of a wavy plate bent into a curved shape in a direction orthogonal to the wavy direction. The lower end of a plurality of wall members is erected on a flange fixed by separating them for a predetermined period so that the tops of each other face each other, and the arch portion formed by connecting the facing tops is a unit. The same applies to the inner surface of the arch-shaped building structure in an arch-shaped building structure formed by connecting both edge portions in a direction orthogonal to the wavy direction to each other by a predetermined number of units. The valley portion of the reinforcing corrugated plate having at least one trapezoidal waveform bent at the curvature of An arched building structure is shown in which the two are connected to each other and provided with a curved box-shaped reinforcement formed between the bilateral plates.

特許文献5には、大きな断面係数を有する台形状波形に曲げ加工され、波付け方向と直交する方向に所望曲率で湾曲形成され、前記波付け方向及びこの波付け方向に直交する方向に相互連結することによりアーチ状構造体の一部を形成する左右一対の台形状波形鋼板主部材と、 前記アーチ状構造体のアーチ部と同形状に曲げ加工された台形状波形鋼板主部材の頂部間を伸張連結する部材であって該アーチ部に適合する曲率で曲げ加工された少なくとも一つの台形状波形鋼板製中間連結部材と、前記左右一対の台形状波形鋼板主部材ならびに前記少なくとも一つの台形状波形鋼板製中間連結部材の対向する端部同士を相互連結するための継ぎ手部材と、からなり、前記台形状波形鋼板主部材および前記台形状波形鋼板製中間連結部材の各開放端部の間に前記継ぎ手部材を介在せしめて順次締結したアーチ状建築構造体において、前記継ぎ手部材が、前記台形状波形鋼板主部材および前記台形状波形鋼板製中間連結部材の波形曲げ形状ならびに各部材の肉厚を考慮して相互接合部間に隙間が生じないように嵌合する台形状波形に曲げ加工された一端側と、同様に相互接合部間に隙間が生じないように嵌合する波形に曲げ加工された他端側とが、前記各部材の肉厚を受容する寸法だけ変移させた段差を有するように形成された段違い継ぎ手部材として構成された間口寸法拡張可能なアーチ状建築構造体が示されている。 In Patent Document 5, it is bent into a trapezoidal waveform having a large cross-sectional coefficient, curved in a direction orthogonal to the waving direction with a desired curvature, and interconnected in the waving direction and the direction orthogonal to the waving direction. Between the pair of left and right trapezoidal corrugated steel plate main members forming a part of the arched structure and the top of the trapezoidal corrugated steel plate main member bent into the same shape as the arch portion of the arched structure. At least one trapezoidal corrugated steel plate intermediate connecting member which is a member to be stretched and connected and bent at a curvature suitable for the arch portion, the pair of left and right trapezoidal corrugated steel plate main members, and the at least one trapezoidal corrugated sheet. It consists of a joint member for interconnecting opposing ends of the steel plate intermediate connecting member, and is located between the open ends of the trapezoidal corrugated steel plate main member and the trapezoidal corrugated steel plate intermediate connecting member. In an arched building structure that is sequentially fastened with a joint member interposed therebetween, the joint member takes into consideration the corrugated bending shape of the trapezoidal corrugated steel plate main member and the trapezoidal corrugated steel plate intermediate connecting member and the wall thickness of each member. Then, it was bent into a trapezoidal corrugated end side that fits so that there is no gap between the mutual joints, and similarly bent into a waveform that fits so that there is no gap between the mutual joints. An arch-shaped building structure with an expandable frontage is shown, which is configured as a stepped joint member formed so that the other end side has a step that is changed by a dimension that accepts the wall thickness of each member. ..

特開2018-172898号公報Japanese Unexamined Patent Publication No. 2018-172898 特開2001-271455号公報Japanese Unexamined Patent Publication No. 2001-271455 実公平7-16803号公報Jitsufuku 7-16803 Gazette 特公平8-19645号公報Special Fair 8-19645 Gazette 特開2007-32211号公報Japanese Unexamined Patent Publication No. 2007-32211

しかしながら、特許文献1又は2に示される金属製の波板状の建築材は薄く、波の高低差も短く、波の周期も多いものであるため、それのみでは屋根面と壁面とが一体構造の建築物を屋根面を支持する支柱(柱)及び横架材(梁)無しで構築するには強度に欠ける。 However, since the metal corrugated building material shown in Patent Document 1 or 2 is thin, the height difference of the wave is short, and the period of the wave is long, the roof surface and the wall surface are integrally structured by itself. It lacks strength to build a building without columns and horizontal members (beams) that support the roof surface.

特許文献3に示されるアーチ形デッキプレート構造体は、大型デッキプレートに適合する凹凸状波型を有する曲板状継ぎ手により大型デッキプレートを連結するものであり、部品点数が多く、作業効率が悪い問題がある。 The arch-shaped deck plate structure shown in Patent Document 3 connects large deck plates by a curved plate-shaped joint having an uneven corrugated shape suitable for the large deck plate, and has a large number of parts and poor work efficiency. There's a problem.

特許文献4に示されるアーチ型デッキプレート構造体は、補強用台形状波形プレートを使用して箱形補強部を設けたものであり、部品点数が多い上に構築作業が複雑になって作業効率が悪い欠点がある。 The arched deck plate structure shown in Patent Document 4 is provided with a box-shaped reinforcing portion using a trapezoidal corrugated plate for reinforcement, and has a large number of parts and complicated construction work, resulting in work efficiency. Has a bad drawback.

特許文献5に示される間口寸法拡張可能なアーチ状建築構造体は、波形鋼板製中間連結部材や継ぎ手部材を要するものであり、部品点数が多い上に構築作業が複雑になって作業効率が悪い欠点がある。 The arch-shaped building structure whose frontage dimension can be expanded shown in Patent Document 5 requires an intermediate connecting member made of corrugated steel plate and a joint member, and has a large number of parts and complicated construction work, resulting in poor work efficiency. There are drawbacks.

上記のように従来のアーチ形建築物においては、部品点数が多く、また構築が複雑になっている理由は、プレートが角形の波板状であって屈曲部が存在し、当該屈曲部に応力が集中して破損するおそれがあるため、補強材や継ぎ手等の部品を組み込まなければ、建築物を建てて維持できるだけの強度がないと考えられる。 As described above, in the conventional arch-shaped building, the reason why the number of parts is large and the construction is complicated is that the plate is square corrugated and has a bent portion, and stress is applied to the bent portion. It is considered that the building is not strong enough to be built and maintained unless parts such as reinforcing materials and joints are incorporated.

そこで、本発明は、補強材や継ぎ手が不要で、構築がしやすく、かつ、十分な強度を備える湾曲状波形の建築材料及び当該建築材料からなる建築物を提供することを目的とする。 Therefore, an object of the present invention is to provide a building material having a curved corrugation, which does not require a reinforcing material or a joint, is easy to construct, and has sufficient strength, and a building made of the building material.

本発明の請求項1に係る建築物は、厚さが3mm以上、幅が80cm以上であり、幅方向に高低差が14cm以上で2周期以内の湾曲状波形の形状をなす金属板からなる建築材料を使用し、補強材を設けずに前記建築材料が長さ方向及び幅方向に連結されて屋根面及び壁面が構築された建築物であって、前記建築材料は、複数の建築材料が長さ方向に重ねて連結され、前記長さ方向に連結された建築材料と、これに隣接する長さ方向に連結された建築材料とが、それぞれ長さ方向の連結箇所が重ならないように長さ方向にずらして幅方向に重ねて連結され、屋根面を支持する支柱及び横架材を設けずに、高さが6m以上で間口の広さが17m以上のアーチ状に構築したことを特徴とする。 The building according to claim 1 of the present invention is a building made of a metal plate having a thickness of 3 mm or more, a width of 80 cm or more, a height difference of 14 cm or more in the width direction, and a curved corrugated shape within 2 cycles. The building material is a building in which the roof surface and the wall surface are constructed by connecting the building materials in the length direction and the width direction without providing a reinforcing material, and the building material is long of a plurality of building materials. The building materials that are overlapped and connected in the vertical direction and connected in the length direction and the building materials that are connected in the length direction adjacent to the building material are so long that the connecting points in the length direction do not overlap with each other. It is characterized by being constructed in an arch shape with a height of 6 m or more and a frontage width of 17 m or more, without providing columns and horizontal members to support the roof surface, which are connected by shifting in the direction and overlapping in the width direction. do.

本発明の請求項2に係る建築物は、前記請求項1の構成に加えて、前記建築材料の連結箇所における建築材料間に合成樹脂製のパッキンライナーを介在させたことを特徴する。 The building according to claim 2 of the present invention is characterized in that, in addition to the configuration of claim 1, a packing liner made of synthetic resin is interposed between the building materials at the connecting points of the building materials.

このように構成することで、屋根面の重量が分散されて壁面に屋根面の荷重が掛かるので、屋根面を維持するための支柱(柱)が不要となる。 With this configuration, the weight of the roof surface is dispersed and the load on the roof surface is applied to the wall surface, so that the pillars for maintaining the roof surface are not required.

本発明に係る建築材料は、上記の構成よりなるため、高さが6m以上で間口の広さが17m以上の屋根面を支持する支柱(柱)及び横架材(梁)を設けないアーチ状の建築物を構築するのに十分な強度がある。 Since the building material according to the present invention has the above-mentioned structure, it has an arch shape in which columns (pillars) and horizontal members (beams) that support the roof surface having a height of 6 m or more and a frontage width of 17 m or more are not provided. It is strong enough to build a building in.

本発明に係る建築物は、上記の構成よりなるため、幅方向及び長さ方向に直線状又は湾曲状の建築材料を使用し、建築物全体が直線状の部分又は曲線状の部分のみから構成され、屈曲する箇所や折曲する箇所が存在しないので、屋根面を支持する支柱(柱)及び横架材(梁)が不要となるだけの十分な強度があり、したがって補強材や継ぎ手が不要となり、部品点数が少なく、複雑な組立が不要で構築の作業効率化が図れる利点がある。 Since the building according to the present invention has the above-mentioned configuration, a building material having a linear or curved shape in the width direction and the length direction is used, and the entire building is composed of only a linear portion or a curved portion. Since there are no bends or bends, it is strong enough to eliminate the need for columns (columns) and horizontal members (beams) that support the roof surface, and therefore no reinforcements or joints are required. Therefore, there are advantages that the number of parts is small, complicated assembly is not required, and the work efficiency of construction can be improved.

以下の図は全て本発明に係る実施例の図である。
長さ方向に直線状の建築材料の形態を示す斜視図である。 長さ方向に湾曲状の建築材料の形態を示す斜視図である。 建築材料の幅方向の形状を示す斜視図であって、図中の(a)は幅が大きく、図中(b)は幅の小さいものである。 図3に対応するものであり、建築材料の幅方向の形状を示す断面図であって、図中の(a)は幅が大きく、図中(b)は幅の小さいものである。 長さ方向に直線状の建築材料を幅方向に連結しようとする状態を示す斜視図である。 長さ方向に直線状の建築材料を幅方向に連結した状態を示す斜視図である。 長さ方向に直線状の建築材料を長さ方向に連結しようとする状態を示す斜視図である。 長さ方向に直線状の建築材料を長さ方向に連結した状態を示す斜視図である。 長さ方向に直線状の建築材料を幅方向及び長さ方向に連結した状態を示す斜視図である。 幅方向に連結した状態を、図4に対応して表した断面図である。 建築物において、長さ方向に直線状の建築材料を幅方向及び長さ方向に連結して構築した状態を部分的に示す建築物の部分斜視図である。 長さ方向に湾曲状の建築材料を幅方向に連結しようとする状態を示す斜視図である。 長さ方向に湾曲状の建築材料を幅方向に連結した状態を示す斜視図である。 長さ方向に湾曲状の建築材料を長さ方向に連結しようとする状態を示す斜視図である。 本発明に係る実施例であって、長さ方向に湾曲状の建築材料を長さ方向に連結した状態を示す斜視図である。 建築物において、長さ方向に湾曲状の建築材料を幅方向及び長さ方向に連結して構築した状態を部分的に示す建築物の部分斜視図である。 建築物において、長さ方向に直線状の建築材料を幅方向及び長さ方向に連結して構築した状態と長さ方向に湾曲状の建築材料を幅方向及び長さ方向に連結して構築した状態とをそれぞれ部分的に示す建築物の全体斜視図である。 スパン(間口)17mのTYPE-Aの建築物の幅方向の概略断面図である。 4種類の大きさの建築物の概略断面図であって、図中(a)は図17と同一の建築物であり、図中(b)はスパン(間口)30mのTYPE-Bの建築物であり、図中(c)はスパン(間口)40mのTYPE-Bの建築物であり、図中(d)はスパン(間口)50mのTYPE-Cの建築物である。 スパン17m(間口)のTYPE-Aの建築物の概略斜視図である。 スパン30m(間口)のTYPE-Bの建築物の概略斜視図である。 スパン40m(間口)のTYPE-Bの建築物の概略斜視図である。 スパン50m(間口)のTYPE-Cの建築物の概略斜視図である。
The following figures are all diagrams of examples according to the present invention.
It is a perspective view which shows the form of the building material linear in the length direction. It is a perspective view which shows the form of the building material which is curved in the length direction. It is a perspective view which shows the shape of a building material in the width direction, (a) in the figure has a large width, and (b) in a figure has a small width. Corresponding to FIG. 3, it is a cross-sectional view showing the shape of a building material in the width direction, in which (a) in the figure has a large width and (b) in the figure has a small width. It is a perspective view which shows the state which tries to connect the building material which is linear in the length direction in the width direction. It is a perspective view which shows the state which the building material which is linear in the length direction is connected in the width direction. It is a perspective view which shows the state which tries to connect the building material which is linear in the length direction in the length direction. It is a perspective view which shows the state which the building material which is linear in the length direction is connected in the length direction. It is a perspective view which shows the state which the building material which is linear in the length direction is connected in the width direction and the length direction. It is sectional drawing which showed the state connected in the width direction corresponding to FIG. It is a partial perspective view of a building which partially shows the state which was constructed by connecting the building materials linear in the length direction in the width direction and the length direction in a building. It is a perspective view which shows the state which tries to connect the building material which is curved in the length direction in the width direction. It is a perspective view which shows the state which the building material which is curved in the length direction is connected in the width direction. It is a perspective view which shows the state which tries to connect the building material which is curved in the length direction in the length direction. FIG. 5 is a perspective view showing an embodiment of the present invention in which building materials curved in the length direction are connected in the length direction. It is a partial perspective view of a building which partially shows the state which was constructed by connecting the building material which is curved in the length direction in the width direction and the length direction in a building. In a building, a building material linear in the length direction is connected in the width direction and the length direction, and a building material curved in the length direction is connected in the width direction and the length direction. It is an overall perspective view of a building which partially shows the state. It is a schematic cross-sectional view in the width direction of a TYPE-A building with a span (frontage) of 17 m. Schematic cross-sectional views of buildings of four sizes, (a) in the figure is the same building as in FIG. 17, and (b) in the figure is a TYPE-B building with a span (frontage) of 30 m. In the figure, (c) is a TYPE-B building with a span (frontage) of 40 m, and (d) in the figure is a TYPE-C building with a span (frontage) of 50 m. It is a schematic perspective view of the building of TYPE-A with a span of 17 m (frontage). It is a schematic perspective view of the building of TYPE-B with a span of 30 m (frontage). It is a schematic perspective view of the building of TYPE-B with a span of 40 m (frontage). It is a schematic perspective view of a TYPE-C building with a span of 50 m (frontage).

次に本発明の好適な実施例を添付の図面に基づいて詳細に説明する。 Next, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1に示す10は、建築材料としての長さ方向に直線状の1本の直線状プレートを示し、図2に示す20は、建築材料としての長さ方向に湾曲状の1本の湾曲状プレートを示す。これらの直線状プレート10及び湾曲状プレート20は、厚さが3mm以上であって、図3及び図4に示すように、幅方向に2周期の湾曲状波形をなしている。 10 shown in FIG. 1 shows one linear plate linear in the length direction as a building material, and 20 shown in FIG. 2 shows one curved shape curved in the length direction as a building material. Shows the plate. These linear plate 10 and curved plate 20 have a thickness of 3 mm or more and, as shown in FIGS. 3 and 4, have a curved waveform with two cycles in the width direction.

図3及び図4における図中の(a)は、本実施例においてはTYPE-Cと呼び、サイズが大きい方の建築材料であって、それぞれ湾曲状波形における山から谷の高低差が237mmであり、山から山の距離は500mmであって、図3に示すように連結代を含めると材料幅は1mを超える。また、図3及び図4における図中の(b)は、本実施例においてはTYPE-A又はTYPE-Bと呼び、サイズが小さい方の建築材料であって、それぞれ湾曲状波形における山から谷の高低差が140mmであり、山から山の距離は380mmであって、図3に示すように連結代を含めると材料幅は80cmを超える。なお、TYPE-BはTYPE-Aよりも厚さが厚い。直線状プレート10及び湾曲状プレート20のそれぞれの長さは、規格としては5m以上であるが、設計において適宜の長さに切断されて使用される。これらの直線状プレート10及び湾曲状プレート20のそれぞれには、山の箇所及び谷の箇所に長さ方向に数箇所のボルトによる連結用孔が形成されている。 (A) in the drawings in FIGS. 3 and 4 is called TYPE-C in this embodiment, which is the larger building material, and the height difference between the peak and the valley in the curved waveform is 237 mm. Yes, the distance from mountain to mountain is 500 mm, and as shown in FIG. 3, the material width exceeds 1 m when the connection allowance is included. Further, (b) in the drawings in FIGS. 3 and 4 is referred to as TYPE-A or TYPE-B in this embodiment, and is a building material having a smaller size, and each has a peak to a valley in a curved waveform. The height difference between the two is 140 mm, the distance from the mountain to the mountain is 380 mm, and as shown in FIG. 3, the material width exceeds 80 cm when the connection allowance is included. TYPE-B is thicker than TYPE-A. The length of each of the linear plate 10 and the curved plate 20 is 5 m or more as a standard, but it is used by being cut to an appropriate length in the design. In each of the linear plate 10 and the curved plate 20, connecting holes by several bolts are formed in the peaks and valleys in the length direction.

図5及び図6は、直線状プレート10の連結方法の具体例として、直線状プレート10Aとこれに幅方向に連結する直線状プレート10Bを示す。直線状プレート10Aにおいては、図において下端部に3個一組で二組の近接した連結用孔a1、a2、a3、a4、a5、a6が形成されており、それ以外の箇所には一定の距離を置いて等間隔に配された連結用孔aが複数形成されている。なお、図においては上端側にも近接した3個一組で一組又は二組の連結用孔が形成されているが、図を簡単にするために省略している。また、上端側を長さ方向に切断したことによりその部分に形成されている連結用孔の箇所が欠落する場合もある。 5 and 6 show a linear plate 10A and a linear plate 10B connected to the linear plate 10A in the width direction as a specific example of a method of connecting the linear plate 10. In the linear plate 10A, two sets of adjacent connecting holes a1, a2, a3, a4, a5, and a6 are formed in a set of three at the lower end in the figure, and are constant at other places. A plurality of connecting holes a are formed at equal intervals at a distance. In the figure, one set or two sets of connecting holes are formed by a set of three close to the upper end side, but they are omitted for the sake of simplicity in the figure. Further, by cutting the upper end side in the length direction, the portion of the connecting hole formed in the portion may be missing.

一方、直線状プレート10Bには、前記直線状プレート10Aの連結用孔a4、a5、a6に対応するように、図において下端部に3個一組の近接した連結用孔b1、b2、b3が形成されており、それ以外の箇所には、前記直線状プレート10Aの連結用孔aに対応するように、一定の距離を置いて等間隔で連結用孔bが複数形成されている。なお、図においては上端側にも近接した3個一組で一組又は二組の連結用孔が形成されているが、図を簡単にするために省略している。また、上端側を長さ方向に切断したことによりその部分に形成されている連結用孔の箇所が欠落する場合もある。 On the other hand, the linear plate 10B has a set of three adjacent connecting holes b1, b2, and b3 at the lower end in the drawing so as to correspond to the connecting holes a4, a5, and a6 of the linear plate 10A. A plurality of connecting holes b are formed at equal intervals at a certain distance so as to correspond to the connecting holes a of the linear plate 10A at other locations. In the figure, one set or two sets of connecting holes are formed by a set of three close to the upper end side, but they are omitted for the sake of simplicity in the figure. Further, by cutting the upper end side in the length direction, the portion of the connecting hole formed in the portion may be missing.

そして、直線状プレート10Aにおける連結用孔a4、a5、a6及びそれ以外の連結用孔aと、直線状プレート10Bにおける連結用孔b1、b2、b3及びそれ以外の連結用孔bとを、図示するようにボルトにより締結して、直線状プレート10Aと直線状プレート10Bとを、直線状プレート10Aの連結用孔a1、a2、a3の分だけずらして幅方向に連結する。 The connecting holes a4, a5, a6 and other connecting holes a in the linear plate 10A and the connecting holes b1, b2, b3 and other connecting holes b in the linear plate 10B are shown in the figure. The linear plate 10A and the linear plate 10B are connected in the width direction by shifting the connecting holes a1, a2, and a3 of the linear plate 10A.

図7及び図8は、直線状プレート10の連結方法の具体例として、直線状プレート10Aとこれに長さ方向に連結する直線状プレート10Cを示す。直線状プレート10Aにおいては、図において右上端部に3個一組で二組の近接した連結用孔a1、a2、a3、a4、a5、a6が形成されており、当該連結用孔a1、a2、a3と平行する3個一組の連結用孔が直線状プレート10Aの図において右下端部にかけて谷側と山側とに形成されている。なお、右下端部には3個一組で二組の近接した連結用孔が形成されている。また、図においては左端側にも近接した3個一組で一組又は二組の連結用孔が形成されているが、図を簡単にするために省略している。また、左端側を長さ方向に切断したことによりその部分に形成されている連結用孔の箇所が欠落する場合もある。 7 and 8 show a linear plate 10A and a linear plate 10C connected to the linear plate 10A in the length direction as a specific example of a method of connecting the linear plate 10. In the linear plate 10A, two sets of adjacent connecting holes a1, a2, a3, a4, a5, and a6 are formed in a set of three at the upper right end in the figure, and the connecting holes a1, a2 are formed. , A3, a set of three connecting holes are formed on the valley side and the mountain side toward the lower right end in the figure of the linear plate 10A. In addition, two sets of adjacent connecting holes are formed in a set of three at the lower right end portion. Further, in the figure, one set or two sets of connecting holes are formed by a set of three close to each other on the left end side, but they are omitted for the sake of simplicity in the figure. In addition, the left end side may be cut in the length direction, so that the portion of the connecting hole formed in the portion may be missing.

一方、直線状プレート10Cには、図において左上端部に、直線状プレート10Aの連結用孔a1、a2、a3に対応する3個一組の近接した連結用孔c1、c2、c3が形成されている。また、直線状プレート10Aにおける連結用孔a1、a2、a3と平行する3個一組の連結用孔に対応して、直線状プレート10Cにも左下端部にかけて谷側と山側とに、前記連結用孔c1、c2、c3と平行する3個一組の連結用孔が形成されている。なお、図においては右端側にも近接した3個一組で一組又は二組の連結用孔が形成されているが、図を簡単にするために省略している。また、左端側を長さ方向に切断したことによりその部分に形成されている連結用孔の箇所が欠落する場合もある。 On the other hand, in the linear plate 10C, a set of three adjacent connecting holes c1, c2, c3 corresponding to the connecting holes a1, a2, a3 of the linear plate 10A are formed at the upper left end in the figure. ing. Further, corresponding to a set of three connecting holes parallel to the connecting holes a1, a2, and a3 in the linear plate 10A, the linear plate 10C is also connected to the valley side and the mountain side toward the lower left portion. A set of three connecting holes parallel to the holes c1, c2, and c3 are formed. In the figure, one set or two sets of connecting holes are formed by a set of three close to each other on the right end side, but they are omitted for the sake of simplicity in the figure. In addition, the left end side may be cut in the length direction, so that the portion of the connecting hole formed in the portion may be missing.

そして、直線状プレート10Aにおける連結用孔a1、a2、a3及びそれ以外の3個一組の連結用孔と、直線状プレート10Cにおける連結用孔c1、c2、c3及びそれ以外の3個一組の連結用孔とを、図示するようにボルトにより締結して、直線状プレート10Aと直線状プレート10Cとを長さ方向に連結する。 Then, a set of three connecting holes a1, a2, a3 and others in the linear plate 10A and a set of three connecting holes c1, c2, c3 and others in the linear plate 10C. The connection holes of the above are fastened with bolts as shown to connect the linear plate 10A and the linear plate 10C in the length direction.

図9は、前記直線状プレート10Aに対して、幅方向に前記直線状プレート10Bを連結し、長さ方向に前記直線状プレート10Cを連結し、それに加えて、前記直線状プレート10Bに長さ方向に連結し、前記直線状プレート10Cに幅方向に連結した直線状プレート10Dを状態を示す。 FIG. 9 shows that the linear plate 10B is connected to the linear plate 10A in the width direction, the linear plate 10C is connected in the length direction, and in addition, the length is connected to the linear plate 10B. The state shows the linear plate 10D connected in the direction and connected to the linear plate 10C in the width direction.

図9における連結箇所Aでは直線状プレート10Bの上に直線状プレート10Aが重なってボルト止めされ、連結箇所Bでは直線状プレート10Cの上に直線状プレート10Aが重なってボルト止めされている。また、連結箇所Cでは直線状プレート10Dの上に直線状プレート10Cが重なってボルト止めされ、連結箇所Dでは直線状プレート10Dの上に直線状プレート10Bが重なってボルト止めされている。 At the connecting portion A in FIG. 9, the linear plate 10A is overlapped and bolted on the linear plate 10B, and at the connecting portion B, the linear plate 10A is overlapped and bolted on the linear plate 10C. Further, at the connecting portion C, the linear plate 10C is overlapped and bolted on the linear plate 10D, and at the connecting portion D, the linear plate 10B is overlapped and bolted on the linear plate 10D.

そして、連結箇所Eでは直線状プレート10Dの上に直線状プレート10Bが重なり、さらにその上に直線状プレート10Aが重なってボルト止めされている。連結箇所Fでは直線状プレート10Dの上に直線状プレート10Cが重なり、さらにその上に直線状プレート10Aが重なってボルト止めされている。連結箇所Gでは直線状プレート10Dの上に直線状プレート10Aが重なり、その重なり部に挟まる状態で直線状プレート10Bと直線状プレート10Cとが突き合わされている。 Then, at the connecting portion E, the linear plate 10B is overlapped on the linear plate 10D, and the linear plate 10A is further overlapped on the linear plate 10D and bolted. At the connecting portion F, the linear plate 10C is overlapped on the linear plate 10D, and the linear plate 10A is further overlapped on the linear plate 10D and bolted. At the connecting portion G, the linear plate 10A is overlapped on the linear plate 10D, and the linear plate 10B and the linear plate 10C are butted against each other in a state of being sandwiched between the overlapping portions.

このように幅方向及び長さ方向の双方に関与する連結箇所E、Fにおいては3枚の直線状プレート10が重なってボルト止めされることになり、それ以外の箇所においては2枚の直線状プレート10が重なってボルト止めされているので、これらの連結により直線状プレート10は強固に固定されることになる。 In this way, at the connecting points E and F involved in both the width direction and the length direction, the three linear plates 10 are overlapped and bolted, and at the other points, the two linear plates 10 are linear. Since the plates 10 are overlapped and bolted, the linear plate 10 is firmly fixed by these connections.

図9(a)は、1枚の直線状プレートに対して、その両側に他の直線状プレートを連結した状態を示す断面図であって、1枚だけの断面図である図4に対応する図である。図9(a)の左側に示すように、直線状プレートにおける幅方向両端の湾曲状波形の山側の裏面が、隣接する直線状プレートの山側の表面を乗り越えるようにして重なり合って連結される。 FIG. 9A is a cross-sectional view showing a state in which another linear plate is connected to both sides of one linear plate, and corresponds to FIG. 4, which is a cross-sectional view of only one plate. It is a figure. As shown on the left side of FIG. 9A, the back surfaces of the curved corrugations at both ends of the linear plate on the mountain side are overlapped and connected so as to overcome the mountain side surfaces of the adjacent linear plates.

図10は、このように連結固定した直線状プレート10が建築物の壁面部に配置された例を示す。この例のように、直線状プレート10は建築物における平坦な面に使用される。 FIG. 10 shows an example in which the linear plate 10 connected and fixed in this way is arranged on the wall surface of the building. As in this example, the linear plate 10 is used for flat surfaces in buildings.

図11及び図12は、湾曲状プレート20の連結方法の具体例として、湾曲状プレート20Aとこれに幅方向に連結する湾曲状プレート20Bを示す。湾曲状プレート20Aにおいては、図において右側下端部に3個一組の近接した連結用孔d1、d2、d3が形成されており、それ以外の左側下端部には一定の距離を置いて等間隔に配された連結用孔dが複数形成されている。なお、図においては左端側にも近接した3個一組で一組又は二組の連結用孔が形成されているが、図を簡単にするために省略している。また、左端側を長さ方向に切断したことによりその部分に形成されている連結用孔の箇所が欠落する場合もある。 11 and 12 show a curved plate 20A and a curved plate 20B connected to the curved plate 20A in the width direction as a specific example of a method of connecting the curved plate 20. In the curved plate 20A, a set of three adjacent connecting holes d1, d2, and d3 are formed in the lower right end portion in the figure, and the other left lower end portions are equally spaced at a certain distance. A plurality of connecting holes d arranged in the above are formed. In the figure, one set or two sets of connecting holes are formed by a set of three close to the left end side, but they are omitted for the sake of simplicity in the figure. In addition, the left end side may be cut in the length direction, so that the portion of the connecting hole formed in the portion may be missing.

一方、湾曲状プレート20Bには、右側上端部に3個一組で二組の近接した連結用孔e1、e2、e3、e4、e5、e6が形成されており、当該連結用孔e4、e5、e6が前記湾曲状プレート20Aの連結用孔d1、d2、d3に対応する。それ以外の箇所には一定の距離を置いて等間隔で連結用孔eが複数形成されている。なお、右下端部には3個一組で二組の近接した連結用孔が形成されている。また、図においては左端側にも近接した3個一組で一組又は二組の連結用孔が形成されているが、図を簡単にするために省略している。また、左端側を長さ方向に切断したことによりその部分に形成されている連結用孔の箇所が欠落する場合もある。 On the other hand, in the curved plate 20B, two sets of adjacent connecting holes e1, e2, e3, e4, e5, and e6 are formed in a set of three on the upper right end portion, and the connecting holes e4, e5 are formed. , E6 correspond to the connecting holes d1, d2, d3 of the curved plate 20A. A plurality of connecting holes e are formed at equal intervals at a certain distance in other places. In addition, two sets of adjacent connecting holes are formed in a set of three at the lower right end portion. Further, in the figure, one set or two sets of connecting holes are formed by a set of three close to each other on the left end side, but they are omitted for the sake of simplicity in the figure. In addition, the left end side may be cut in the length direction, so that the portion of the connecting hole formed in the portion may be missing.

そして、湾曲状プレート20Aにおける連結用孔d1、d2、d3及びそれ以外の連結用孔dと、湾曲状プレート20Bにおける連結用孔e4、e5、e6及びそれ以外の連結用孔eとを、図示するようにボルトにより締結して、湾曲状プレート20Aと湾曲状プレート20Bとを、湾曲状プレート20Bの連結用孔e1、e2、e3の分だけずらして幅方向に連結する。 The connecting holes d1, d2, d3 and other connecting holes d in the curved plate 20A and the connecting holes e4, e5, e6 and other connecting holes e in the curved plate 20B are shown in the illustration. The curved plate 20A and the curved plate 20B are connected in the width direction by shifting the connecting holes e1, e2, and e3 of the curved plate 20B.

図13及び図14は、湾曲状プレート20の連結方法の具体例として、湾曲状プレート20Bとこれに長さ方向に連結する湾曲状プレート20Cを示す。湾曲状プレート20Bにおいては、図において右上端部に3個一組で二組の近接した連結用孔e1、e2、e3、e4、e5、e6が形成されており、当該連結用孔e1、e2、e3と平行する3個一組の連結用孔が湾曲状プレート20Bの図において右下端部にかけて谷側と山側とに形成されている。なお、左下端部にも3個一組又は二組の近接した連結用孔が形成されているが、図示は省略する。また、左下端側を長さ方向に切断したことによりその部分に形成されている連結用孔の箇所が欠落する場合もある。 13 and 14 show a curved plate 20B and a curved plate 20C connected to the curved plate 20B in the length direction as a specific example of a method of connecting the curved plate 20. In the curved plate 20B, two sets of adjacent connecting holes e1, e2, e3, e4, e5, and e6 are formed in a set of three at the upper right end in the figure, and the connecting holes e1, e2 are formed. , A set of three connecting holes parallel to e3 are formed on the valley side and the mountain side toward the lower right end in the figure of the curved plate 20B. It should be noted that a set of three or two sets of adjacent connecting holes are also formed at the lower left end portion, but the illustration is omitted. Further, by cutting the lower left end side in the length direction, the portion of the connecting hole formed in the portion may be missing.

一方、湾曲状プレート20Cには、図において左上端部に、湾曲状プレート20Bの連結用孔e1、e2、e3に対応する3個一組の近接した連結用孔f1、f2、f3が形成されている。また、湾曲状プレート20Bにおける連結用孔e1、e2、e3と平行する3個一組の連結用孔に対応して、湾曲状プレート20Cにも左下端部にかけて谷側と山側とに、前記連結用孔f1、f2、f3に平行する3個一組の近接した連結用孔が形成されている。 On the other hand, in the curved plate 20C, a set of three adjacent connecting holes f1, f2, and f3 corresponding to the connecting holes e1, e2, and e3 of the curved plate 20B are formed at the upper left end in the figure. ing. Further, corresponding to a set of three connecting holes parallel to the connecting holes e1, e2, and e3 in the curved plate 20B, the curved plate 20C is also connected to the valley side and the mountain side toward the left lower end portion. A set of three adjacent connecting holes parallel to the holes f1, f2, and f3 are formed.

そして、湾曲状プレート20Bにおける連結用孔e1、e2、e3及びそれ以外の3個一組の連結用孔と、湾曲状プレート20Cにおける連結用孔f1、f2、f3及びそれ以外の3個一組の連結用孔とを、図示するようにボルトにより締結して、湾曲状プレート20Bと湾曲状プレート20Cとを長さ方向に連結する。 Then, a set of three connecting holes e1, e2, e3 and other connecting holes in the curved plate 20B, and a set of three connecting holes f1, f2, f3 and others in the curved plate 20C. Is fastened with bolts as shown to connect the curved plate 20B and the curved plate 20C in the length direction.

なお、図示及び説明は省略するが、湾曲状プレート20の幅方向及び長さ方向の連結構造については、図9により説明した直線状プレート10と同様の連結構造を採用して強固に連結固定できる。 Although illustration and description are omitted, the connection structure in the width direction and the length direction of the curved plate 20 can be firmly connected and fixed by adopting the same connection structure as the linear plate 10 described with reference to FIG. ..

図15は、このように連結固定した湾曲状プレート20が建築物における壁面から屋根面にかけての湾曲部に配置された例を示す。この湾曲状プレート20は建築物における湾曲した面に使用される。 FIG. 15 shows an example in which the curved plate 20 connected and fixed in this way is arranged in the curved portion from the wall surface to the roof surface in the building. The curved plate 20 is used for curved surfaces in buildings.

図16は、連結固定した直線状プレート10が平坦な壁面に配置され、湾曲状プレート20が屋根面にかけての湾曲した面に配置された建築物の全体図である。 FIG. 16 is an overall view of a building in which a linear plate 10 connected and fixed is arranged on a flat wall surface, and a curved plate 20 is arranged on a curved surface extending to a roof surface.

図17~図22には、前述した直線状プレートと湾曲状プレートとを使用してアーチ状の建築物を構築した例を示す。 17 to 22 show an example in which an arched building is constructed by using the above-mentioned linear plate and curved plate.

図17は、前述の図4において説明したTYPE-Aの建築材料を使用して構築した断面図である。図17に示す建築物は間口が17m、高さが6mの比較的小規模の建築物である。そのため、屋根面の重量が屋根面自体に掛かる荷重が比較的小さいので、図19に示す全体斜視図のように、屋根面が平坦に近い構造にすることができる。この場合には、壁面と屋根面に直線状プレートを使用し、壁面と屋根面との境界部分となる湾曲した箇所に湾曲状プレートを使用することができる。もちろん天井を高くする場合には、前記境界部分に連続して屋根面に湾曲状プレートを使用すればよい。 FIG. 17 is a cross-sectional view constructed using the building material of TYPE-A described in FIG. 4 described above. The building shown in FIG. 17 is a relatively small building with a frontage of 17 m and a height of 6 m. Therefore, since the weight of the roof surface is relatively small and the load applied to the roof surface itself is relatively small, the structure can be such that the roof surface is almost flat as shown in the overall perspective view shown in FIG. In this case, a linear plate can be used for the wall surface and the roof surface, and a curved plate can be used for the curved portion which is the boundary portion between the wall surface and the roof surface. Of course, when raising the ceiling, a curved plate may be used on the roof surface continuously to the boundary portion.

図18は、間口を広げていった場合を説明する断面図である。図中の(a)は図17と同一のものである。図中の(b)は間口が30m、高さが10mの建築物であって、その全体構成は、図20の全体斜視図に示される。図中の(c)は間口が40m、高さが145mの建築物であり、その全体構成は、図21の全体斜視図に示される。図中の(b)で示す建築物及び図中の(c)で示す程度の大きさの建築物の場合は、TYPE-Aよりも厚さが厚く耐荷重性が高いTYPE-Bの建築材料を使用することが好ましい。 FIG. 18 is a cross-sectional view illustrating a case where the frontage is widened. (A) in the figure is the same as that in FIG. (B) in the figure is a building having a frontage of 30 m and a height of 10 m, and its overall configuration is shown in the overall perspective view of FIG. 20. (C) in the figure is a building having a frontage of 40 m and a height of 145 m, and its overall configuration is shown in the overall perspective view of FIG. 21. In the case of the building shown by (b) in the figure and the building of the size shown in (c) in the figure, the building material of TYPE-B, which is thicker than TYPE-A and has high load bearing capacity. It is preferable to use.

図中の(d)は、間口が50m、高さが25mのかなり大型の建築物であり、その全体構成は、図22の全体斜視図に示される。この図中の(c)の建築物については、TYPE-A及びTYPE-Bよりも厚さが厚く耐荷重性が高いTYPE-Cの建築材料を使用する。 (D) in the figure is a fairly large building having a frontage of 50 m and a height of 25 m, and its overall configuration is shown in the overall perspective view of FIG. 22. For the building (c) in this figure, the building material of TYPE-C, which is thicker and has a higher load capacity than TYPE-A and TYPE-B, is used.

前述した図18に示したように、間口が広くなるにしたがって屋根面における曲率を大きくすることより、屋根面の全重量が分散されて屋根面に掛かる荷重が小さくなり、壁面において分散された屋根面の荷重を受け止めることができるので、屋根面を支持する支柱(柱)が不要となり、建築物の内部空間を有効利用することが可能となる。 As shown in FIG. 18 described above, by increasing the curvature on the roof surface as the frontage becomes wider, the total weight of the roof surface is distributed and the load applied to the roof surface becomes smaller, and the roof distributed on the wall surface. Since the load on the surface can be received, the pillars that support the roof surface are not required, and the internal space of the building can be effectively used.

なお、直線状プレート10同士や湾曲状プレート20同士の重なり部、又は、直線状プレート10と湾曲状プレート20との重なり部に、クッション性がある合成樹脂製のパッキンライナーを挟み込んでボルトで締結することにより、隙間の解消、漏水防止、振動防止及びボルト抜けの防止を向上させるようにしてもよい。 A cushioning synthetic resin packing liner is sandwiched between the linear plates 10 and the overlapping portions of the curved plates 20 or the overlapping portions of the linear plates 10 and the curved plates 20 and fastened with bolts. By doing so, it may be possible to improve the elimination of gaps, prevention of water leakage, prevention of vibration, and prevention of bolt disconnection.

以上、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although the embodiment of the present invention has been described above, this embodiment is presented as an example and is not intended to limit the scope of the invention. This embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention. This embodiment and its modifications are included in the scope and gist of the invention as well as the invention described in the claims and the equivalent scope thereof.

10・・・直線状プレート(建築材料)
20・・・湾曲状プレート(建築材料)
10A、10B、10C・・・直線状プレート(建築材料)
a1、a2、a3、a4、a5、a6、a・・・直線状プレート10Aの連結用孔
b1、b2、b3、b・・・直線状プレート10Bの連結用孔
c1、c2、c3・・・直線状プレート10Cの連結用孔
A・・・直線状プレート10Bと同10Aとの連結箇所
B・・・直線状プレート10Cと同10Aとの連結箇所
C・・・直線状プレート10Dと同10Bとの連結箇所
D・・・直線状プレート10Dと同10Bとの連結箇所
E・・・直線状プレート10Dと同10Bと同10Aとの連結箇所
F・・・直線状プレート10Dと同10Cと同10Aとの連結箇所
G・・・直線状プレート10Dと同10Aとの連結箇所で同10Bと同10Cとの突き合わせ箇所
20A、20B、20C・・・湾曲状プレート(建築材料)
d1、d2、d3、d・・・湾曲状プレート20Aの連結用孔
e1、e2、e3、e4、e5、e6、e・・・湾曲状プレート20Bの連結用孔
f1、f2、f3・・・湾曲状プレート20Cの連結用孔
10 ... Straight plate (building material)
20 ... Curved plate (building material)
10A, 10B, 10C ... Straight plate (building material)
a1, a2, a3, a4, a5, a6, a ... Connecting holes b1, b2, b3, b ... for the linear plate 10A Connecting holes c1, c2, c3 ... Connection hole A of the linear plate 10C ... Connection point B between the linear plate 10B and 10A ... Connection point C between the linear plate 10C and 10A ... Connection point D ... Connection point between the linear plate 10D and the same 10B E ... Connection point between the linear plate 10D and the same 10B and the same 10A F ... Connection point G ... At the connection point between the linear plate 10D and the same 10A, the abutment points 20A, 20B, 20C between the same 10B and the same 10C ... Curved plate (building material)
d1, d2, d3, d ... Connecting holes e1, e2, e3, e4, e5, e6, e ... Connecting holes f1, f2, f3 ... Connection hole for curved plate 20C

Claims (2)

厚さが3mm以上、幅が80cm以上であり、幅方向に高低差が14cm以上で2周期以内の湾曲状波形の形状をなす金属板からなる建築材料を使用し
補強材を設けずに前記建築材料が長さ方向及び幅方向に連結されて屋根面及び壁面が構築された建築物であって、
前記建築材料は、
複数の建築材料が長さ方向に重ねて連結され、
前記長さ方向に連結された建築材料と、これに隣接する長さ方向に連結された建築材料とが、それぞれ長さ方向の連結箇所が重ならないように長さ方向にずらして幅方向に重ねて連結され、
屋根面を支持する支柱及び横架材を設けずに、高さが6m以上で間口の広さが17m以上のアーチ状に構築した
ことを特徴とする建築物。
Using a building material made of a metal plate having a thickness of 3 mm or more, a width of 80 cm or more, a height difference of 14 cm or more in the width direction, and a curved corrugated shape within 2 cycles .
A building in which the building materials are connected in the length direction and the width direction to construct a roof surface and a wall surface without providing a reinforcing material.
The building material is
Multiple building materials are stacked and connected in the length direction,
The building material connected in the length direction and the building material connected in the length direction adjacent to the building material are overlapped in the width direction by shifting in the length direction so that the connection points in the length direction do not overlap with each other. Connected,
The building is characterized by being constructed in an arch shape with a height of 6 m or more and a frontage of 17 m or more without providing columns and horizontal members to support the roof surface.
前記建築材料の連結箇所における建築材料間に合成樹脂製のパッキンライナーを介在させた
ことを特徴する請求項1に記載の建築物。
The building according to claim 1, wherein a packing liner made of synthetic resin is interposed between the building materials at the connecting portion of the building materials .
JP2020167114A 2020-10-01 2020-10-01 Building Active JP7049699B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020167114A JP7049699B1 (en) 2020-10-01 2020-10-01 Building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020167114A JP7049699B1 (en) 2020-10-01 2020-10-01 Building

Publications (2)

Publication Number Publication Date
JP7049699B1 true JP7049699B1 (en) 2022-04-07
JP2022060603A JP2022060603A (en) 2022-04-15

Family

ID=81125233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020167114A Active JP7049699B1 (en) 2020-10-01 2020-10-01 Building

Country Status (1)

Country Link
JP (1) JP7049699B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7457884B1 (en) 2023-07-10 2024-03-29 株式会社遠藤秀平建築研究所 architectural structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032211A (en) 2005-07-29 2007-02-08 Toko Tekko Kk Arch-like building structure with extensible width
JP2008517187A (en) 2004-10-15 2008-05-22 エム.アイ.シー.インダストリーズ,インコーポレイテッド Architectural panels and building structures
JP2012087483A (en) 2010-10-15 2012-05-10 Nippon Steel Corp In-plane shear reinforcement structure of deck plate, roof structure and shear reinforcement metallic material
US20130227896A1 (en) 2012-03-02 2013-09-05 M.I.C. Industries, Inc. Building Panels Having Hook and Loop Seams, Building Structures, and Systems and Methods for Making Building Panels
JP2015051458A (en) 2013-08-07 2015-03-19 淡路鉄工株式会社 Method and apparatus for production of corrugated steel sheet for building material
JP2019108760A (en) 2017-12-20 2019-07-04 Jfe建材株式会社 Arch-shaped structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0819645B2 (en) * 1991-08-14 1996-02-28 東光鉄工株式会社 Arched building structure
JPH08135221A (en) * 1994-11-11 1996-05-28 Toko Tekko Kk Variable dimension structure using large-sized deck plate
JPH09195439A (en) * 1996-01-18 1997-07-29 Taisei Kogyo Kk Arc-shaped building material and arch structure using it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517187A (en) 2004-10-15 2008-05-22 エム.アイ.シー.インダストリーズ,インコーポレイテッド Architectural panels and building structures
JP2007032211A (en) 2005-07-29 2007-02-08 Toko Tekko Kk Arch-like building structure with extensible width
JP2012087483A (en) 2010-10-15 2012-05-10 Nippon Steel Corp In-plane shear reinforcement structure of deck plate, roof structure and shear reinforcement metallic material
US20130227896A1 (en) 2012-03-02 2013-09-05 M.I.C. Industries, Inc. Building Panels Having Hook and Loop Seams, Building Structures, and Systems and Methods for Making Building Panels
JP2015051458A (en) 2013-08-07 2015-03-19 淡路鉄工株式会社 Method and apparatus for production of corrugated steel sheet for building material
JP2019108760A (en) 2017-12-20 2019-07-04 Jfe建材株式会社 Arch-shaped structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7457884B1 (en) 2023-07-10 2024-03-29 株式会社遠藤秀平建築研究所 architectural structure

Also Published As

Publication number Publication date
JP2022060603A (en) 2022-04-15

Similar Documents

Publication Publication Date Title
JP4881092B2 (en) Seismic wall or seismic control wall made of corrugated steel sheet and its manufacturing method
JP5255840B2 (en) Architectural panels and building structures
US4573304A (en) Honeycomb floor panel and the like
JP5098052B2 (en) Wall panels
JP2014526005A (en) Wide static structure
US4843780A (en) Construction plate
JP7049699B1 (en) Building
US3427767A (en) Building structure
JP5601882B2 (en) Steel seismic wall and building with the same
JP2006037628A (en) Earthquake resistant reinforcement method for existing building
US4689870A (en) Method of making honeycomb floor panel
JP5422891B2 (en) Folded panel structure
JP4563872B2 (en) Seismic wall
JP6417067B1 (en) Seismic composite wall
JP4414832B2 (en) Seismic walls using corrugated steel plates with openings
US4594833A (en) Honeycomb floor panel and the like
US8925285B2 (en) Pressure resisting barrier walls
JP4494307B2 (en) Arch-shaped building structure with expandable frontage dimensions
JP7051597B2 (en) Truss beam
RU2059770C1 (en) Vaulted construction
JP2014167205A (en) Bearing wall
KR101154121B1 (en) Steel built up beam and steel concrete composite beam using the same
JP2014167208A (en) Bearing wall
WO2011113102A1 (en) Panel
JP4881084B2 (en) Seismic structure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210623

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220318

R150 Certificate of patent or registration of utility model

Ref document number: 7049699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150