JP2015051458A - Method and apparatus for production of corrugated steel sheet for building material - Google Patents

Method and apparatus for production of corrugated steel sheet for building material Download PDF

Info

Publication number
JP2015051458A
JP2015051458A JP2014009217A JP2014009217A JP2015051458A JP 2015051458 A JP2015051458 A JP 2015051458A JP 2014009217 A JP2014009217 A JP 2014009217A JP 2014009217 A JP2014009217 A JP 2014009217A JP 2015051458 A JP2015051458 A JP 2015051458A
Authority
JP
Japan
Prior art keywords
mold
convex
concave
steel sheet
corrugated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014009217A
Other languages
Japanese (ja)
Inventor
英人 内原
Hideto Uchihara
英人 内原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AWAJI IRON WORKS CO Ltd
Original Assignee
AWAJI IRON WORKS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AWAJI IRON WORKS CO Ltd filed Critical AWAJI IRON WORKS CO Ltd
Priority to JP2014009217A priority Critical patent/JP2015051458A/en
Publication of JP2015051458A publication Critical patent/JP2015051458A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable working a corrugated steel sheet usable as an earthquake-proof wall, while reducing the load for securing accuracy, even in a workplace involving a roof with an ordinary height.SOLUTION: A method of producing a corrugated steel sheet for building materials uses a press formation device consisting of an oil hydraulic press in which a concave mold with the cross section in the travel direction of a sheet bent by one or two crests from a reference surface is arranged on the lower side and a convex mold protruding in such a shape as to match the bent of the concave mold is arranged on the upper side and repeats twice or more a step of fixing a steel sheet for building materials held in the press formation device to a position at which a next crest is to be formed and forming crest waves by bending a corrugated shape of one or more crests downward in every progress of the steel sheet for building materials by one or two crests in the travel direction.

Description

この発明は、主に耐震性建材に用いる金属製波板の製造に関する。   The present invention mainly relates to the manufacture of metal corrugated sheets used for earthquake-resistant building materials.

建物の耐震性を高める手法として、波板鋼板を耐震壁として用いる手法が提案されている(特許文献1、請求項12等)。これは、柱や梁からなる建築物の架構に波板鋼板を取り付けて、この波板鋼板の剛性により剪断応力に対する耐力及び耐久性を発揮させるものである。特許文献1には波板鋼板として断面形状が、凹凸が交互になるように台形を上下に連続して配置した波板状のものが記載されている(特許文献1[0113])。また、同様に波板鋼板を耐震壁に用いる特許文献2の図14には、その他の形態の波板が記載されている。   As a technique for improving the earthquake resistance of a building, a technique using a corrugated steel sheet as a seismic wall has been proposed (Patent Document 1, Claim 12, etc.). In this method, a corrugated steel sheet is attached to a building frame composed of columns and beams, and the strength and durability against shear stress are exhibited by the rigidity of the corrugated steel sheet. Patent Document 1 describes a corrugated steel sheet having a cross-sectional shape and a corrugated plate shape in which trapezoids are continuously arranged in an up-and-down manner so that irregularities are alternated (Patent Document 1 [0113]). Similarly, another form of corrugated sheet is described in FIG. 14 of Patent Document 2 in which corrugated sheet steel is used for the earthquake resistant wall.

このような波板鋼板を製造するには、基本的には断面台形の角ごとにプレス加工していくことになる。用意した鋼板を、一方の端部から所定の位置で所定の角度で山折りし、その折り曲げた位置から所定の長さだけ進めた位置で谷折りし、次に同様に谷折りして、さらにその次は逆に山折りして、一つの台形分の波が形成できる。しかし、このように一つ一つの角を曲げていくと、特許文献2図6に規定されるような種々の箇所の寸法精度を保つために幾度もの厳重な確認が必要になり、速やかな大量加工が困難であった。また、波板に加工した部分の長さが長大になってくると、新たな台形を形成しようとしてプレス加工する際に、曲げられた板の先が床や天井に当たって変形するおそれや、そもそも加工できなくなるおそれもあるため、作業場の天井を高くしたり、作業位置を高くしたりする必要があり、加工できる環境の整備が困難でもあった。   In order to manufacture such a corrugated sheet steel, basically, press working is performed for each corner of the trapezoidal cross section. The prepared steel plate is mountain-folded at a predetermined angle from one end at a predetermined angle, valley-folded at a position advanced by a predetermined length from the bent position, and then valley-folded in the same manner. Next, you can fold it upside down to form one trapezoidal wave. However, if each corner is bent in this way, many strict checks are required to maintain the dimensional accuracy of various locations as defined in Patent Document 2 FIG. Processing was difficult. Also, if the length of the corrugated plate becomes long, when it is pressed to form a new trapezoid, the tip of the bent plate may hit the floor or ceiling, and it can be processed in the first place. Since it may disappear, it was necessary to raise the ceiling of the workplace or raise the work position, and it was difficult to prepare an environment for processing.

一方、建材用以外の波板加工では、車両用の制振構造体の製造方法として、金属基板と樹脂層との複合体に対して、製造する波板の形状に合わせた雄型と雌型とを組み合わせて、多周期分の波部を一括してプレス成形する手法が提案されている(特許文献3図6)。ここで用いる金属部分の厚みは0.05〜1mm程度のものである(同文献[0007][0039])。   On the other hand, in corrugated sheet processing other than for building materials, as a method of manufacturing a damping structure for a vehicle, a male mold and a female mold matched to the shape of the corrugated sheet to be manufactured with respect to a composite of a metal substrate and a resin layer In combination with the above, a technique has been proposed in which wave portions for multiple cycles are collectively press-formed (Patent Document 3 FIG. 6). The thickness of the metal part used here is about 0.05 to 1 mm (the same document [0007] [0039]).

また、特許文献4にはポンチを設けた上型とダイを設けた下型を組み合わせ、一部のポンチをバネで付勢した装置により、まず第1山波を形成させ、引き続いて第2山波を連続して形成する手法が記載されている(特許文献4図9及び[0002])。また同文献には、下台に凸型状のポンチと、上型に当該ポンチと同形状で構成される凹型状のダイを装着し、ダイ間に設けた頂部成形片22とポンチの頂部とで板材を保持して、プレス機がスライド下降してポンチとダイでポンチを中心に両側から板材を引き込み、プレス機スライドの下死点までで山波を形成させる手法が記載されている(特許文献4[0005][0006]等)。これは、しごきを伴った加工となっている(同[0007])。   Further, in Patent Document 4, a first mountain wave is first formed by a device in which an upper die having a punch and a lower die having a die are combined, and a part of the punch is biased by a spring, and then a second mountain. A technique for continuously forming waves is described (Patent Document 4 FIG. 9 and [0002]). In the same document, a convex punch is mounted on the lower base, and a concave die having the same shape as the punch is mounted on the upper mold, and the top molded piece 22 provided between the dies and the top of the punch A method is described in which the plate material is held, the press machine slides down, the plate material is drawn from both sides around the punch with a punch and die, and a mountain wave is formed up to the bottom dead center of the press machine slide (Patent Document) 4 [0005] [0006] etc.). This is a process accompanied by ironing (the same [0007]).

特許文献4に記載の方法は、下死点の記載があることからもわかるように、クランクプレスによって上死点から下死点までを速やかに移行させてプレスし、戻りもまたクランクの動きに従った、速やかなものである。このような速やかな加工は、特許文献3及び4のように山波に加工する金属板が薄ければ(1mm程度以下)加工精度を発揮できる。   As can be seen from the description of the bottom dead center, the method described in Patent Document 4 uses a crank press to quickly shift from the top dead center to the bottom dead center and press it. Followed and prompt. Such rapid processing can exhibit processing accuracy if the metal plate to be processed into a mountain wave is thin (about 1 mm or less) as in Patent Documents 3 and 4.

特開2010−133229号公報JP 2010-133229 A 特開2010−127051号公報JP 2010-127051 A 特開2008−194887号公報JP 2008-19487A 特開2001−137960号公報JP 2001-137960 A

しかしながら、クランクプレスは最大プレス荷重が瞬時にしか作用させられないため、一定時間荷重を保持することが出来ず、プレスされた金属板にはプレス後の揺り戻し変形があるため、当初設定した寸法精度が確保できないという問題がある。また、特許文献1及び2に記載の耐震壁に用いる波板鋼板のようにより厚い材料に対してはそのように速やかに成形させることはできず、事実上適用することはできなかった。   However, since the maximum press load can only be applied instantaneously in a crank press, the load cannot be maintained for a certain period of time. There is a problem that accuracy cannot be secured. Moreover, it cannot be formed so quickly to a thicker material such as a corrugated steel sheet used for a seismic wall described in Patent Documents 1 and 2, and cannot be applied in practice.

さらに、特許文献3に記載のような多周期(図6では四周期分)の一括加工は、文献にある薄い金属材料では可能だが、建材用の厚い鋼板に対して行うと、外側の波は形成できても、中央部分では変形の際にかかる力の逃げ場が無く鋼板が破断するおそれがあった。   Furthermore, batch processing of multiple cycles as described in Patent Document 3 (four cycles in FIG. 6) is possible with thin metal materials in the literature, but when performed on thick steel plates for building materials, the outer waves are Even if it could be formed, there was no escape of force applied during deformation at the central portion, and the steel sheet could be broken.

そこでこの発明は、特許文献1及び2の耐震壁として使用可能な波板鋼板を、精度確保のためにかかる負荷を軽減させながら、かつ通常の高さの天井を有する作業場でも加工できるようにすることを目的とする。   Therefore, the present invention makes it possible to process corrugated steel sheets that can be used as the earthquake resistant walls of Patent Documents 1 and 2 even in a workplace having a normal ceiling while reducing the load required to ensure accuracy. For the purpose.

この発明は、板の進行方向断面が基準面から一山分又は二山分の波形に凹んだ凹状金型を被加圧側に、その凹みに相対し組み合わされる形に凸んだ(つばくんだ)凸状金型を加圧移動側に配置した油圧プレスによるプレス成型装置により、
間に挟んだ建材用鋼板を、次に山波を形成させる位置に固定した上で、一山分又は二山分の波板形状を加圧方向へ曲げて山波を形成させるステップを、
上記建材用鋼板を上記進行方向に上記一山分又は二山分に対応する長さだけ進行させるたびに複数回繰り返す波板鋼板の製造方法により上記の課題を解決したのである。
In the present invention, the concave mold in which the cross-section in the traveling direction of the plate is recessed in a waveform of one or two peaks from the reference surface is convex on the pressed side in a shape that is combined with the recess. ) By a press molding device with a hydraulic press with a convex mold placed on the pressure movement side,
After fixing the steel sheet for building materials sandwiched between them to the position where the mountain wave is formed next, the step of forming the mountain wave by bending the corrugated plate shape for one mountain or two mountains in the pressurizing direction,
The above-mentioned problems have been solved by a method for manufacturing a corrugated steel sheet that is repeated a plurality of times each time the steel sheet for building material is advanced in the traveling direction by a length corresponding to the one or two peaks.

建材用の鋼板にクランクプレスを用いるような速やかなプレスを繰り返すことは事実上不可能であるが、油圧プレスを用いて、予め定めた上記凹状金型及び上記凸状金型とで挟むことで、一山分又は二山分の山波を構成する角を一括して曲げることが可能である。また、二山分までの山波であれば、ズレや破断の発生を最小限に抑えながら、等脚台形のように一山あたり折り曲げ部分が複数箇所ある山波を一操作で折り曲げて形成させることができる。基準面から加圧へ向かって押し込みながら変形させるため、十分に力を加えることができるとともに、波の前後で板が傾いて立ち上がることを、予め設けた金型の波の前後の基準面が押さえ込むため、波の前後の材料が天井まで届くといった心配がなくなる。   It is practically impossible to repeat a rapid press such as using a crank press on a steel plate for building materials, but using a hydraulic press, it is sandwiched between the above-mentioned concave mold and the above convex mold. It is possible to bend the corners constituting the mountain waves of one mountain or two mountains at once. In addition, if it is a mountain wave of up to two peaks, it can be formed by bending a mountain wave with multiple bent parts per mountain like one isosceles trapezoid with a single operation while minimizing the occurrence of displacement and breakage. be able to. Since it is deformed while being pushed toward the pressure from the reference surface, a sufficient force can be applied and the reference surface before and after the wave of the mold provided in advance suppresses that the plate tilts before and after the wave. Therefore, there is no worry that the material before and after the wave reaches the ceiling.

上記山波の形状は、三角波、サイン波、台形波が好適に製造でき、中でも台形波が加工のし易さと得られる波板鋼板の強度の点からもっとも好ましい。また、サイン波は曲げ部分にかかる負荷が小さく、波板鋼板の素材が曲げに弱く折れやすい場合に好適となる。さらに、三角波は、曲げ部分の角の数が減少することによりプレス荷重の減少に繋がる。一方で、角が垂直の矩形波はプレス加工の性質上、加工することは困難である。   As the shape of the mountain wave, a triangular wave, a sine wave, and a trapezoidal wave can be suitably manufactured. Among these, a trapezoidal wave is most preferable from the viewpoint of ease of processing and the strength of a corrugated steel sheet. Further, the sine wave is suitable when the load applied to the bent portion is small and the material of the corrugated steel sheet is weak to bending and easily breaks. Furthermore, the triangular wave leads to a reduction in the press load by reducing the number of corners of the bent portion. On the other hand, it is difficult to process a rectangular wave having a vertical corner due to the nature of press processing.

台形波の場合、上記凹状金型は板の進行方向断面が一山分又は二山分の等脚台形に凹んだ凹溝を基準面に有するものとする。また、それに相対する凸状金型は、上記凹状金型の等脚台形に相対し組み合わせられる等脚台形に凸んだ(つばくんだ)凸畝を基準面に有するものとするとよい。このような形状にすることにより、等脚台形を構成する一山あたり四箇所の曲げ部分を、決められた長さと角度で一括して形成させることができる。なお、二山分の場合は、凹状金型の凹溝間に形成されることになる凸畝が、上記凸状金型の凸畝と同じ角度、同じ高さとなるように寸法を揃えることで、等脚台形の形を揃えることができる。   In the case of a trapezoidal wave, the concave mold has a groove in the reference plane in which the cross-section in the traveling direction of the plate is recessed into an isosceles trapezoid for one or two peaks. Further, the convex mold opposite to the convex mold may have a convex surface convex on the reference plane that is convexly connected to the isosceles trapezoid of the concave mold. By adopting such a shape, four bent portions per mountain constituting the isosceles trapezoid can be collectively formed at a determined length and angle. In the case of two ridges, by aligning the dimensions so that the protrusions to be formed between the concave grooves of the concave mold have the same angle and the same height as the protrusions of the convex mold. The shape of an isosceles trapezoid can be aligned.

上記の被加圧側と加圧移動側とのそれぞれの金型の配置は特に限定されず、上下方向だけでなく、水平方向であってもプレス可能である。ただしその中でも、被加圧側を下側に、加圧移動側を上に配置するのが、プレスの前後の作業効率上特に好ましい。上下の凹凸が逆になると、曲げるべき鋼板が凸部の頂部だけに乗った状態から押し込むことになり曲げにくくなるだけでなく、水平位置の調整が難しくなる。このため、金型の板進行方向両端部で水平位置の調整が容易に出来、なおかつ両端部に載せて安定した状態で上から下に向かって凸んだ形状に加圧変形させることが特に望ましい。具体的には、次の波の形成箇所が上記凹状金型に乗った鋼板に対して最適な位置となるように、板の進行方向とは反対側の板の端部を適切な位置で固定するとよい。なお、この場合当然に、上記凹状金型と上記凸状金型の加圧方向に垂直な方向の位置、すなわち上下方向加圧の場合の水平位置は固定とする。   The arrangement of the respective molds on the pressurized side and the pressure moving side is not particularly limited, and pressing is possible not only in the vertical direction but also in the horizontal direction. However, among them, it is particularly preferable in terms of work efficiency before and after the press to arrange the pressurized side on the lower side and the pressurized moving side on the upper side. If the top and bottom irregularities are reversed, the steel plate to be bent will be pushed from the state of being only on the top of the convex part, and it will be difficult to bend, and it will also be difficult to adjust the horizontal position. For this reason, it is particularly desirable that the horizontal position can be easily adjusted at both ends of the mold in the plate traveling direction, and that it is placed on both ends and is pressure-deformed into a convex shape from top to bottom in a stable state. . Specifically, the end of the plate opposite to the direction of travel of the plate is fixed at an appropriate position so that the next wave formation location is the optimal position with respect to the steel plate on the concave mold. Good. In this case, naturally, the position of the concave mold and the convex mold in the direction perpendicular to the pressing direction, that is, the horizontal position in the case of vertical pressing is fixed.

また、上記の凹溝及び凸畝を形成する等脚台形は、相手方に向いた凸畝の両端の角が丸めてあり、形成される山波の折り曲げ部分が曲面となるようにすると、波板の強度を確保しやすくなるため好ましい。この曲面を形成する内径のアールの曲率半径は板厚tに対して2t以上であると、波板鋼板の曲面として実現可能で破断しにくく、かつ曲げ部分の強度を維持しやすいため好ましい。より好ましくは2.5t以上である。一方、曲率半径が大きくなる分には、設計上収まる範囲であれば特に制限はない。なお、当然に外径のアールの曲率半径は3t以上であると好ましく、3.5t以上であるとより好ましい。   In addition, the isosceles trapezoid that forms the above-mentioned concave groove and convexity is such that the corners of both ends of the convexity facing the other side are rounded, and the bent portion of the mountain wave formed is a curved surface. It is preferable because it is easy to ensure the strength of the. It is preferable that the radius of curvature of the radius of the inner diameter forming the curved surface is 2 t or more with respect to the plate thickness t because it can be realized as a curved surface of the corrugated steel sheet, hardly breaks, and easily maintains the strength of the bent portion. More preferably, it is 2.5 t or more. On the other hand, if the radius of curvature is large, there is no particular limitation as long as it is within a design range. Naturally, the radius of curvature of the outer radius is preferably 3 t or more, and more preferably 3.5 t or more.

サイン波の場合も、上記凹状金型は鋼板の進行方向断面が一山分又は二山分のサイン波形に凹んだ凹溝を基準面に有し、それに相対する凸状金型は、上記凹状金型のサイン波に相対し組み合わされるサイン波形に凸んだ凸畝を基準面に有するとよい。すなわち、基準面となる進行方向両端がサイン波の頂部に位置し、凹溝及び凸畝の頂部がそこから位相が180度異なる位置となるように配され360度分、又は720度分のサイン波からなる金型とする。なお、仮に両端が位相0度になると端部の抑えが不十分となり、プレス時に板が大きく反り返るおそれがある。   Also in the case of a sine wave, the concave mold has a groove in which the cross section in the traveling direction of the steel plate is recessed in a sine waveform for one or two ridges on the reference surface, and the convex mold opposite to the concave mold has the concave shape. It is preferable that the reference surface has a ridge that is convex in a sine waveform that is combined with the sine wave of the mold. That is, both ends of the traveling direction serving as the reference plane are located at the top of the sine wave, and the top of the concave groove and the convex ridge are positioned so that the phase is 180 degrees different therefrom, and the sine for 360 degrees or 720 degrees A mold made of waves. If both ends have a phase of 0 degrees, the end portion is not sufficiently suppressed, and the plate may be largely warped during pressing.

三角波の場合も、上記凹状金型は鋼板の進行方向断面が一山分又は二山分の三角波形に凹んだ凹溝を基準面に有し、それに相対する凸状金型は、上記凹状金型の三角波に相対し組み合わされるサイン波形に凸んだ凸畝を基準面に有するとよい。台形波やサイン波に比べて曲げる角が少なくなり、曲げに必要とするプレス荷重の減少により結果的に寸法精度が維持しやすくなる。   Also in the case of a triangular wave, the concave mold has a groove in which the cross section in the traveling direction of the steel sheet is recessed in a triangular waveform of one or two peaks on the reference surface, and the convex mold facing the concave mold is the concave mold. It is preferable that the reference surface has a ridge that is convex in a sine waveform that is combined with the triangular wave of the mold. Compared to trapezoidal waves and sine waves, the angle to bend is reduced, and as a result, the dimensional accuracy is easily maintained by reducing the press load required for bending.

この発明で用いる上記建材用鋼板の具体的厚さは厚さが2.3mm以上である。それより薄い鋼板に対しては、あえてこの発明を用いなくても、一括した波形の形成が可能である場合がある。厚さが2.3mm以上では、一度に形成させる山波の数を二つまでに制限しておかなければ、形成時に両端ではない山波の折り曲げる箇所において板の力の逃げ場が無くなり、破断する可能性が高くなる。一方、十分に圧力の強いプレス機を使えば、鋼板の厚みが増加してもある程度までは対応できる。一般的な金属加工工場に導入可能な油圧プレスで実用的に変形できる範囲としては、厚さ16mm以下であると十分に台形波を一括して形成させることが可能である。   The specific thickness of the steel sheet for building material used in the present invention is 2.3 mm or more. For thinner steel plates, it may be possible to form a waveform in a lump without using this invention. If the thickness is 2.3 mm or more, unless the number of mountain waves to be formed at one time is limited to two, there will be no escape from the force of the plate at the place where the mountain waves are bent at both ends, and the plate will break. The possibility increases. On the other hand, if a press machine with sufficiently strong pressure is used, even if the thickness of the steel sheet increases, it can cope to some extent. As a range that can be practically deformed by a hydraulic press that can be introduced into a general metal processing factory, it is possible to form trapezoidal waves sufficiently in a lump if the thickness is 16 mm or less.

この発明により、耐震建築用の波板鋼板を、従来よりも少ない工数で、なおかつ加工精度を維持しやすい手順で製造することができる。   According to the present invention, a corrugated steel sheet for earthquake-resistant construction can be manufactured with fewer man-hours than before and with a procedure that easily maintains the processing accuracy.

この発明の実施形態で用いるプレス成型装置の斜視図The perspective view of the press molding apparatus used by embodiment of this invention (a)〜(d)第1の実施形態で鋼板を加工する際の拡大斜視図(A)-(d) The expansion perspective view at the time of processing a steel plate in 1st Embodiment (a)〜(c)第1の実施形態で第1及び第2の山を形成する際の工程断面図(A)-(c) Process sectional drawing at the time of forming the 1st and 2nd peak in 1st Embodiment (a)〜(c)第1の実施形態で第3及び第4の山を形成する際の工程断面図(A)-(c) Process sectional drawing at the time of forming the 3rd and 4th peak in a 1st embodiment (a)等脚台形に波板を加工する場合の金型の断面図、(b)三角波に波板を加工する場合の金型の断面図、(c)サイン波に波板を加工する場合の金型の断面図(A) Cross section of mold when processing corrugated sheet into isosceles trapezoid, (b) Cross section of mold when processing corrugated sheet into triangular wave, (c) When processing corrugated sheet into sine wave Cross section of mold この発明の第二の実施形態で用いるプレス成型装置の斜視図The perspective view of the press molding apparatus used by 2nd embodiment of this invention 第2の実施形態における金型とガイド孔及びガイドピンの対を示す拡大斜視図The expansion perspective view which shows the metal mold | die, guide hole, and guide pin pair in 2nd Embodiment (a)凹状金型の四方にガイド孔を設ける場合の配置例図、(b)凹状金型の対角に位置する二箇所にガイド孔を設ける場合の配置例図(A) Arrangement example in the case where guide holes are provided on the four sides of the concave mold, (b) Arrangement example in the case where guide holes are provided at two positions located diagonally of the concave mold. (a)替え刃を設ける実施形態の畝部分の斜視図、(b)凸状金型と凹状金型に替え刃を設けてプレスした時点での断面図(A) Perspective view of flange portion of embodiment in which replacement blade is provided, (b) Cross-sectional view at the time when a replacement blade is provided and pressed on a convex mold and a concave mold 凸畝及び片丘の切り欠き部に替え刃を設ける部分の拡大斜視図Enlarged perspective view of the part where the replacement blade is provided in the cutout part of the bumps and Kataoka (a)長さ方向に中間省略した替え刃の斜視図、(b)中間省略した替え刃の斜面側から見た正面図(A) Perspective view of replacement blade with intermediate omitted in length direction, (b) Front view seen from slope side of replacement blade with intermediate omitted (a)中間省略した替え刃の頂部側から見た平面図、(b)替え刃の長さ方向端部側から見た側面図(A) Plan view seen from the top side of the replacement blade omitted in the middle, (b) Side view seen from the length direction end portion side of the replacement blade (a)中間省略した替え刃の切り欠き部に載せる側から見た底面図、(b)中間省略した替え刃の頂部尾根部に接する側から見た背面図(A) Bottom view seen from the side of the replacement blade omitted in the middle viewed from the side to be placed on the notch, (b) Rear view seen from the side contacting the top ridge of the replacement blade omitted in the middle 替え刃の貫通孔の形状を示すA−A断面図AA sectional view showing the shape of the through hole of the spare blade

以下、この発明の実施形態について例図とともに説明する。この発明は、油圧プレスによるプレス成型装置により鋼板を波形に曲げて波板鋼板を製造する方法である。   Hereinafter, embodiments of the present invention will be described with reference to examples. The present invention is a method of manufacturing a corrugated steel sheet by bending the steel sheet into a corrugated shape by a press molding apparatus using a hydraulic press.

図1に、油圧プレスにより動く凸状金型21、さらにその凸状金型21と相対する凹状金型22を含めたプレス成型装置11の斜視図を示す。基準面Hから凹んだ凹溝24を有する凹状金型22は床面に固定されている。基準面Hから凸んだ凸畝23を有する凸状金型21は、凹状金型22と相対して間に挟んだ鋼板31を加工変形させることができるように、上下運動するスライド12の下面に、下方へ向けて凸んだ配置で取り付けられてある。スライド12は、プレス機本体13内にある油圧ユニット(図示せず)により上下運動するシリンダ14とともに上下する。このような油圧プレスによることで、鋼板31を変形させる間に亘って継続的に力を加え続けることができ、厚みのある鋼板31であっても加工できる。   FIG. 1 is a perspective view of a press molding apparatus 11 including a convex mold 21 that is moved by a hydraulic press and a concave mold 22 that faces the convex mold 21. A concave mold 22 having a concave groove 24 recessed from the reference surface H is fixed to the floor surface. The convex mold 21 having convex ridges 23 projecting from the reference surface H is a lower surface of the slide 12 that moves up and down so that the steel plate 31 sandwiched therebetween can be processed and deformed relative to the concave mold 22. Are attached in a convex arrangement downward. The slide 12 moves up and down together with a cylinder 14 that moves up and down by a hydraulic unit (not shown) in the press machine body 13. By using such a hydraulic press, it is possible to continuously apply a force while the steel plate 31 is deformed, and even a thick steel plate 31 can be processed.

この第1の実施形態では、凸状金型21及び凹状金型22は角を丸めた等脚台形からなる波形形状を形成させるものである。従って、上記の凸畝23及び凹溝24はその等脚台形に合わせた断面形状を有する。凸畝23及び凹溝24はそれぞれ波2つ分設けてあるため、凸畝23、23の間には一つの凹溝27があり、凹溝24,24の間には一つの凸畝26が存在することになる。この金型同士の間に鋼板31を挟んで加工する際の工程を、図2(a)〜(d)の部分拡大図、図3(a)〜(c)の全体断面図とともに説明する。   In the first embodiment, the convex mold 21 and the concave mold 22 form a corrugated shape having an isosceles trapezoidal shape with rounded corners. Therefore, the convex ridges 23 and the concave grooves 24 have a cross-sectional shape matched to the isosceles trapezoid. Since the convex ridges 23 and the concave grooves 24 are respectively provided for two waves, there is one concave groove 27 between the convex grooves 23, 23, and one convex groove 26 between the concave grooves 24, 24. Will exist. A process when the steel plate 31 is sandwiched between the molds will be described together with partial enlarged views of FIGS. 2A to 2D and overall cross-sectional views of FIGS.

まず(図2(a))、鋼板31の進行方向(図3中左側)から所定の長さの位置に鋼板31をセットする。具体的には、下側に配した凹状金型22頂上部の高さが基準面Hとなり、その上に載せる際に後述するアタリ33に合わせて位置を調整する。なお、アタリ33を設けるかわりに、鋼板31の金型からの距離を測って調整してもよい。凸状金型21の凹状金型22に対する水平方向位置は固定されており、基本的には凹状金型22に対して鋼板31の進行方向位置を決めるとよい。   First (FIG. 2A), the steel plate 31 is set at a position of a predetermined length from the traveling direction of the steel plate 31 (left side in FIG. 3). Specifically, the height of the top of the concave mold 22 arranged on the lower side becomes the reference plane H, and the position is adjusted in accordance with the later-described attrition 33 when placing on the reference plane H. Instead of providing the hits 33, the distance from the mold of the steel plate 31 may be measured and adjusted. The horizontal position of the convex mold 21 with respect to the concave mold 22 is fixed, and basically the position in the traveling direction of the steel plate 31 may be determined with respect to the concave mold 22.

図2(a)のポジションから、油圧シリンダの力により徐々に力を加えて鋼板31を波形にプレスする。このとき、鋼板31は、凸畝23の法面である凸畝法面23aと、凹溝24の法面である凹溝法面24aとの間に挟まれることで、これらの法面の角度に沿って跳ね上がろうとする。このとき鋼板31の未加工部分が長いと跳ね上がった鋼板31の先が作業場の天井にまで届いてしまうおそれがある。これに対して、凸畝23の裾から少なくとも波の振幅程度の長さ分だけ延ばした板押さえ部25を設けておくと、図2(b)のように板押さえ部25が鋼板31の先を押さえながら変形させるので、変形中に鋼板31が跳ね上がりすぎる事態を防ぐことができる。なお、凸状金型21の板押さえ部25と、これに相対する凹状金型22の平面部28とが、それぞれの金型の基準面Hとなる。こうしてプレスしきった時点でのイメージを図2(c)に示し、凸状金型21を上げ戻した時点での斜視図を図2(d)に示す。   From the position shown in FIG. 2 (a), the steel plate 31 is pressed into a waveform by gradually applying force by the force of the hydraulic cylinder. At this time, the steel plate 31 is sandwiched between a convex slope surface 23a which is a slope of the convex slope 23 and a concave groove slope face 24a which is a slope of the concave groove 24, so that the angles of these slopes are obtained. Trying to jump up along. At this time, if the unprocessed portion of the steel plate 31 is long, the tip of the steel plate 31 that has bounced up may reach the ceiling of the workplace. On the other hand, if a plate pressing portion 25 extending from the skirt of the convex ridge 23 by at least the length corresponding to the amplitude of the wave is provided, the plate pressing portion 25 is attached to the tip of the steel plate 31 as shown in FIG. Therefore, it is possible to prevent the steel plate 31 from jumping up too much during the deformation. In addition, the plate pressing part 25 of the convex mold 21 and the flat part 28 of the concave mold 22 opposite to this are the reference plane H of each mold. FIG. 2 (c) shows an image at the time of pressing in this manner, and FIG. 2 (d) shows a perspective view at the time of raising the convex mold 21 back.

ただし、プレス開始前の鋼板31の進行方向端部の位置が仮に図3(a)のような位置であっても、プレスの際に凹溝24の底部24bへ向かって鋼板31を引っ張り込む力が働く。このため、プレス後の鋼板31の進行方向端部の位置は図3(b)及び(c)のように、凹部の底に向かって引っ張られ、進行方向とは逆方向にずれることになる。従って、上記の進行方向位置は、進行方向とは逆方向に引っ張り込まれる分の長さを予め余しておく必要がある。   However, even if the position of the end portion in the traveling direction of the steel plate 31 before the start of pressing is the position as shown in FIG. 3A, the force that pulls the steel plate 31 toward the bottom 24b of the groove 24 during pressing. Work. For this reason, as shown in FIGS. 3B and 3C, the position of the end portion in the traveling direction of the steel plate 31 after pressing is pulled toward the bottom of the concave portion and deviates in the direction opposite to the traveling direction. Therefore, it is necessary to leave in advance the length of the above-mentioned position in the traveling direction that is pulled in the direction opposite to the traveling direction.

一方、鋼板31の反対側も凹溝底部24bへ向かって引っ張り込む力が働く。従って、既に山波を形成した側から、次に形成させる山波との距離を測って次のプレス位置を決定する場合には、この引っ張り込みにより生じるズレを予め調べた上で決定する必要がある。   On the other hand, the pulling force toward the concave groove bottom 24b also acts on the opposite side of the steel plate 31. Therefore, when the next press position is determined by measuring the distance from the mountain wave to be formed next from the side on which the mountain wave has already been formed, it is necessary to determine after determining the deviation caused by this pulling in advance. is there.

また、凹溝底部24bへ向かって引っ張り込む力が鋼板31の両端方向からの引っ張り込みとなって現れるため、凹状金型22及び凸状金型21が有する波の個数は、一山分又は二山分である必要がある。ここで波の個数とは、凹状金型22であれば、凹溝24を形成する基準面Hから凹んでまた基準面までを一山とした周期の個数であり、凸状金型21であれば、この凹状金型22の凹みに相対し組み合わされる形に凸んだそれぞれの凸畝23ごとの周期の個数である。この山が三山以上あると、両端の波に相当する部分は両端方向から鋼板31を引っ張り込めるが、中央の波は鋼板31を引っ張り込むことができず、むしろ両端の波に鋼板31を引っ張られるため、破断する可能性が極めて高くなる。一山と二山とのどちらでも実施可能であるが、当然にして二山である方が、波板鋼板を完成させるために必要とするプレスの回数は半分にすることができるので、作業効率的には望ましい。なお、当然にして、二山分の波を形成させる凸状金型21と凹状金型22である場合、同時に形成される二山分の波の形状は、その深さや凹んだ頂部の幅、曲げ部分の角度、曲げ部分にアールを設ける場合の曲率半径などが、高い精度で一致していることが望ましい。一方で、一山である方が、引っ張り込む力が一箇所のみに集まるので、位置の調整は容易となる。この発明では、凸状金型21及び凹状金型22の波同士の造形が十分な精度で一致していれば、それぞれの曲げ部分を形成させる際の角度や個々の曲げ部分の間隔などを微調整することなく、曲げることができる。ただし、プレス毎に鋼板31を進行させる際には、凸畝23及び凹溝24の向きに対して垂直に移動させ、理想的な進行方向からの傾きをほとんど無視できる程度に抑える必要がある。   Further, since the pulling force toward the concave groove bottom 24b appears as pulling from both ends of the steel plate 31, the number of waves that the concave mold 22 and the convex mold 21 have is one or two. It needs to be a mountain. Here, in the case of the concave mold 22, the number of waves is the number of periods that are recessed from the reference surface H that forms the concave groove 24 and extends to the reference surface. For example, it is the number of periods for each of the convex ridges 23 protruding in a shape that is opposed to and combined with the dent of the concave mold 22. When there are three or more peaks, the portion corresponding to the waves at both ends can pull the steel plate 31 from both ends, but the central wave cannot pull the steel plate 31; rather, the steel plate 31 is pulled by the waves at both ends. Therefore, the possibility of breakage becomes extremely high. Although it is possible to implement either one or two mountains, it is natural that the number of presses required to complete the corrugated steel sheet can be halved in the case of two mountains. Is desirable. Of course, in the case of the convex mold 21 and the concave mold 22 that form a wave of two peaks, the shape of the wave of two peaks formed at the same time is the depth, the width of the concave top, It is desirable that the angle of the bent portion, the radius of curvature when providing a radius at the bent portion, and the like coincide with each other with high accuracy. On the other hand, in the case of a mountain, the pulling force is collected only in one place, so that the position can be easily adjusted. In this invention, if the modeling of the waves of the convex mold 21 and the concave mold 22 coincide with each other with sufficient accuracy, the angle at which each bent portion is formed, the interval between the individual bent portions, and the like are fine. Can be bent without adjustment. However, when the steel plate 31 is advanced for each press, it is necessary to move the steel plate 31 perpendicularly to the direction of the convex ridges 23 and the concave grooves 24 so as to suppress the inclination from the ideal traveling direction to almost negligible.

なお、図3のように予めプレスさせる際の位置を決めて実施する場合、上記のプレス時にズレる分を補正した最適な位置は、製品と同様の鋼板31に対してテストプレスを行って、あらかじめ最適な位置を計測しておくとよい。その上で、鋼板31の未加工部分を載せるテーブル32の上に、この最適な鋼板31の位置を示すアタリ33aを設けておく。以降は同質の鋼板31を用いてプレスする際に、同じアタリ33aの位置に鋼板31の進行方向とは逆方向の端部31bをセットすると、適切な位置でプレスできる。   In addition, when determining and performing the position at the time of pressing beforehand like FIG. 3, the optimal position which correct | amended the shift | offset | difference at the time of said press performs test press with respect to the steel plate 31 similar to a product, It is good to measure the optimal position. In addition, on the table 32 on which the unprocessed portion of the steel plate 31 is placed, an attrie 33a indicating the optimum position of the steel plate 31 is provided. Thereafter, when pressing is performed using the same quality steel plate 31, if the end portion 31b in the direction opposite to the traveling direction of the steel plate 31 is set at the same position of the atari 33a, pressing can be performed at an appropriate position.

同じ鋼板31について、二度目以降、すなわち図の実施形態では第三及び第四の波を形成させる際の手順、以下、第五及び第六の波、第七及び第八の波、と形成させていく際の手順も同様である。第三及び第四の波を形成させる際の手順を図4(a)〜(c)の全体断面図に示す。図4(a)に示すように、予めテストプレスして求めた鋼板31の適切な位置に第二のアタリ33bが設けてあり、鋼板31の進行方向逆側の端部をこのアタリ33bに揃える。この最適な位置とは、図3(c)の工程までに形成させた第一の波と第二の波との間隔a1と、第二の波と次の図4(b)(c)にて形成させる第三の波との間隔a2とが高い精度で一致する位置である。   For the same steel plate 31, the second and subsequent steps, that is, the procedure for forming the third and fourth waves in the embodiment of the figure, hereinafter, the fifth and sixth waves, the seventh and eighth waves are formed. The same procedure is followed. The procedure for forming the third and fourth waves is shown in the entire cross-sectional views of FIGS. As shown in FIG. 4A, the second butt 33b is provided at an appropriate position of the steel plate 31 obtained by test pressing in advance, and the end of the steel plate 31 on the opposite side in the traveling direction is aligned with the butt 33b. . The optimum positions are the distance a1 between the first wave and the second wave formed up to the step of FIG. 3C, and the second wave and the following FIGS. 4B and 4C. This is a position where the distance a2 with the third wave to be formed coincides with high accuracy.

事実上、このアタリ33aとアタリ33bとの間隔は、一度に形成させる山(ここでは二山)分の波を形成させるために必要な鋼板31の長さとほぼ一致するが、鋼板31の性質などにより多少の変動が起こる。また、それぞれのアタリ33a、33a、及び33b,33bは鋼板31の二つの隅に対応する位置に設けることになり、それぞれの配置は凸状金型21及び凹状金型22の凸畝及び凹溝に対してほぼ平行となる。しかし、鋼板31の性質によっては、上記凸畝及び凹溝に対して垂直である進行方向に鋼板31を進めても、形成される個々の波が必ずしも平行にならず、進行方向に対して両側部における波の間隔が一致しないことがある。このような癖はテストプレスで判別できる場合もあるし、製品製造時に二度目以降のプレスの際にズレとなって判別できる場合もある。このようなズレが連なっていくと、結果として得られる波板鋼板は両側部が平行にならず、わずかながら略扇形のようにゆがんでしまう。これを解決するには、鋼板31の両側部のうち、波同士の間隔が広がった側に対応する側のアタリ33b、33c……を、その歪みを補正できるだけ凹状金型22に近づけ、鋼板31の配置角度を調整できるようにする。   In practice, the interval between the claws 33a and the claws 33b substantially coincides with the length of the steel plate 31 necessary for forming waves for the peaks (two peaks here) formed at one time. Will cause some fluctuations. Further, each of the claws 33a, 33a and 33b, 33b is provided at positions corresponding to the two corners of the steel plate 31, and the respective arrangements are the convex ridges and the concave grooves of the convex mold 21 and the concave mold 22. Is almost parallel to. However, depending on the properties of the steel plate 31, even if the steel plate 31 is advanced in the traveling direction perpendicular to the ridges and grooves, the individual waves that are formed are not necessarily parallel to each other. Wave intervals in the part may not match. Such wrinkles may be identified with a test press, or may be identified as misalignment during the second and subsequent presses during product manufacture. When such deviations continue, the resulting corrugated steel sheet will not be parallel on both sides, but will be slightly distorted like a sector. In order to solve this, the claws 33b, 33c,... On the side corresponding to the side where the distance between the waves is widened on both sides of the steel plate 31 are brought close to the concave mold 22 as much as the distortion can be corrected. The arrangement angle can be adjusted.

一方、上記のアタリを用いて鋼板31の未加工側の長さでプレス位置を調整するのではなく、加工し始める側、又は既に波形に加工した側から、次に波を形成させる際の距離を測定して、金型を当てるプレス位置を決定してもよい。この場合、基本的には鋼板31の加工開始側の端部の辺と、金型の凸畝23や凹溝24とが平行となるように調整した上でプレスすることで、形成させる山波が平行となるようにすることができるが、鋼板31の製造時の物性により、単純に平行になるように配置しただけでは山波に傾きが生じることがある。このため、同一ロットの鋼板31を用いてプレス時の歪みを確認した上で、鋼板31の位置を調整するとよい。また上記の通り、プレス時には両端方向から金型に向かって鋼板31が引き込まれるため、先に加工済みの山波と、次に形成させる山波との距離は、単純に金型の位置そのままではなく、引き込まれる幅を考慮して調整するとよい。   On the other hand, instead of adjusting the press position with the length of the unprocessed side of the steel plate 31 using the above-mentioned atari, the distance when the next wave is formed from the side where processing starts or the side already processed into a waveform May be measured to determine the press position to which the mold is applied. In this case, the mountain wave to be formed is basically adjusted by pressing the steel plate 31 so that the side of the end of the processing start side of the steel plate 31 is parallel to the ridges 23 and the grooves 24 of the mold. However, due to the physical properties of the steel plate 31 when it is simply arranged so as to be parallel, the mountain waves may be inclined. For this reason, it is good to adjust the position of the steel plate 31 after confirming the distortion at the time of pressing using the steel plate 31 of the same lot. Further, as described above, since the steel plate 31 is drawn from both ends toward the mold during pressing, the distance between the previously processed mountain wave and the next mountain wave to be formed is simply the position of the mold as it is. It is better to adjust in consideration of the pull-in width.

上記の実施形態は、凸畝23を有する凸状金型21と、凹溝24を有する凹状金型22とが、それぞれ断面が等脚台形であることで、それぞれの断面が基準面Hから等脚台形に凹んだ波を有する波板鋼板を得るものである。本発明の実施形態はこの図5(a)のような実施形態に限られるものではなく、例えば、次の図5(b)に示す、基準面Hから三角形に凹んだ波を有する波板鋼板45を得る凸状金型41及び凹状金型42との組み合わせでも同様にプレス成型装置11によって波板鋼板を得ることができる。また、図5(c)に示す、基準面Hからサイン波形に凹んだ波を有する波板鋼板55を得る凸状金型51及び凹状金型52との組み合わせでも、同様である。むろん、これらの金型と形成する波の形状によって、アタリ33の適切な位置は変化する。   In the above-described embodiment, the convex mold 21 having the convex ridges 23 and the concave mold 22 having the concave grooves 24 have an isosceles trapezoidal cross section. A corrugated steel sheet having waves recessed in a trapezoidal shape is obtained. The embodiment of the present invention is not limited to the embodiment as shown in FIG. 5A. For example, a corrugated steel sheet having a wave recessed in a triangle from the reference plane H shown in FIG. Similarly, the corrugated steel sheet can be obtained by the press molding apparatus 11 even in the combination of the convex mold 41 and the concave mold 42 for obtaining 45. The same applies to the combination of the convex mold 51 and the concave mold 52 for obtaining the corrugated steel sheet 55 having a wave recessed from the reference plane H to a sine waveform as shown in FIG. Of course, the appropriate position of Atari 33 varies depending on the shape of the mold and the wave to be formed.

次に、プレス成型装置の形態を変えた実施形態について図6及び図7を用いて説明する。
この実施形態にかかるプレス成型装置61では、床面に固定された凹状金型72の四隅に、ガイド孔81を設け、油圧プレスにより動く凸状金型71の、上記ガイド孔81に対応する位置の四隅に、そのガイド孔81に鉛直方向から挿入されるガイドピン82を設けてある。
Next, an embodiment in which the form of the press molding apparatus is changed will be described with reference to FIGS. 6 and 7.
In the press molding apparatus 61 according to this embodiment, guide holes 81 are provided at the four corners of the concave mold 72 fixed to the floor surface, and the positions of the convex mold 71 that moves by a hydraulic press correspond to the guide holes 81. At the four corners, guide pins 82 inserted into the guide holes 81 from the vertical direction are provided.

ガイド孔81は円筒状であり、その内周径は、円柱状のガイドピン82の外周径よりも1〜3mm程度大きい。この径の差が小さいほど、位置決めの精度が高いため好ましい。   The guide hole 81 has a cylindrical shape, and its inner peripheral diameter is about 1 to 3 mm larger than the outer peripheral diameter of the columnar guide pin 82. A smaller difference in diameter is preferable because positioning accuracy is higher.

凹状金型72における、四箇所のガイド孔81の位置を図8(a)に示す。このようなガイド孔81とガイドピン82との対が二箇所以上設けられていることにより、凸状金型71と凹状金型72との組み合わせ時のずれを大きく削減することができる。一箇所では金型同士の位置決めの精度が不十分になる。図8(b)に示す実施形態のように、少なくとも二箇所あると好ましく、金型の四隅に対応する位置に設けてあると、金型同士の接合位置が高い精度で維持できるので特に好ましい。   The positions of the four guide holes 81 in the concave mold 72 are shown in FIG. By providing two or more pairs of the guide hole 81 and the guide pin 82 as described above, it is possible to greatly reduce the shift when the convex mold 71 and the concave mold 72 are combined. In one place, the positioning accuracy between the molds becomes insufficient. As in the embodiment shown in FIG. 8B, it is preferable that there are at least two places, and it is particularly preferable that the joints are provided at positions corresponding to the four corners of the mold because the joining positions of the molds can be maintained with high accuracy.

また、ガイド孔81及びガイドピン82を設ける配置は、凸状金型71と凹状金型72とで逆でもよい。すなわち、凸状金型71側にガイドピン82を設け、凹状金型72側にガイド孔81を設けてもよい。   Further, the arrangement of the guide hole 81 and the guide pin 82 may be reversed between the convex mold 71 and the concave mold 72. That is, the guide pin 82 may be provided on the convex mold 71 side, and the guide hole 81 may be provided on the concave mold 72 side.

一方、図6及び7では略記したが、凹状金型72の凹溝74、74の間に形成される凸畝76と、凹溝74のもう片側である片丘79と、凸状金型71の凸畝73とを構成する角の部分は、それぞれ独立して交換可能な替え刃91がボルト92で留められている。この形態の凹状金型72の斜視図を図9(a)に、凸状金型71と凹状金型72とを合わせた断面図を図9(b)に示す。この替え刃91を設けた凸畝73付近の拡大図を図10に示す。上記の図2(b)に示すように、プレス時には凸畝73、76や片丘79の角の部分に最も荷重が集中しやすく、金型が傷み易い。このため、傷み易い部分を替え刃91として交換可能とすることで、金型全体を交換するよりも容易に、プレス時の品質を維持することが出来る。   On the other hand, although abbreviated in FIGS. 6 and 7, a convex ridge 76 formed between the concave grooves 74 of the concave mold 72, a hill 79 on the other side of the concave groove 74, and the convex mold 71. A replaceable blade 91, which can be replaced independently, is fastened with bolts 92 at the corners constituting the ridge 73. FIG. 9A shows a perspective view of the concave mold 72 in this form, and FIG. 9B shows a cross-sectional view of the convex mold 71 and the concave mold 72 combined. FIG. 10 shows an enlarged view of the vicinity of the ridge 73 provided with the replacement blade 91. As shown in FIG. 2 (b), the load is most likely to concentrate on the corners of the protrusions 73 and 76 and the hill 79 during pressing, and the mold is easily damaged. For this reason, the quality at the time of a press can be maintained more easily than replacing | exchanging the whole metal mold | die by replacing | exchanging the easily damaged part as the replacement blade 91. FIG.

この実施形態における替え刃91の斜視図を図11(a)に、正面図を図11(b)に、平面図を図12(a)に、側面図を図12(b)に、底面図を図13(a)に、背面図を図13(b)に示す。替え刃91の頂部、すなわち相手型の金型に向く面に、ボルト92を挿入する貫通孔93が複数箇所について設けられている。それぞれの貫通孔93は、挿入したボルト92の頭部が頂部の面から突き出ることなく収容できるように、頂部の面に近い側(上部の93a)がボルト92の径を通す下部(93b)よりも拡径されている。この断面図を図14に示す。   FIG. 11A is a perspective view of the replaceable blade 91 in this embodiment, FIG. 11B is a front view, FIG. 12A is a plan view, FIG. 12B is a side view, and a bottom view. Is shown in FIG. 13 (a), and a rear view is shown in FIG. 13 (b). Through holes 93 into which bolts 92 are inserted are provided at a plurality of locations on the top of the replacement blade 91, that is, the surface facing the counterpart mold. Each through hole 93 has a side closer to the top surface (upper 93a) than the lower portion (93b) through which the diameter of the bolt 92 passes so that the head of the inserted bolt 92 can be accommodated without protruding from the top surface. The diameter has also been expanded. This sectional view is shown in FIG.

一方、凸畝73、76及び片丘79の頂部には、図10に示すように替え刃91を装着させるための切り欠き部94が、畝の中央に伸びる頂部尾根部96の両側に、つまり畝の両角に相当する位置に連続して設けられている。切り欠き部94の、相手の金型に相対する面には、上記のボルト92を留めるためのボルト孔95が、上記の貫通孔93と等間隔で設けてある。   On the other hand, at the tops of the convex ridges 73 and 76 and the hills 79, as shown in FIG. 10, notches 94 for attaching the replacement blade 91 are provided on both sides of the top ridge 96 extending to the center of the ridge, that is, It is continuously provided at positions corresponding to both corners of the ridge. Bolt holes 95 for fastening the bolts 92 are provided at equal intervals with the through-holes 93 on the surface of the notch 94 facing the counterpart mold.

また、切り欠き部94は凸畝の法面側(94a)がわずかに盛り上がるように形成されている。この盛り上がりがあることにより、替え刃91の位置がずれにくくなり、プレス時における替え刃91の安定性が向上する。これに対応するため、替え刃91の断面形状は台形ではなく、斜面側面(91a)の下方三分の一ほどが切り込んだ(91b)形状とする。   Moreover, the notch 94 is formed so that the slope side (94a) of the ridge is slightly raised. Due to this swell, the position of the replaceable blade 91 is not easily displaced, and the stability of the replaceable blade 91 during pressing is improved. In order to cope with this, the cross-sectional shape of the replacement blade 91 is not a trapezoidal shape, but a shape in which about one third of the lower side of the slope side surface (91a) is cut (91b).

この実施形態における替え刃91は、凸畝73,76及び片丘79の切り欠き部94の長さ方向に対して、複数本に分かれている。長い凸畝73,76及び片丘79の長さ方向両端間を一体の替え刃としてしまうと、そのうちのいずれか一箇所で破損しただけで全体を交換しなければならないため、非効率的であるためである。長さ方向で複数本に分かれて交換可能としておくと、破損した部分だけを交換すればよい。   The replaceable blade 91 in this embodiment is divided into a plurality of pieces with respect to the length direction of the notches 94 of the protrusions 73 and 76 and the hill 79. If the long convex ridges 73 and 76 and both ends in the longitudinal direction of the hill 79 are made into a single replacement blade, it is inefficient because the entire blade must be replaced only by being damaged at any one of them. Because. If it is divided into a plurality of pieces in the length direction and can be exchanged, only the damaged part needs to be exchanged.

なお、この実施形態ではそれぞれの畝の頂部73b、76bの縁であるそれぞれの角について独立した替え刃91としているが、隣接する二つの角とそれを繋ぐ部分、すなわち凸畝73,76の頂部全体を交換可能な替え刃としても、金型全体を交換するリスクを回避することは可能である。ただし、角の一方が欠けただけで角の両方分を交換しなければならない。   In this embodiment, each of the corners that are the edges of the top portions 73b and 76b of the ridges is an independent replacement blade 91. However, two adjacent corners and a portion connecting them, that is, the top portions of the convex ridges 73 and 76 are used. Even if the replaceable blade is replaceable as a whole, it is possible to avoid the risk of replacing the entire mold. However, if one corner is missing, both corners must be replaced.

第2の実施形態にかかるプレス成型装置を用いる場合でも、また、上記の替え刃91を設ける場合でも、波板の製造方法は上記の第1の実施形態と同様の手順により行うことができる。   Even when the press molding apparatus according to the second embodiment is used or when the replacement blade 91 is provided, the corrugated plate manufacturing method can be performed by the same procedure as that of the first embodiment.

11 プレス成型装置
12 スライド
13 本体
14 シリンダ
21、41、51、71 凸状金型
22、42、52、72 凹状金型
23、26(凹溝間)、73、76(凹溝間) 凸畝
23a 凸畝法面
23b、73b、76b 凸畝頂部
24、27(凸畝間)、74 凹溝
24a 凹溝法面
24b 凹溝底部
25 板押さえ部
28 平面部
31 鋼板
31a 鋼板の進行方向の端部
31b 鋼板の進行方向とは逆方向の端部
32 テーブル
33、33a、33b、33c アタリ
45、55 波板鋼板
61 プレス成型装置
62 スライド
63 本体
64 シリンダ
79 片丘
81 ガイド孔
82 ガイドピン
91 替え刃
92 ボルト
93 貫通孔
94 切り欠き部
95 ボルト孔
96 頂部尾根部
H 基準面
11 Press molding device 12 Slide 13 Body 14 Cylinders 21, 41, 51, 71 Convex molds 22, 42, 52, 72 Concave molds 23, 26 (between concave grooves), 73, 76 (between concave grooves) 23a Convex ridge surface 23b, 73b, 76b Convex ridge top portions 24, 27 (between convex ridges), 74 Concave groove 24a Concave groove surface 24b Concave groove bottom portion 25 Plate pressing portion 28 Planar portion 31 Steel plate 31a End portion in the traveling direction of the steel plate 31b End 32 in the direction opposite to the traveling direction of the steel plate Table 33, 33a, 33b, 33c Atari 45, 55 Corrugated steel plate 61 Press molding device 62 Slide 63 Main body 64 Cylinder 79 Kataoka 81 Guide hole 82 Guide pin 91 Replacement blade 92 Bolt 93 Through-hole 94 Notch 95 Bolt hole 96 Top ridge H Reference plane

Claims (7)

板の進行方向断面が基準面から一山分又は二山分の波形に凹んだ凹状金型を被加圧側に、その凹みに相対し組み合わされる形に凸んだ(つばくんだ)凸状金型を加圧移動側に配置した油圧プレスによるプレス成型装置により、
間に挟んだ建材用鋼板を、次に山波を形成させる位置に固定した上で、一山分又は二山分の波板形状に加圧方向へ曲げて山波を形成させるステップを、
上記建材用鋼板を上記進行方向に上記一山分又は二山分に対応する長さだけ進行させるたびに複数回繰り返す波板鋼板の製造方法。
Convex mold with convex shape in which the cross section in the traveling direction of the plate has a concave or concave shape with one or two corrugations from the reference surface on the pressed side and is opposed to the concave By a press molding device with a hydraulic press where the mold is placed on the pressure movement side,
After fixing the steel sheet for building materials sandwiched between them to the position where the mountain wave is formed next, the step of bending the wave plate shape for one mountain or two mountains in the pressing direction to form the mountain wave,
A method for producing a corrugated steel sheet that is repeated a plurality of times each time the steel sheet for building material is advanced in the traveling direction by a length corresponding to the one or two peaks.
上記建材用鋼板の厚さが、2.3mm以上16.0mm以下である請求項1に記載の波板鋼板の製造方法。   The method for producing a corrugated steel sheet according to claim 1, wherein the building steel sheet has a thickness of 2.3 mm or more and 16.0 mm or less. 上記凹状金型が、板の進行方向断面が一山分又は二山分の等脚台形に凹んだ凹溝を基準面に有し、
上記凸状金型が、上記凹状金型の等脚台形に相対し組み合わせられる等脚台形に凸んだ(つばくんだ)凸畝を基準面に有する、
上記山波が台形波となる請求項1又は2に記載の波板鋼板の製造方法。
The concave mold has a groove in the reference plane in which the cross section in the traveling direction of the plate is recessed into an isosceles trapezoid for one or two peaks,
The convex mold has a convex surface on the reference surface that is convex (congested) in an isosceles trapezoid that is combined with the isosceles trapezoid of the concave mold.
The manufacturing method of the corrugated sheet steel according to claim 1 or 2, wherein the mountain wave is a trapezoidal wave.
上記の凹溝及び凸畝を形成する等脚台形の角が丸めてある、請求項3に記載の波板鋼板の製造方法。   The manufacturing method of the corrugated sheet steel according to claim 3, wherein the corners of the isosceles trapezoid forming the concave grooves and the convex ridges are rounded. 上記ステップを一定長さの鋼板に複数回繰り返して実施するそれぞれの際に、予め設定した位置に配置した位置決め用のアタリに、上記建材用鋼板の波形加工前側の端部を揃えることで、波板を等ピッチで製造する、請求項1乃至4のいずれかに記載の波板鋼板の製造方法。   When each of the above steps is repeated a plurality of times on a steel plate of a certain length, the corrugated front end of the steel plate for building material is aligned with the positioning atlas arranged at a preset position, The manufacturing method of the corrugated sheet steel according to any one of claims 1 to 4, wherein the plates are manufactured at an equal pitch. 板の進行方向断面が基準面から一山分又は二山分の波形に凹んだ凹状金型を被加圧側に、その凹みに相対し組み合わされる形に凸んだ(つばくんだ)凸状金型を加圧移動側に配置し、
上記凹状金型が、板の進行方向断面が一山分又は二山分の等脚台形に凹んだ凹溝を基準面に有し、
上記凸状金型が、上記凹状金型の等脚台形に相対し組み合わせられる等脚台形に凸んだ(つばくんだ)凸畝を基準面に有する、
油圧プレスによるプレス成型装置。
Convex mold with convex shape in which the cross section in the traveling direction of the plate has a concave or concave shape with one or two corrugations from the reference surface on the pressed side and is opposed to the concave Place the mold on the pressure movement side,
The concave mold has a groove in the reference plane in which the cross section in the traveling direction of the plate is recessed into an isosceles trapezoid for one or two peaks,
The convex mold has a convex surface on the reference surface that is convex (congested) in an isosceles trapezoid that is combined with the isosceles trapezoid of the concave mold.
Press molding machine with hydraulic press.
上記凹状金型及び上記凸状金型のうち一方の周囲に、複数のガイド孔を有し、
上記凹状金型及び上記凸状金型のうち他方の周囲に、それぞれの上記ガイド孔と対になり金型同士をプレスさせる際に挿入可能な位置に、複数のガイドピンを有し、
上記ガイド孔への上記ガイドピンの挿入により上記凹状金型と上記凸状金型との間の位置合わせを可能とする、請求項6に記載のプレス成型装置。
A plurality of guide holes are provided around one of the concave mold and the convex mold,
Around the other of the concave mold and the convex mold, a plurality of guide pins are provided at positions that can be inserted when the molds are paired with the respective guide holes and pressed together,
The press molding apparatus according to claim 6, wherein alignment between the concave mold and the convex mold is enabled by inserting the guide pin into the guide hole.
JP2014009217A 2013-08-07 2014-01-22 Method and apparatus for production of corrugated steel sheet for building material Pending JP2015051458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014009217A JP2015051458A (en) 2013-08-07 2014-01-22 Method and apparatus for production of corrugated steel sheet for building material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013163938 2013-08-07
JP2013163938 2013-08-07
JP2014009217A JP2015051458A (en) 2013-08-07 2014-01-22 Method and apparatus for production of corrugated steel sheet for building material

Publications (1)

Publication Number Publication Date
JP2015051458A true JP2015051458A (en) 2015-03-19

Family

ID=52700891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014009217A Pending JP2015051458A (en) 2013-08-07 2014-01-22 Method and apparatus for production of corrugated steel sheet for building material

Country Status (1)

Country Link
JP (1) JP2015051458A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104858307A (en) * 2015-05-25 2015-08-26 隆昌山川精密焊管有限责任公司 Connecting plate one-time forming and ribbing device
CN105642750A (en) * 2016-04-08 2016-06-08 浙江上扬商业设备科技股份有限公司 Concave die plate for blanking progress die for rack connector
JP2016182606A (en) * 2015-03-25 2016-10-20 日新製鋼株式会社 Manufacturing method for continuous waveform product
CN106238581A (en) * 2016-08-31 2016-12-21 北汽福田汽车股份有限公司 A kind of drawing die and the drawing method of drawn component
CN106424260A (en) * 2016-09-30 2017-02-22 华中科技大学 Small-size corrugated sheet pressing method and device
CN107876635A (en) * 2017-12-19 2018-04-06 贵州贵航汽车零部件股份有限公司 Corrugated plating fin monoblock type forming terrace die
CN109013913A (en) * 2018-09-30 2018-12-18 江西省天奇汽车零部件有限公司 A kind of die device
RU186622U1 (en) * 2018-08-15 2019-01-25 Акционерное общество "Государственный космический научно-производственный центр им. М.В. Хруничева" Stamp for forming corrugated parts from a metal sheet blank
CN109570364A (en) * 2019-01-25 2019-04-05 燕山大学 A kind of electric field-assisted shaping dies of superhigh intensity multiple tracks bool
CN110202037A (en) * 2019-07-11 2019-09-06 徐承 A kind of process for stamping
CN110340235A (en) * 2019-08-02 2019-10-18 崔路飞 A kind of metal plate bending deformation stamping die
CN112123878A (en) * 2020-09-14 2020-12-25 一汽解放汽车有限公司 Corrugated sheet end forming die and corrugated sheet end forming device
CN113134537A (en) * 2021-04-21 2021-07-20 哈尔滨工业大学 Ultrathin metal corrugated board forming device and forming method
CN113231822A (en) * 2021-05-11 2021-08-10 谢祖赐 Cell-phone center backing sheet processingequipment with prevent blockking up function
JP7049699B1 (en) 2020-10-01 2022-04-07 近未来建築社会実装機構株式会社 Building
CN117444021A (en) * 2023-12-25 2024-01-26 中铁四局集团有限公司 Stainless steel composite corrugated plate molding machine and molding process thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715121U (en) * 1993-08-19 1995-03-14 株式会社菊池製作所 Die for pressing corrugated sheet
JPH1128524A (en) * 1997-07-04 1999-02-02 Nippon Kokan Light Steel Kk Forming method for large-sized corrugated steel plate and its forming device
JP2005111516A (en) * 2003-10-07 2005-04-28 Honda Motor Co Ltd Method and apparatus for manufacturing corrugated sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715121U (en) * 1993-08-19 1995-03-14 株式会社菊池製作所 Die for pressing corrugated sheet
JPH1128524A (en) * 1997-07-04 1999-02-02 Nippon Kokan Light Steel Kk Forming method for large-sized corrugated steel plate and its forming device
JP2005111516A (en) * 2003-10-07 2005-04-28 Honda Motor Co Ltd Method and apparatus for manufacturing corrugated sheet

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016182606A (en) * 2015-03-25 2016-10-20 日新製鋼株式会社 Manufacturing method for continuous waveform product
CN104858307A (en) * 2015-05-25 2015-08-26 隆昌山川精密焊管有限责任公司 Connecting plate one-time forming and ribbing device
CN105642750A (en) * 2016-04-08 2016-06-08 浙江上扬商业设备科技股份有限公司 Concave die plate for blanking progress die for rack connector
CN106238581A (en) * 2016-08-31 2016-12-21 北汽福田汽车股份有限公司 A kind of drawing die and the drawing method of drawn component
CN106424260A (en) * 2016-09-30 2017-02-22 华中科技大学 Small-size corrugated sheet pressing method and device
CN107876635A (en) * 2017-12-19 2018-04-06 贵州贵航汽车零部件股份有限公司 Corrugated plating fin monoblock type forming terrace die
RU186622U1 (en) * 2018-08-15 2019-01-25 Акционерное общество "Государственный космический научно-производственный центр им. М.В. Хруничева" Stamp for forming corrugated parts from a metal sheet blank
CN109013913A (en) * 2018-09-30 2018-12-18 江西省天奇汽车零部件有限公司 A kind of die device
CN109570364A (en) * 2019-01-25 2019-04-05 燕山大学 A kind of electric field-assisted shaping dies of superhigh intensity multiple tracks bool
CN109570364B (en) * 2019-01-25 2020-04-07 燕山大学 Electric field auxiliary forming die for ultrahigh-strength multi-channel bent part
CN110202037B (en) * 2019-07-11 2020-11-06 青岛精良机械有限公司 Stamping method
CN110202037A (en) * 2019-07-11 2019-09-06 徐承 A kind of process for stamping
CN110340235A (en) * 2019-08-02 2019-10-18 崔路飞 A kind of metal plate bending deformation stamping die
CN110340235B (en) * 2019-08-02 2020-12-11 深圳市浩海昌实业有限公司 Stamping die for bending deformation of metal plate
CN112123878A (en) * 2020-09-14 2020-12-25 一汽解放汽车有限公司 Corrugated sheet end forming die and corrugated sheet end forming device
CN112123878B (en) * 2020-09-14 2022-04-12 一汽解放汽车有限公司 Corrugated sheet end forming die and corrugated sheet end forming device
JP7049699B1 (en) 2020-10-01 2022-04-07 近未来建築社会実装機構株式会社 Building
JP2022060603A (en) * 2020-10-01 2022-04-15 近未来建築社会実装機構株式会社 Building
CN113134537A (en) * 2021-04-21 2021-07-20 哈尔滨工业大学 Ultrathin metal corrugated board forming device and forming method
CN113231822A (en) * 2021-05-11 2021-08-10 谢祖赐 Cell-phone center backing sheet processingequipment with prevent blockking up function
CN117444021A (en) * 2023-12-25 2024-01-26 中铁四局集团有限公司 Stainless steel composite corrugated plate molding machine and molding process thereof

Similar Documents

Publication Publication Date Title
JP2015051458A (en) Method and apparatus for production of corrugated steel sheet for building material
US9328509B2 (en) Square pipe, frame structure, square pipe manufacturing method, and square pipe manufacturing apparatus
US20180078993A1 (en) Method of forming a closed cross-sectional structure
EP2754509B1 (en) Press forming method and press forming device
US20050262917A1 (en) Bent-forming method
US9630238B2 (en) Method and apparatus that forms a closed cross-sectional structure
KR102295951B1 (en) Bending machine for forming a corrugation in a metal sheet
JP2017530010A (en) Profile
JP6798292B2 (en) Molding method and molding equipment for metal plates
JP2016009632A (en) Fuel battery assembling method and apparatus
CN110405021A (en) Mandrel
CN110258924B (en) Cold-bent C-shaped angle steel lattice type special-shaped column and manufacturing method thereof
KR101536240B1 (en) Method for manufacturing prestressed steel girder
US20120291386A1 (en) Metal Profile Member To Be Used As A Formwork Assisting In The Construction of Metal/Concrete Flooring
RU2621503C2 (en) Matrix with polyhedral cavity for connecting by means of self-penetrating rivet
JP5888048B2 (en) Manufacturing method of metal parts with solid edges
CN113198941B (en) Solebar forming die and forming process
JP5179129B2 (en) Corrugated processing equipment
WO2020084819A1 (en) Metal roofing material and method for producing same
JP6741268B2 (en) Manufacturing method and manufacturing apparatus for steel plate having embossed shape
JP2008240294A (en) H-steel with bent web, and its manufacturing method
JP5903746B2 (en) Floor panel and manufacturing method thereof
CN218591549U (en) Large volute liner plate forming tool
JP2014138942A (en) Mold for production of metal part with three-dimensional structural edge
CN105351733A (en) High-strength concave-convex groove antinode square tube

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331