JP6741268B2 - Manufacturing method and manufacturing apparatus for steel plate having embossed shape - Google Patents

Manufacturing method and manufacturing apparatus for steel plate having embossed shape Download PDF

Info

Publication number
JP6741268B2
JP6741268B2 JP2016091590A JP2016091590A JP6741268B2 JP 6741268 B2 JP6741268 B2 JP 6741268B2 JP 2016091590 A JP2016091590 A JP 2016091590A JP 2016091590 A JP2016091590 A JP 2016091590A JP 6741268 B2 JP6741268 B2 JP 6741268B2
Authority
JP
Japan
Prior art keywords
steel plate
preliminary
steel sheet
shape
concave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016091590A
Other languages
Japanese (ja)
Other versions
JP2017100188A (en
Inventor
野村 広正
広正 野村
秀明 那須
秀明 那須
裕介 小野寺
裕介 小野寺
吉田 裕一
裕一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON STEEL COATED SHEET CORPORATION
Nippon Steel Technology Co Ltd
Original Assignee
NIPPON STEEL COATED SHEET CORPORATION
Nippon Steel Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON STEEL COATED SHEET CORPORATION, Nippon Steel Technology Co Ltd filed Critical NIPPON STEEL COATED SHEET CORPORATION
Publication of JP2017100188A publication Critical patent/JP2017100188A/en
Application granted granted Critical
Publication of JP6741268B2 publication Critical patent/JP6741268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

本発明は、エンボス形状を有する鋼板の製造方法及び製造装置に関し、詳しくは、所定のエンボス形状を有する鋼板を、予備成形と本成形を経ることで製造する方法及び装置に関する。 The present invention relates to a method and an apparatus for manufacturing a steel sheet having an embossed shape, and more particularly, to a method and an apparatus for manufacturing a steel sheet having a predetermined embossed shape by preforming and main forming.

特許文献1には、金属帯にエンボスを成形する技術が記載されている。 Patent Document 1 describes a technique for forming an emboss on a metal strip.

この技術では、エンボスロールが備える一対のロール間に金属帯を通過させることで、金属帯にエンボスを成形する。 In this technique, an emboss is formed on the metal band by passing the metal band between a pair of rolls included in the embossing roll.

特開2002−239629号公報JP, 2002-239629, A

特許文献1に記載された従来の技術では、シャープな外観のエンボスを得ることが困難である。というのも、従来の技術においては、エンボスの穴を浅い傾斜で成形しなければ、金属帯の一部にひずみが集中しやすく、割れ等の破損の原因となる。 With the conventional technique described in Patent Document 1, it is difficult to obtain an emboss with a sharp appearance. In the prior art, unless the embossed hole is formed with a shallow inclination, strain is likely to concentrate on a part of the metal strip, which causes damage such as cracking.

本発明は、エンボス形状を有する鋼板を、シャープな外観で成形することができ、且つ、成形の際に破損を生じることを抑えることのできる製造方法及び製造装置を提供することを、目的とする。 An object of the present invention is to provide a manufacturing method and a manufacturing apparatus capable of forming a steel sheet having an embossed shape with a sharp appearance and suppressing the occurrence of damage during the forming. ..

本発明に係る一態様のエンボス形状を有する鋼板の製造方法は、一対の第一ロール間に鋼板を通過させ、前記鋼板の各所に圧力を加えて伸ばしながら、前記鋼板に、複数の予備凹条部が一方向に距離をあけて位置する所定の波型形状を与える予備成形工程と、一対の第二ロール間に、前記波型形状が与えられた前記鋼板を通過させ、前記鋼板の各所に圧力を加えて曲げることで、前記鋼板に、断面コ字状である複数の凹条部が前記一方向に距離をあけて位置する所定のエンボス形状を与える本成形工程と、を備える。前記予備凹条部と前記凹条部は一対一に対応し、前記予備凹条部の深さは、これに対応する前記凹条部の深さと同一である。 A method for manufacturing a steel sheet having an embossed shape according to one aspect of the present invention includes passing a steel sheet between a pair of first rolls, applying pressure to various portions of the steel sheet, and stretching the steel sheet while providing a plurality of preliminary recessed strips on the steel sheet. A preforming step of giving a predetermined corrugated shape in which a part is located at a distance in one direction, between a pair of second rolls, the corrugated shaped steel sheet is passed, and at various places of the steel sheet. A main forming step of giving a predetermined embossed shape in which a plurality of concave streak portions having a U-shaped cross section are located at a distance in the one direction by bending by applying pressure. The preliminary groove portions and the groove portions are in a one-to-one correspondence, and the depth of the preliminary groove portions is the same as the depth of the corresponding groove portions.

本発明に係る別の態様のエンボス形状を有する鋼板の製造方法は、一対の第一ロール間に鋼板を通過させ、前記鋼板の各所に圧力を加えて伸ばしながら、前記鋼板に、複数の予備凹条部が一方向に距離をあけて位置する所定の波型形状を与える予備成形工程と、一対の第二ロール間に、前記波型形状が与えられた前記鋼板を通過させ、前記鋼板の各所に圧力を加えて曲げることで、前記鋼板に、断面コ字状である複数の凹条部が前記一方向に距離をあけて位置する所定のエンボス形状を与える本成形工程と、を備える。前記予備凹条部と前記凹条部は一対一に対応し、前記予備凹条部の深さは、これに対応する前記凹条部の深さよりも大きい。 A method for manufacturing a steel sheet having an embossed shape according to another aspect of the present invention is to pass a steel sheet between a pair of first rolls, apply pressure to various portions of the steel sheet, and stretch the steel sheet while providing a plurality of preliminary recesses. A preforming step for giving a predetermined corrugated shape in which the strip portion is positioned with a distance in one direction, and between the pair of second rolls, the steel sheet provided with the corrugated shape is passed through, and various portions of the steel sheet are provided. A main forming step of giving a predetermined embossed shape in which a plurality of concave streak portions having a U-shaped cross section are located at a distance in the one direction by applying pressure to and bending the steel sheet. The preliminary groove portions and the groove portions have a one-to-one correspondence, and the depth of the preliminary groove portions is greater than the depth of the corresponding groove portions.

前記凹条部の深さは、2mm〜4mmであり、前記予備凹条部の深さは、これに対応する前記凹条部の深さよりも0.5mm〜1.5mmだけ大きく、かつ5mm以下であることが好ましい。 The depth of the groove is 2 mm to 4 mm, and the depth of the preliminary groove is 0.5 mm to 1.5 mm larger than the depth of the corresponding groove, and 5 mm or less. Is preferred.

本発明に係る一態様のエンボス形状を有する鋼板の製造装置は、鋼板を予備成形して、前記鋼板に所定の波型形状を与える一対の第一ロールと、予備成形後の前記鋼板を本成形して、前記鋼板に所定のエンボス形状を与える一対の第二ロールと、を備える。前記一対の第一ロールは、前記鋼板の各所に圧力を加えて伸ばすことで、前記鋼板に、複数の予備凹条部が一方向に距離をあけて位置する前記波型形状を与える金型構造を有する。前記一対の第二ロールは、予備成形後の前記鋼板に、断面コ字状である複数の凹条部が前記一方向に距離をあけて位置する前記エンボス形状を与える金型構造を有する。前記予備凹条部と前記凹条部は一対一に対応し、前記予備凹条部の深さは、これに対応する前記凹条部の深さと同一である。 An apparatus for producing a steel sheet having an embossed shape according to one aspect of the present invention preforms a steel sheet to form a pair of first rolls that give the steel sheet a predetermined corrugated shape, and preforms the preformed steel sheet. And a pair of second rolls that give the steel plate a predetermined embossed shape. The pair of first rolls is a mold structure that imparts the corrugated shape in which a plurality of preliminary concave streak portions are located at a distance in one direction to the steel sheet by applying pressure to various portions of the steel sheet and stretching the steel sheet. Have. The pair of second rolls have a mold structure that gives the embossed shape in which the plurality of concave streak portions having a U-shaped cross section are located at a distance in the one direction on the pre-formed steel plate. The preliminary groove portions and the groove portions are in a one-to-one correspondence, and the depth of the preliminary groove portions is the same as the depth of the corresponding groove portions.

本発明に係る別の態様のエンボス形状を有する鋼板の製造装置は、鋼板を予備成形して、前記鋼板に所定の波型形状を与える一対の第一ロールと、予備成形後の前記鋼板を本成形して、前記鋼板に所定のエンボス形状を与える一対の第二ロールと、を備える。前記一対の第一ロールは、前記鋼板の各所に圧力を加えて伸ばすことで、前記鋼板に、複数の予備凹条部が一方向に距離をあけて位置する前記波型形状を与える金型構造を有する。前記一対の第二ロールは、予備成形後の前記鋼板に、断面コ字状である複数の凹条部が前記一方向に距離をあけて位置する前記エンボス形状を与える金型構造を有する。前記予備凹条部と前記凹条部は一対一に対応し、前記予備凹条部の深さは、これに対応する前記凹条部の深さよりも大きい。 An apparatus for manufacturing a steel sheet having an embossed shape according to another aspect of the present invention includes a pair of first rolls that preform a steel sheet to give the steel sheet a predetermined corrugated shape, and the preformed steel sheet. And a pair of second rolls that are formed to give the steel sheet a predetermined embossed shape. The pair of first rolls is a mold structure that imparts the corrugated shape in which a plurality of preliminary concave streak portions are located at a distance in one direction to the steel sheet by applying pressure to various portions of the steel sheet and stretching the steel sheet. Have. The pair of second rolls have a mold structure that gives the embossed shape in which the plurality of concave streak portions having a U-shaped cross section are located at a distance in the one direction on the pre-formed steel plate. The preliminary groove portions and the groove portions have a one-to-one correspondence, and the depth of the preliminary groove portions is greater than the depth of the corresponding groove portions.

本発明のエンボス形状を有する鋼板の製造方法は、シャープな外観のエンボス形状を成形することができ、且つ、成形の際に破損を生じることが抑えられるという効果を奏する。 INDUSTRIAL APPLICABILITY The method for producing a steel sheet having an embossed shape according to the present invention has an effect that an embossed shape having a sharp appearance can be formed, and damage during the forming can be suppressed.

本発明のエンボス形状を有する鋼板の製造装置は、シャープな外観のエンボス形状を成形することができ、且つ、成形の際に破損を生じることが抑えられるという効果を奏する。 The apparatus for manufacturing a steel sheet having an embossed shape according to the present invention has an effect that an embossed shape having a sharp appearance can be formed, and the occurrence of breakage during forming can be suppressed.

図1は、第一実施形態の製造装置を概略的に示す側面図である。FIG. 1 is a side view schematically showing the manufacturing apparatus of the first embodiment. 図2は、同上の製造装置が備える一対の第一ロールを概略的に示す正面図である。FIG. 2 is a front view schematically showing a pair of first rolls included in the above manufacturing apparatus. 図3は、図2のP部拡大図である。FIG. 3 is an enlarged view of part P of FIG. 図4は、同上の製造装置が備える一対の第二ロールを概略的に示す正面図である。FIG. 4 is a front view schematically showing a pair of second rolls included in the above manufacturing apparatus. 図5は、図4のQ部拡大図である。FIG. 5 is an enlarged view of the Q portion of FIG. 図6は、波型形状とエンボス形状を重ねて示す説明図である。FIG. 6 is an explanatory view showing the corrugated shape and the embossed shape in an overlapping manner. 図7Aは、傾斜角度α=25°に設定された波型形状を示す説明図であり、図7Bは、図7Aの波型形状を経て成形されたエンボス形状を示す説明図である。FIG. 7A is an explanatory view showing a corrugated shape set at an inclination angle α=25°, and FIG. 7B is an explanatory view showing an embossed shape molded through the corrugated shape of FIG. 7A. 図8Aは、図7Aの波型形状で生じるひずみ分布を示す図であり、図8Bは、図7Bのエンボス形状で生じるひずみ分布を示す図である。8A is a diagram showing a strain distribution generated in the corrugated shape of FIG. 7A, and FIG. 8B is a diagram showing a strain distribution generated in the embossed shape of FIG. 7B. 図9Aは、傾斜角度α=38°に設定された波型形状を示す説明図であり、図9Bは、図9Aの波型形状を経て成形されたエンボス形状を示す説明図である。FIG. 9A is an explanatory view showing a corrugated shape set at an inclination angle α=38°, and FIG. 9B is an explanatory view showing an embossed shape molded through the corrugated shape of FIG. 9A. 図10Aは、図9Aの波型形状で生じるひずみ分布を示す図であり、図10Bは、図9Bのエンボス形状で生じるひずみ分布を示す図である。FIG. 10A is a diagram showing a strain distribution generated in the corrugated shape of FIG. 9A, and FIG. 10B is a diagram showing a strain distribution generated in the embossed shape of FIG. 9B. 図11Aは、傾斜角度α=53°に設定された波型形状を示す説明図であり、図11Bは、図11Aの波型形状を経て成形されたエンボス形状を示す説明図である。FIG. 11A is an explanatory view showing a corrugated shape set at an inclination angle α=53°, and FIG. 11B is an explanatory view showing an embossed shape molded through the corrugated shape of FIG. 11A. 図12Aは、図11Aの波型形状で生じるひずみ分布を示す図であり、図12Bは、図11Bのエンボス形状で生じるひずみ分布を示す図である。12A is a diagram showing a strain distribution generated in the corrugated shape of FIG. 11A, and FIG. 12B is a diagram showing a strain distribution generated in the embossed shape of FIG. 11B. 図13は、一度のロール成形でエンボス形状に成形された鋼板を示す図である。FIG. 13 is a diagram showing a steel sheet formed into an embossed shape by one roll forming. 図14は、図13の鋼板のひずみ分布を示す図である。FIG. 14: is a figure which shows the strain distribution of the steel plate of FIG. 図15は、第二実施形態の製造装置が備える予備成形機の要部を概略的に示す正面図である。FIG. 15: is a front view which shows schematically the principal part of the preforming machine with which the manufacturing apparatus of 2nd embodiment is equipped. 図16は、同上の製造装置で予備成形を行う様子を概略的に示す正面図である。FIG. 16: is a front view which shows roughly a mode that preforming is performed with the manufacturing apparatus same as the above. 図17は、同上の製造装置が備える本成形機の要部を概略的に示す正面図である。FIG. 17 is a front view schematically showing a main part of a main molding machine included in the above manufacturing apparatus. 図18は、同上の製造装置で本成形を行う様子を概略的に示す正面図である。FIG. 18 is a front view schematically showing a state where main molding is performed by the above manufacturing apparatus. 図19は、同上の製造装置で行う予備成形の解析モデルを示す図である。FIG. 19 is a diagram showing an analytical model of preforming performed by the above manufacturing apparatus. 図20Aは、R1=R2=3.5mmの条件での予備成形後の鋼板に生じるひずみ分布を示す図であり、図20Bは、図20Aの鋼板をさらに本成形した後に生じるひずみ分布を示す図である。FIG. 20A is a diagram showing a strain distribution generated in a steel sheet after preforming under the condition of R1=R2=3.5 mm, and FIG. 20B is a diagram showing a strain distribution generated after further main-forming the steel sheet of FIG. 20A. Is. 図21Aは、R1=R2=3.0mmの条件での予備成形後の鋼板に生じるひずみ分布を示す図であり、図21Bは、図21Aの鋼板をさらに本成形した後に生じるひずみ分布を示す図である。FIG. 21A is a diagram showing a strain distribution generated in the steel sheet after preforming under the condition of R1=R2=3.0 mm, and FIG. 21B is a diagram showing a strain distribution generated after further main-forming the steel sheet of FIG. 21A. Is. 図22Aは、R1=R2=2.5mmの条件での予備成形後の鋼板に生じるひずみ分布を示す図であり、図22Bは、図22Aの鋼板をさらに本成形した後に生じるひずみ分布を示す図である。22A is a diagram showing a strain distribution generated in a steel sheet after preforming under the condition of R1=R2=2.5 mm, and FIG. 22B is a diagram showing a strain distribution generated after further main forming the steel sheet of FIG. 22A. Is. 図23Aは、R1=R2=1.5mmの条件での予備成形後の鋼板に生じるひずみ分布を示す図であり、図23Bは、図23Aの鋼板をさらに本成形した後に生じるひずみ分布を示す図である。FIG. 23A is a diagram showing a strain distribution generated in a steel sheet after preforming under a condition of R1=R2=1.5 mm, and FIG. 23B is a diagram showing a strain distribution generated after further main-forming the steel sheet of FIG. 23A. Is. 図24は、一度の成形で同様のエンボス形状に成形された鋼板のひずみ分布を示す図である。FIG. 24 is a diagram showing a strain distribution of a steel sheet formed into a similar embossed shape by one-time forming. 図25Aは、β=80°、D2=3.0mmの条件でのストローク量と本成形後の最大ひずみの関係を示すグラフ図であり、図25Bは、β=70°、D2=3.0mmの条件でのストローク量と本成形後の最大ひずみの関係を示すグラフ図であり、図25Aは、β=60°、D2=3.0mmの条件でのストローク量と本成形後の最大ひずみの関係を示すグラフ図である。FIG. 25A is a graph showing the relationship between the stroke amount and the maximum strain after main forming under the conditions of β=80° and D2=3.0 mm, and FIG. 25B is β=70°, D2=3.0 mm. FIG. 25A is a graph showing the relationship between the stroke amount and the maximum strain after main forming under the conditions of FIG. 25A, and FIG. 25A shows the stroke amount and the maximum strain after main forming under conditions of β=60° and D2=3.0 mm. It is a graph figure which shows a relationship. 図26は、β=70°、D2=2.0mmの条件でのストローク量と本成形後の最大ひずみの関係を示すグラフ図である。FIG. 26 is a graph showing the relationship between the stroke amount and the maximum strain after main forming under the conditions of β=70° and D2=2.0 mm. 図27は、β=60°、D2=4.0mmの条件でのストローク量と本成形後の最大ひずみの関係を示すグラフ図である。FIG. 27 is a graph showing the relationship between the stroke amount and the maximum strain after main forming under the conditions of β=60° and D2=4.0 mm.

(第一実施形態)
図1には、第一実施形態のエンボス形状を有する鋼板の製造装置を示している。
(First embodiment)
FIG. 1 shows an apparatus for manufacturing a steel sheet having an embossed shape according to the first embodiment.

以下においては、エンボス形状を有する鋼板を「エンボス鋼板」と称し、これを製造する装置を単に「製造装置」、これを製造する方法を単に「製造方法」と称する。本実施形態のエンボス鋼板は、サイディング等の多様な用途に用いられる。 Hereinafter, a steel plate having an embossed shape is referred to as an “embossed steel plate”, an apparatus for manufacturing the same is simply referred to as a “manufacturing apparatus”, and a method for manufacturing the same is simply referred to as a “manufacturing method”. The embossed steel sheet of this embodiment is used for various applications such as siding.

本実施形態の製造装置は、帯状の鋼板9に対して予備成形と本成形を順に実施することで、鋼板9の破損を抑えながら、鋼板9をシャープなエンボス形状F2(図6の実線参照)に成形する装置である。 The manufacturing apparatus of the present embodiment sequentially performs the preforming and the main forming on the strip-shaped steel plate 9 to suppress the damage of the steel plate 9 and sharply emboss the steel plate 9 (see the solid line in FIG. 6). This is a molding device.

本実施形態の製造装置は、帯状の鋼板9を送り出すアンコイラ81と、アンコイラ81から送り出された鋼板9をガイドするサイドガイド82と、アンコイラ81から送り出された薄板状の鋼板9に対して予備成形を行う予備成形機83と、予備成形された鋼板9に対して本成形を行う本成形機84と、本成形された鋼板9をさらに送り出す引き出しロール85とを備える。 The manufacturing apparatus of this embodiment preforms the uncoiler 81 that sends out the strip-shaped steel plate 9, the side guide 82 that guides the steel plate 9 that is sent out from the uncoiler 81, and the thin plate-shaped steel plate 9 that is sent out from the uncoiler 81. A preforming machine 83 for performing the above, a main forming machine 84 for performing main forming on the preformed steel sheet 9, and a drawer roll 85 for further feeding out the main formed steel sheet 9.

アンコイラ81、サイドガイド82、予備成形機83、本成形機84および引き出しロール85は、図中に白抜き矢印で示す送り方向に沿って、この順に配置される。アンコイラ81から送り出される鋼板9は、平坦な帯状の塗装鋼板からなる。本文中で用いる「平坦」の文言は、厳密に平坦な意味に限定されず、略平坦な場合も含む。 The uncoiler 81, the side guide 82, the preforming machine 83, the main forming machine 84, and the pull-out roll 85 are arranged in this order along the feeding direction indicated by the white arrow in the drawing. The steel plate 9 delivered from the uncoiler 81 is a flat strip-shaped coated steel plate. The term "flat" used in the present text is not limited to a strictly flat meaning, and includes a substantially flat case.

予備成形機83は、上下一対の第一ロール1を備える。以下においては、一対の第一ロール1のうち、上側に位置する第一ロール1を「上側第一ロール」と称し、符号1aを付す。一対の第一ロール1のうち、下側に位置する第一ロール1を「下側第一ロール」と称し、符号1bを付す。 The preforming machine 83 includes a pair of upper and lower first rolls 1. Below, the 1st roll 1 located in an upper side among a pair of 1st rolls 1 is called an "upper 1st roll", and the code|symbol 1a is attached|subjected. Of the pair of first rolls 1, the lower first roll 1 is referred to as a "lower first roll" and is denoted by reference numeral 1b.

上側第一ロール1aの最外層には、予備成形用の上側金型11aが設けられている。下側第一ロール1bの最外層には、予備成形用の下側金型11bが設けられている。 An upper die 11a for preforming is provided on the outermost layer of the upper first roll 1a. A lower die 11b for preforming is provided on the outermost layer of the lower first roll 1b.

予備成形用の上側金型11aと下側金型11bは共に、いわゆる正弦波のような緩やかな凹凸を連続的に有する金型であり(図3参照)、両者で鋼板9を上下方向(鋼板9の厚み方向)に圧延加工しながら送り出すことで、鋼板9が所定の波型形状F1(図6の鎖線参照)に至るまでロール成形される。つまり、上側金型11aと下側金型11bによって、鋼板9を波型形状F1に予備成形する金型構造11が構成されている。 Both the upper mold 11a and the lower mold 11b for preforming are molds that continuously have a gentle unevenness such as a so-called sine wave (see FIG. 3). The steel sheet 9 is roll-formed until it reaches a predetermined corrugated shape F1 (see the chain line in FIG. 6) by being rolled out in the thickness direction 9). That is, the upper die 11a and the lower die 11b constitute the die structure 11 for preforming the steel sheet 9 into the corrugated shape F1.

本成形機84は、上下一対の第二ロール2を備える。一対の第二ロール2のうち、上側に位置する第二ロール2を「上側第二ロール」と称し、符号2aを付す。一対の第二ロール2のうち、下側に位置する第二ロール2を「下側第二ロール」と称し、符号2bを付す。 The main molding machine 84 includes a pair of upper and lower second rolls 2. Of the pair of second rolls 2, the second roll 2 located on the upper side is referred to as an "upper second roll" and is denoted by reference numeral 2a. Of the pair of second rolls 2, the second roll 2 located on the lower side is referred to as a "lower second roll" and is denoted by reference numeral 2b.

上側第二ロール2aの最外層には、本成形用の上側金型21aが設けられている。下側第二ロール2bの最外層には、同じく本成形用の下側金型21bが設けられている。 An upper die 21a for main forming is provided on the outermost layer of the upper second roll 2a. A lower die 21b for main forming is also provided on the outermost layer of the lower second roll 2b.

本成形用の上側金型21aと下側金型21bは共に、いわゆる矩形波のような直角的な凹凸を連続的に有する金型であり(図5参照)、予備成形後の鋼板9を両者で上下方向に圧延加工しながら送り出すことで、波型形状F1の鋼板9が、所定のエンボスF2に至るまでロール成形される。つまり、上側金型21aと下側金型21bによって、鋼板9を所定のエンボス形状F2(図6の実線参照)に本成形する金型構造21が構成されている。 Both the upper mold 21a and the lower mold 21b for main forming are molds that continuously have right-angled irregularities such as so-called rectangular waves (see FIG. 5). The steel plate 9 having the corrugated shape F1 is roll-formed until it reaches a predetermined emboss F2 by being fed while being rolled in the vertical direction. In other words, the upper die 21a and the lower die 21b constitute a die structure 21 for forming the steel sheet 9 into a predetermined embossed shape F2 (see the solid line in FIG. 6).

エンボス形状F2に成形された鋼板9が、後の工程にて所定寸法に切断されることで、エンボス鋼板が得られる。得られたエンボス鋼板は、たとえば金属サイディングとして用いられる。或いは、得られたエンボス鋼板に対して、後の工程で芯材とシート材がこの順で積層され、これが所定寸法に切断されたものが、金属サイディングとして用いられることも有り得る。前記芯材は、たとえば発泡樹脂等を用いた断熱材であり、前記シート材は、たとえば金属パネルや裏紙である。 The steel plate 9 formed into the embossed shape F2 is cut into a predetermined size in a later step, whereby an embossed steel plate is obtained. The obtained embossed steel plate is used, for example, as metal siding. Alternatively, the obtained embossed steel sheet may have a core material and a sheet material laminated in this order in a subsequent step, and cut into a predetermined size to be used as the metal siding. The core material is a heat insulating material using, for example, foam resin, and the sheet material is, for example, a metal panel or a backing paper.

前者の場合、最終的に得られる金属サイディングは、エンボス形状F2に成形された塗装鋼板である。後者の場合、最終的に得られる金属サイディングは、エンボス形状F2に成形された塗装鋼板とシート材の間に芯材が挟み込まれたサンドイッチパネルである。 In the former case, the finally obtained metal siding is a coated steel plate formed into an embossed shape F2. In the latter case, the finally obtained metal siding is a sandwich panel in which a core material is sandwiched between a coated steel sheet formed into an embossed shape F2 and a sheet material.

次に、波型形状F1とエンボス形状F2について、さらに詳しく説明する。 Next, the corrugated shape F1 and the embossed shape F2 will be described in more detail.

図6には、波型形状F1とエンボス形状F2を重ねて示している。図中の鎖線が波型形状F1の鋼板9であり、図中の実線がエンボス形状F2の鋼板9である。 In FIG. 6, the corrugated shape F1 and the embossed shape F2 are shown in an overlapping manner. The chain line in the drawing is the steel plate 9 having the corrugated shape F1, and the solid line in the drawing is the steel plate 9 having the embossing shape F2.

図示のように、波型形状F1に成形された段階の鋼板9と、エンボス形状F2に成形された鋼板9とでは、凹凸の高さ(上下方向の高さ)が同一である。本文中で用いる「同一」の文言は、厳密な意味での同一に限定されず、略同一の場合も含む。 As shown in the drawing, the height of the unevenness (the height in the vertical direction) is the same in the steel plate 9 formed in the corrugated shape F1 and the steel plate 9 formed in the embossed shape F2. The term “identical” used in the present text is not limited to the same in a strict sense, and includes almost the same cases.

本実施形態の波型形状F1は、平坦な鋼板9が上側金型11aと下側金型11bの間で上下方向に圧延加工され、伸びと曲げが加えられることで成形される形状であり、いわゆる正弦波のような緩やかな凹凸を連続的に有する。 The corrugated shape F1 of the present embodiment is a shape in which the flat steel plate 9 is rolled in the up-down direction between the upper die 11a and the lower die 11b, and is stretched and bent to be formed. It has continuous gentle unevenness like a so-called sine wave.

波型形状F1に成形された鋼板9は、所定方向(上方)に突出するように弧状に湾曲した予備凸条部31と、所定方向とは逆方向(下方)に突出するように弧状に湾曲した予備凹条部32とが、連結壁33を介して交互に形成された構造を有する。 The steel plate 9 formed in the corrugated shape F1 is curved in an arc shape so as to project in a predetermined direction (upward) and is curved in an arc shape so as to project in a direction opposite to the predetermined direction (downward). The preliminary concave streak portions 32 are alternately formed with the connecting walls 33.

連結壁33は、隣接する予備凸条部31と予備凹条部32を滑らかにつなぐ傾斜部分であり、鋼板9の厚み方向(上下方向)と直交する面(水平面)に対して、傾斜角度αだけ傾いて位置する。傾斜角度αは、たとえば45°である。 The connecting wall 33 is an inclined portion that smoothly connects the adjacent preliminary convex streak portion 31 and the preliminary concave streak portion 32, and has an inclination angle α with respect to a plane (horizontal plane) orthogonal to the thickness direction (vertical direction) of the steel sheet 9. Only tilted position. The inclination angle α is, for example, 45°.

本実施形態のエンボス形状F2は、波型形状F1の鋼板9が上側金型21aと下側金型21bの間で上下方向に圧延加工され、曲げを加えられることで成形される形状であり、いわゆる矩形波のようなシャープな凹凸を連続的に有する。 The embossed shape F2 of the present embodiment is a shape formed by rolling the steel plate 9 of the corrugated shape F1 in the up-down direction between the upper die 21a and the lower die 21b, and bending the steel sheet 9. It continuously has sharp unevenness like a so-called rectangular wave.

エンボス形状F2に成形された鋼板9は、コ字状に折れ曲がった形状を有する複数の凹条部41が、一方向900(鋼板9の幅方向)に沿って所定距離をあけて並んだ形状である。 The steel plate 9 formed in the embossed shape F2 has a shape in which a plurality of recessed portions 41 having a U-shaped bent shape are lined up at a predetermined distance along one direction 900 (the width direction of the steel plate 9). is there.

各凹条部41は、平坦な底壁411と、底壁411の一方向の両端から起立する一対の縦壁412を備え、底壁411の反対側(上側)が開口した形状を有する。一方向に隣接する一対の凹条部41間には、平坦な上壁42が形成される。 Each recess 41 includes a flat bottom wall 411 and a pair of vertical walls 412 standing up from both ends in one direction of the bottom wall 411, and has a shape in which the opposite side (upper side) of the bottom wall 411 is open. A flat upper wall 42 is formed between the pair of recessed portions 41 that are adjacent in one direction.

上壁42は、これに隣接する凹条部41の底壁411と平行である。本文中で用いる「平行」の文言は、厳密な意味での平行に限定されず、略平行な場合も含む。 The upper wall 42 is parallel to the bottom wall 411 of the groove 41 that is adjacent to the upper wall 42. The term “parallel” used in the present text is not limited to parallel in a strict sense, and includes the case of being substantially parallel.

本実施形態の製造装置によれば、まず鋼板9を伸ばして波型形状F1に成形したうえで、これをエンボス形状F2に至るまで曲げるので、成形の際に破損が生じることを抑えながら、シャープな外観のエンボス鋼板を得ることができる。 According to the manufacturing apparatus of the present embodiment, first, the steel plate 9 is stretched and formed into the corrugated shape F1, and then the corrugated shape F2 is bent to reach the embossed shape F2. It is possible to obtain an embossed steel plate having a unique appearance.

成形時の破損をより効果的に抑えるには、波型形状F1の連結壁33の傾斜角度αを、20°以上であり且つ60°以内の範囲に設定することが好ましい。さらに好ましい設定は、傾斜角度αを、30°以上であり且つ45°以内の範囲内に設定することである。 In order to suppress the damage during molding more effectively, it is preferable to set the inclination angle α of the connecting wall 33 of the corrugated shape F1 in the range of 20° or more and 60° or less. A more preferable setting is to set the inclination angle α within a range of 30° or more and 45° or less.

次に、数値解析により得られる鋼板9のひずみ分布について説明する。図7〜図12には、波型形状F1とエンボス形状F2で生じる鋼板9のひずみ分布を、複数の傾斜角度αの設定で示している。鋼板9の厚みは0.27mmで設定している。図13、図14には、比較例として、一度のロール成形で鋼板9をエンボス形状F2に成形した場合のひずみ分布を示している。 Next, the strain distribution of the steel sheet 9 obtained by numerical analysis will be described. 7 to 12 show the strain distributions of the steel plate 9 generated in the corrugated shape F1 and the embossed shape F2 at a plurality of inclination angle α settings. The thickness of the steel plate 9 is set to 0.27 mm. As a comparative example, FIGS. 13 and 14 show strain distributions when the steel sheet 9 is formed into the embossed shape F2 by one roll forming.

図13、図14に示すように、一度のロール成形でエンボス形状F2に成形した場合には、特に肩部45において引っ張りと曲げが同時に発生し、引張ひずみと曲げひずみが重畳することから、肩部45の厚みが著しく減少して割れ、破断等の破損が生じやすくなる。 As shown in FIG. 13 and FIG. 14, when the embossed shape F2 is formed by a single roll forming, tension and bending occur at the shoulder portion 45 at the same time, and tensile strain and bending strain are superposed. The thickness of the portion 45 is remarkably reduced, and breakage or breakage is likely to occur.

これに対して、図7〜図12に示すように、本成形前に予備成形を行うことで、肩部45にひずみが集中することが抑えられる。 On the other hand, as shown in FIGS. 7 to 12, by performing the preforming before the main forming, it is possible to suppress the concentration of strain on the shoulder portion 45.

図7、図8に示す例は、波型形状F1の鋼板9の傾斜角度α=25°に設定した例であり、肩部35の曲率半径は10.0mmである。この曲率半径は、エンボス形状F2の肩部45の曲率半径(=1.0mm)よりも大きい。 The examples shown in FIGS. 7 and 8 are examples in which the inclination angle α of the steel plate 9 having the corrugated shape F1 is set to 25°, and the radius of curvature of the shoulder portion 35 is 10.0 mm. This radius of curvature is larger than the radius of curvature (=1.0 mm) of the shoulder portion 45 of the embossed shape F2.

図9、図10に示す例は、波型形状F1の鋼板9の傾斜角度α=38°に設定した例であり、肩部35の曲率半径は3.0mmである。この曲率半径は、エンボス形状F2の肩部45の曲率半径(=1.0mm)よりも大きい。 The examples shown in FIGS. 9 and 10 are examples in which the inclination angle α of the steel plate 9 having the corrugated shape F1 is set to 38°, and the radius of curvature of the shoulder portion 35 is 3.0 mm. This radius of curvature is larger than the radius of curvature (=1.0 mm) of the shoulder portion 45 of the embossed shape F2.

図11、図12に示す例は、波型形状F1の鋼板9の傾斜角度α=53°に設定した例であり、肩部35の曲率半径は1.5mmである。この曲率半径は、エンボス形状F2の肩部45の曲率半径(=1.0mm)よりも大きい。 The examples shown in FIGS. 11 and 12 are examples in which the inclination angle α of the corrugated steel sheet 9 is set to 53°, and the radius of curvature of the shoulder portion 35 is 1.5 mm. This radius of curvature is larger than the radius of curvature (=1.0 mm) of the shoulder portion 45 of the embossed shape F2.

上記の計算結果からも、一度のロール成形で鋼板9をエンボス形状F2に成形するよりも、予備成形と本成形で鋼板9をエンボス形状F2に成形するほうが、破損を生じ難いことがわかる。 From the above calculation results, it is understood that the steel plate 9 is formed into the embossed shape F2 by the pre-forming and the main forming more easily than the steel sheet 9 is formed into the embossed shape F2 by the roll forming once.

さらに、予備成形と本成形を行う場合でも、さらに傾斜角度αを30°〜45°の範囲内に設定したほうが、破損を生じ難いことがわかる。傾斜角度αが30°より小さい場合、本成形の際に肩部45においてひずみ集中が生じやすい。傾斜角度αが45°を超える場合、予備成形の際に肩部35においてひずみ集中が生じやすい。 Further, even in the case of performing the preforming and the main forming, it is understood that the damage is less likely to occur when the inclination angle α is further set within the range of 30° to 45°. When the inclination angle α is smaller than 30°, strain concentration is likely to occur in the shoulder portion 45 during the main forming. When the inclination angle α exceeds 45°, strain concentration is likely to occur in the shoulder portion 35 during preforming.

なお、肩部45の厚み減少の許容範囲が50%以内である場合には、傾斜角度αを、20°以上であり且つ60°以内の範囲に設定してもよい。 When the allowable range of the thickness reduction of the shoulder portion 45 is within 50%, the inclination angle α may be set within the range of 20° or more and 60° or less.

同様の結果は、実験においても確認される。 Similar results are confirmed in the experiment.

(第二実施形態)
次に、第二実施形態の製造装置及び製造方法について、図15〜図27に基づいて説明する。
(Second embodiment)
Next, a manufacturing apparatus and a manufacturing method of the second embodiment will be described based on FIGS. 15 to 27.

なお、本実施形態の構成のうち第一実施形態と同様の構成については、同一符号を付して詳しい説明を省略する。以下においては、第一実施形態とは相違する構成について詳述する。 In addition, about the structure similar to 1st embodiment among the structures of this embodiment, the same code|symbol is attached|subjected and detailed description is abbreviate|omitted. In the following, a configuration different from that of the first embodiment will be described in detail.

本実施形態の製造装置は、図15、図16に要部を示す予備成形用の上側金型11aと下側金型11bを備え、さらに、図17、図18に要部を示す本成形用の上側金型21aと下側金型21bを備える。 The manufacturing apparatus of the present embodiment is provided with an upper mold 11a for preforming and a lower mold 11b, the main parts of which are shown in FIGS. 15 and 16, and further, for the main molding whose main parts are shown in FIGS. The upper mold 21a and the lower mold 21b are provided.

予備成形用の上側金型11aは、鋼板9に対して厚み方向に(下方に)押し当たる断面円弧状の凸部分115aを、一方向900に距離をあけて複数有する。凸部分115aの半径R1は、たとえば3.5mmである。 The upper die 11a for preforming has a plurality of convex portions 115a having an arcuate cross-section that are pressed against the steel plate 9 in the thickness direction (downward) at a distance in one direction 900. The radius R1 of the convex portion 115a is, for example, 3.5 mm.

予備成形用の下側金型11bは、鋼板9に対して厚み方向に(上方に)押し当たる断面円弧状の凸部分115bを、一方向900に距離をあけて複数有する。凸部分115bの半径R2は、たとえば3.5mmである。 The lower die 11b for preforming has a plurality of convex portions 115b having an arcuate cross-section that are pressed against the steel plate 9 in the thickness direction (upward) at a distance in one direction 900. The radius R2 of the convex portion 115b is, for example, 3.5 mm.

一方向900において、上側金型11aの凸部分115aと、下側金型11bの凸部分115bは、所定のピッチP1をあけて交互に位置する。所定のピッチP1は、隣接する凸部分115a,115bごとに相違してもよいし、同一でもよい。 In one direction 900, the convex portions 115a of the upper mold 11a and the convex portions 115b of the lower mold 11b are alternately positioned with a predetermined pitch P1. The predetermined pitch P1 may be different or the same between the adjacent convex portions 115a and 115b.

予備成形工程においては、上側の凸部分115aが鋼板9の上面に当たり、下側の凸部分115bが鋼板9の下面に当たった状態から、図16中に白抜き矢印で示すように、上側の凸部分115aが下側の凸部分115bに対して、下方にむけて相対移動する。上側の凸部分115aが下方に相対移動するストローク量S1は、たとえば4.5mmである。 In the preforming step, from the state where the upper convex portion 115a hits the upper surface of the steel plate 9 and the lower convex portion 115b hits the lower surface of the steel plate 9, as shown by the white arrow in FIG. The portion 115a moves downward relative to the lower convex portion 115b. A stroke amount S1 by which the upper convex portion 115a relatively moves downward is 4.5 mm, for example.

図16に示すように、鋼板9のうち上側の凸部分115aが押し当たった部分が、下方にむけて円弧状に凹んだ予備凹条部32となる。鋼板9のうち下側の凸部分115bが押し当たった部分が、上方にむけて円弧状に突出した予備凸条部31となる。 As shown in FIG. 16, a portion of the steel plate 9 against which the upper convex portion 115a is pressed serves as a preliminary concave streak portion 32 which is recessed downward in an arc shape. The portion of the steel plate 9 against which the lower convex portion 115b is pressed serves as the preliminary ridge portion 31 that protrudes upward in an arc shape.

予備成形工程においては、鋼板9の全体に伸びが万遍なく加えられ、かつ、鋼板9の全体に緩やかな曲げが加えられることで、予備凹条部32と予備凸条部31が一方向900において交互に配された、正弦波のような円滑な波型形状F1が形成される。一方向900において、波型形状F1に成形された鋼板9の長さは、予備成形前の平坦な鋼板9の長さと略同一である。 In the preforming step, elongation is evenly applied to the entire steel plate 9 and gentle bending is applied to the entire steel plate 9, so that the preliminary concave streak portion 32 and the preliminary convex streak portion 31 move in one direction 900. A smooth corrugated shape F1 such as a sine wave, which is alternately arranged at, is formed. In one direction 900, the length of the steel plate 9 formed into the corrugated shape F1 is substantially the same as the length of the flat steel plate 9 before preforming.

波型形状F1において、予備凹条部32の深さD1は、予備成形工程でのストローク量S1に等しく、たとえば4.5mmである。 In the corrugated shape F1, the depth D1 of the preliminary groove portion 32 is equal to the stroke amount S1 in the preforming step, and is, for example, 4.5 mm.

図17、図18に示すように、本成形用の上側金型21aは、断面コ字状の凸部分215aと断面コ字状の凹部分217aが、一方向900に交互に設けられた矩形波のような断面形状を有する。 As shown in FIGS. 17 and 18, the upper mold 21a for main molding has a rectangular wave in which a convex portion 215a having a U-shaped cross section and a concave portion 217a having a U-shaped cross section are alternately provided in one direction 900. It has a cross-sectional shape like.

本成形用の下側金型21bは、断面コ字状の凸部分215bと断面コ字状の凹部分217bが、一方向900に交互に設けられた矩形波のような断面形状を有する。 The lower mold 21b for main molding has a cross-sectional shape like a rectangular wave in which convex portions 215b having a U-shaped cross section and concave portions 217b having a U-shaped cross section are alternately provided in one direction 900.

上側金型21aと下側金型21bは、互いに合致するような寸法形状を有する。 The upper mold 21a and the lower mold 21b have dimensions and shapes that match each other.

上側金型21aの凸部分215aは、下側金型21bの凹部分217bと一対一に対応する。対応する凸部分215aと凹部分217bは、上下に対向する位置関係にあり、互いに合致する寸法形状を有する。 The convex portion 215a of the upper mold 21a corresponds to the concave portion 217b of the lower mold 21b one to one. Corresponding convex portion 215a and concave portion 217b have a positional relationship of vertically facing each other and have dimensions and shapes that match each other.

上側金型21aの凹部分217aは、下側金型21bの凸部分215bと一対一に対応する。対応する凹部分217aと凸部分215bは、上下に対向する位置関係にあり、互いに合致する寸法形状を有する。 The concave portion 217a of the upper mold 21a corresponds to the convex portion 215b of the lower mold 21b one to one. Corresponding concave portion 217a and convex portion 215b are in a vertically opposed positional relationship, and have dimensions and shapes that match each other.

さらに、本成形用の上側金型21aが有する凸部分215aは、予備成形用の上側金型11aが有する凸部分115aと、一対一に対応する関係にある。本成形用の下側金型21bが有する断面コ字状の凸部分215bは、予備成形用の下側金型11bが有する凸部分115bと、一対一に対応する関係にある。 Further, the convex portions 215a of the upper mold 21a for main molding have a one-to-one correspondence with the convex portions 115a of the upper mold 11a for preforming. The convex portion 215b having a U-shaped cross section of the lower mold 21b for main molding has a one-to-one correspondence with the convex portion 115b of the lower mold 11b for preforming.

一方向900において、上側金型21aの凸部分215aと、下側金型21bの凸部分215bは、所定のピッチP2をあけて交互に位置する。本成形工程の凸部分215a,215b間のピッチP2は、この凸部分215a,215bに対応する予備成形工程の凸部分115a,115b間のピッチP1と同一であり、たとえば7mmである。 In one direction 900, the convex portions 215a of the upper mold 21a and the convex portions 215b of the lower mold 21b are alternately positioned with a predetermined pitch P2. The pitch P2 between the convex portions 215a and 215b in the main forming step is the same as the pitch P1 between the convex portions 115a and 115b in the preforming step corresponding to the convex portions 215a and 215b, and is, for example, 7 mm.

本成形工程では、波型形状F1に成形された鋼板9の上面に対して上側の凸部分215aが当たり、鋼板9の下面に対して下側の凸部分215bが当たった状態から、図18中に白抜き矢印で示すように、上側金型21aが下側金型21bに対して、下方にむけて相対移動する。上側金型21aが下方に相対移動するストローク量は、たとえば1.5mmである。 In the main forming step, from the state in which the upper convex portion 215a hits the upper surface of the steel sheet 9 formed in the corrugated shape F1 and the lower convex portion 215b hits the lower surface of the steel sheet 9, the state shown in FIG. As shown by a white arrow, the upper die 21a moves downward relative to the lower die 21b. The stroke amount by which the upper mold 21a relatively moves downward is, for example, 1.5 mm.

このとき、波型形状F1の鋼板9が有する予備凸条部31の頂部312が、上側金型21aの凹部分217aに当たって下方に押し込まれ、鋼板9が有する予備凹条部32のうち頂部322から予備凸条部31に寄った部分324が、上側金型21aの凸部分215aの角部分に当たって下方に押し込まれる。 At this time, the top portion 312 of the preliminary convex strip portion 31 of the steel plate 9 having the corrugated shape F1 hits the concave portion 217a of the upper die 21a and is pushed downward, and from the top portion 322 of the preliminary concave strip portion 32 of the steel plate 9. The portion 324 that is close to the preliminary convex streak portion 31 hits the corner portion of the convex portion 215a of the upper mold 21a and is pushed downward.

同様に、波型形状F1の鋼板9が有する予備凹条部32の頂部322が、下側金型21bの凹部分217bに押し当たり、鋼板9が有する予備凸条部31のうち頂部312から予備凹条部32に寄った部分314が、下側金型21bの凸部分215bの角部分に押し当たる。 Similarly, the top 322 of the preliminary recessed portion 32 of the corrugated F1 steel plate 9 is pressed against the recessed portion 217b of the lower mold 21b, and the top of the spare protrusion 31 of the steel plate 9 is spared from the top 312. The portion 314 near the recessed portion 32 presses against the corner portion of the convex portion 215b of the lower mold 21b.

これにより、波型形状F1に予備成形された鋼板9が、図18に示すようなエンボス形状F2に本成形される。一方向900において、エンボス形状F2に成形された鋼板9の長さは、予備成形前及び予備成形後の鋼板9の長さと略同一である。 As a result, the steel plate 9 preformed into the corrugated shape F1 is finally formed into the embossed shape F2 as shown in FIG. In one direction 900, the length of the steel sheet 9 formed into the embossed shape F2 is substantially the same as the length of the steel sheet 9 before and after preforming.

エンボス形状F2の鋼板9が有する凹条部41は、上側金型21aの凸部分215aと、下側金型21bの凹部分217bの間で上下に圧延加工され、曲げを加えられることで、断面コ字状に成形された部分である。 The concave streak portion 41 of the steel plate 9 having the embossed shape F2 is rolled up and down between the convex portion 215a of the upper mold 21a and the concave portion 217b of the lower mold 21b, and is bent to have a cross section. It is a portion formed in a U shape.

エンボス形状F2の鋼板9が有する複数の凹条部41は、波型形状F1の鋼板9が有する複数の予備凹条部32と、一対一に対応する。凹条部41の深さD2は、これに対応する予備凹条部32の深さD1よりも小さい。つまり、波型形状F1に予備成形された段階の鋼板9と、エンボス形状F2に本成形された段階の鋼板9とを比較すると、予備成形の段階のほうが凹凸が深く成形される。 The plurality of groove portions 41 of the steel plate 9 having the embossed shape F2 have a one-to-one correspondence with the plurality of preliminary groove portions 32 of the steel plate 9 having the corrugated shape F1. The depth D2 of the groove 41 is smaller than the corresponding depth D1 of the preliminary groove 32. That is, when comparing the steel plate 9 in the stage preformed into the corrugated shape F1 and the steel plate 9 in the stage fully formed into the embossed shape F2, the unevenness is formed deeper in the preforming stage.

本実施形態の製造装置によれば、まず鋼板9を万遍なくかつ大きく伸ばして波型形状F1に成形したうえで、これを上下方向に潰しながらエンボス形状F2に至るまで曲げるので、特定箇所にひずみが集中して破損を生じることが抑えられる。 According to the manufacturing apparatus of the present embodiment, first, the steel plate 9 is evenly and greatly stretched to form the corrugated shape F1 and then bent up to the embossed shape F2 while being crushed in the vertical direction. It is possible to suppress the concentration of strain and damage.

加えて、本成形工程においては、上側金型21aと下側金型21bの間で波型形状F1の鋼板9を圧延加工する際に、鋼板9の上下の頂部312,322が上下方向に押し込まれる。鋼板9の予備凸条部31のうち、下側金型21bの角部分に当たって曲げられる部分314と、上側金型21aの角部分に当たって曲げられる部分324は、ひずみが集中して厚みが減少しやすい部分であるが、これらの部分314,324に頂部312,322側から圧縮ひずみが付与され、材料が流れ込むことにより、ひずみの集中や厚みの減少が抑制される。 In addition, in the main forming step, when the steel plate 9 having the corrugated shape F1 is rolled between the upper mold 21a and the lower mold 21b, the upper and lower tops 312 and 322 of the steel plate 9 are pushed vertically. Be done. Of the preliminary ridges 31 of the steel plate 9, a portion 314 that bends by hitting a corner portion of the lower die 21b and a portion 324 that bends by hitting a corner portion of the upper die 21a tend to have concentrated strains and the thickness thereof tends to decrease. As for the portions, compressive strain is applied to these portions 314 and 324 from the side of the top portions 312 and 322, and the material flows in, whereby strain concentration and thickness reduction are suppressed.

次に、数値解析により得られる鋼板9のひずみ分布について、説明する。 Next, the strain distribution of the steel plate 9 obtained by numerical analysis will be described.

ここでの解析は、図19に示すモデルを用い、予備成形における凸部分115a,115bの半径R1,R2を複数段階で変化させて行い、さらに、凸部分115aのストローク量S1(すなわち予備凹条部の深さD1)、本成形後の凹条部41の深さD2、及び縦壁412の傾斜角度βを複数段階で変化させて行った。凸部分115a,115b間のピッチP1は、7mmで固定した。 The analysis here is performed by using the model shown in FIG. 19 and changing the radii R1 and R2 of the convex portions 115a and 115b in the preforming in a plurality of steps, and further, the stroke amount S1 of the convex portion 115a (that is, the preliminary concave groove). The depth D1) of the portion, the depth D2 of the recess 41 after the main forming, and the inclination angle β of the vertical wall 412 were changed in a plurality of steps. The pitch P1 between the convex portions 115a and 115b was fixed at 7 mm.

図20A〜図23Bに示す結果は、波型形状F1とエンボス形状F2で生じる鋼板9のひずみ分布を、半径R1,R2を3.5〜1.5mmの間で変化させて計算したものである。 The results shown in FIGS. 20A to 23B are calculated by calculating the strain distribution of the steel plate 9 generated in the corrugated shape F1 and the embossed shape F2 while changing the radii R1 and R2 between 3.5 and 1.5 mm. ..

図24には、従来技術のように一度の成形(本成形のみ)で、鋼板9を同様のエンボス形状F2に成形した場合のひずみ分布を、比較例として示している。図24に示すように、一度の成形でエンボス形状F2に成形した場合には、矩形波状の肩や縦壁となる部分にひずみが集中し、破断等の破損が生じやすくなる。図24の結果において、最大ひずみは57.5%である。 FIG. 24 shows, as a comparative example, the strain distribution when the steel sheet 9 is formed into the same embossed shape F2 by one-time forming (main forming only) as in the conventional technique. As shown in FIG. 24, when the embossed shape F2 is formed by one-time molding, the strain is concentrated on the rectangular wave-shaped shoulders and the vertical wall portions, and breakage or other damage is likely to occur. In the result of FIG. 24, the maximum strain is 57.5%.

これに対して、図20A〜図23Bに示すように、本成形前に予備成形を行うことで、鋼板9の特定の部分にひずみが集中することが抑えられる。 On the other hand, as shown in FIGS. 20A to 23B, by performing preforming before the main forming, it is possible to prevent strain from being concentrated on a specific portion of the steel sheet 9.

図20A、図20Bには、予備成形での条件を半径R1=R2=3.5mm、ストローク量S1=4.5mmに設定し、本成形での条件を深さD2=3mm、傾斜角度β=70°に設定した場合の結果を示している。この場合、図20Bのエンボス形状F2における最大ひずみは41.4%である。 In FIG. 20A and FIG. 20B, the conditions for preforming are set to radius R1=R2=3.5 mm and stroke amount S1=4.5 mm, and the conditions for main forming are depth D2=3 mm and inclination angle β= The result when 70° is set is shown. In this case, the maximum strain in the embossed shape F2 of FIG. 20B is 41.4%.

同様に、図21A、図21Bには、予備成形での条件を半径R1=R2=3.0mm、ストローク量S1=4.5mmに設定し、本成形での条件を深さD2=3mm、傾斜角度β=70°に設定した場合の結果を示している。この場合、図21Bのエンボス形状F2における最大ひずみは35.0%である。 Similarly, in FIGS. 21A and 21B, the condition for preforming is set to radius R1=R2=3.0 mm and the stroke amount S1=4.5 mm, and the condition for main forming is depth D2=3 mm and inclination. The result when the angle β is set to 70° is shown. In this case, the maximum strain in the embossed shape F2 of FIG. 21B is 35.0%.

図22A、図22Bには、予備成形での条件を半径R1=R2=2.5mm、ストローク量S1=4.5mmに設定し、本成形での条件を深さD2=3mm、傾斜角度β=70°に設定した場合の結果を示している。この場合、図22Bのエンボス形状F2における最大ひずみは32.5%である。 In FIG. 22A and FIG. 22B, the conditions for preforming are set to radius R1=R2=2.5 mm and stroke amount S1=4.5 mm, and the conditions for main forming are depth D2=3 mm and inclination angle β= The result when 70° is set is shown. In this case, the maximum strain in the embossed shape F2 of FIG. 22B is 32.5%.

図23A、図23Bには、予備成形での条件を半径R1=R2=1.5mm、ストローク量S1=4.5mmに設定し、本成形での条件を深さD2=3mm、傾斜角度β=70°に設定した場合の結果を示している。この場合、図23Bのエンボス形状F2における最大ひずみは38.8%である。 In FIGS. 23A and 23B, conditions for preforming are set to radius R1=R2=1.5 mm, stroke amount S1=4.5 mm, conditions for main forming are depth D2=3 mm, inclination angle β= The result when 70° is set is shown. In this case, the maximum strain in the embossed shape F2 of FIG. 23B is 38.8%.

上記の解析結果からも、図24のように一度の成形で鋼板9をエンボス形状F2に成形するよりも、予備成形で鋼板9をいったん波型形状F1に至るまで伸ばしてから、本成形で鋼板9を上下に潰しながら矩形波型のエンボス形状F2に成形するほうが、ひずみの集中が抑えられることがわかる。 Also from the above analysis results, rather than forming the steel sheet 9 into the embossed shape F2 by a single forming as shown in FIG. 24, the steel sheet 9 is once stretched to a corrugated shape F1 by preforming, and then the steel sheet is formed by the main forming. It can be seen that the strain concentration can be suppressed by forming the rectangular wave-shaped embossed shape F2 while crushing 9 up and down.

また、上記の解析結果から、予備成形での凸部分115a,115bの半径R1,R2が変化すると、波型形状F1の鋼板9のひずみ集中部位が変化することがわかる。一般的に、半径R1,R2が小さくなるほど、ひずみ集中部位が、予備凸条部31や予備凹条部32の頂部312,322に近づく。 Further, from the above analysis results, it is understood that when the radii R1 and R2 of the convex portions 115a and 115b in the preforming change, the strain concentration portion of the steel plate 9 having the corrugated shape F1 changes. In general, the smaller the radii R1 and R2, the closer the strain concentration portion is to the tops 312 and 322 of the preliminary convex streak portion 31 and the preliminary concave streak portion 32.

したがって、鋼板9の波型形状F1でのひずみ集中部位を、エンボス形状F2で角になる部分(矩形波状の肩となる部分)から離れるように設ければ、本成形後の鋼板9の特定部位にひずみが集中することが抑えられる。 Therefore, if the strain-concentrated portion of the corrugated shape F1 of the steel sheet 9 is provided away from the corner of the embossed shape F2 (the portion that becomes the rectangular corrugated shoulder), the specific portion of the steel sheet 9 after the main forming It is possible to prevent strain from concentrating on the.

たとえば、予備成形で得られる波型形状F1が正弦波に近い形状である場合には、その凸部と凹部の中間領域において、圧延加工によるひずみが集中しやすいが、予備成形で得られる波型形状F1が、凸部と凹部の間に大きな割合で直線部分が存在する形状である場合には、その凸部や凹部において、圧延加工によるひずみが集中しやすい。後者の場合、予備成形後の本成形において、波型形状F1の直線部分に圧延加工が施されることによって、エンボス形状F2に成形された鋼板9ではその全体にひずみが分散され、加工性の向上に寄与する。 For example, when the corrugated shape F1 obtained by preforming is a shape close to a sine wave, distortion due to rolling tends to concentrate in the intermediate region between the convex portion and the concave portion, but the corrugated shape obtained by preforming When the shape F1 is a shape in which a straight line portion is present between the convex portion and the concave portion at a large ratio, the strain due to the rolling process is likely to be concentrated in the convex portion and the concave portion. In the latter case, in the main forming after the preforming, the straight part of the corrugated shape F1 is subjected to the rolling process, so that the steel plate 9 formed into the embossed shape F2 has the strain dispersed throughout the steel plate 9 to improve the workability. Contribute to improvement.

下記の表1、表2には、各条件を段階的に変化させて解析を行ったときの、本成形後のエンボス形状F2における最大ひずみと、軽減率を示している。軽減率の値は、本成形のみで鋼板9をエンボス形状F2に成形したとき(比較例)の最大ひずみを1として、予備成形を経ることで最大ひずみが軽減された割合を示す。 The following Tables 1 and 2 show the maximum strain and the reduction rate in the embossed shape F2 after the main forming when the analysis was performed while changing each condition stepwise. The value of the reduction rate indicates the rate at which the maximum strain was reduced by preforming, with the maximum strain when the steel sheet 9 was formed into the embossed shape F2 only by the main forming (Comparative Example) as 1.





図25A〜図25Cに示すグラフは、予備成形でのストローク量S1の変化に応じて、本成形後の最大ひずみがどのように変化するかを、まとめたグラフである。 The graphs shown in FIGS. 25A to 25C are graphs summarizing how the maximum strain after the main forming changes according to the change in the stroke amount S1 in the preforming.

図25Aは、本成形後の縦壁412の傾斜角度β=80°、凹条部41の深さD2=3.0mmの場合である。図25Bは、本成形後の傾斜角度β=70°、凹条部41の深さD2=3.0mmの場合である。図25Cは、本成形後の傾斜角度β=60°、凹条部41の深さD2=3.0mmの場合である。 FIG. 25A shows the case where the vertical wall 412 after the main molding has an inclination angle β=80° and the depth D2 of the concave portion 41 is 3.0 mm. FIG. 25B shows a case where the inclination angle β after main forming is 70° and the depth D2 of the concave streak portion 41 is 3.0 mm. FIG. 25C shows the case where the inclination angle β after main forming is 60° and the depth D2 of the groove 41 is 3.0 mm.

これらのグラフからも、予備成形でのストローク量S1(すなわち予備凹条部32の深さD1)を、本成形後の凹条部41の深さD2(=3.0mm)よりも大きく設定したときに、最大ひずみが低減されることが分かる。また、傾斜角度β=80°、70°、60°のいずれの場合でも、ストローク量S1(予備凹条部32の深さD1)が3.5〜4.5mmの範囲内で設定されるとき、つまり凹条部41の深さD2を0.5〜1.5mm超える範囲内で設定されるときに、最大ひずみが効果的に低減されることがわかる。さらには、ストローク量S1(深さD1)が凹条部41の深さD2を1.0〜1.5mm超える範囲内で設定されるときに、最大ひずみが一層効果的に低減されることがわかる。 From these graphs as well, the stroke amount S1 in preforming (that is, the depth D1 of the preliminary groove portion 32) was set to be larger than the depth D2 (=3.0 mm) of the groove portion 41 after main molding. It can sometimes be seen that the maximum strain is reduced. In addition, when the stroke amount S1 (the depth D1 of the preliminary groove portion 32) is set within the range of 3.5 to 4.5 mm in any of the inclination angle β=80°, 70°, and 60° That is, it can be seen that the maximum strain is effectively reduced when the depth D2 of the groove 41 is set within the range of 0.5 to 1.5 mm. Furthermore, when the stroke amount S1 (depth D1) is set within the range that exceeds the depth D2 of the recessed portion 41 by 1.0 to 1.5 mm, the maximum strain can be more effectively reduced. Recognize.

図26に示すグラフは、本成形後の傾斜角度β=70°、凹条部41の深さD2=2.0mmの場合に、予備成形でのストローク量S1の変化に応じて、本成形後の最大ひずみ値がどのように変化するかを、まとめたグラフである。表2に示すように、傾斜角度β=70°、深さD2=2.0mmの場合、本成形のみを行う比較例では最大ひずみが38.4%である。 The graph shown in FIG. 26 shows that after the main forming, when the inclination angle β after the main forming is 70° and the depth D2 of the concave portion 41 is 2.0 mm, the stroke amount S1 in the preforming is changed. 4 is a graph summarizing how the maximum strain value of changes. As shown in Table 2, when the inclination angle β is 70° and the depth D2 is 2.0 mm, the maximum strain is 38.4% in the comparative example in which only the main forming is performed.

このグラフから、D2=2.0mmの場合でも、ストローク量S1(予備凹条部32の深さD1)が凹条部41の深さD2を0.5〜1.5mmだけ超える範囲内(つまり2.5〜3.5mmの範囲内)で設定されるときに、最大ひずみが効果的に低減されることがわかる。さらには、ストローク量S1(予備凹条部32の深さD1)が凹条部41の深さD2を1.0〜1.5mmだけ超える範囲内(つまり3.0〜3.5mmの範囲内)で設定されるときに、最大ひずみが一層効果的に低減されることがわかる。 From this graph, even when D2=2.0 mm, the stroke amount S1 (depth D1 of the preliminary groove portion 32) exceeds the depth D2 of the groove portion 41 by 0.5 to 1.5 mm (that is, It can be seen that the maximum strain is effectively reduced when set within the range of 2.5 to 3.5 mm). Furthermore, the stroke amount S1 (the depth D1 of the preliminary groove portion 32) exceeds the depth D2 of the groove portion 41 by 1.0 to 1.5 mm (that is, within the range of 3.0 to 3.5 mm). It can be seen that the maximum strain is more effectively reduced when set with (1).

図27に示すグラフは、本成形後の傾斜角度β=60°、凹条部41の深さD2=4.0mmの場合に、予備成形でのストローク量S1の変化に応じて、本成形後の最大ひずみがどのように変化するかを、まとめたグラフである。表2に示すように、傾斜角度β=60°、深さD2=4.0mmの場合、本成形のみを行う比較例では最大ひずみが66.1%である。 The graph shown in FIG. 27 shows that when the inclination angle β after main forming is 60° and the depth D2 of the groove 41 is 4.0 mm, after the main forming according to the change in the stroke amount S1 in the preforming. 6 is a graph summarizing how the maximum strain of changes. As shown in Table 2, when the inclination angle β=60° and the depth D2=4.0 mm, the maximum strain is 66.1% in the comparative example in which only the main forming is performed.

このグラフから、D2=4.0mmの場合でも、ストローク量S1(予備凹条部32の深さD1)が凹条部41の深さD2を0.5〜1.0mmだけ超える範囲内(つまり4.5〜5.0mmの範囲内)で設定されるときに、最大ひずみが効果的に低減されることがわかる。なお、ストローク量S1が5mmを超えたときに最大ひずみが大幅に上昇するのは、成形的な限界による。 From this graph, even when D2=4.0 mm, the stroke amount S1 (depth D1 of the preliminary groove portion 32) exceeds the depth D2 of the groove portion 41 by 0.5 to 1.0 mm (that is, It can be seen that the maximum strain is effectively reduced when set within the range of 4.5 to 5.0 mm). The maximum strain greatly increases when the stroke amount S1 exceeds 5 mm due to a molding limit.

これらをまとめると、凹条部41の深さD2が2.0〜4.0mmの範囲内であるとき、ストローク量S1(予備凹条部32の深さD1)が凹条部41の深さD2を0.5〜1.5mm(さらに好ましくは1.0〜1.5mm)だけ超え、かつ5mm以下の範囲内で設定されるときに、本成形後の最大ひずみが効果的に低減される。 In summary, when the depth D2 of the groove 41 is in the range of 2.0 to 4.0 mm, the stroke amount S1 (depth D1 of the preliminary groove 32) is the depth of the groove 41. When D2 is set to a range of 0.5 to 1.5 mm (more preferably 1.0 to 1.5 mm) and 5 mm or less, the maximum strain after the main forming is effectively reduced. ..

また、表1、表2に示す結果から、予備成形後の傾斜角度αが30〜50°(さらに好ましくは34.2〜41.4°)の範囲内に設定される場合に、大きな軽減率が得られることがわかる。 Further, from the results shown in Table 1 and Table 2, when the inclination angle α after preforming is set within the range of 30 to 50° (more preferably 34.2 to 41.4°), a large reduction rate is obtained. It can be seen that

同様の結果は、実験においても確認される。 Similar results are confirmed in the experiment.

以上、添付図面に基づいて説明したように、第一実施形態の製造方法は、予備成形工程と本成形工程を備える。 As described above with reference to the accompanying drawings, the manufacturing method of the first embodiment includes a preforming step and a main forming step.

予備成形工程は、一対の第一ロール1間に鋼板9を通過させ、鋼板9の各所に圧力を加えて伸ばしながら、鋼板9に、複数の予備凹条部32が一方向900に距離をあけて位置する所定の波型形状F1を与える工程である。 In the preforming step, the steel plate 9 is passed between the pair of first rolls 1 and a plurality of pre-recessed ridges 32 are formed in the steel plate 9 in one direction 900 while stretching the steel plate 9 by applying pressure to various parts of the steel plate 9. Is a step of providing a predetermined corrugated shape F1 located at the position.

本成形工程は、一対の第二ロール2間に、波型形状F1が与えられた鋼板9を通過させ、鋼板9の各所に圧力を加えて曲げることで、鋼板9に、断面コ字状である複数の凹条部41が一方向900に距離をあけて位置する所定のエンボス形状F2を与える工程である。 In the main forming step, the steel plate 9 provided with the corrugated shape F1 is passed between the pair of second rolls 2, and pressure is applied to each part of the steel plate 9 to bend the steel plate 9 in a U-shaped cross section. This is a step of giving a predetermined embossed shape F2 in which a plurality of recessed portions 41 are spaced apart in one direction 900.

予備凹条部32と凹条部41は一対一に対応し、予備凹条部32の深さD1は、これに対応する凹条部41の深さD2と同一である。 The preliminary groove portions 32 and the groove portions 41 have a one-to-one correspondence, and the depth D1 of the preliminary groove portions 32 is the same as the corresponding depth D2 of the groove portions 41.

したがって、この製造方法によれば、平坦な鋼板9に対して予備成形工程と本工程を順に実施し、予備成形工程において鋼板9を万遍なく伸ばして波型形状F1にしたうえで、これを同じ深さのエンボス形状F2に曲げるので、成形の際に鋼板9の特定部位にひずみが集中することを抑えながら、鋼板9をシャープな外観のエンボス状F2に成形することが可能となる。 Therefore, according to this manufacturing method, the flat steel plate 9 is sequentially subjected to the preforming step and the main step, and in the preforming step, the steel sheet 9 is evenly stretched to form the corrugated shape F1 and then Since it is bent into the embossed shape F2 having the same depth, it becomes possible to form the steel sheet 9 into the embossed shape F2 having a sharp appearance while suppressing the concentration of strain on a specific portion of the steel sheet 9 during forming.

また、第二実施形態の製造方法は、予備成形工程と本成形工程を備える。 Moreover, the manufacturing method of the second embodiment includes a preforming step and a main forming step.

予備成形工程は、一対の第一ロール1間に鋼板9を通過させ、鋼板9の各所に圧力を加えて伸ばしながら、鋼板9に、複数の予備凹条部が一方向900に距離をあけて位置する所定の波型形状F1を与える工程である。 In the preforming step, the steel sheet 9 is passed between the pair of first rolls 1 and a plurality of pre-recessed ridges are formed in the steel sheet 9 in one direction 900 while stretching the steel sheet 9 by applying pressure to various portions of the steel sheet 9. It is a step of providing a predetermined corrugated shape F1 to be positioned.

本成形工程は、一対の第二ロール2間に、波型形状F1が与えられた鋼板9を通過させ、鋼板9の各所に圧力を加えて曲げることで、鋼板9に、断面コ字状である複数の凹条部41が一方向900に距離をあけて位置する所定のエンボス形状F2を与える工程である。 In the main forming step, the steel plate 9 provided with the corrugated shape F1 is passed between the pair of second rolls 2, and pressure is applied to each part of the steel plate 9 to bend the steel plate 9 in a U-shaped cross section. This is a step of giving a predetermined embossed shape F2 in which a plurality of recessed portions 41 are spaced apart in one direction 900.

予備凹条部32と凹条部41は一対一に対応し、予備凹条部32の深さD1は、これに対応する凹条部41の深さD2よりも大きい。 The preliminary groove portions 32 and the groove portions 41 are in one-to-one correspondence, and the depth D1 of the preliminary groove portions 32 is larger than the corresponding depth D2 of the groove portions 41.

したがって、この製造方法によれば、平坦な鋼板9に対して予備成形工程と本工程を順に実施し、予備成形工程において鋼板9を万遍なく伸ばして波型形状F1にしたうえで、これよりも凹凸の浅いエンボス形状F2に曲げるので、成形の際に鋼板9の特定部位にひずみが集中することを抑えながら、鋼板9をシャープな外観のエンボス状F2に成形することが可能となる。 Therefore, according to this manufacturing method, the preforming step and the main step are sequentially performed on the flat steel sheet 9, and the steel sheet 9 is evenly stretched in the preforming step to form the corrugated shape F1. Also, since it is bent into the embossed shape F2 having a shallow unevenness, it becomes possible to form the steel sheet 9 into the embossed shape F2 having a sharp appearance while suppressing the concentration of strain on a specific portion of the steel sheet 9 during forming.

第二実施形態の製造方法において、凹条部41の深さD2は、2mm〜4mmであり、予備凹条部32の深さD1は、これに対応する凹条部41の深さD2よりも0.5mm〜1.5mmだけ大きく、かつ5mm以下であることが好ましい。 In the manufacturing method of the second embodiment, the depth D2 of the groove 41 is 2 mm to 4 mm, and the depth D1 of the preliminary groove 32 is larger than the depth D2 of the corresponding groove 41. It is preferably larger by 0.5 mm to 1.5 mm and smaller than 5 mm.

このように深さD1,D2を設定することで、本成形後の鋼板9の特定の部分にひずみが集中することが、効果的に抑えられる。 By setting the depths D1 and D2 in this manner, it is possible to effectively suppress the concentration of strain on a specific portion of the steel sheet 9 after the main forming.

また、第一実施形態の製造装置は、鋼板9を予備成形して、鋼板9に所定の波型形状F1を与える一対の第一ロール1と、予備成形後の鋼板9を本成形して、鋼板9に所定のエンボス形状F2を与える一対の第二ロール2とを備える。 Further, the manufacturing apparatus of the first embodiment preforms the steel plate 9 and performs main forming of the pair of first rolls 1 that gives the steel plate 9 a predetermined corrugated shape F1, and the preformed steel plate 9, The steel plate 9 is provided with a pair of second rolls 2 that give a predetermined embossed shape F2.

一対の第一ロール1は、鋼板9の各所に圧力を加えて伸ばすことで、鋼板9に、複数の予備凹条部32が一方向900に距離をあけて位置する波型形状F1を与える金型構造11を有する。 The pair of first rolls 1 apply pressure to various portions of the steel plate 9 to extend the steel plate 9, thereby providing the steel plate 9 with a corrugated shape F1 in which the plurality of preliminary recessed portions 32 are positioned at a distance in one direction 900. It has a mold structure 11.

一対の第二ロール2は、予備成形後の鋼板9に、断面コ字状である複数の凹条部41が一方向900に距離をあけて位置するエンボス形状F2を与える金型構造21を有する。 The pair of second rolls 2 has a die structure 21 that gives the pre-formed steel plate 9 an embossed shape F2 in which a plurality of concave streak portions 41 having a U-shaped cross section are located at a distance in one direction 900. ..

予備凹条部32と凹条部41は一対一に対応し、予備凹条部32の深さD1は、これに対応する凹条部41の深さD2と同一である。 The preliminary groove portions 32 and the groove portions 41 have a one-to-one correspondence, and the depth D1 of the preliminary groove portions 32 is the same as the corresponding depth D2 of the groove portions 41.

したがって、この製造装置によれば、平坦な鋼板9に対して予備成形工程と本工程を順に実施し、予備成形工程において鋼板9を万遍なく伸ばして波型形状F1にしたうえで、これを同じ深さのエンボス形状F2に曲げるので、成形の際に鋼板9の特定部位にひずみが集中することを抑えながら、鋼板9をシャープな外観のエンボス状F2に成形することが可能となる。 Therefore, according to this manufacturing apparatus, the preforming step and the main step are sequentially performed on the flat steel sheet 9, and the steel sheet 9 is evenly stretched in the preforming step to form the corrugated shape F1. Since it is bent into the embossed shape F2 having the same depth, it becomes possible to form the steel sheet 9 into the embossed shape F2 having a sharp appearance while suppressing the concentration of strain on a specific portion of the steel sheet 9 during forming.

また、第二実施形態の製造装置は、鋼板9を予備成形して、鋼板9に所定の波型形状F1を与える一対の第一ロール1と、予備成形後の鋼板9を本成形して、鋼板9に所定のエンボス形状F2を与える一対の第二ロール2とを備える。 Further, the manufacturing apparatus of the second embodiment preforms the steel plate 9, and then main-forms the pair of first rolls 1 that give the steel plate 9 a predetermined corrugated shape F1, and the preformed steel plate 9, The steel plate 9 is provided with a pair of second rolls 2 that give a predetermined embossed shape F2.

一対の第一ロール1は、鋼板9の各所に圧力を加えて伸ばすことで、鋼板9に、複数の予備凹条部32が一方向900に距離をあけて位置する波型形状F1を与える金型構造11を有する。 The pair of first rolls 1 apply pressure to various portions of the steel plate 9 to extend the steel plate 9, thereby providing the steel plate 9 with a corrugated shape F1 in which the plurality of preliminary recessed portions 32 are positioned at a distance in one direction 900. It has a mold structure 11.

一対の第二ロール2は、予備成形後の鋼板9に、断面コ字状である複数の凹条部41が一方向900に距離をあけて位置するエンボス形状F2を与える金型構造21を有する。 The pair of second rolls 2 has a die structure 21 that gives the pre-formed steel plate 9 an embossed shape F2 in which a plurality of concave streak portions 41 having a U-shaped cross section are located at a distance in one direction 900. ..

予備凹条部32と凹条部41は一対一に対応し、予備凹条部32の深さD1は、これに対応する凹条部41の深さD2よりも大きい。 The preliminary groove portions 32 and the groove portions 41 are in one-to-one correspondence, and the depth D1 of the preliminary groove portions 32 is larger than the corresponding depth D2 of the groove portions 41.

したがって、この製造装置によれば、平坦な鋼板9に対して予備成形工程と本工程を順に実施し、予備成形工程において鋼板9を万遍なく伸ばして波型形状F1にしたうえで、これより凹凸の浅いエンボス形状F2に曲げるので、成形の際に鋼板9の特定部位にひずみが集中することを抑えながら、鋼板9をシャープな外観のエンボス状F2に成形することが可能となる。 Therefore, according to this manufacturing apparatus, the preforming step and the main step are sequentially performed on the flat steel sheet 9, and the steel sheet 9 is evenly stretched into the corrugated shape F1 in the preforming step. Since it is bent into the embossed shape F2 having a shallow unevenness, it becomes possible to form the steel sheet 9 into the embossed shape F2 having a sharp appearance while suppressing the concentration of strain on a specific portion of the steel sheet 9 during forming.

以上、エンボス鋼板の製造方法及び製造装置について説明したが、エンボス鋼板の製造方法及び製造装置は前記した実施形態に限定されることはなく、適宜の設計変更や公知技術の適用を行ったものも、本発明の技術思想に含まれる。 Although the manufacturing method and the manufacturing apparatus for the embossed steel sheet have been described above, the manufacturing method and the manufacturing apparatus for the embossed steel sheet are not limited to the above-described embodiments, and those that have been subjected to appropriate design changes and application of known technology are also available. , Included in the technical idea of the present invention.

1 第一ロール
11 金型構造
2 第二ロール
21 金型構造
31 予備凸条部
41 凹条部
9 鋼板
900 一方向
D1 深さ
D2 深さ
F1 波型形状
F2 エンボス形状
DESCRIPTION OF SYMBOLS 1 1st roll 11 Mold structure 2 2nd roll 21 Mold structure 31 Preliminary convex ridge part 41 Recessed ridge part 9 Steel plate 900 One direction D1 depth D2 depth F1 corrugated shape F2 embossed shape

Claims (5)

一対の第一ロール間に鋼板を通過させ、前記鋼板の各所に圧力を加えて伸ばしながら、前記鋼板に、複数の予備凹条部と複数の予備凸条部とが交互に位置する所定の波型形状を与える予備成形工程と、
一対の第二ロール間に、前記波型形状が与えられた前記鋼板を通過させ、前記鋼板の各所に圧力を加えて曲げることで、前記鋼板に、断面コ字状である複数の凹条部が一方向に距離をあけて位置する所定のエンボス形状を与える本成形工程と、を備え、
前記予備凹条部と前記凹条部は一対一に対応し、前記予備凹条部の深さは、これに対応する前記凹条部の深さと同一であり、
前記本成形工程では、前記波型形状を有する前記鋼板の、前記予備凹条部の肩部よりも前記予備凸条部の側に寄った部分が、前記エンボス形状の前記凹条部の肩部となるように、圧延加工が施されることを特徴とする、
エンボス形状を有する鋼板の製造方法。
A predetermined wave in which a plurality of preliminary concave streak portions and a plurality of preliminary convex streak portions are alternately positioned on the steel plate while passing a steel plate between a pair of first rolls and applying pressure to various portions of the steel plate to extend the steel plate. A preforming step to give a mold shape,
Between the pair of second rolls, the corrugated shape is passed through the steel plate, and pressure is applied to each part of the steel plate to bend the steel plate, and thus the steel plate is provided with a plurality of concave stripes having a U-shaped cross section. but and a main forming step of providing a predetermined emboss shape is located at a distance to one direction,
Said concave portion and the preliminary concave groove portion is a one-to-one correspondence, the depth of the preliminary concave portion, Ri depth and same der of the concave portion corresponding thereto,
In the main forming step, a portion of the steel plate having the corrugated shape, which is closer to the preliminary ridge portion side than the shoulder portion of the preliminary concave portion, is a shoulder portion of the embossed concave portion. It is characterized in that a rolling process is performed so that
A method for manufacturing a steel sheet having an embossed shape.
一対の第一ロール間に鋼板を通過させ、前記鋼板の各所に圧力を加えて伸ばしながら、前記鋼板に、複数の予備凹条部と複数の予備凸条部とが交互に位置する所定の波型形状を与える予備成形工程と、
一対の第二ロール間に、前記波型形状が与えられた前記鋼板を通過させ、前記鋼板の各所に圧力を加えて曲げることで、前記鋼板に、断面コ字状である複数の凹条部が一方向に距離をあけて位置する所定のエンボス形状を与える本成形工程と、を備え、
前記予備凹条部と前記凹条部は一対一に対応し、前記予備凹条部の深さは、これに対応する前記凹条部の深さよりも大きく、
前記本成形工程では、前記波型形状を有する前記鋼板の、前記予備凹条部の肩部よりも前記予備凸条部の側に寄った部分が、前記エンボス形状の前記凹条部の肩部となるように、圧延加工が施されることを特徴とする、
エンボス形状を有する鋼板の製造方法。
A predetermined wave in which a plurality of preliminary concave streak portions and a plurality of preliminary convex streak portions are alternately positioned on the steel plate while passing a steel plate between a pair of first rolls and applying pressure to various portions of the steel plate to extend the steel plate. A preforming step to give a mold shape,
Between the pair of second rolls, the corrugated shape is passed through the steel plate, and pressure is applied to each part of the steel plate to bend the steel plate, and thus the steel plate is provided with a plurality of concave stripes having a U-shaped cross section. but and a main forming step of providing a predetermined emboss shape is located at a distance to one direction,
Said concave portion and the preliminary concave groove portion is a one-to-one correspondence, the depth of the preliminary concave groove portion is much larger than the depth of the concave portion corresponding thereto,
In the main forming step, a portion of the steel plate having the corrugated shape, which is closer to the preliminary ridge portion side than the shoulder portion of the preliminary concave portion, is a shoulder portion of the embossed concave portion. It is characterized in that a rolling process is performed so that
A method for manufacturing a steel sheet having an embossed shape.
前記凹条部の深さは、2mm〜4mmであり、
前記予備凹条部の深さは、これに対応する前記凹条部の深さよりも0.5mm〜1.5mmだけ大きく、かつ5mm以下であることを特徴とする、
請求項2に記載のエンボス形状を有する鋼板の製造方法。
The depth of the groove is 2 mm to 4 mm,
The depth of the preliminary groove portion is larger than the depth of the corresponding groove portion by 0.5 mm to 1.5 mm and is 5 mm or less.
A method for manufacturing a steel sheet having the embossed shape according to claim 2.
鋼板を予備成形して、前記鋼板に所定の波型形状を与える一対の第一ロールと、
予備成形後の前記鋼板を本成形して、前記鋼板に所定のエンボス形状を与える一対の第二ロールと、を備え、
前記一対の第一ロールは、
前記鋼板の各所に圧力を加えて伸ばすことで、前記鋼板に、複数の予備凹条部と複数の予備凸条部とが交互に位置する前記波型形状を与える金型構造を有し、
前記一対の第二ロールは、
予備成形後の前記鋼板に、断面コ字状である複数の凹条部が一方向に距離をあけて位置する前記エンボス形状を与える金型構造を有し、
前記予備凹条部と前記凹条部は一対一に対応し、前記予備凹条部の深さは、これに対応する前記凹条部の深さと同一であり、
前記一対の第二ロールの前記金型構造は、前記波型形状を有する前記鋼板の、前記予備凹条部の肩部よりも前記予備凸条部の側に寄った部分を、前記エンボス形状の前記凹条部の肩部とするように構成されていることを特徴とする、
エンボス形状を有する鋼板の製造装置。
Pre-forming the steel sheet, a pair of first rolls to give the steel sheet a predetermined corrugated shape,
Mainly forming the steel sheet after preforming, and a pair of second rolls to give a predetermined embossed shape to the steel sheet, and,
The pair of first rolls,
By applying pressure to various portions of the steel sheet and stretching it, the steel sheet has a mold structure that gives the corrugated shape in which a plurality of preliminary concave streak portions and a plurality of preliminary convex streak portions are alternately positioned,
The pair of second rolls,
The steel sheet after preforming, comprises a mold structure providing the emboss shape in which a plurality of concave portions is a U-shaped cross section is positioned at a distance to one direction,
Said concave portion and the preliminary concave groove portion is a one-to-one correspondence, the depth of the preliminary concave portion, Ri depth and same der of the concave portion corresponding thereto,
The mold structure of the pair of second rolls, a portion of the steel plate having the corrugated shape, which is closer to the side of the preliminary ridge than the shoulder of the preliminary ridge, the embossed shape. It is characterized in that it is configured to be a shoulder of the recessed portion ,
Equipment for manufacturing steel plates with embossed shape.
鋼板を予備成形して、前記鋼板に所定の波型形状を与える一対の第一ロールと、
予備成形後の前記鋼板を本成形して、前記鋼板に所定のエンボス形状を与える一対の第二ロールと、を備え、
前記一対の第一ロールは、
前記鋼板の各所に圧力を加えて伸ばすことで、前記鋼板に、複数の予備凹条部と複数の予備凸条部とが交互に位置する前記波型形状を与える金型構造を有し、
前記一対の第二ロールは、
予備成形後の前記鋼板に、断面コ字状である複数の凹条部が一方向に距離をあけて位置する前記エンボス形状を与える金型構造を有し、
前記予備凹条部と前記凹条部は一対一に対応し、前記予備凹条部の深さは、これに対応する前記凹条部の深さよりも大きく、
前記一対の第二ロールの前記金型構造は、前記波型形状を有する前記鋼板の、前記予備凹条部の肩部よりも前記予備凸条部の側に寄った部分を、前記エンボス形状の前記凹条部の肩部とするように構成されていることを特徴とする、
エンボス形状を有する鋼板の製造装置。
Pre-forming the steel sheet, a pair of first rolls to give the steel sheet a predetermined corrugated shape,
Mainly forming the steel sheet after preforming, and a pair of second rolls to give a predetermined embossed shape to the steel sheet, and,
The pair of first rolls,
By applying pressure to various portions of the steel sheet and stretching it, the steel sheet has a mold structure that gives the corrugated shape in which a plurality of preliminary concave streak portions and a plurality of preliminary convex streak portions are alternately positioned,
The pair of second rolls,
The steel sheet after preforming, comprises a mold structure providing the emboss shape in which a plurality of concave portions is a U-shaped cross section is positioned at a distance to one direction,
Said concave portion and the preliminary concave groove portion is a one-to-one correspondence, the depth of the preliminary concave groove portion is much larger than the depth of the concave portion corresponding thereto,
The mold structure of the pair of second rolls, a portion of the steel plate having the corrugated shape, closer to the side of the preliminary ridge than the shoulder of the preliminary ridge, the embossed shape. Characterized in that it is configured to be a shoulder portion of the recessed line portion ,
Equipment for manufacturing steel plates with embossed shape.
JP2016091590A 2015-11-24 2016-04-28 Manufacturing method and manufacturing apparatus for steel plate having embossed shape Active JP6741268B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015228802 2015-11-24
JP2015228802 2015-11-24

Publications (2)

Publication Number Publication Date
JP2017100188A JP2017100188A (en) 2017-06-08
JP6741268B2 true JP6741268B2 (en) 2020-08-19

Family

ID=59017778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016091590A Active JP6741268B2 (en) 2015-11-24 2016-04-28 Manufacturing method and manufacturing apparatus for steel plate having embossed shape

Country Status (1)

Country Link
JP (1) JP6741268B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110125216B (en) * 2019-04-23 2023-09-29 太原科技大学 Longitudinal roll forming equipment and method for fuel cell metal polar plate runner

Also Published As

Publication number Publication date
JP2017100188A (en) 2017-06-08

Similar Documents

Publication Publication Date Title
US20210316352A1 (en) Method for manufacturing pressed component
US11712729B2 (en) Production method for pressed components, press forming device, and metal sheet for press forming
RU2019101905A (en) METHOD AND DEVICE FOR MANUFACTURING STAMPED COMPONENT
JP6128226B2 (en) PRESS-MOLDED PRODUCT, PRESS-MOLDED PRODUCTION METHOD, AND PRESS-MOLDED PRODUCTION DEVICE
JP2008030090A (en) Method of straightening bend of shape steel and straightening apparatus for the shape steel
KR101579028B1 (en) Method for manufacturing closed-structure part and apparatus for the same
CA2772925C (en) Curved parts and method for manufacturing the same
US20140000336A1 (en) Method of cold forming a piece of sheet metal by bending or press moulding
US11628486B2 (en) Production method for pressed components, press forming device, and metal sheet for press forming
JP6015784B2 (en) Manufacturing method of stretch flange molded parts
JP6551637B1 (en) Press part manufacturing method, press molding apparatus, and metal plate for press molding
JP6741268B2 (en) Manufacturing method and manufacturing apparatus for steel plate having embossed shape
CA2880661C (en) Method of producing steel pipe
JP2018164919A5 (en)
JP2017006943A (en) Press molding product manufacturing method
KR101834850B1 (en) Press forming method, and method for manufacturing press-formed part
WO2020084820A1 (en) Embossed metal plate and method for producing same
JP6319382B2 (en) Manufacturing method of stretch flange molded parts
JP5935707B2 (en) Rolling method and rolling equipment for unequal side angle steel
JP2014138942A (en) Mold for production of metal part with three-dimensional structural edge
JP7103330B2 (en) Press molding method
JP2012250261A (en) Method for production of door-reinforcing member, and door-reinforcing member
JP2015044204A (en) Press forming method and press-formed component formed by the press forming method
JP6330766B2 (en) Press forming method
JP2020062664A (en) Method for manufacturing press component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200717

R150 Certificate of patent or registration of utility model

Ref document number: 6741268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250