JP2017100188A - Manufacturing method and manufacturing device for manufacturing steel plate having embossment shape - Google Patents

Manufacturing method and manufacturing device for manufacturing steel plate having embossment shape Download PDF

Info

Publication number
JP2017100188A
JP2017100188A JP2016091590A JP2016091590A JP2017100188A JP 2017100188 A JP2017100188 A JP 2017100188A JP 2016091590 A JP2016091590 A JP 2016091590A JP 2016091590 A JP2016091590 A JP 2016091590A JP 2017100188 A JP2017100188 A JP 2017100188A
Authority
JP
Japan
Prior art keywords
steel plate
shape
depth
rolls
preliminary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016091590A
Other languages
Japanese (ja)
Other versions
JP6741268B2 (en
Inventor
野村 広正
Hiromasa Nomura
広正 野村
秀明 那須
Hideaki Nasu
秀明 那須
裕介 小野寺
Yusuke Onodera
裕介 小野寺
吉田 裕一
Yuichi Yoshida
裕一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Coated Sheet Corp
Nippon Steel and Sumikin Technology Co Ltd
Original Assignee
Nippon Steel and Sumikin Coated Sheet Corp
Nippon Steel and Sumikin Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Coated Sheet Corp, Nippon Steel and Sumikin Technology Co Ltd filed Critical Nippon Steel and Sumikin Coated Sheet Corp
Publication of JP2017100188A publication Critical patent/JP2017100188A/en
Application granted granted Critical
Publication of JP6741268B2 publication Critical patent/JP6741268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method and a manufacturing device which can mold a steel plate having an embossment shape of a sharp appearance while suppressing breakage thereof.SOLUTION: A steel plate 9 is preliminarily molded into a wavy shape in such a manner that the steel plate 9 is passed between a pair of first rolls 1, and a thickness direction pressure is applied onto each portion of the steel plate 9. Next, the steel plate 9 after preliminary molding is passed between a pair of second rolls 2, and the steel plate 9 having a wavy shape is substantially molded to a prescribed embossment shape. The embossment shape is so called a rectangular wavy shape in which plural concave strip parts having a U-shaped cross section are arranged with an interval therebetween.SELECTED DRAWING: Figure 1

Description

本発明は、エンボス形状を有する鋼板の製造方法及び製造装置に関し、詳しくは、所定のエンボス形状を有する鋼板を、予備成形と本成形を経ることで製造する方法及び装置に関する。   The present invention relates to a method and an apparatus for manufacturing a steel plate having an embossed shape, and more particularly, to a method and an apparatus for manufacturing a steel plate having a predetermined embossed shape by performing preforming and main forming.

特許文献1には、金属帯にエンボスを成形する技術が記載されている。   Patent Document 1 describes a technique for forming an emboss on a metal strip.

この技術では、エンボスロールが備える一対のロール間に金属帯を通過させることで、金属帯にエンボスを成形する。   In this technique, an emboss is formed in a metal strip by passing the metal strip between a pair of rolls provided in the emboss roll.

特開2002−239629号公報JP 2002-239629 A

特許文献1に記載された従来の技術では、シャープな外観のエンボスを得ることが困難である。というのも、従来の技術においては、エンボスの穴を浅い傾斜で成形しなければ、金属帯の一部にひずみが集中しやすく、割れ等の破損の原因となる。   With the conventional technique described in Patent Document 1, it is difficult to obtain an emboss having a sharp appearance. This is because, in the conventional technology, unless the embossed holes are formed with a shallow slope, the strain tends to concentrate on a part of the metal band, causing damage such as cracks.

本発明は、エンボス形状を有する鋼板を、シャープな外観で成形することができ、且つ、成形の際に破損を生じることを抑えることのできる製造方法及び製造装置を提供することを、目的とする。   An object of the present invention is to provide a manufacturing method and a manufacturing apparatus capable of forming a steel plate having an embossed shape with a sharp appearance and suppressing the occurrence of breakage during forming. .

本発明に係る一態様のエンボス形状を有する鋼板の製造方法は、一対の第一ロール間に鋼板を通過させ、前記鋼板の各所に圧力を加えて伸ばしながら、前記鋼板に、複数の予備凹条部が一方向に距離をあけて位置する所定の波型形状を与える予備成形工程と、一対の第二ロール間に、前記波型形状が与えられた前記鋼板を通過させ、前記鋼板の各所に圧力を加えて曲げることで、前記鋼板に、断面コ字状である複数の凹条部が前記一方向に距離をあけて位置する所定のエンボス形状を与える本成形工程と、を備える。前記予備凹条部と前記凹条部は一対一に対応し、前記予備凹条部の深さは、これに対応する前記凹条部の深さと同一である。   A method for producing a steel plate having an embossed shape according to one aspect of the present invention includes passing a steel plate between a pair of first rolls, and applying a pressure to each part of the steel plate to stretch the steel plate, thereby providing a plurality of preliminary grooves. A preforming step for giving a predetermined corrugated shape with a portion positioned at a distance in one direction, and passing the steel plate with the corrugated shape between a pair of second rolls; A main forming step of providing a predetermined embossed shape in which a plurality of concave strip portions having a U-shaped cross section are positioned at a distance in the one direction by bending by applying pressure. The preliminary groove portion and the concave portion correspond to each other one-to-one, and the depth of the preliminary groove portion is the same as the depth of the corresponding concave portion.

本発明に係る別の態様のエンボス形状を有する鋼板の製造方法は、一対の第一ロール間に鋼板を通過させ、前記鋼板の各所に圧力を加えて伸ばしながら、前記鋼板に、複数の予備凹条部が一方向に距離をあけて位置する所定の波型形状を与える予備成形工程と、一対の第二ロール間に、前記波型形状が与えられた前記鋼板を通過させ、前記鋼板の各所に圧力を加えて曲げることで、前記鋼板に、断面コ字状である複数の凹条部が前記一方向に距離をあけて位置する所定のエンボス形状を与える本成形工程と、を備える。前記予備凹条部と前記凹条部は一対一に対応し、前記予備凹条部の深さは、これに対応する前記凹条部の深さよりも大きい。   According to another aspect of the present invention, there is provided a method for manufacturing a steel plate having an embossed shape, wherein a plurality of preliminary recesses are formed on the steel plate while passing the steel plate between a pair of first rolls and applying pressure to various portions of the steel plate. A preforming step for providing a predetermined corrugated shape in which strips are located at a distance in one direction, and passing the steel plate provided with the corrugated shape between a pair of second rolls. And a main forming step in which a plurality of concave strips having a U-shaped cross section are given a predetermined embossed shape with a distance in the one direction by bending the steel sheet with pressure. The preliminary groove portion and the concave portion correspond one-to-one, and the depth of the preliminary groove portion is larger than the depth of the corresponding concave portion.

前記凹条部の深さは、2mm〜4mmであり、前記予備凹条部の深さは、これに対応する前記凹条部の深さよりも0.5mm〜1.5mmだけ大きく、かつ5mm以下であることが好ましい。   The depth of the concave ridge is 2 mm to 4 mm, and the depth of the preliminary concave ridge is larger by 0.5 mm to 1.5 mm than the corresponding depth of the concave ridge, and 5 mm or less. It is preferable that

本発明に係る一態様のエンボス形状を有する鋼板の製造装置は、鋼板を予備成形して、前記鋼板に所定の波型形状を与える一対の第一ロールと、予備成形後の前記鋼板を本成形して、前記鋼板に所定のエンボス形状を与える一対の第二ロールと、を備える。前記一対の第一ロールは、前記鋼板の各所に圧力を加えて伸ばすことで、前記鋼板に、複数の予備凹条部が一方向に距離をあけて位置する前記波型形状を与える金型構造を有する。前記一対の第二ロールは、予備成形後の前記鋼板に、断面コ字状である複数の凹条部が前記一方向に距離をあけて位置する前記エンボス形状を与える金型構造を有する。前記予備凹条部と前記凹条部は一対一に対応し、前記予備凹条部の深さは、これに対応する前記凹条部の深さと同一である。   An apparatus for manufacturing a steel sheet having an embossed shape according to one aspect of the present invention includes a pair of first rolls that preform a steel sheet and give the steel sheet a predetermined corrugated shape, and the steel sheet after the preforming is fully formed. And a pair of second rolls that give the steel plate a predetermined embossed shape. The pair of first rolls is a mold structure that gives the corrugated shape in which a plurality of preliminary concave portions are positioned at a distance in one direction on the steel sheet by extending the steel sheet by applying pressure to each part of the steel sheet. Have The pair of second rolls has a die structure that gives the embossed shape in which a plurality of concave strip portions having a U-shaped cross section are positioned at a distance in the one direction on the steel plate after the preforming. The preliminary groove portion and the concave portion correspond to each other one-to-one, and the depth of the preliminary groove portion is the same as the depth of the corresponding concave portion.

本発明に係る別の態様のエンボス形状を有する鋼板の製造装置は、鋼板を予備成形して、前記鋼板に所定の波型形状を与える一対の第一ロールと、予備成形後の前記鋼板を本成形して、前記鋼板に所定のエンボス形状を与える一対の第二ロールと、を備える。前記一対の第一ロールは、前記鋼板の各所に圧力を加えて伸ばすことで、前記鋼板に、複数の予備凹条部が一方向に距離をあけて位置する前記波型形状を与える金型構造を有する。前記一対の第二ロールは、予備成形後の前記鋼板に、断面コ字状である複数の凹条部が前記一方向に距離をあけて位置する前記エンボス形状を与える金型構造を有する。前記予備凹条部と前記凹条部は一対一に対応し、前記予備凹条部の深さは、これに対応する前記凹条部の深さよりも大きい。   An apparatus for producing a steel plate having an embossed shape according to another aspect of the present invention includes a pair of first rolls that preform a steel plate to give the steel plate a predetermined corrugated shape, and the steel plate after the preforming. A pair of second rolls that are shaped to give the steel plate a predetermined embossed shape. The pair of first rolls is a mold structure that gives the corrugated shape in which a plurality of preliminary concave portions are positioned at a distance in one direction on the steel sheet by extending the steel sheet by applying pressure to each part of the steel sheet. Have The pair of second rolls has a die structure that gives the embossed shape in which a plurality of concave strip portions having a U-shaped cross section are positioned at a distance in the one direction on the steel plate after the preforming. The preliminary groove portion and the concave portion correspond one-to-one, and the depth of the preliminary groove portion is larger than the depth of the corresponding concave portion.

本発明のエンボス形状を有する鋼板の製造方法は、シャープな外観のエンボス形状を成形することができ、且つ、成形の際に破損を生じることが抑えられるという効果を奏する。   The method for producing a steel plate having an embossed shape according to the present invention can form an embossed shape having a sharp appearance, and has an effect of suppressing breakage during forming.

本発明のエンボス形状を有する鋼板の製造装置は、シャープな外観のエンボス形状を成形することができ、且つ、成形の際に破損を生じることが抑えられるという効果を奏する。   The apparatus for producing a steel plate having an embossed shape according to the present invention can form an embossed shape having a sharp appearance, and has an effect of suppressing breakage during forming.

図1は、第一実施形態の製造装置を概略的に示す側面図である。FIG. 1 is a side view schematically showing the manufacturing apparatus of the first embodiment. 図2は、同上の製造装置が備える一対の第一ロールを概略的に示す正面図である。FIG. 2 is a front view schematically showing a pair of first rolls included in the manufacturing apparatus same as above. 図3は、図2のP部拡大図である。FIG. 3 is an enlarged view of a portion P in FIG. 図4は、同上の製造装置が備える一対の第二ロールを概略的に示す正面図である。FIG. 4 is a front view schematically showing a pair of second rolls included in the production apparatus. 図5は、図4のQ部拡大図である。FIG. 5 is an enlarged view of a portion Q in FIG. 図6は、波型形状とエンボス形状を重ねて示す説明図である。FIG. 6 is an explanatory diagram showing the corrugated shape and the embossed shape in an overlapping manner. 図7Aは、傾斜角度α=25°に設定された波型形状を示す説明図であり、図7Bは、図7Aの波型形状を経て成形されたエンボス形状を示す説明図である。FIG. 7A is an explanatory view showing a corrugated shape set at an inclination angle α = 25 °, and FIG. 7B is an explanatory view showing an embossed shape formed through the corrugated shape of FIG. 7A. 図8Aは、図7Aの波型形状で生じるひずみ分布を示す図であり、図8Bは、図7Bのエンボス形状で生じるひずみ分布を示す図である。8A is a diagram showing a strain distribution generated in the corrugated shape of FIG. 7A, and FIG. 8B is a diagram showing a strain distribution generated in the embossed shape of FIG. 7B. 図9Aは、傾斜角度α=38°に設定された波型形状を示す説明図であり、図9Bは、図9Aの波型形状を経て成形されたエンボス形状を示す説明図である。FIG. 9A is an explanatory view showing a corrugated shape set at an inclination angle α = 38 °, and FIG. 9B is an explanatory view showing an embossed shape formed through the corrugated shape of FIG. 9A. 図10Aは、図9Aの波型形状で生じるひずみ分布を示す図であり、図10Bは、図9Bのエンボス形状で生じるひずみ分布を示す図である。10A is a diagram illustrating a strain distribution generated in the corrugated shape of FIG. 9A, and FIG. 10B is a diagram illustrating a strain distribution generated in the embossed shape of FIG. 9B. 図11Aは、傾斜角度α=53°に設定された波型形状を示す説明図であり、図11Bは、図11Aの波型形状を経て成形されたエンボス形状を示す説明図である。FIG. 11A is an explanatory view showing a corrugated shape set at an inclination angle α = 53 °, and FIG. 11B is an explanatory view showing an embossed shape formed through the corrugated shape of FIG. 11A. 図12Aは、図11Aの波型形状で生じるひずみ分布を示す図であり、図12Bは、図11Bのエンボス形状で生じるひずみ分布を示す図である。12A is a diagram illustrating a strain distribution generated in the corrugated shape of FIG. 11A, and FIG. 12B is a diagram illustrating a strain distribution generated in the embossed shape of FIG. 11B. 図13は、一度のロール成形でエンボス形状に成形された鋼板を示す図である。FIG. 13 is a view showing a steel sheet formed into an embossed shape by a single roll forming. 図14は、図13の鋼板のひずみ分布を示す図である。FIG. 14 is a diagram showing a strain distribution of the steel plate of FIG. 図15は、第二実施形態の製造装置が備える予備成形機の要部を概略的に示す正面図である。FIG. 15: is a front view which shows roughly the principal part of the preforming machine with which the manufacturing apparatus of 2nd embodiment is provided. 図16は、同上の製造装置で予備成形を行う様子を概略的に示す正面図である。FIG. 16: is a front view which shows a mode that a preforming is performed with the manufacturing apparatus same as the above. 図17は、同上の製造装置が備える本成形機の要部を概略的に示す正面図である。FIG. 17: is a front view which shows roughly the principal part of this molding machine with which the manufacturing apparatus same as the above is provided. 図18は、同上の製造装置で本成形を行う様子を概略的に示す正面図である。FIG. 18 is a front view schematically showing how the main forming is performed by the manufacturing apparatus same as above. 図19は、同上の製造装置で行う予備成形の解析モデルを示す図である。FIG. 19 is a diagram showing an analysis model of preforming performed by the manufacturing apparatus same as above. 図20Aは、R1=R2=3.5mmの条件での予備成形後の鋼板に生じるひずみ分布を示す図であり、図20Bは、図20Aの鋼板をさらに本成形した後に生じるひずみ分布を示す図である。FIG. 20A is a diagram illustrating a strain distribution generated in a steel sheet after preforming under the condition of R1 = R2 = 3.5 mm, and FIG. 20B is a diagram illustrating a strain distribution generated after further forming the steel sheet in FIG. 20A. It is. 図21Aは、R1=R2=3.0mmの条件での予備成形後の鋼板に生じるひずみ分布を示す図であり、図21Bは、図21Aの鋼板をさらに本成形した後に生じるひずみ分布を示す図である。FIG. 21A is a diagram illustrating a strain distribution generated in a steel sheet after preforming under the condition of R1 = R2 = 3.0 mm, and FIG. 21B is a diagram illustrating a strain distribution generated after further forming the steel sheet in FIG. 21A. It is. 図22Aは、R1=R2=2.5mmの条件での予備成形後の鋼板に生じるひずみ分布を示す図であり、図22Bは、図22Aの鋼板をさらに本成形した後に生じるひずみ分布を示す図である。FIG. 22A is a diagram showing a strain distribution generated in a steel sheet after preforming under the condition of R1 = R2 = 2.5 mm, and FIG. 22B is a diagram showing a strain distribution generated after the steel sheet of FIG. 22A is further fully formed. It is. 図23Aは、R1=R2=1.5mmの条件での予備成形後の鋼板に生じるひずみ分布を示す図であり、図23Bは、図23Aの鋼板をさらに本成形した後に生じるひずみ分布を示す図である。FIG. 23A is a diagram showing a strain distribution generated in a steel sheet after preforming under the condition of R1 = R2 = 1.5 mm, and FIG. 23B is a diagram showing a strain distribution generated after the steel sheet in FIG. 23A is further fully formed. It is. 図24は、一度の成形で同様のエンボス形状に成形された鋼板のひずみ分布を示す図である。FIG. 24 is a diagram showing a strain distribution of a steel sheet formed into a similar embossed shape by a single forming. 図25Aは、β=80°、D2=3.0mmの条件でのストローク量と本成形後の最大ひずみの関係を示すグラフ図であり、図25Bは、β=70°、D2=3.0mmの条件でのストローク量と本成形後の最大ひずみの関係を示すグラフ図であり、図25Aは、β=60°、D2=3.0mmの条件でのストローク量と本成形後の最大ひずみの関係を示すグラフ図である。FIG. 25A is a graph showing the relationship between the stroke amount under the conditions of β = 80 ° and D2 = 3.0 mm and the maximum strain after the main forming, and FIG. 25B shows β = 70 ° and D2 = 3.0 mm. FIG. 25A is a graph showing the relationship between the stroke amount under the conditions and the maximum strain after the main molding, and FIG. 25A shows the stroke amount and the maximum strain after the main molding under the conditions of β = 60 ° and D2 = 3.0 mm. It is a graph which shows a relationship. 図26は、β=70°、D2=2.0mmの条件でのストローク量と本成形後の最大ひずみの関係を示すグラフ図である。FIG. 26 is a graph showing the relationship between the stroke amount and the maximum strain after the main molding under the conditions of β = 70 ° and D2 = 2.0 mm. 図27は、β=60°、D2=4.0mmの条件でのストローク量と本成形後の最大ひずみの関係を示すグラフ図である。FIG. 27 is a graph showing the relationship between the stroke amount and the maximum strain after the main forming under the conditions of β = 60 ° and D2 = 4.0 mm.

(第一実施形態)
図1には、第一実施形態のエンボス形状を有する鋼板の製造装置を示している。
(First embodiment)
In FIG. 1, the manufacturing apparatus of the steel plate which has the embossed shape of 1st embodiment is shown.

以下においては、エンボス形状を有する鋼板を「エンボス鋼板」と称し、これを製造する装置を単に「製造装置」、これを製造する方法を単に「製造方法」と称する。本実施形態のエンボス鋼板は、サイディング等の多様な用途に用いられる。   In the following, a steel plate having an embossed shape is referred to as an “embossed steel plate”, a device for manufacturing the steel plate is simply referred to as a “manufacturing device”, and a method for manufacturing the same is simply referred to as a “manufacturing method”. The embossed steel sheet of this embodiment is used for various uses such as siding.

本実施形態の製造装置は、帯状の鋼板9に対して予備成形と本成形を順に実施することで、鋼板9の破損を抑えながら、鋼板9をシャープなエンボス形状F2(図6の実線参照)に成形する装置である。   The manufacturing apparatus of the present embodiment sequentially performs the preforming and the main forming on the strip-shaped steel plate 9, thereby suppressing the breakage of the steel plate 9 and making the steel plate 9 a sharp emboss shape F2 (see the solid line in FIG. 6). It is an apparatus which molds into.

本実施形態の製造装置は、帯状の鋼板9を送り出すアンコイラ81と、アンコイラ81から送り出された鋼板9をガイドするサイドガイド82と、アンコイラ81から送り出された薄板状の鋼板9に対して予備成形を行う予備成形機83と、予備成形された鋼板9に対して本成形を行う本成形機84と、本成形された鋼板9をさらに送り出す引き出しロール85とを備える。   The manufacturing apparatus according to the present embodiment is preformed with respect to an uncoiler 81 for feeding the strip-shaped steel plate 9, a side guide 82 for guiding the steel plate 9 fed from the uncoiler 81, and a thin plate-like steel plate 9 fed from the uncoiler 81. A pre-forming machine 83 that performs the main forming process, a main forming machine 84 that performs the main forming on the pre-formed steel sheet 9, and a drawer roll 85 that further feeds the main formed steel sheet 9.

アンコイラ81、サイドガイド82、予備成形機83、本成形機84および引き出しロール85は、図中に白抜き矢印で示す送り方向に沿って、この順に配置される。アンコイラ81から送り出される鋼板9は、平坦な帯状の塗装鋼板からなる。本文中で用いる「平坦」の文言は、厳密に平坦な意味に限定されず、略平坦な場合も含む。   The uncoiler 81, the side guide 82, the preliminary molding machine 83, the main molding machine 84, and the drawer roll 85 are arranged in this order along the feeding direction indicated by the white arrow in the drawing. The steel plate 9 sent out from the uncoiler 81 is made of a flat strip-like coated steel plate. The term “flat” used in the present text is not limited to a strictly flat meaning, but includes a case where it is substantially flat.

予備成形機83は、上下一対の第一ロール1を備える。以下においては、一対の第一ロール1のうち、上側に位置する第一ロール1を「上側第一ロール」と称し、符号1aを付す。一対の第一ロール1のうち、下側に位置する第一ロール1を「下側第一ロール」と称し、符号1bを付す。   The preforming machine 83 includes a pair of upper and lower first rolls 1. Below, the 1st roll 1 located in an upper side among a pair of 1st rolls 1 is called an "upper 1st roll", and the code | symbol 1a is attached | subjected. Of the pair of first rolls 1, the first roll 1 positioned on the lower side is referred to as a “lower first roll” and is denoted by reference numeral 1 b.

上側第一ロール1aの最外層には、予備成形用の上側金型11aが設けられている。下側第一ロール1bの最外層には、予備成形用の下側金型11bが設けられている。   An upper mold 11a for preforming is provided on the outermost layer of the upper first roll 1a. A lower mold 11b for preforming is provided on the outermost layer of the lower first roll 1b.

予備成形用の上側金型11aと下側金型11bは共に、いわゆる正弦波のような緩やかな凹凸を連続的に有する金型であり(図3参照)、両者で鋼板9を上下方向(鋼板9の厚み方向)に圧延加工しながら送り出すことで、鋼板9が所定の波型形状F1(図6の鎖線参照)に至るまでロール成形される。つまり、上側金型11aと下側金型11bによって、鋼板9を波型形状F1に予備成形する金型構造11が構成されている。   Both the upper mold 11a and the lower mold 11b for preforming are molds having continuous gentle irregularities such as so-called sine waves (see FIG. 3), and the steel plate 9 is moved in the vertical direction (steel plate). The steel sheet 9 is roll-formed until it reaches a predetermined corrugated shape F1 (see the chain line in FIG. 6). That is, the upper die 11a and the lower die 11b constitute a die structure 11 for preforming the steel plate 9 into the corrugated shape F1.

本成形機84は、上下一対の第二ロール2を備える。一対の第二ロール2のうち、上側に位置する第二ロール2を「上側第二ロール」と称し、符号2aを付す。一対の第二ロール2のうち、下側に位置する第二ロール2を「下側第二ロール」と称し、符号2bを付す。   The main molding machine 84 includes a pair of upper and lower second rolls 2. Of the pair of second rolls 2, the second roll 2 positioned on the upper side is referred to as an “upper second roll” and is denoted by reference numeral 2 a. Of the pair of second rolls 2, the second roll 2 positioned on the lower side is referred to as a “lower second roll” and is denoted by reference numeral 2 b.

上側第二ロール2aの最外層には、本成形用の上側金型21aが設けられている。下側第二ロール2bの最外層には、同じく本成形用の下側金型21bが設けられている。   An upper mold 21a for main forming is provided on the outermost layer of the upper second roll 2a. Similarly, the lower mold 21b for main molding is provided on the outermost layer of the lower second roll 2b.

本成形用の上側金型21aと下側金型21bは共に、いわゆる矩形波のような直角的な凹凸を連続的に有する金型であり(図5参照)、予備成形後の鋼板9を両者で上下方向に圧延加工しながら送り出すことで、波型形状F1の鋼板9が、所定のエンボスF2に至るまでロール成形される。つまり、上側金型21aと下側金型21bによって、鋼板9を所定のエンボス形状F2(図6の実線参照)に本成形する金型構造21が構成されている。   Both the upper mold 21a and the lower mold 21b for main molding are molds having continuous right and left irregularities such as so-called rectangular waves (see FIG. 5). Then, the steel sheet 9 having the corrugated shape F1 is roll-formed until reaching a predetermined emboss F2. That is, the upper die 21a and the lower die 21b constitute a die structure 21 for main forming the steel plate 9 into a predetermined emboss shape F2 (see the solid line in FIG. 6).

エンボス形状F2に成形された鋼板9が、後の工程にて所定寸法に切断されることで、エンボス鋼板が得られる。得られたエンボス鋼板は、たとえば金属サイディングとして用いられる。或いは、得られたエンボス鋼板に対して、後の工程で芯材とシート材がこの順で積層され、これが所定寸法に切断されたものが、金属サイディングとして用いられることも有り得る。前記芯材は、たとえば発泡樹脂等を用いた断熱材であり、前記シート材は、たとえば金属パネルや裏紙である。   The embossed steel plate 9 is obtained by cutting the steel plate 9 formed into the embossed shape F2 into a predetermined dimension in a later step. The obtained embossed steel sheet is used, for example, as metal siding. Alternatively, a core material and a sheet material which are laminated in this order in a subsequent process on the obtained embossed steel sheet and cut into a predetermined dimension may be used as metal siding. The core material is a heat insulating material using, for example, a foamed resin, and the sheet material is, for example, a metal panel or a backing paper.

前者の場合、最終的に得られる金属サイディングは、エンボス形状F2に成形された塗装鋼板である。後者の場合、最終的に得られる金属サイディングは、エンボス形状F2に成形された塗装鋼板とシート材の間に芯材が挟み込まれたサンドイッチパネルである。   In the former case, the finally obtained metal siding is a coated steel sheet formed into an embossed shape F2. In the latter case, the finally obtained metal siding is a sandwich panel in which a core material is sandwiched between a coated steel sheet and a sheet material formed into an embossed shape F2.

次に、波型形状F1とエンボス形状F2について、さらに詳しく説明する。   Next, the corrugated shape F1 and the embossed shape F2 will be described in more detail.

図6には、波型形状F1とエンボス形状F2を重ねて示している。図中の鎖線が波型形状F1の鋼板9であり、図中の実線がエンボス形状F2の鋼板9である。   In FIG. 6, the corrugated shape F1 and the embossed shape F2 are shown in an overlapping manner. The chain line in the figure is the corrugated shape F1 steel plate 9, and the solid line in the figure is the embossed shape F2 steel plate 9.

図示のように、波型形状F1に成形された段階の鋼板9と、エンボス形状F2に成形された鋼板9とでは、凹凸の高さ(上下方向の高さ)が同一である。本文中で用いる「同一」の文言は、厳密な意味での同一に限定されず、略同一の場合も含む。   As shown in the drawing, the height of the unevenness (the height in the vertical direction) is the same in the steel plate 9 at the stage formed into the corrugated shape F1 and the steel plate 9 formed into the embossed shape F2. The term “same” used in the present text is not limited to the same in a strict sense, but includes a case where they are substantially the same.

本実施形態の波型形状F1は、平坦な鋼板9が上側金型11aと下側金型11bの間で上下方向に圧延加工され、伸びと曲げが加えられることで成形される形状であり、いわゆる正弦波のような緩やかな凹凸を連続的に有する。   The corrugated shape F1 of the present embodiment is a shape in which the flat steel plate 9 is rolled in the vertical direction between the upper die 11a and the lower die 11b, and is stretched and bent. It continuously has gentle irregularities such as so-called sine waves.

波型形状F1に成形された鋼板9は、所定方向(上方)に突出するように弧状に湾曲した予備凸条部31と、所定方向とは逆方向(下方)に突出するように弧状に湾曲した予備凹条部32とが、連結壁33を介して交互に形成された構造を有する。   The steel plate 9 formed into the corrugated shape F1 is curved in an arc shape so as to project in a direction opposite to the predetermined direction (downward) from the preliminary protruding portion 31 curved in an arc shape so as to protrude in a predetermined direction (upward). The preliminary recessed streak portions 32 have a structure in which they are alternately formed via the connecting walls 33.

連結壁33は、隣接する予備凸条部31と予備凹条部32を滑らかにつなぐ傾斜部分であり、鋼板9の厚み方向(上下方向)と直交する面(水平面)に対して、傾斜角度αだけ傾いて位置する。傾斜角度αは、たとえば45°である。   The connecting wall 33 is an inclined portion that smoothly connects the adjacent preliminary ridge portions 31 and the preliminary concave ridge portions 32, and is inclined with respect to a plane (horizontal plane) orthogonal to the thickness direction (vertical direction) of the steel plate 9. Only tilted and located. The inclination angle α is 45 °, for example.

本実施形態のエンボス形状F2は、波型形状F1の鋼板9が上側金型21aと下側金型21bの間で上下方向に圧延加工され、曲げを加えられることで成形される形状であり、いわゆる矩形波のようなシャープな凹凸を連続的に有する。   The embossed shape F2 of the present embodiment is a shape formed by rolling the steel plate 9 of the corrugated shape F1 in the vertical direction between the upper die 21a and the lower die 21b and applying bending. It has sharp irregularities like a so-called rectangular wave continuously.

エンボス形状F2に成形された鋼板9は、コ字状に折れ曲がった形状を有する複数の凹条部41が、一方向900(鋼板9の幅方向)に沿って所定距離をあけて並んだ形状である。   The steel plate 9 formed into the embossed shape F2 has a shape in which a plurality of concave strip portions 41 having a U-shaped shape are arranged at a predetermined distance along one direction 900 (the width direction of the steel plate 9). is there.

各凹条部41は、平坦な底壁411と、底壁411の一方向の両端から起立する一対の縦壁412を備え、底壁411の反対側(上側)が開口した形状を有する。一方向に隣接する一対の凹条部41間には、平坦な上壁42が形成される。   Each concave strip 41 includes a flat bottom wall 411 and a pair of vertical walls 412 that rise from both ends of the bottom wall 411 in one direction, and has an opening on the opposite side (upper side) of the bottom wall 411. A flat upper wall 42 is formed between a pair of concave strips 41 adjacent in one direction.

上壁42は、これに隣接する凹条部41の底壁411と平行である。本文中で用いる「平行」の文言は、厳密な意味での平行に限定されず、略平行な場合も含む。   The top wall 42 is parallel to the bottom wall 411 of the concave strip 41 adjacent thereto. The term “parallel” used in the present text is not limited to parallel in a strict sense, but includes a case of being substantially parallel.

本実施形態の製造装置によれば、まず鋼板9を伸ばして波型形状F1に成形したうえで、これをエンボス形状F2に至るまで曲げるので、成形の際に破損が生じることを抑えながら、シャープな外観のエンボス鋼板を得ることができる。   According to the manufacturing apparatus of the present embodiment, the steel plate 9 is first stretched and formed into the corrugated shape F1, and then bent until reaching the embossed shape F2. It is possible to obtain an embossed steel plate with a good appearance.

成形時の破損をより効果的に抑えるには、波型形状F1の連結壁33の傾斜角度αを、20°以上であり且つ60°以内の範囲に設定することが好ましい。さらに好ましい設定は、傾斜角度αを、30°以上であり且つ45°以内の範囲内に設定することである。   In order to suppress breakage during molding more effectively, it is preferable to set the inclination angle α of the connecting wall 33 of the corrugated shape F1 to a range of 20 ° or more and within 60 °. A more preferable setting is to set the inclination angle α within a range of 30 ° or more and 45 ° or less.

次に、数値解析により得られる鋼板9のひずみ分布について説明する。図7〜図12には、波型形状F1とエンボス形状F2で生じる鋼板9のひずみ分布を、複数の傾斜角度αの設定で示している。鋼板9の厚みは0.27mmで設定している。図13、図14には、比較例として、一度のロール成形で鋼板9をエンボス形状F2に成形した場合のひずみ分布を示している。   Next, the strain distribution of the steel plate 9 obtained by numerical analysis will be described. 7 to 12 show the strain distribution of the steel sheet 9 generated by the corrugated shape F1 and the embossed shape F2 by setting a plurality of inclination angles α. The thickness of the steel plate 9 is set at 0.27 mm. FIGS. 13 and 14 show a strain distribution when the steel plate 9 is formed into the embossed shape F2 by a single roll forming as a comparative example.

図13、図14に示すように、一度のロール成形でエンボス形状F2に成形した場合には、特に肩部45において引っ張りと曲げが同時に発生し、引張ひずみと曲げひずみが重畳することから、肩部45の厚みが著しく減少して割れ、破断等の破損が生じやすくなる。   As shown in FIGS. 13 and 14, when the embossed shape F <b> 2 is formed by a single roll forming, pulling and bending occur at the shoulder portion 45 at the same time, and tensile strain and bending strain are superimposed. The thickness of the portion 45 is remarkably reduced, and breakage such as cracking and breaking is likely to occur.

これに対して、図7〜図12に示すように、本成形前に予備成形を行うことで、肩部45にひずみが集中することが抑えられる。   On the other hand, as shown in FIGS. 7 to 12, the strain is suppressed from being concentrated on the shoulder portion 45 by performing the preliminary molding before the main molding.

図7、図8に示す例は、波型形状F1の鋼板9の傾斜角度α=25°に設定した例であり、肩部35の曲率半径は10.0mmである。この曲率半径は、エンボス形状F2の肩部45の曲率半径(=1.0mm)よりも大きい。   The example shown in FIGS. 7 and 8 is an example in which the inclination angle α of the corrugated shape F1 steel plate 9 is set to 25 °, and the curvature radius of the shoulder portion 35 is 10.0 mm. This curvature radius is larger than the curvature radius (= 1.0 mm) of the shoulder portion 45 of the embossed shape F2.

図9、図10に示す例は、波型形状F1の鋼板9の傾斜角度α=38°に設定した例であり、肩部35の曲率半径は3.0mmである。この曲率半径は、エンボス形状F2の肩部45の曲率半径(=1.0mm)よりも大きい。   The example shown in FIGS. 9 and 10 is an example in which the inclination angle α of the corrugated shape F1 steel plate 9 is set to 38 °, and the curvature radius of the shoulder 35 is 3.0 mm. This curvature radius is larger than the curvature radius (= 1.0 mm) of the shoulder portion 45 of the embossed shape F2.

図11、図12に示す例は、波型形状F1の鋼板9の傾斜角度α=53°に設定した例であり、肩部35の曲率半径は1.5mmである。この曲率半径は、エンボス形状F2の肩部45の曲率半径(=1.0mm)よりも大きい。   The example shown in FIGS. 11 and 12 is an example in which the inclination angle α of the corrugated shape F1 steel sheet 9 is set to 53 °, and the curvature radius of the shoulder 35 is 1.5 mm. This curvature radius is larger than the curvature radius (= 1.0 mm) of the shoulder portion 45 of the embossed shape F2.

上記の計算結果からも、一度のロール成形で鋼板9をエンボス形状F2に成形するよりも、予備成形と本成形で鋼板9をエンボス形状F2に成形するほうが、破損を生じ難いことがわかる。   From the above calculation results, it can be seen that it is less likely to cause damage when the steel plate 9 is formed into the embossed shape F2 by the pre-forming and the main forming than when the steel plate 9 is formed into the embossed shape F2 by one roll forming.

さらに、予備成形と本成形を行う場合でも、さらに傾斜角度αを30°〜45°の範囲内に設定したほうが、破損を生じ難いことがわかる。傾斜角度αが30°より小さい場合、本成形の際に肩部45においてひずみ集中が生じやすい。傾斜角度αが45°を超える場合、予備成形の際に肩部35においてひずみ集中が生じやすい。   Further, it can be seen that even when the preforming and the main forming are performed, the breakage is less likely to occur when the inclination angle α is set in the range of 30 ° to 45 °. When the inclination angle α is smaller than 30 °, strain concentration tends to occur at the shoulder 45 during the main forming. When the inclination angle α exceeds 45 °, strain concentration tends to occur in the shoulder portion 35 during the preforming.

なお、肩部45の厚み減少の許容範囲が50%以内である場合には、傾斜角度αを、20°以上であり且つ60°以内の範囲に設定してもよい。   In addition, when the tolerance | permissible_range of thickness reduction of the shoulder part 45 is less than 50%, you may set inclination-angle (alpha) to the range which is 20 degrees or more and 60 degrees or less.

同様の結果は、実験においても確認される。   Similar results are confirmed in experiments.

(第二実施形態)
次に、第二実施形態の製造装置及び製造方法について、図15〜図27に基づいて説明する。
(Second embodiment)
Next, the manufacturing apparatus and manufacturing method of 2nd embodiment are demonstrated based on FIGS.

なお、本実施形態の構成のうち第一実施形態と同様の構成については、同一符号を付して詳しい説明を省略する。以下においては、第一実施形態とは相違する構成について詳述する。   In addition, about the structure similar to 1st embodiment among the structures of this embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted. In the following, the configuration different from the first embodiment will be described in detail.

本実施形態の製造装置は、図15、図16に要部を示す予備成形用の上側金型11aと下側金型11bを備え、さらに、図17、図18に要部を示す本成形用の上側金型21aと下側金型21bを備える。   The manufacturing apparatus of this embodiment includes an upper mold 11a and a lower mold 11b for preforming whose main parts are shown in FIGS. 15 and 16, and further, for main molding whose main parts are shown in FIGS. The upper mold 21a and the lower mold 21b are provided.

予備成形用の上側金型11aは、鋼板9に対して厚み方向に(下方に)押し当たる断面円弧状の凸部分115aを、一方向900に距離をあけて複数有する。凸部分115aの半径R1は、たとえば3.5mmである。   The upper mold 11 a for preforming has a plurality of convex portions 115 a having a circular arc cross section that press against the steel plate 9 in the thickness direction (downward) at a distance in one direction 900. The radius R1 of the convex portion 115a is, for example, 3.5 mm.

予備成形用の下側金型11bは、鋼板9に対して厚み方向に(上方に)押し当たる断面円弧状の凸部分115bを、一方向900に距離をあけて複数有する。凸部分115bの半径R2は、たとえば3.5mmである。   The lower mold 11b for preforming has a plurality of convex portions 115b having a circular arc cross section that press against the steel plate 9 in the thickness direction (upward) at a distance in one direction 900. The radius R2 of the convex portion 115b is, for example, 3.5 mm.

一方向900において、上側金型11aの凸部分115aと、下側金型11bの凸部分115bは、所定のピッチP1をあけて交互に位置する。所定のピッチP1は、隣接する凸部分115a,115bごとに相違してもよいし、同一でもよい。   In one direction 900, the convex portions 115a of the upper mold 11a and the convex portions 115b of the lower mold 11b are alternately positioned with a predetermined pitch P1. The predetermined pitch P1 may be different between the adjacent convex portions 115a and 115b, or may be the same.

予備成形工程においては、上側の凸部分115aが鋼板9の上面に当たり、下側の凸部分115bが鋼板9の下面に当たった状態から、図16中に白抜き矢印で示すように、上側の凸部分115aが下側の凸部分115bに対して、下方にむけて相対移動する。上側の凸部分115aが下方に相対移動するストローク量S1は、たとえば4.5mmである。   In the preforming step, the upper convex portion 115a hits the upper surface of the steel plate 9, and the lower convex portion 115b hits the lower surface of the steel plate 9, so that the upper convex portion 115a is shown by a white arrow in FIG. The portion 115a moves relative to the lower convex portion 115b downward. The stroke amount S1 with which the upper convex portion 115a relatively moves downward is, for example, 4.5 mm.

図16に示すように、鋼板9のうち上側の凸部分115aが押し当たった部分が、下方にむけて円弧状に凹んだ予備凹条部32となる。鋼板9のうち下側の凸部分115bが押し当たった部分が、上方にむけて円弧状に突出した予備凸条部31となる。   As shown in FIG. 16, the portion of the steel plate 9 against which the upper convex portion 115 a is pressed becomes a preliminary concave portion 32 that is recessed downward in an arc shape. The portion of the steel plate 9 where the lower convex portion 115b is pressed becomes the preliminary convex strip portion 31 protruding upward in an arc shape.

予備成形工程においては、鋼板9の全体に伸びが万遍なく加えられ、かつ、鋼板9の全体に緩やかな曲げが加えられることで、予備凹条部32と予備凸条部31が一方向900において交互に配された、正弦波のような円滑な波型形状F1が形成される。一方向900において、波型形状F1に成形された鋼板9の長さは、予備成形前の平坦な鋼板9の長さと略同一である。   In the pre-forming step, the entire steel plate 9 is uniformly stretched and the entire steel plate 9 is gently bent so that the pre-recessed ridge portion 32 and the pre-protruded ridge portion 31 are in one direction 900. A smooth wave shape F1 like a sine wave, which is alternately arranged in FIG. In one direction 900, the length of the steel plate 9 formed into the corrugated shape F1 is substantially the same as the length of the flat steel plate 9 before the preforming.

波型形状F1において、予備凹条部32の深さD1は、予備成形工程でのストローク量S1に等しく、たとえば4.5mmである。   In the corrugated shape F1, the depth D1 of the preliminary recess 32 is equal to the stroke amount S1 in the preliminary molding step, for example, 4.5 mm.

図17、図18に示すように、本成形用の上側金型21aは、断面コ字状の凸部分215aと断面コ字状の凹部分217aが、一方向900に交互に設けられた矩形波のような断面形状を有する。   As shown in FIGS. 17 and 18, the upper mold 21 a for main molding is a rectangular wave in which convex portions 215 a having a U-shaped cross section and concave portions 217 a having a U-shaped cross section are alternately provided in one direction 900. The cross-sectional shape is as follows.

本成形用の下側金型21bは、断面コ字状の凸部分215bと断面コ字状の凹部分217bが、一方向900に交互に設けられた矩形波のような断面形状を有する。   The lower mold 21b for main molding has a cross-sectional shape like a rectangular wave in which convex portions 215b having a U-shaped cross section and concave portions 217b having a U-shaped cross section are alternately provided in one direction 900.

上側金型21aと下側金型21bは、互いに合致するような寸法形状を有する。   The upper mold 21a and the lower mold 21b have dimensions that match each other.

上側金型21aの凸部分215aは、下側金型21bの凹部分217bと一対一に対応する。対応する凸部分215aと凹部分217bは、上下に対向する位置関係にあり、互いに合致する寸法形状を有する。   The convex portion 215a of the upper mold 21a has a one-to-one correspondence with the concave portion 217b of the lower mold 21b. Corresponding convex portions 215a and concave portions 217b are in a positional relationship opposite to each other in the vertical direction, and have dimensions that match each other.

上側金型21aの凹部分217aは、下側金型21bの凸部分215bと一対一に対応する。対応する凹部分217aと凸部分215bは、上下に対向する位置関係にあり、互いに合致する寸法形状を有する。   The concave portion 217a of the upper mold 21a has a one-to-one correspondence with the convex portion 215b of the lower mold 21b. Corresponding concave portions 217a and convex portions 215b are in a positional relationship facing each other in the vertical direction, and have dimensional shapes that match each other.

さらに、本成形用の上側金型21aが有する凸部分215aは、予備成形用の上側金型11aが有する凸部分115aと、一対一に対応する関係にある。本成形用の下側金型21bが有する断面コ字状の凸部分215bは、予備成形用の下側金型11bが有する凸部分115bと、一対一に対応する関係にある。   Furthermore, the convex portion 215a of the upper mold 21a for main molding has a one-to-one correspondence with the convex portion 115a of the upper mold 11a for preforming. The convex portion 215b having a U-shaped cross section included in the lower mold 21b for main molding has a one-to-one correspondence with the convex portion 115b included in the lower mold 11b for preforming.

一方向900において、上側金型21aの凸部分215aと、下側金型21bの凸部分215bは、所定のピッチP2をあけて交互に位置する。本成形工程の凸部分215a,215b間のピッチP2は、この凸部分215a,215bに対応する予備成形工程の凸部分115a,115b間のピッチP1と同一であり、たとえば7mmである。   In one direction 900, the convex portions 215a of the upper mold 21a and the convex portions 215b of the lower mold 21b are alternately positioned with a predetermined pitch P2. The pitch P2 between the convex portions 215a and 215b in the main molding step is the same as the pitch P1 between the convex portions 115a and 115b in the preforming step corresponding to the convex portions 215a and 215b, and is, for example, 7 mm.

本成形工程では、波型形状F1に成形された鋼板9の上面に対して上側の凸部分215aが当たり、鋼板9の下面に対して下側の凸部分215bが当たった状態から、図18中に白抜き矢印で示すように、上側金型21aが下側金型21bに対して、下方にむけて相対移動する。上側金型21aが下方に相対移動するストローク量は、たとえば1.5mmである。   In the main forming step, the upper convex portion 215a hits the upper surface of the steel plate 9 formed into the corrugated shape F1, and the lower convex portion 215b hits the lower surface of the steel plate 9 from the state shown in FIG. As shown by white arrows, the upper mold 21a moves relative to the lower mold 21b downward. The stroke amount by which the upper mold 21a relatively moves downward is, for example, 1.5 mm.

このとき、波型形状F1の鋼板9が有する予備凸条部31の頂部312が、上側金型21aの凹部分217aに当たって下方に押し込まれ、鋼板9が有する予備凹条部32のうち頂部322から予備凸条部31に寄った部分324が、上側金型21aの凸部分215aの角部分に当たって下方に押し込まれる。   At this time, the top portion 312 of the preliminary ridge portion 31 included in the corrugated steel sheet 9 having the corrugated shape F1 hits the concave portion 217a of the upper mold 21a and is pushed downward, and the top 322 of the preliminary concave portion 32 included in the steel plate 9 is removed. A portion 324 that approaches the preliminary ridge portion 31 hits a corner portion of the convex portion 215a of the upper mold 21a and is pushed downward.

同様に、波型形状F1の鋼板9が有する予備凹条部32の頂部322が、下側金型21bの凹部分217bに押し当たり、鋼板9が有する予備凸条部31のうち頂部312から予備凹条部32に寄った部分314が、下側金型21bの凸部分215bの角部分に押し当たる。   Similarly, the top portion 322 of the preliminary concave portion 32 included in the corrugated F1 steel plate 9 presses against the concave portion 217b of the lower mold 21b, and the preliminary convex portion 31 included in the steel plate 9 is spared from the top portion 312. The portion 314 approaching the concave stripe portion 32 presses against the corner portion of the convex portion 215b of the lower mold 21b.

これにより、波型形状F1に予備成形された鋼板9が、図18に示すようなエンボス形状F2に本成形される。一方向900において、エンボス形状F2に成形された鋼板9の長さは、予備成形前及び予備成形後の鋼板9の長さと略同一である。   Thereby, the steel plate 9 preformed into the corrugated shape F1 is finally formed into an embossed shape F2 as shown in FIG. In one direction 900, the length of the steel plate 9 formed into the embossed shape F2 is substantially the same as the length of the steel plate 9 before and after the preforming.

エンボス形状F2の鋼板9が有する凹条部41は、上側金型21aの凸部分215aと、下側金型21bの凹部分217bの間で上下に圧延加工され、曲げを加えられることで、断面コ字状に成形された部分である。   The concave portion 41 of the steel plate 9 having the embossed shape F2 is rolled up and down between the convex portion 215a of the upper die 21a and the concave portion 217b of the lower die 21b, and is subjected to bending so that the cross section It is a part that is molded in a U shape.

エンボス形状F2の鋼板9が有する複数の凹条部41は、波型形状F1の鋼板9が有する複数の予備凹条部32と、一対一に対応する。凹条部41の深さD2は、これに対応する予備凹条部32の深さD1よりも小さい。つまり、波型形状F1に予備成形された段階の鋼板9と、エンボス形状F2に本成形された段階の鋼板9とを比較すると、予備成形の段階のほうが凹凸が深く成形される。   The plurality of concave strip portions 41 included in the steel plate 9 having the embossed shape F2 correspond one-to-one with the plurality of preliminary concave strip portions 32 included in the steel plate 9 having the corrugated shape F1. The depth D2 of the concave stripe portion 41 is smaller than the depth D1 of the corresponding preliminary concave stripe portion 32. That is, when the steel plate 9 at the stage preliminarily formed into the corrugated shape F1 is compared with the steel plate 9 at the stage finally formed into the embossed shape F2, the unevenness is formed deeper in the pre-forming stage.

本実施形態の製造装置によれば、まず鋼板9を万遍なくかつ大きく伸ばして波型形状F1に成形したうえで、これを上下方向に潰しながらエンボス形状F2に至るまで曲げるので、特定箇所にひずみが集中して破損を生じることが抑えられる。   According to the manufacturing apparatus of the present embodiment, the steel plate 9 is first stretched uniformly and greatly into a corrugated shape F1, and then bent up to the embossed shape F2 while being crushed in the vertical direction. It is possible to suppress damage due to concentration of strain.

加えて、本成形工程においては、上側金型21aと下側金型21bの間で波型形状F1の鋼板9を圧延加工する際に、鋼板9の上下の頂部312,322が上下方向に押し込まれる。鋼板9の予備凸条部31のうち、下側金型21bの角部分に当たって曲げられる部分314と、上側金型21aの角部分に当たって曲げられる部分324は、ひずみが集中して厚みが減少しやすい部分であるが、これらの部分314,324に頂部312,322側から圧縮ひずみが付与され、材料が流れ込むことにより、ひずみの集中や厚みの減少が抑制される。   In addition, in the main forming step, when rolling the steel sheet 9 having the corrugated shape F1 between the upper mold 21a and the lower mold 21b, the upper and lower apexes 312 and 322 of the steel sheet 9 are pushed in the vertical direction. It is. Of the preliminary ridge portion 31 of the steel plate 9, a portion 314 bent by hitting the corner portion of the lower mold 21b and a portion 324 bent by hitting the corner portion of the upper die 21a tend to reduce thickness due to concentration of strain. Although it is a part, compressive strain is given to these parts 314 and 324 from the tops 312 and 322 side, and when the material flows, concentration of strain and reduction in thickness are suppressed.

次に、数値解析により得られる鋼板9のひずみ分布について、説明する。   Next, the strain distribution of the steel plate 9 obtained by numerical analysis will be described.

ここでの解析は、図19に示すモデルを用い、予備成形における凸部分115a,115bの半径R1,R2を複数段階で変化させて行い、さらに、凸部分115aのストローク量S1(すなわち予備凹条部の深さD1)、本成形後の凹条部41の深さD2、及び縦壁412の傾斜角度βを複数段階で変化させて行った。凸部分115a,115b間のピッチP1は、7mmで固定した。   The analysis here is performed by using the model shown in FIG. 19 and changing the radii R1 and R2 of the convex portions 115a and 115b in the preforming in a plurality of stages, and further, the stroke amount S1 of the convex portion 115a (that is, the preliminary groove). The depth D1) of the portion, the depth D2 of the concave strip 41 after the main forming, and the inclination angle β of the vertical wall 412 were changed in a plurality of stages. The pitch P1 between the convex portions 115a and 115b was fixed at 7 mm.

図20A〜図23Bに示す結果は、波型形状F1とエンボス形状F2で生じる鋼板9のひずみ分布を、半径R1,R2を3.5〜1.5mmの間で変化させて計算したものである。   The results shown in FIGS. 20A to 23B are obtained by calculating the strain distribution of the steel sheet 9 generated by the corrugated shape F1 and the embossed shape F2 by changing the radii R1 and R2 between 3.5 and 1.5 mm. .

図24には、従来技術のように一度の成形(本成形のみ)で、鋼板9を同様のエンボス形状F2に成形した場合のひずみ分布を、比較例として示している。図24に示すように、一度の成形でエンボス形状F2に成形した場合には、矩形波状の肩や縦壁となる部分にひずみが集中し、破断等の破損が生じやすくなる。図24の結果において、最大ひずみは57.5%である。   FIG. 24 shows, as a comparative example, a strain distribution when the steel plate 9 is formed into a similar embossed shape F2 by a single forming (only main forming) as in the prior art. As shown in FIG. 24, when the embossed shape F2 is formed by a single molding, strain concentrates on the rectangular wave shoulder and the vertical wall, and breakage or the like is likely to occur. In the result of FIG. 24, the maximum strain is 57.5%.

これに対して、図20A〜図23Bに示すように、本成形前に予備成形を行うことで、鋼板9の特定の部分にひずみが集中することが抑えられる。   On the other hand, as shown in FIG. 20A to FIG. 23B, the strain is suppressed from being concentrated on a specific portion of the steel plate 9 by performing the preforming before the main forming.

図20A、図20Bには、予備成形での条件を半径R1=R2=3.5mm、ストローク量S1=4.5mmに設定し、本成形での条件を深さD2=3mm、傾斜角度β=70°に設定した場合の結果を示している。この場合、図20Bのエンボス形状F2における最大ひずみは41.4%である。   20A and 20B, the conditions in the pre-forming are set to radius R1 = R2 = 3.5 mm and the stroke amount S1 = 4.5 mm, and the conditions in the main forming are the depth D2 = 3 mm and the inclination angle β = The result when set to 70 ° is shown. In this case, the maximum strain in the embossed shape F2 in FIG. 20B is 41.4%.

同様に、図21A、図21Bには、予備成形での条件を半径R1=R2=3.0mm、ストローク量S1=4.5mmに設定し、本成形での条件を深さD2=3mm、傾斜角度β=70°に設定した場合の結果を示している。この場合、図21Bのエンボス形状F2における最大ひずみは35.0%である。   Similarly, in FIG. 21A and FIG. 21B, the conditions in the pre-forming are set to radius R1 = R2 = 3.0 mm and the stroke amount S1 = 4.5 mm, and the conditions in the main forming are the depth D2 = 3 mm, the inclination The results when the angle β is set to 70 ° are shown. In this case, the maximum strain in the embossed shape F2 in FIG. 21B is 35.0%.

図22A、図22Bには、予備成形での条件を半径R1=R2=2.5mm、ストローク量S1=4.5mmに設定し、本成形での条件を深さD2=3mm、傾斜角度β=70°に設定した場合の結果を示している。この場合、図22Bのエンボス形状F2における最大ひずみは32.5%である。   22A and 22B, the conditions for the pre-forming are set to radius R1 = R2 = 2.5 mm and the stroke amount S1 = 4.5 mm, and the conditions for the main forming are the depth D2 = 3 mm and the inclination angle β = The result when set to 70 ° is shown. In this case, the maximum strain in the embossed shape F2 in FIG. 22B is 32.5%.

図23A、図23Bには、予備成形での条件を半径R1=R2=1.5mm、ストローク量S1=4.5mmに設定し、本成形での条件を深さD2=3mm、傾斜角度β=70°に設定した場合の結果を示している。この場合、図23Bのエンボス形状F2における最大ひずみは38.8%である。   In FIG. 23A and FIG. 23B, the conditions in the pre-forming are set to radius R1 = R2 = 1.5 mm and the stroke amount S1 = 4.5 mm, and the conditions in the main forming are the depth D2 = 3 mm and the inclination angle β = The result when set to 70 ° is shown. In this case, the maximum strain in the embossed shape F2 in FIG. 23B is 38.8%.

上記の解析結果からも、図24のように一度の成形で鋼板9をエンボス形状F2に成形するよりも、予備成形で鋼板9をいったん波型形状F1に至るまで伸ばしてから、本成形で鋼板9を上下に潰しながら矩形波型のエンボス形状F2に成形するほうが、ひずみの集中が抑えられることがわかる。   From the above analysis results, the steel plate 9 is once stretched to the corrugated shape F1 by pre-forming rather than forming the steel plate 9 to the embossed shape F2 by one forming as shown in FIG. It can be seen that the concentration of strain can be suppressed by forming the rectangular wave type embossed shape F2 while crushing 9 upward and downward.

また、上記の解析結果から、予備成形での凸部分115a,115bの半径R1,R2が変化すると、波型形状F1の鋼板9のひずみ集中部位が変化することがわかる。一般的に、半径R1,R2が小さくなるほど、ひずみ集中部位が、予備凸条部31や予備凹条部32の頂部312,322に近づく。   Further, from the above analysis results, it can be seen that when the radii R1 and R2 of the convex portions 115a and 115b in the preforming change, the strain concentration portion of the corrugated shape F1 steel sheet 9 changes. In general, as the radii R1 and R2 are reduced, the strain concentration portion is closer to the top portions 312 and 322 of the preliminary projection 31 and the preliminary recess 32.

したがって、鋼板9の波型形状F1でのひずみ集中部位を、エンボス形状F2で角になる部分(矩形波状の肩となる部分)から離れるように設ければ、本成形後の鋼板9の特定部位にひずみが集中することが抑えられる。   Therefore, if the strain concentration site in the corrugated shape F1 of the steel plate 9 is provided so as to be away from the corner portion (portion that becomes a rectangular corrugated shoulder) in the emboss shape F2, the specific site of the steel plate 9 after the main forming is provided. It is possible to prevent the strain from concentrating on.

たとえば、予備成形で得られる波型形状F1が正弦波に近い形状である場合には、その凸部と凹部の中間領域において、圧延加工によるひずみが集中しやすいが、予備成形で得られる波型形状F1が、凸部と凹部の間に大きな割合で直線部分が存在する形状である場合には、その凸部や凹部において、圧延加工によるひずみが集中しやすい。後者の場合、予備成形後の本成形において、波型形状F1の直線部分に圧延加工が施されることによって、エンボス形状F2に成形された鋼板9ではその全体にひずみが分散され、加工性の向上に寄与する。   For example, when the corrugated shape F1 obtained by preforming is a shape close to a sine wave, distortion due to rolling tends to be concentrated in the intermediate region between the convex and concave portions, but the corrugated shape obtained by preforming When the shape F1 is a shape in which a linear portion exists at a large ratio between the convex portion and the concave portion, the strain due to the rolling process tends to concentrate on the convex portion and the concave portion. In the latter case, in the main forming after the pre-forming, by rolling the linear portion of the corrugated shape F1, the steel plate 9 formed into the embossed shape F2 is strained throughout, and the workability is improved. Contributes to improvement.

下記の表1、表2には、各条件を段階的に変化させて解析を行ったときの、本成形後のエンボス形状F2における最大ひずみと、軽減率を示している。軽減率の値は、本成形のみで鋼板9をエンボス形状F2に成形したとき(比較例)の最大ひずみを1として、予備成形を経ることで最大ひずみが軽減された割合を示す。   Tables 1 and 2 below show the maximum strain and the reduction rate in the embossed shape F2 after the main molding when the analysis was performed by changing each condition stepwise. The value of the reduction rate indicates a rate at which the maximum strain is reduced by performing the pre-forming with the maximum strain when the steel plate 9 is formed into the embossed shape F2 (comparative example) only by the main forming as 1.





図25A〜図25Cに示すグラフは、予備成形でのストローク量S1の変化に応じて、本成形後の最大ひずみがどのように変化するかを、まとめたグラフである。   The graphs shown in FIGS. 25A to 25C are graphs summarizing how the maximum strain after the main forming changes according to the change in the stroke amount S1 in the pre-forming.

図25Aは、本成形後の縦壁412の傾斜角度β=80°、凹条部41の深さD2=3.0mmの場合である。図25Bは、本成形後の傾斜角度β=70°、凹条部41の深さD2=3.0mmの場合である。図25Cは、本成形後の傾斜角度β=60°、凹条部41の深さD2=3.0mmの場合である。   FIG. 25A shows the case where the inclination angle β of the vertical wall 412 after the main forming is 80 ° and the depth D2 of the concave strip portion 41 is 3.0 mm. FIG. 25B shows a case where the inclination angle β after main molding is 70 ° and the depth D2 of the concave stripe portion 41 is 3.0 mm. FIG. 25C shows the case where the inclination angle β after the main forming is 60 ° and the depth D2 of the concave strip portion 41 is 3.0 mm.

これらのグラフからも、予備成形でのストローク量S1(すなわち予備凹条部32の深さD1)を、本成形後の凹条部41の深さD2(=3.0mm)よりも大きく設定したときに、最大ひずみが低減されることが分かる。また、傾斜角度β=80°、70°、60°のいずれの場合でも、ストローク量S1(予備凹条部32の深さD1)が3.5〜4.5mmの範囲内で設定されるとき、つまり凹条部41の深さD2を0.5〜1.5mm超える範囲内で設定されるときに、最大ひずみが効果的に低減されることがわかる。さらには、ストローク量S1(深さD1)が凹条部41の深さD2を1.0〜1.5mm超える範囲内で設定されるときに、最大ひずみが一層効果的に低減されることがわかる。   Also from these graphs, the stroke amount S1 (that is, the depth D1 of the preliminary concave portion 32) in the preliminary molding is set to be larger than the depth D2 (= 3.0 mm) of the concave portion 41 after the main molding. Sometimes it can be seen that the maximum strain is reduced. In addition, when the inclination angle β = 80 °, 70 °, or 60 °, the stroke amount S1 (depth D1 of the preliminary concave ridge portion 32) is set within the range of 3.5 to 4.5 mm. That is, it can be seen that the maximum strain is effectively reduced when the depth D2 of the recess 41 is set within a range exceeding 0.5 to 1.5 mm. Furthermore, when the stroke amount S1 (depth D1) is set within a range that exceeds the depth D2 of the groove 41 by 1.0 to 1.5 mm, the maximum strain may be more effectively reduced. Recognize.

図26に示すグラフは、本成形後の傾斜角度β=70°、凹条部41の深さD2=2.0mmの場合に、予備成形でのストローク量S1の変化に応じて、本成形後の最大ひずみ値がどのように変化するかを、まとめたグラフである。表2に示すように、傾斜角度β=70°、深さD2=2.0mmの場合、本成形のみを行う比較例では最大ひずみが38.4%である。   The graph shown in FIG. 26 shows that after the main forming, the inclination angle β after the main forming is 70 ° and the depth D2 of the concave portion 41 is 2.0 mm, depending on the change in the stroke amount S1 in the pre-forming. It is the graph which summarized how the maximum strain value of changed. As shown in Table 2, when the inclination angle β is 70 ° and the depth D2 is 2.0 mm, the maximum strain is 38.4% in the comparative example in which only the main forming is performed.

このグラフから、D2=2.0mmの場合でも、ストローク量S1(予備凹条部32の深さD1)が凹条部41の深さD2を0.5〜1.5mmだけ超える範囲内(つまり2.5〜3.5mmの範囲内)で設定されるときに、最大ひずみが効果的に低減されることがわかる。さらには、ストローク量S1(予備凹条部32の深さD1)が凹条部41の深さD2を1.0〜1.5mmだけ超える範囲内(つまり3.0〜3.5mmの範囲内)で設定されるときに、最大ひずみが一層効果的に低減されることがわかる。   From this graph, even in the case of D2 = 2.0 mm, the stroke amount S1 (depth D1 of the preliminary concave stripe portion 32) is within the range exceeding the depth D2 of the concave stripe portion 41 by 0.5 to 1.5 mm (that is, It can be seen that the maximum strain is effectively reduced when set within the range of 2.5-3.5 mm. Furthermore, the stroke amount S1 (depth D1 of the preliminary groove portion 32) is within a range exceeding the depth D2 of the groove portion 41 by 1.0 to 1.5 mm (that is, within a range of 3.0 to 3.5 mm). It can be seen that the maximum strain is more effectively reduced when set at).

図27に示すグラフは、本成形後の傾斜角度β=60°、凹条部41の深さD2=4.0mmの場合に、予備成形でのストローク量S1の変化に応じて、本成形後の最大ひずみがどのように変化するかを、まとめたグラフである。表2に示すように、傾斜角度β=60°、深さD2=4.0mmの場合、本成形のみを行う比較例では最大ひずみが66.1%である。   The graph shown in FIG. 27 shows that after the main forming according to the change in the stroke amount S1 in the pre-forming, when the inclination angle β after the main forming is 60 ° and the depth D2 of the concave portion 41 is 4.0 mm. 6 is a graph summarizing how the maximum strain of the material changes. As shown in Table 2, when the inclination angle β is 60 ° and the depth D2 is 4.0 mm, the maximum strain is 66.1% in the comparative example in which only the main forming is performed.

このグラフから、D2=4.0mmの場合でも、ストローク量S1(予備凹条部32の深さD1)が凹条部41の深さD2を0.5〜1.0mmだけ超える範囲内(つまり4.5〜5.0mmの範囲内)で設定されるときに、最大ひずみが効果的に低減されることがわかる。なお、ストローク量S1が5mmを超えたときに最大ひずみが大幅に上昇するのは、成形的な限界による。   From this graph, even in the case of D2 = 4.0 mm, the stroke amount S1 (depth D1 of the preliminary concave ridge portion 32) is within a range exceeding the depth D2 of the concave ridge portion 41 by 0.5 to 1.0 mm (that is, It can be seen that the maximum strain is effectively reduced when set within the range of 4.5-5.0 mm. Note that the maximum strain greatly increases when the stroke amount S1 exceeds 5 mm due to molding limitations.

これらをまとめると、凹条部41の深さD2が2.0〜4.0mmの範囲内であるとき、ストローク量S1(予備凹条部32の深さD1)が凹条部41の深さD2を0.5〜1.5mm(さらに好ましくは1.0〜1.5mm)だけ超え、かつ5mm以下の範囲内で設定されるときに、本成形後の最大ひずみが効果的に低減される。   In summary, when the depth D2 of the groove 41 is within the range of 2.0 to 4.0 mm, the stroke amount S1 (depth D1 of the preliminary groove 32) is the depth of the groove 41. When D2 exceeds 0.5 to 1.5 mm (more preferably 1.0 to 1.5 mm) and is set within a range of 5 mm or less, the maximum strain after the main molding is effectively reduced. .

また、表1、表2に示す結果から、予備成形後の傾斜角度αが30〜50°(さらに好ましくは34.2〜41.4°)の範囲内に設定される場合に、大きな軽減率が得られることがわかる。   Further, from the results shown in Tables 1 and 2, when the inclination angle α after the preforming is set within a range of 30 to 50 ° (more preferably 34.2 to 41.4 °), a large reduction rate. It can be seen that

同様の結果は、実験においても確認される。   Similar results are confirmed in experiments.

以上、添付図面に基づいて説明したように、第一実施形態の製造方法は、予備成形工程と本成形工程を備える。   As described above, as described with reference to the accompanying drawings, the manufacturing method of the first embodiment includes a preforming step and a main forming step.

予備成形工程は、一対の第一ロール1間に鋼板9を通過させ、鋼板9の各所に圧力を加えて伸ばしながら、鋼板9に、複数の予備凹条部32が一方向900に距離をあけて位置する所定の波型形状F1を与える工程である。   In the preforming process, the steel plate 9 is passed between the pair of first rolls 1 and a plurality of preliminary concave portions 32 are spaced apart in one direction 900 on the steel plate 9 while applying pressure to various portions of the steel plate 9 and extending it. This is a step of providing a predetermined corrugated shape F1 positioned at a position.

本成形工程は、一対の第二ロール2間に、波型形状F1が与えられた鋼板9を通過させ、鋼板9の各所に圧力を加えて曲げることで、鋼板9に、断面コ字状である複数の凹条部41が一方向900に距離をあけて位置する所定のエンボス形状F2を与える工程である。   In the main forming step, the steel plate 9 provided with the corrugated shape F1 is passed between the pair of second rolls 2 and is bent by applying pressure to various portions of the steel plate 9 so that the steel plate 9 has a U-shaped cross section. This is a step of providing a predetermined embossed shape F2 in which a plurality of concave strip portions 41 are positioned at a distance in one direction 900.

予備凹条部32と凹条部41は一対一に対応し、予備凹条部32の深さD1は、これに対応する凹条部41の深さD2と同一である。   The preliminary groove portions 32 and the concave groove portions 41 correspond one-to-one, and the depth D1 of the preliminary groove portions 32 is the same as the depth D2 of the corresponding concave groove portions 41.

したがって、この製造方法によれば、平坦な鋼板9に対して予備成形工程と本工程を順に実施し、予備成形工程において鋼板9を万遍なく伸ばして波型形状F1にしたうえで、これを同じ深さのエンボス形状F2に曲げるので、成形の際に鋼板9の特定部位にひずみが集中することを抑えながら、鋼板9をシャープな外観のエンボス状F2に成形することが可能となる。   Therefore, according to this manufacturing method, the pre-forming step and the main step are sequentially performed on the flat steel plate 9, and the steel plate 9 is uniformly stretched in the pre-forming step to form the corrugated shape F1. Since it is bent into the embossed shape F2 having the same depth, the steel plate 9 can be formed into an embossed shape F2 having a sharp appearance while suppressing the concentration of strain on a specific portion of the steel plate 9 during forming.

また、第二実施形態の製造方法は、予備成形工程と本成形工程を備える。   Moreover, the manufacturing method of the second embodiment includes a preforming step and a main forming step.

予備成形工程は、一対の第一ロール1間に鋼板9を通過させ、鋼板9の各所に圧力を加えて伸ばしながら、鋼板9に、複数の予備凹条部が一方向900に距離をあけて位置する所定の波型形状F1を与える工程である。   In the pre-forming step, the steel plate 9 is passed between the pair of first rolls 1 and the steel plate 9 is stretched by applying pressure to various portions of the steel plate 9 so that a plurality of preliminary concave portions are spaced apart in one direction 900. This is a step of providing a predetermined corrugated shape F1.

本成形工程は、一対の第二ロール2間に、波型形状F1が与えられた鋼板9を通過させ、鋼板9の各所に圧力を加えて曲げることで、鋼板9に、断面コ字状である複数の凹条部41が一方向900に距離をあけて位置する所定のエンボス形状F2を与える工程である。   In the main forming step, the steel plate 9 provided with the corrugated shape F1 is passed between the pair of second rolls 2 and is bent by applying pressure to various portions of the steel plate 9 so that the steel plate 9 has a U-shaped cross section. This is a step of providing a predetermined embossed shape F2 in which a plurality of concave strip portions 41 are positioned at a distance in one direction 900.

予備凹条部32と凹条部41は一対一に対応し、予備凹条部32の深さD1は、これに対応する凹条部41の深さD2よりも大きい。   The preliminary ridge portions 32 and the concave ridge portions 41 correspond one to one, and the depth D1 of the preliminary ridge portions 32 is larger than the depth D2 of the corresponding concave ridge portions 41.

したがって、この製造方法によれば、平坦な鋼板9に対して予備成形工程と本工程を順に実施し、予備成形工程において鋼板9を万遍なく伸ばして波型形状F1にしたうえで、これよりも凹凸の浅いエンボス形状F2に曲げるので、成形の際に鋼板9の特定部位にひずみが集中することを抑えながら、鋼板9をシャープな外観のエンボス状F2に成形することが可能となる。   Therefore, according to this manufacturing method, the preforming step and the main step are sequentially performed on the flat steel plate 9, and the steel plate 9 is uniformly extended in the preforming step to form the corrugated shape F1. Since it is bent into a shallow embossed shape F2, the steel plate 9 can be formed into an embossed shape F2 having a sharp appearance while suppressing the concentration of strain at a specific portion of the steel plate 9 during forming.

第二実施形態の製造方法において、凹条部41の深さD2は、2mm〜4mmであり、予備凹条部32の深さD1は、これに対応する凹条部41の深さD2よりも0.5mm〜1.5mmだけ大きく、かつ5mm以下であることが好ましい。   In the manufacturing method according to the second embodiment, the depth D2 of the concave stripe portion 41 is 2 mm to 4 mm, and the depth D1 of the preliminary concave stripe portion 32 is larger than the depth D2 of the corresponding concave stripe portion 41. It is preferably 0.5 mm to 1.5 mm and 5 mm or less.

このように深さD1,D2を設定することで、本成形後の鋼板9の特定の部分にひずみが集中することが、効果的に抑えられる。   By setting the depths D1 and D2 in this way, it is possible to effectively suppress the strain from being concentrated on a specific portion of the steel plate 9 after the main forming.

また、第一実施形態の製造装置は、鋼板9を予備成形して、鋼板9に所定の波型形状F1を与える一対の第一ロール1と、予備成形後の鋼板9を本成形して、鋼板9に所定のエンボス形状F2を与える一対の第二ロール2とを備える。   Moreover, the manufacturing apparatus of 1st embodiment carries out the main shaping | molding of the steel plate 9 after a pair of 1st roll 1 which preforms the steel plate 9, and gives the predetermined corrugated shape F1 to the steel plate 9, A pair of second rolls 2 that give the steel plate 9 a predetermined emboss shape F2 are provided.

一対の第一ロール1は、鋼板9の各所に圧力を加えて伸ばすことで、鋼板9に、複数の予備凹条部32が一方向900に距離をあけて位置する波型形状F1を与える金型構造11を有する。   The pair of first rolls 1 is a metal that gives a corrugated shape F1 in which a plurality of preliminary recessed streak portions 32 are positioned at a distance in one direction 900 on the steel plate 9 by applying pressure to each part of the steel plate 9 and extending it. It has a mold structure 11.

一対の第二ロール2は、予備成形後の鋼板9に、断面コ字状である複数の凹条部41が一方向900に距離をあけて位置するエンボス形状F2を与える金型構造21を有する。   The pair of second rolls 2 has a mold structure 21 that gives an embossed shape F2 in which a plurality of concave strips 41 having a U-shaped cross section are positioned at a distance in one direction 900 on the steel plate 9 after preforming. .

予備凹条部32と凹条部41は一対一に対応し、予備凹条部32の深さD1は、これに対応する凹条部41の深さD2と同一である。   The preliminary groove portions 32 and the concave groove portions 41 correspond one-to-one, and the depth D1 of the preliminary groove portions 32 is the same as the depth D2 of the corresponding concave groove portions 41.

したがって、この製造装置によれば、平坦な鋼板9に対して予備成形工程と本工程を順に実施し、予備成形工程において鋼板9を万遍なく伸ばして波型形状F1にしたうえで、これを同じ深さのエンボス形状F2に曲げるので、成形の際に鋼板9の特定部位にひずみが集中することを抑えながら、鋼板9をシャープな外観のエンボス状F2に成形することが可能となる。   Therefore, according to this manufacturing apparatus, the pre-forming step and the main step are sequentially performed on the flat steel plate 9, and the steel plate 9 is uniformly extended in the pre-forming step to form the corrugated shape F1. Since it is bent into the embossed shape F2 having the same depth, the steel plate 9 can be formed into an embossed shape F2 having a sharp appearance while suppressing the concentration of strain on a specific portion of the steel plate 9 during forming.

また、第二実施形態の製造装置は、鋼板9を予備成形して、鋼板9に所定の波型形状F1を与える一対の第一ロール1と、予備成形後の鋼板9を本成形して、鋼板9に所定のエンボス形状F2を与える一対の第二ロール2とを備える。   In addition, the manufacturing apparatus of the second embodiment pre-forms the steel plate 9 and main-forms the pair of first rolls 1 that give the steel plate 9 a predetermined corrugated shape F1, and the pre-formed steel plate 9. A pair of second rolls 2 that give the steel plate 9 a predetermined emboss shape F2 are provided.

一対の第一ロール1は、鋼板9の各所に圧力を加えて伸ばすことで、鋼板9に、複数の予備凹条部32が一方向900に距離をあけて位置する波型形状F1を与える金型構造11を有する。   The pair of first rolls 1 is a metal that gives a corrugated shape F1 in which a plurality of preliminary recessed streak portions 32 are positioned at a distance in one direction 900 on the steel plate 9 by applying pressure to each part of the steel plate 9 and extending it. It has a mold structure 11.

一対の第二ロール2は、予備成形後の鋼板9に、断面コ字状である複数の凹条部41が一方向900に距離をあけて位置するエンボス形状F2を与える金型構造21を有する。   The pair of second rolls 2 has a mold structure 21 that gives an embossed shape F2 in which a plurality of concave strips 41 having a U-shaped cross section are positioned at a distance in one direction 900 on the steel plate 9 after preforming. .

予備凹条部32と凹条部41は一対一に対応し、予備凹条部32の深さD1は、これに対応する凹条部41の深さD2よりも大きい。   The preliminary ridge portions 32 and the concave ridge portions 41 correspond one to one, and the depth D1 of the preliminary ridge portions 32 is larger than the depth D2 of the corresponding concave ridge portions 41.

したがって、この製造装置によれば、平坦な鋼板9に対して予備成形工程と本工程を順に実施し、予備成形工程において鋼板9を万遍なく伸ばして波型形状F1にしたうえで、これより凹凸の浅いエンボス形状F2に曲げるので、成形の際に鋼板9の特定部位にひずみが集中することを抑えながら、鋼板9をシャープな外観のエンボス状F2に成形することが可能となる。   Therefore, according to this manufacturing apparatus, the pre-forming step and the main step are sequentially performed on the flat steel plate 9, and the steel plate 9 is uniformly extended in the pre-forming step to form the corrugated shape F1, and then Since it is bent into a shallow embossed shape F2, it is possible to form the steel plate 9 into a sharp embossed shape F2 while suppressing the concentration of strain on a specific part of the steel plate 9 during forming.

以上、エンボス鋼板の製造方法及び製造装置について説明したが、エンボス鋼板の製造方法及び製造装置は前記した実施形態に限定されることはなく、適宜の設計変更や公知技術の適用を行ったものも、本発明の技術思想に含まれる。   As mentioned above, although the manufacturing method and manufacturing apparatus of the embossed steel plate were demonstrated, the manufacturing method and manufacturing apparatus of an embossed steel plate are not limited to above-described embodiment, What performed the appropriate design change and application of a well-known technique also. It is included in the technical idea of the present invention.

1 第一ロール
11 金型構造
2 第二ロール
21 金型構造
31 予備凸条部
41 凹条部
9 鋼板
900 一方向
D1 深さ
D2 深さ
F1 波型形状
F2 エンボス形状
DESCRIPTION OF SYMBOLS 1 1st roll 11 Mold structure 2 2nd roll 21 Mold structure 31 Preliminary convex part 41 Convex part 9 Steel plate 900 One direction D1 depth D2 depth F1 Corrugated shape F2 Embossed shape

Claims (5)

一対の第一ロール間に鋼板を通過させ、前記鋼板の各所に圧力を加えて伸ばしながら、前記鋼板に、複数の予備凹条部が一方向に距離をあけて位置する所定の波型形状を与える予備成形工程と、
一対の第二ロール間に、前記波型形状が与えられた前記鋼板を通過させ、前記鋼板の各所に圧力を加えて曲げることで、前記鋼板に、断面コ字状である複数の凹条部が前記一方向に距離をあけて位置する所定のエンボス形状を与える本成形工程と、を備え、
前記予備凹条部と前記凹条部は一対一に対応し、前記予備凹条部の深さは、これに対応する前記凹条部の深さと同一であることを特徴とする、
エンボス形状を有する鋼板の製造方法。
While passing a steel plate between a pair of first rolls and applying pressure to various portions of the steel plate and extending it, the steel plate has a predetermined corrugated shape in which a plurality of preliminary concave portions are positioned at a distance in one direction. Giving a preforming step;
By passing the steel plate provided with the corrugated shape between a pair of second rolls and bending the steel plate by applying pressure to each part of the steel plate, the steel plate has a plurality of concave portions having a U-shaped cross section. Providing a predetermined embossed shape positioned at a distance in the one direction,
The preliminary groove portion and the groove portion have a one-to-one correspondence, and the depth of the preliminary groove portion is the same as the depth of the corresponding concave portion,
A method for producing a steel sheet having an embossed shape.
一対の第一ロール間に鋼板を通過させ、前記鋼板の各所に圧力を加えて伸ばしながら、前記鋼板に、複数の予備凹条部が一方向に距離をあけて位置する所定の波型形状を与える予備成形工程と、
一対の第二ロール間に、前記波型形状が与えられた前記鋼板を通過させ、前記鋼板の各所に圧力を加えて曲げることで、前記鋼板に、断面コ字状である複数の凹条部が前記一方向に距離をあけて位置する所定のエンボス形状を与える本成形工程と、を備え、
前記予備凹条部と前記凹条部は一対一に対応し、前記予備凹条部の深さは、これに対応する前記凹条部の深さよりも大きいことを特徴とする、
エンボス形状を有する鋼板の製造方法。
While passing a steel plate between a pair of first rolls and applying pressure to various portions of the steel plate and extending it, the steel plate has a predetermined corrugated shape in which a plurality of preliminary concave portions are positioned at a distance in one direction. Giving a preforming step;
By passing the steel plate provided with the corrugated shape between a pair of second rolls and bending the steel plate by applying pressure to each part of the steel plate, the steel plate has a plurality of concave portions having a U-shaped cross section. Providing a predetermined embossed shape positioned at a distance in the one direction,
The preliminary groove portion and the concave portion correspond to each other one by one, and the depth of the preliminary groove portion is larger than the depth of the corresponding concave portion,
A method for producing a steel sheet having an embossed shape.
前記凹条部の深さは、2mm〜4mmであり、
前記予備凹条部の深さは、これに対応する前記凹条部の深さよりも0.5mm〜1.5mmだけ大きく、かつ5mm以下であることを特徴とする、
請求項2に記載のエンボス形状を有する鋼板の製造方法。
The depth of the concave portion is 2 mm to 4 mm,
A depth of the preliminary groove portion is larger by 0.5 mm to 1.5 mm than a corresponding depth of the groove portion, and is 5 mm or less,
The manufacturing method of the steel plate which has the emboss shape of Claim 2.
鋼板を予備成形して、前記鋼板に所定の波型形状を与える一対の第一ロールと、
予備成形後の前記鋼板を本成形して、前記鋼板に所定のエンボス形状を与える一対の第二ロールと、を備え、
前記一対の第一ロールは、
前記鋼板の各所に圧力を加えて伸ばすことで、前記鋼板に、複数の予備凹条部が一方向に距離をあけて位置する前記波型形状を与える金型構造を有し、
前記一対の第二ロールは、
予備成形後の前記鋼板に、断面コ字状である複数の凹条部が前記一方向に距離をあけて位置する前記エンボス形状を与える金型構造を有し、
前記予備凹条部と前記凹条部は一対一に対応し、前記予備凹条部の深さは、これに対応する前記凹条部の深さと同一であることを特徴とする、
エンボス形状を有する鋼板の製造装置。
A pair of first rolls that preform a steel plate and give the steel plate a predetermined corrugated shape,
A main roll of the steel plate after the preforming, and a pair of second rolls that give the steel plate a predetermined embossed shape,
The pair of first rolls includes:
By applying pressure to each part of the steel plate and extending the steel plate, the steel plate has a mold structure that gives the corrugated shape in which a plurality of preliminary concave portions are positioned at a distance in one direction,
The pair of second rolls is
The steel plate after the preforming has a mold structure that gives the embossed shape in which a plurality of concave portions having a U-shaped cross section are located at a distance in the one direction,
The preliminary groove portion and the groove portion have a one-to-one correspondence, and the depth of the preliminary groove portion is the same as the depth of the corresponding concave portion,
An apparatus for producing a steel plate having an embossed shape.
鋼板を予備成形して、前記鋼板に所定の波型形状を与える一対の第一ロールと、
予備成形後の前記鋼板を本成形して、前記鋼板に所定のエンボス形状を与える一対の第二ロールと、を備え、
前記一対の第一ロールは、
前記鋼板の各所に圧力を加えて伸ばすことで、前記鋼板に、複数の予備凹条部が一方向に距離をあけて位置する前記波型形状を与える金型構造を有し、
前記一対の第二ロールは、
予備成形後の前記鋼板に、断面コ字状である複数の凹条部が前記一方向に距離をあけて位置する前記エンボス形状を与える金型構造を有し、
前記予備凹条部と前記凹条部は一対一に対応し、前記予備凹条部の深さは、これに対応する前記凹条部の深さよりも大きいことを特徴とする、
エンボス形状を有する鋼板の製造装置。
A pair of first rolls that preform a steel plate and give the steel plate a predetermined corrugated shape,
A main roll of the steel plate after the preforming, and a pair of second rolls that give the steel plate a predetermined embossed shape,
The pair of first rolls includes:
By applying pressure to each part of the steel plate and extending the steel plate, the steel plate has a mold structure that gives the corrugated shape in which a plurality of preliminary concave portions are positioned at a distance in one direction,
The pair of second rolls is
The steel plate after the preforming has a mold structure that gives the embossed shape in which a plurality of concave portions having a U-shaped cross section are located at a distance in the one direction,
The preliminary groove portion and the concave portion correspond to each other one by one, and the depth of the preliminary groove portion is larger than the depth of the corresponding concave portion,
An apparatus for producing a steel plate having an embossed shape.
JP2016091590A 2015-11-24 2016-04-28 Manufacturing method and manufacturing apparatus for steel plate having embossed shape Active JP6741268B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015228802 2015-11-24
JP2015228802 2015-11-24

Publications (2)

Publication Number Publication Date
JP2017100188A true JP2017100188A (en) 2017-06-08
JP6741268B2 JP6741268B2 (en) 2020-08-19

Family

ID=59017778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016091590A Active JP6741268B2 (en) 2015-11-24 2016-04-28 Manufacturing method and manufacturing apparatus for steel plate having embossed shape

Country Status (1)

Country Link
JP (1) JP6741268B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110125216A (en) * 2019-04-23 2019-08-16 太原科技大学 A kind of fuel battery metal polar plate flow passage longitudinal direction roll forming apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110125216A (en) * 2019-04-23 2019-08-16 太原科技大学 A kind of fuel battery metal polar plate flow passage longitudinal direction roll forming apparatus and method
CN110125216B (en) * 2019-04-23 2023-09-29 太原科技大学 Longitudinal roll forming equipment and method for fuel cell metal polar plate runner

Also Published As

Publication number Publication date
JP6741268B2 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
CN102581165B (en) Continuous cold-roll forming method for stainless steel side wall bottom edge beam
RU2019101905A (en) METHOD AND DEVICE FOR MANUFACTURING STAMPED COMPONENT
US10730092B2 (en) Pressed article manufacturing method and press mold
KR102220417B1 (en) Press-molded product manufacturing method and manufacturing device
US11712729B2 (en) Production method for pressed components, press forming device, and metal sheet for press forming
CN111867747B (en) Metal plate for press molding, press molding device, and method for manufacturing press member
US20140000336A1 (en) Method of cold forming a piece of sheet metal by bending or press moulding
CN103857479A (en) Manufacturing method for stepped rectangular pipe
CN103608132B (en) There is the manufacture method of the hollow profile of otch
WO2019167792A1 (en) Production method for pressed components, press molding device, and metal plate for press molding
KR20120055616A (en) Bent member and method for manufacturing same
CN211437481U (en) Hole pattern structure, cogging mill and production line for rolling I-steel by slab
KR102356422B1 (en) Manufacturing method of press parts, press forming apparatus, and metal plate for press forming
CN109226375B (en) Continuous bend manufacturing process in a kind of rolling surface of equal thickness circular arc class part
CA2880661C (en) Method of producing steel pipe
JP2017006943A (en) Press molding product manufacturing method
JP2017100188A (en) Manufacturing method and manufacturing device for manufacturing steel plate having embossment shape
CN102513427A (en) Round rolling forming method and moulds for long and thin metal plate part edges based on brake-press
KR20110136916A (en) The method to product cover of safty door frame
JP6052054B2 (en) Method of bending metal sheet
JP6724672B2 (en) Method for manufacturing H-section steel
CN105127326B (en) Glass clamping element and its cold bending shaping method
JP6112226B2 (en) Press molding method and method of manufacturing press molded parts
JP6907911B2 (en) Manufacturing method of press molded products
CN104438500B (en) Staircase rustless steel skirt panel arc section section bar bent into shape technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200717

R150 Certificate of patent or registration of utility model

Ref document number: 6741268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250