JP6413731B2 - 負荷余裕計算装置、負荷余裕計算方法、及びプログラム - Google Patents

負荷余裕計算装置、負荷余裕計算方法、及びプログラム Download PDF

Info

Publication number
JP6413731B2
JP6413731B2 JP2014252099A JP2014252099A JP6413731B2 JP 6413731 B2 JP6413731 B2 JP 6413731B2 JP 2014252099 A JP2014252099 A JP 2014252099A JP 2014252099 A JP2014252099 A JP 2014252099A JP 6413731 B2 JP6413731 B2 JP 6413731B2
Authority
JP
Japan
Prior art keywords
load
power
calculation
predicted
power system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014252099A
Other languages
English (en)
Other versions
JP2016116290A (ja
Inventor
章弘 大井
章弘 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2014252099A priority Critical patent/JP6413731B2/ja
Publication of JP2016116290A publication Critical patent/JP2016116290A/ja
Application granted granted Critical
Publication of JP6413731B2 publication Critical patent/JP6413731B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Description

本発明は、負荷余裕計算装置、負荷余裕計算方法、及びプログラムに関する。
電力系統の電圧は、電力系統に何らかの故障が生じたり電力需要が増減したりすると、変動する。この場合に電力系統の電圧が新たな平衡点に落ち着く能力あるいはそれに関連した性質を、電力系統の電圧安定性という。
一般に、電力系統の電圧安定性は、電力系統の有効電力−電圧特性(以下、PV特性という)を調べることで解析することが可能である。PV特性は、電力系統内の負荷の有効電力Pと代表的な電気所の母線(ノード)電圧Vとの関係を示す特性であって、例えば図1に示されるように、横軸に有効電力Pを対応させ、縦軸に母線電圧Vを対応させた2次元座標平面上にプロットした複数の点の軌跡により形成されるPV曲線で表現される。
PV曲線を作成することにより、電力需要が上限値(安定限界電力)まで増大した場合に電力系統の電圧が不安定となる電圧(安定限界電圧)を求めることが可能となる。そして、現在の運転点における電圧と安定限界電圧との差である電圧余裕を評価することが可能になるとともに、現在の運転点における需要電力と安定限界電力との差である負荷余裕を評価することも可能になる。よって、電力系統に事故が発生した場合に生ずる過負荷運転に対する対策を講ずることも可能となる。
このようにPV曲線によって上述の電圧余裕や負荷余裕を評価する場合、予想される需要増加方向(以下、負荷増加シナリオという)に負荷を変化させる手法が知られている(例えば、特許文献1、特許文献2参照)。
特開平3−215125号公報 特開平8−130828号公報
上述した手法を用いて負荷余裕等を評価する場合、選択された負荷増加シナリオに応じて負荷余裕の大きさが変化する。したがって、選択された負荷増加シナリオよりも負荷余裕が小さくなるような負荷増加シナリオが存在し得る。負荷余裕が小さい負荷増加シナリオほど電圧崩壊のおそれが大きくなるため、電力系統の安定的な運用の観点からすれば、負荷余裕が最小となる負荷増加シナリオが最も警戒されるべきである。
ここで、電力系統の運転点は、電力需要や発電量に応じて時々刻々と変化し、運転点の変化に伴って、負荷余裕が最小となる負荷増加シナリオもまた変化する。近年、太陽光発電装置、風力発電機、燃料電池などの分散型電源の導入が進んでいるところ、かかる分散型電源の出力は不安定であることが知られている。そのため、分散型電源を含む電力系統の運転点を精度よく予測することは困難である。上述した特許文献は、このような事項を考慮していないため、電力系統の運用者に対して電圧安定性に関する適切な情報を提供することができない。
上記課題を解決するための手段の一つは、分散型電源を含む電力系統において当該電力系統の予測される運転点から電圧安定限界までの負荷の余裕量を計算するための負荷余裕計算装置であって、前記電力系統の予測される複数の運転点を求めるべく、前記負荷で消費される電力の予測値を示す第1情報と、前記分散型電源の発電量についての予測値の分布を示す複数の予測値に関する第2情報と、に基づいて潮流計算を実行する第1計算部と、前記第1計算部の計算結果に基づいて、前記電力系統の運転点が前記予測される複数の運転点のそれぞれから最も近い電圧安定限界点に至る場合の負荷の増加量を示す複数のベクトル量を計算する第2計算部と、計算された前記複数のベクトル量を比較する比較部と、を備える。
その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄の記載、及び図面の記載等により明らかにされる。
本発明によれば、分散型電源を含む電力系統の運用者に対して電圧安定性に関する適切な情報を提供することができる。
PV曲線の一例を示す図である。 本実施形態において負荷余裕が計算される電力系統の一例を示す図である。 本実施形態における負荷余裕計算装置の機能を示すブロック図である。 本実施形態における負荷余裕計算の流れを示すフローチャートである。 1日の時間帯において、負荷で消費される電力の予測と、太陽光発電装置の発電量の予測と、の一例を示すグラフである。 1日の時間帯において、発電機側から負荷に供給される電力の予測の一例を示すグラフである。 電力系統の運転点と電圧崩壊曲面との関係の一例を示すグラフである。 負荷の増加量の計算結果の一例を示す図である。 図8の結果を棒グラフで表示した図である。
本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。
===負荷余裕の計算の対象となる電力系統===
図2を参照して、本実施形態において負荷余裕が計算される対象である電力系統について説明する。図2に示すように、電力系統100は、発電機111,112と、太陽光発電装置113と、第1−第4ノード121−124と、これらノードを相互に接続する線路131−134と、を備える。
具体的に説明すると、発電機111,112は、線路131−134を介して、負荷ノードである第2、第4ノード122,124に電力を供給する。
太陽光発電装置113は、分散型電源の一例であり、本実施形態では、第2ノード122に接続されている。太陽光発電装置113は、第2ノード122に接続された複数の太陽光発電設備を代表していてもよく、更に、第2ノード122に接続された風力発電機、燃料電池をも代表してもよい。太陽光発電装置113において発電された電力は、第2ノード122に接続された負荷に供給される。太陽光発電装置113の発電量のうち、第2ノード122における負荷に供給された電力を除く余剰の電力は、線路134を介して第4ノード124の負荷に供給されてもよい。なお、後述するように、第2ノード122の負荷において消費される電力が変化しない場合でも、太陽光発電装置113の発電量の増減に応じて、発電機111,112側から第2ノード122に供給される電力は変動する(図6参照)。
第1,第3ノード121,123は、発電機111,112に接続された発電機ノードであり、第2、第4ノード122,124は、負荷(不図示)に接続された負荷ノードである。上述したように、第2ノード122には太陽光発電装置113が接続されている。また、第1,第2ノード121,122同士は線路131によって接続され、第1,第4ノード121,124同士は線路133によって接続され、第3,第4ノード123,124同士は線路132によって接続され、第2,第4ノード122,124同士は線路134によって接続されている。ただし、第1ノード121と第3ノード同士、及び第2ノード122と第3ノード123同士は接続されていない。
ここで、第1ノード121は、スラックノードとして指定されているものとする。スラックノードは、送電損失を賄うとともに、他の発電機が対応できない需要超過を負担するのに足りる電力を供給し得るノードである。スラックノードは、要求される発電能力を満たす限り、任意に選択される。また、スラックノードにおける電圧の振幅及び位相角は一定であり、この位相角は他のノードにおける電圧等の基準となる。スラックノードにおける有効電力及び無効電力は、他のノードにおける有効電力及び無効電力に依存する。
本実施形態では、このように2つの発電機ノードと2つの負荷ノードとを有する電力系統について負荷余裕が計算されるものとする。もっとも、本実施形態における負荷余裕計算装置及び負荷余裕計算方法は、より多くのノードを有する電力系統に適用し得る。
なお、本実施形態における負荷余裕の計算上、スラックノードである第1ノード121では、電圧振幅vが指定され、位相角は0度であるものとする。また、発電機ノードである第3ノード123では、有効電力P及び電圧振幅vが指定され、負荷ノードである第2,第4ノード122,124では、有効電力P及び無効電力Qが指定されるものとする。
===負荷余裕計算装置===
図3−図9を参照して、本実施形態における負荷余裕計算装置を説明する。図3は負荷余裕計算装置の機能を示すブロック図、図4は負荷余裕計算の流れを示すフローチャート、図5は1日の時間帯において、負荷で消費される電力の予測と、太陽光発電装置の発電量の予測と、の一例を示すグラフ、図6は1日の時間帯において、発電機側から負荷に供給される電力の予測の一例を示すグラフ、図7は電力系統の運転点と電圧崩壊曲面との関係の一例を示すグラフ、図8は負荷の増加量の計算結果の一例を示す図、及び、図9は、図8の結果を棒グラフで表示した図である。なお、本実施形態では、基準となる系統容量として100MVAが採用されており、図8及び図9では、ノードの有効電力や無効電力が100MVAを基準とした単位法で示されている。
<装置構成>
負荷余裕計算装置1は、電力系統100において運転点から電圧安定限界までの負荷の余裕量を計算する装置であって、図3に示されるように、入力部11と、潮流計算部12(第1計算部)と、シナリオ計算部13(第2計算部)と、比較部14と、を含んで構成される。
(入力部)
入力部11には、電力系統100を構成する第1−第4ノード121−124及び線路131−134に関する情報が入力される。第1−第4ノード121−124に関する情報としては、例えば、上述したノードの種類に応じて電圧v、有効電力P、無効電力Qを示す情報があり、また、線路131−134に関する情報としては、例えば、線路インピーダンスZや線路アドミタンスYを示す情報がある。このような情報は、運用者によって入力装置(不図示)を介して入力されてもよいし、あるいは、運用者からの指示に基づき、通信回線を通じて電力系統100の監視装置(不図示)などから自動的に取得されてもよい。
また、入力部11には、電力系統100における負荷で消費される電力の予測値を示す情報(第1情報)と、太陽光発電装置113の発電量についての複数の予測値に関する情報(第2情報)と、が入力される。具体的には、負荷で消費される電力の予測値は、過去の電力需要の実績値に基づいて算出され、例えば、各負荷ノードにつき、過去の同じ季節(例えば11月上旬)、同じ時間帯(例えば10時−11時)における電力需要の実績値を平均した値として与えられる。また、太陽光発電装置113の発電量の予測値も、過去の実績値に基づいて算出されるが、太陽光発電装置113の発電量が気象条件によって大きく変動することを踏まえ、本実施形態では、発電量に関する複数の実績値が提供されるものとする。このような発電量の実績値は、過去の同じ季節、同じ時間帯における、類似した気象条件の下での発電実績であるとよい。例えば、ある日時において晴れが予想される場合には、過去の同時期における晴れの気象条件下での発電実績の値が用いられてよい。
本実施形態において、上述した電力需要及び発電量の予測値を示す情報は、通信回線を通じて外部の情報装置(不図示)から提供されるものとする。このような情報は、例えば、その情報が提供された時刻から24時間先までの1時間ごとの予測値を含むものとし、また、0時、6時、12時、18時のように6時間ごとに随時更新されるものとする。あるいは、負荷余裕計算装置1は、例えば気象庁から提供される気象予報情報に基づき、多変量解析などの解析手法を用いて、所定の時間間隔ごとに、上述した消費電力の予測値及び発電量の予測値を算出してもよい。なお、入力部11には、天候(晴れ、曇り、雨、雪など)、気温、圧力、風速・風向などの気象情報が、外部の情報装置(不図示)から入力されてもよい。
入力部11は、上述のような、ノード及び線路に関する情報、負荷の消費電力の予測値を示す情報、及び、太陽光発電装置113の発電量の予測値に関する情報を受信すると、受信した情報を潮流計算部12に出力する。
(潮流計算部)
潮流計算部12は、電力系統100の予測される運転点L,Lmaxを求めるべく、負荷で消費される電力の予測値を示す情報(第1情報)と、太陽光発電装置113の発電量の予測値に関する情報(第2情報)と、に基づいて潮流計算を実行する。
具体的には、潮流計算部12は、入力部11から各種情報を受信すると、まず、太陽光発電装置113の発電量の予測値に関する情報に基づいて、これら予測値の分布を計算する。かかる分布の一例として、本実施形態では、平均及び標準偏差を採用する。例えば、発電量に関する複数の予測値が、24時間先までの1時間ごとの複数の予測値として与えられている場合、平均及び標準偏差は、24時間先まで1時間ごとの値を持つ24個の数値として算出される。
そして、潮流計算部12は、このように計算された発電量の予測値の平均を示す情報と、第1−第4ノード121−124及び線路131−134に関する情報と、負荷ノードである第2、第4ノード122,124での電力需要の予測値を示す情報と、に基づいて潮流計算を実行し、第2−第4ノード122−124の電圧ベクトルv2−v4を算出する。このようにして算出された電圧ベクトルv2−v4は、運転点Lに対応する。また、潮流計算部12は、上記各種情報に加えて発電量の予測値の標準偏差にも基づいて、潮流計算を実行し、運転点Lmaxに対応する電圧ベクトルv2’−v4’を算出する。このように、潮流計算部12は、複数の運転点L,Lmaxを算出する。例えば、上述した発電量及び電力需要に関する予測値が1時間ごとに24時間先まで与えられる場合、電圧ベクトルv2−v4、v2’−v4’と、運転点L,Lmaxとは、24時間先まで1時間ごとの電圧ベクトル及び運転点として各々24個算出される。
ここに、運転点Lmaxは、太陽光発電装置113が該当の時間帯における発電量の予測値の平均より標準偏差の3倍だけ少なく発電するとした場合に、電力系統100が取るであろうと予測される運転点を示す。この運転点Lmaxは、図5において横軸に近い側の破線で示されるように、太陽光発電装置113が、予測される複数の発電量のうち最も少ない発電量程度しか発電しない状況に相当する。この状況の下では、発電機ノード121,123は、太陽光発電装置113で賄われることが期待されていた電力需要の一部分を負担する必要があるから、図6において上方の破線で示されるように、より多くの電力を負荷ノード122,124に供給しなければならい。したがって、運転点Lmaxは、図7に示されるように、運転点Lよりも電圧崩壊に近い状態を示している。
なお、潮流計算部12が電圧ベクトルv2−v4、v2’−v4’を算出する手順については後述する。スラックノードとして選択された第1ノード121における電圧振幅及び位相角は、上述したとおり指定されているので、潮流計算部12によって計算されない。
潮流計算部12は、運転点L,Lmaxに対応する電圧ベクトルv2−v4、v2’−v4’を計算すると、計算結果をシナリオ計算部に出力する。なお、潮流計算部12は、L,Lmax以外の運転点を算出してもよい。例えば、太陽光発電装置113の発電量を平均から標準偏差の2倍だけ小さく見積もった値や、発電量の予測値の最大値を用いて、別の運転点L’を算出してもよい。このように様々な値を用いて運転点を算出することで、運用者に様々な情報を提供することができるから、運用者の取り得る措置の幅が広がることが期待される。また、発電量の予測値の平均として、予測値の中央値を用いてもよい。例えば、予測値の中に極端に大きい又は小さい値が含まれている場合、中央値を用いることで妥当な運転点を得ることができる。
(シナリオ計算部)
シナリオ計算部13は、潮流計算部12の計算結果に基づいて、電力系統100の運転点が予測される複数の運転点L,Lmaxのそれぞれから最も近い電圧安定限界点L1,L2に至る場合の負荷の増加量を示すベクトル量p1,p2を計算する。ベクトル量p1の集合は、運転点Lから最小の負荷増加量で電力系統100の電圧が崩壊するような負荷増加シナリオであり、同様に、ベクトル量p2の集合は、運転点Lmaxから最小の負荷増加量で電力系統100の電圧が崩壊するような負荷増加シナリオである。例えば、発電量及び電力需要の予測値が、1時間ごとに24時間先までの予測値として与えられる場合、負荷増加シナリオp1,p2は、1時間ごとに24時間先まで24組ずつ算出される。
このような負荷増加シナリオp1,p2の要素は、負荷ノードである第2,第4ノード122,124では、当該負荷ノードにおける有効電力P2,P4及び無効電力Q2,Q4であり、発電機ノードである第3ノード123では、当該発電機ノードにおける有効電力P3である(図8参照)。ただし、スラックノードとして選択された第1ノード121の有効電力及び無効電力は、第2−第4ノードの有効電力及び無効電力に応じて定まるため、シナリオ計算部13によって計算されない。なお、シナリオ計算部13が負荷増加シナリオp1,p2を計算する手法については後述する。
シナリオ計算部13は、負荷増加シナリオp1,p2を計算すると、計算結果を比較部14に出力する。
(比較部)
比較部14は、シナリオ計算部13から計算結果を受信すると、計算されたベクトル量p1,p2の要素を比較し、表示装置2に出力する。例えば、同じ時間帯についてのベクトル量p1,p2の要素の差分や比を求めることで、運用者は、運転点が点Lから点Lmaxに遷移するとベクトル量の各要素がどれぐらいの量だけ又はどの程度の比率だけ増加(減少)するか、を容易に把握することができる。また、例えば、ベクトル量p2のQ2要素を10時−11時の時間帯と11時−12時の時間帯との間で比較するように、同じベクトル量の同じ要素を異なる時間帯について比較することで、運用者は、同じベクトル量の時間変化を予測しながら適時に適切な措置を講じることができる。
表示装置2は例えば液晶表示装置であり、シナリオ計算部13によって計算されたベクトル量p1,p2の要素の絶対値を、例えば表や棒グラフで表示する(図8、図9参照)。例えば、発電量や電力需要の予測値が24時間先までの1時間ごとの予測値として与えられることに対応して、負荷増加シナリオp1、p2がそれぞれ24組算出されるとき、図8の表や図9のグラフは、24時間先までの負荷増加シナリオの変化を示す24つの表やグラフとなる。
このような負荷余裕計算装置1の機能は、ROM、RAM、CPUを有するコンピュータがプログラムを実行することによって実行される。
<負荷増加シナリオの計算>
図4を参照して、運転点L,Lmaxから電圧安定限界までの負荷の余裕量(増加量)が計算されるステップS1−S4を説明する。
− ステップ1: 情報の入力
ステップS1において、各種情報が入力部11に入力される。具体的には、電力系統100を構成する第1−第4ノード121−124及び線路131−134に関する情報が、作業者によって、又は作業者の指示に基づいて、入力される。また、負荷で消費される電力の予測値を示す情報(第1情報)と、太陽光発電装置113の発電量についての複数の予測値に関する情報(第2情報)とが、一定の時間間隔ごと(例えば6時間ごと)に入力される。このような予測値は、上述したように、例えば24時間先まで1時間ごとの予測値として与えられる。
入力部11は、消費電力及び発電量の予測値に関する情報が入力される毎に、かかる情報を、ノード及び線路に関する情報とともに潮流計算部12に出力する。
− ステップ2: 潮流計算
潮流計算部12が入力部11から前述の情報を受信すると、ステップS2において、運転点L,Lmaxを求めるべく潮流計算が行われる。潮流計算は、潮流計算部12によって実行される。
潮流計算部12は、潮流計算に先立ち、太陽光発電装置113の発電量の予測値に関する情報に基づいて、これら予測値の平均及び標準偏差を計算する。このような発電量の予測値の平均及び標準偏差は、例えば、上述したように24時間先までの1時間ごとの値として24個ずつ算出される。また、潮流計算部12は、線路インピーダンスZ又は線路アドミタンスYの情報に基づいて、アドミタンス行列[Y]を生成する。
そして、潮流計算部12は、例えば次の数式1で表されるノード方程式を、指定されたノード条件の下で解き、第2−第4ノード122−124における電圧ベクトルv2−v4、v2’−v4’を得る。電圧ベクトルv2−v4、v2’−v4’は、例えば、上述のように24時間先までの1時間ごとの値として算出される。
Figure 0006413731
本実施形態では、電圧ベクトルv2−v4の算出の際、太陽光発電装置113の平均的な発電量を想定して、第2ノード112について指定された有効電力Pの値から、太陽光発電装置113の予測される発電量の平均を減算した値を、第2ノード112の有効電力P’とする。また、電圧ベクトルv2’−v4’の算出の際には、太陽光発電装置113が予想の最低水準で発電する場合を想定して、ノード112について指定された有効電力Pの値から、太陽光発電装置113の予測される発電量の平均を減算し、太陽光発電装置の予測される発電量の標準偏差の3倍を加算した値を、第2ノード112の有効電力P’’とする(図5,図6参照)。つまり、
電圧ベクトルv2−v4の算出に用いられる第2ノードの有効電力P’
= 指定された有効電力P − 太陽光発電装置の発電量の期待値
電圧ベクトルv2’−v4’の算出に用いられる第2ノードの有効電力P’’
= 指定された有効電力P
−(太陽光発電装置の発電量の期待値−太陽光発電装置の発電量の標準偏差の3倍)
として、2種類の運転点L、Lmaxに対応する電圧ベクトルを算出する。
なお、ノード方程式は、各ノードにおける電圧振幅v、位相角θ、有効電力P、無効電力Q、ヤコビアン行列[J]を用いて表されてもよいが、この場合にも電圧ベクトルv2−v4、v2’−v4’が得られる。
このようにして得られた電圧ベクトルv2−v4、v2’−v4’と、指定されたスラックノードの電圧ベクトルv1(=v1’)と、アドミタンス行列[Y]と、に基づき、以下の数式2で表される関係式を用いて、運転点L,Lmaxにそれぞれ対応する各ノードの有効電力P及び無効電力Qを算出する。なお、運転点L,Lmaxに対応する各ノードの有効電力P及び無効電力Qは、例えば24時間先までの1時間ごとの値として与えられる。
Figure 0006413731
運転点Lは、例えば図7に示されるように、第2−第4ノード122−124における有効電力P2(L)−P4(L)及び無効電力Q2(L)−Q4(L)で与えられる。同様に、運転点Lmaxは、有効電力P2(Lmax)−P4(Lmax)及び無効電力Q2(Lmax)−Q4(Lmax)で与えられる。なお、例えばP2(L)は、運転点Lにおける第2ノード122の有効電力Pを意味する。
− ステップ3: 負荷増加シナリオの計算
潮流計算によって運転点L,Lmaxが計算されると、ステップS3において、負荷増加シナリオが計算される。負荷増加シナリオの計算は、シナリオ計算部13によって実行される。本実施形態では、運転点L,Lmaxのそれぞれから電圧崩壊曲面Σまでの負荷の増加量が最小となるような負荷増加シナリオp1,p2が計算される。上述したように、負荷増加シナリオp1,p2は、例えば24時間先まで1時間ごとの値として算出される。
ここで、電圧崩壊曲面Σは電力系統の電圧安定限界を示す曲面であり、電力系統の運転点が電圧崩壊曲面Σに到達すると、電力系統の電圧が崩壊する。電圧崩壊曲面Σは、電力系統を構成する機器(負荷や線路、調相設備を含む)が指定されると、電力需要や電圧の増減に関わらずほぼ一定に定まることが知られている。電力系統の運転点が特定の運転点から電圧崩壊曲面Σに至るような負荷の増加量の組合せ(負荷増加シナリオ)は無数に存在するが、本実施形態において計算されるのは、負荷の増加量が系統全体として最小になるような個々のノードの負荷増加量の組合せである。
図7を参照して、負荷増加シナリオの一例を説明する。図7には、本実施形態における電力系統100の電圧崩壊曲面Σが、第2ノード122の有効電力P2及び第4ノード124の有効電力P4を軸とする座標平面上に示されている。ただし、電圧崩壊曲面Σは、例えば、第2ノード122の無効電力Q2、第3ノード123の有効電力P3などの他の要素を軸とする座標平面上に示すこともできる。また、図7には、運転点L,Lmaxとそれら運転点に対応する座標(p2(L),p4(L)),(p2(Lmax),p4(Lmax))が示されている。
図7において、第2、第4ノード122,124における電力需要P2,P4が増減すると、運転点が移動する。例えば、運転点は、点Lから電圧崩壊点L1(p2(L1),p4(L1))に至ることもあれば、別の電圧崩壊点L2(p2(L2),p4(L2))に至ることもある。いずれの場合でも、電力系統100の電圧が崩壊する。ただし、線分L−L1は電圧崩壊曲面Σに直交していることから、運転点Lとの関係では、点L1に至る負荷増加シナリオが、全ての負荷増加シナリオのうち最小の負荷余裕を有する。したがって、電力系統100の安定的な運用の観点からすれば、運転点Lに対しては、負荷増加シナリオL−L1を求めることが適当である。同様に、運転点Lmaxに対しては、電圧崩壊曲面Σまでの距離が最小になる負荷増加シナリオLmax−L2を求めることが適当である。
そこで、シナリオ計算部13は、運転点L,Lmaxのそれぞれについて、次の数式3,数式4を解いて、運転点から電圧崩壊曲面Σまでの距離が最小となる電圧崩壊点を計算する。このようにして計算された電圧崩壊点と運転点とを結ぶ直線L−L1、Lmax−L2が、運転点L,Lmaxのそれぞれに対する最悪の負荷増加シナリオとなる。
Figure 0006413731
Figure 0006413731
ただし、x0は運転点L,Lmaxに対応する電圧ベクトル、xは電圧安定限界点における電圧ベクトル、pは負荷増加シナリオ、F(x,x0,p)は負荷余裕、f(x)は潮流方程式、J(x)はf(x)のヤコビアン行列、wはヤコビアン行列の左固有ベクトルである。
つまり、シナリオ計算部13は、運転点L,Lmaxのそれぞれについて、数式4に示す電圧崩壊の制約条件の下で数式3のF(x,x0,p)を最小化することで、最小の負荷余裕を計算する。そして、F(x,x0,p)が最小となる場合のp1,p2が、運転点L,Lmaxに対する最悪の負荷増加シナリオとして算出される。
このような負荷増加シナリオp1,p2は、例えば、特定の時刻について次のように示される。
シナリオp1:
(P2, Q2, P3, P4, Q4) = (0.1507, 0.3457, 0.3672, 0.1608, 0.1308)
シナリオp2:
(P2, Q2, P3, P4, Q4) = (0.2503, 0.3657, 0.2972, 0.1802, 0.1101)
ここで、P2,Q2,P3,P4,Q4はノードラベルであり、このノードラベルにおける最初の文字P,Qはそれぞれ有効電力、無効電力を表し、それに続く数字は第2−第4ノード122−124に対応するノード番号を示している。また、シナリオp1,p2の各要素、つまり負荷余裕は、100MVAを基準とした単位法で表示されている。なお、本実施形態では、発電機ノードである第3ノード123における無効電力の増加量は計算されない。
上記のような算出結果は、特定の時刻ごとに、例えば図8に示されるように、運転点L,Lmaxのそれぞれについてノードラベル、ノード番号、ノード要素、負荷余裕を要素として含む表として、比較部14に出力される。なお、ノード要素は、該当するノードが負荷ノードであるか、あるいは発電機ノードであるかを示している。
− ステップ4: 比較
負荷増加シナリオp1,p2がシナリオ計算部13から出力されると、ステップS4において、これらシナリオが比較され、表示装置2に出力される。ステップS4の動作は、比較部14によって実行される。
例えば、図8に示されるような同じ時間帯における運転点L,Lmaxの同じ要素が、差分や比率に基づいて比較される。また、異なる時間帯における同じ運転点の同じ要素が比較されてもよい。そして、このような比較の結果は、図8の表や図9のグラフに追記されてもよい。あるいは、図9のグラフのように同じ時間帯における運転点L,Lmaxの同じ要素同士が隣り合うようにグラフ表示されることも、比較の一種であると言える。なお、負荷増加シナリオが1時間ごとに24時間先まで算出される場合、図9のグラフは24枚作成される。あるいは、シナリオの各要素の変化が容易に把握できるように、シナリオの要素ごとに1時間ごとの計算値が表示されてもよい。
表示装置2は、比較部14からの出力された表やグラフを画面に表示する。これにより、運用者は、太陽光発電装置113が期待どおりに発電した場合と、太陽光発電装置113の発電量が予想の最低水準である場合と、の両方の場合について、電圧崩壊に最も影響を与える要因とその度合いを容易に把握することができる。したがって、例えば、太陽光発電装置113の発電量が平均的な値から最低水準に激減した場合にも、運用者は、図8の表及び図9のグラフに基づいて、電圧崩壊に最も影響を及ぼすノードの有効電力P又は無効電力(図8、図9では第2ノード122の無効電力Q)を把握することができる。そこで、運用者は、図8と図9の例では、第2ノード122における無効電力Qの増加幅を抑えるべく、例えば調相設備を稼働させる、といった適切な措置を迅速に講じることができる。
そして、所定の時間間隔(例えば6時間)が経つと、新たな負荷増加シナリオを示す表やグラフが生成されて、表示装置2に表示される。この点、発電量や電力需要の予測値は、予測が行われた時点に近いほど高い信頼度を有し、先の時間になるほど大きくばらつく傾向を示すことが知られている。したがって、所定の時間間隔(例えば6時間)で、かかる予測値が更新されることで、負荷増加シナリオの信頼度が向上する。
前述したとおり、負荷余裕計算装置1は、電力系統100の予測される複数の運転点L,Lmaxを求めるべく、負荷で消費される電力の予測値を示す第1情報と、分散型電源の一例としての太陽光発電装置113の発電量についての複数の予測値に関する第2情報と、に基づいて潮流計算を実行する潮流計算部12と、潮流計算部12の計算結果に基づいて、電力系統100の運転点が予測される複数の運転点L,Lmaxのそれぞれから最も近い電圧安定限界点L1,L2に至る場合の負荷の増加量を示すベクトル量p1,p2を計算するシナリオ計算部13と、計算されたベクトル量p1,p2を比較する比較部14と、を備える。このような実施形態によれば、複数の運転点に対応する複数のベクトル量(負荷増加シナリオ)を比較することによって、太陽光発電装置113の出力の変動によって影響を受けるシナリオ要素及び影響の程度が容易に把握されるから、分散型電源を含む電力系統100の運用者に対して電圧安定性に関する適切な情報を提供することができる。
また、太陽光発電装置113の発電量の予測値に関する第2情報が、複数の予測値の分布の一例として平均及び標準偏差を示すことで、太陽光発電装置113の期待される平均的な発電量に基づく負荷増加シナリオp1と、太陽光発電装置113の発電量が期待値よりも増減する場合の負荷増加シナリオp2と、が得られる。よって、統計的に信頼性の高い負荷増加シナリオを提供することができる。
また、潮流計算部12が、発電量に関する複数の予測値の平均に対応する運転点と、複数の予測値の平均に標準偏差の3倍を減じた値に対応する運転点と、を求めるべく潮流計算を実行することで、運用者は、太陽光発電装置113の発電量が平均的な値から最低水準に激減する厳しい事態を想定し、予め対応措置を講じることができる。
また、潮流計算部12は、所定の時間間隔ごとに、更新された第1及び第2情報に基づいて潮流計算を繰り返し実行し、シナリオ計算部13は、潮流計算部12が潮流計算を実行する毎にベクトル量p1,p2を計算し、比較部14は、シナリオ計算部13がベクトル量p1,p2を計算する毎に、計算されたベクトル量p1,p2を比較することが好ましい。ベクトル量(負荷増加シナリオ)が定期的に更新されるため、最新の情報に基づく信頼性の高い負荷増加シナリオを得ることができる。
なお上述した実施の形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明はその趣旨を逸脱することなく変更、改良され得るとともに、本発明にはその等価物も含まれる。
1 負荷余裕計算装置
11 入力部
12 潮流計算部
13 シナリオ計算部
14 比較部
2 表示装置
100 電力系統
111,112 発電機
113 太陽光発電装置
121−124 第1−第4ノード
131−134 線路

Claims (7)

  1. 分散型電源を含む電力系統において当該電力系統の予測される運転点から電圧安定限界までの負荷の余裕量を計算するための負荷余裕計算装置であって、
    前記電力系統の予測される複数の運転点を求めるべく、前記負荷で消費される電力の予測値を示す第1情報と、前記分散型電源の発電量についての予測値の分布を示す複数の予測値に関する第2情報と、に基づいて潮流計算を実行する第1計算部と、
    前記第1計算部の計算結果に基づいて、前記電力系統の運転点が前記予測される複数の運転点のそれぞれから最も近い電圧安定限界点に至る場合の負荷の増加量を示す複数のベクトル量を計算する第2計算部と、
    計算された前記複数のベクトル量を比較する比較部と、
    を備えることを特徴とする負荷余裕計算装置。
  2. 前記第2情報は、前記複数の予測値の平均及び標準偏差を示す
    ことを特徴とする請求項1に記載の負荷余裕計算装置。
  3. 前記第1計算部は、前記複数の予測値の前記平均に対応する運転点と、前記複数の予測値の前記平均に前記標準偏差の所定倍を減じた値に対応する運転点と、を求めるべく潮流計算を実行する
    ことを特徴とする請求項2に記載の負荷余裕計算装置。
  4. 前記第1計算部は、所定の時間間隔ごとに、更新された前記第1及び第2情報に基づいて潮流計算を繰り返し実行し、
    前記第2計算部は、前記第1計算部が潮流計算を実行する毎に前記複数のベクトル量を計算し、
    前記比較部は、前記第2計算部が前記複数のベクトル量を計算する毎に、計算された前記複数のベクトル量を比較する
    ことを特徴とする請求項1−のいずれかに記載の負荷余裕計算装置。
  5. 前記分散型電源は太陽光発電装置である
    ことを特徴とする請求項1−のいずれかに記載の負荷余裕計算装置。
  6. 分散型電源を含む電力系統において当該電力系統の予測される運転点から電圧安定限界までの負荷の余裕量を計算するための負荷余裕計算方法であって、
    前記電力系統の予測される複数の運転点を求めるべく、前記負荷で消費される電力の予測値を示す第1情報と、前記分散型電源の発電量についての予測値の分布を示す複数の予測値に関する第2情報と、に基づいて潮流計算を実行し、
    前記潮流計算の結果に基づいて、前記電力系統の運転点が前記予測される複数の運転点のそれぞれから最も近い電圧安定限界点に至る場合の負荷の増加量を示す複数のベクトル量を計算し、
    計算された前記複数のベクトル量を比較する
    ことを特徴とする負荷余裕計算方法。
  7. 分散型電源を含む電力系統において当該電力系統の予測される運転点から電圧安定限界までの負荷の余裕量を計算するべく、コンピュータに対して、
    前記電力系統の予測される複数の運転点を求めるべく、前記負荷で消費される電力の予測値を示す第1情報と、前記分散型電源の発電量についての予測値の分布を示す複数の予測値に関する第2情報と、に基づいて潮流計算を実行する第1機能と、
    前記第1機能の計算結果に基づいて、前記電力系統の運転点が前記予測される複数の運転点のそれぞれから最も近い電圧安定限界点に至る場合の負荷の増加量を示す複数のベクトル量を計算する第2機能と、
    計算された前記複数のベクトル量を比較する第3機能と、
    を実行させるプログラム。
JP2014252099A 2014-12-12 2014-12-12 負荷余裕計算装置、負荷余裕計算方法、及びプログラム Active JP6413731B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014252099A JP6413731B2 (ja) 2014-12-12 2014-12-12 負荷余裕計算装置、負荷余裕計算方法、及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014252099A JP6413731B2 (ja) 2014-12-12 2014-12-12 負荷余裕計算装置、負荷余裕計算方法、及びプログラム

Publications (2)

Publication Number Publication Date
JP2016116290A JP2016116290A (ja) 2016-06-23
JP6413731B2 true JP6413731B2 (ja) 2018-10-31

Family

ID=56142573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014252099A Active JP6413731B2 (ja) 2014-12-12 2014-12-12 負荷余裕計算装置、負荷余裕計算方法、及びプログラム

Country Status (1)

Country Link
JP (1) JP6413731B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106709651B (zh) * 2016-12-26 2021-01-05 贵州电网有限责任公司电力调度控制中心 一种基于风险理论的电力系统安全性评估系统
JP2022181250A (ja) * 2021-05-26 2022-12-08 株式会社日立製作所 電力系統運用計画生成装置および電力系統運用計画生成方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06296327A (ja) * 1993-04-09 1994-10-21 Toshiba Corp 電圧安定性指標表示装置および方法
EP2752953B1 (en) * 2011-09-02 2017-11-22 Hitachi, Ltd. Power system voltage stabilizer and stabilization method
EP3163706B1 (en) * 2014-06-30 2019-11-06 Hitachi, Ltd. Voltage stability monitoring device and method

Also Published As

Publication number Publication date
JP2016116290A (ja) 2016-06-23

Similar Documents

Publication Publication Date Title
EP3392995B1 (en) Voltage stability monitoring device and method
Teng et al. Understanding the benefits of dynamic line rating under multiple sources of uncertainty
Yorino et al. Robust power system security assessment under uncertainties using bi-level optimization
US8706311B2 (en) Electric power demand/supply planning apparatus and method for the same
EP3163706B1 (en) Voltage stability monitoring device and method
US20140316598A1 (en) Method and Apparatus for Managing Demand Response Resources in a Power Distribution Network
JP5159695B2 (ja) 配電系統状態推定方法及び配電系統状態推定装置
US20190058330A1 (en) Electric power control apparatus, electric power control method, and program
US10211634B2 (en) Dynamic state estimation of power distribution system
Vanin et al. Comparison of linear and conic power flow formulations for unbalanced low voltage network optimization
US20140088778A1 (en) Control device for distributed generators
Fahrioglu et al. Investigating a ranking of loads in avoiding potential power system outages
JP6413731B2 (ja) 負荷余裕計算装置、負荷余裕計算方法、及びプログラム
KR20150059313A (ko) 송전 한계를 고려한 자동 발전 제어 방법
Machalek et al. Automated electrical demand peak leveling in a manufacturing facility with short term energy storage for smart grid participation
Guinot et al. Economic impact of performances degradation on the competitiveness of energy storage technologies–Part 2: Application on an example of PV production guarantee
JP6376923B2 (ja) 太陽光発電システムを有した配電系統における負荷量推定装置および負荷量推定方法
EP3750223B1 (en) Predicting voltage stability of a power system post-contingency
Bedoya et al. A method for computing minimum voltage stability margins of power systems
Wang et al. Voltage instability performance of risk-based security constrained optimal power flow
JP5989731B2 (ja) 電力予測装置、電力予測方法、及びプログラム
Bienstock et al. Robust modeling of probabilistic uncertainty in smart grids: Data ambiguous chance constrained optimum power flow
US11637756B2 (en) Methods and systems for evaluating data transportability in distribution grids
JP2016111892A (ja) 負荷余裕計算装置、負荷余裕計算方法、及びプログラム
Xie et al. Quantifying benefits of demand response and look-ahead dispatch in systems with variable resources

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180917

R150 Certificate of patent or registration of utility model

Ref document number: 6413731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250