JP6412590B2 - 対向ピストンエンジンの空調構造 - Google Patents

対向ピストンエンジンの空調構造 Download PDF

Info

Publication number
JP6412590B2
JP6412590B2 JP2016568593A JP2016568593A JP6412590B2 JP 6412590 B2 JP6412590 B2 JP 6412590B2 JP 2016568593 A JP2016568593 A JP 2016568593A JP 2016568593 A JP2016568593 A JP 2016568593A JP 6412590 B2 JP6412590 B2 JP 6412590B2
Authority
JP
Japan
Prior art keywords
exhaust
intake
cylinder
chamber
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016568593A
Other languages
English (en)
Other versions
JP2017516022A5 (ja
JP2017516022A (ja
Inventor
フクワ,ケビン,ビー.
コジューニック,ジョン,ジェイ.
ナイク,スラミア,ディー.
レドン,ファビエン,ジー.
レグナー,ゲールハルト
ベニテズ,ロドリゴ ツェルメノ
ベニテズ,ロドリゴ ツェルメノ
Original Assignee
アカーテース パワー,インク.
アカーテース パワー,インク.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アカーテース パワー,インク., アカーテース パワー,インク. filed Critical アカーテース パワー,インク.
Publication of JP2017516022A publication Critical patent/JP2017516022A/ja
Publication of JP2017516022A5 publication Critical patent/JP2017516022A5/ja
Application granted granted Critical
Publication of JP6412590B2 publication Critical patent/JP6412590B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B7/00Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F01B7/02Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders with oppositely reciprocating pistons
    • F01B7/14Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders with oppositely reciprocating pistons acting on different main shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/10Other arrangements or adaptations of exhaust conduits of exhaust manifolds
    • F01N13/105Other arrangements or adaptations of exhaust conduits of exhaust manifolds having the form of a chamber directly connected to the cylinder head, e.g. without having tubes connected between cylinder head and chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/20Multi-cylinder engines with cylinders all in one line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/28Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F02B75/282Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders the pistons having equal strokes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10157Supercharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10222Exhaust gas recirculation [EGR]; Positive crankcase ventilation [PCV]; Additional air admission, lubricant or fuel vapour admission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/08EGR systems specially adapted for supercharged engines for engines having two or more intake charge compressors or exhaust gas turbines, e.g. a turbocharger combined with an additional compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/112Intake manifolds for engines with cylinders all in one line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

[関連出願の相互参照]
本出願は、本願と所有者を同じくする、2013年7月11日にUS2013/0174548として公開された米国特許出願第13/782,802号明細書、および2014年1月30日にUS2014/0026563として公開された米国特許出願第14/039,856号明細書の主題に関連する主題を含む。本出願は、さらに、本願と所有者を同じくする同時出願の「対向ピストンエンジンの空調システムの開放型吸排気室構造」と題する米国特許出願第14/284,134号明細書の主題に関連する主題も含む。
本発明の分野は、2行程サイクル対向ピストンエンジンに関する。具体的には、この分野は、対向ピストンエンジンの直列シリンダへ空気を送出しかつ前記シリンダからの排気を移送する空調システムに関する。
2行程サイクルエンジンは、クランク軸の完全な1回転と、クランク軸へ連接されるピストンの2行程とで1つの動作サイクルを完成させる内燃機関である。これらの行程は、典型的には、圧縮および爆発行程として表される。2行程サイクルエンジンの一例は、シリンダの中心軸に沿って反対方向へ往復移動するために、シリンダボア内に2つのピストンが配置される対向ピストンエンジンである。各ピストンは、シリンダの一端に最も近くなる下心(BC)位置と、前記一端から最遠となる上心(TC)位置との間を移動する。シリンダは、シリンダ側壁において個々のBCピストン位置の近くに形成されるポートを有する。対向するピストンは各々、一方のポートを制御して、そのBC位置への移動に伴ってポートを開放し、かつBC位置からそのTC位置への移動に伴ってポートを閉鎖する。一方のポートは、給気がボアに入れるように機能し、もう一方のポートは、燃焼生成物がボアから出る通路を提供し、これらは各々、「吸気」ポートおよび「排気」ポートと呼ばれる(一部の記述において、吸気ポートは、「空気」ポート、または「掃気」ポートと称される)。ユニフロー掃気式対向ピストンエンジンでは、圧縮された給気は、排気ガスがその排気ポートから流れ出るにつれてその吸気ポートを介してシリンダに入り、よって、ガスは、シリンダを介して単一方向に−吸気ポートから排気ポートへ−流れる(「ユニフロー」)。
給気および排気生成物は、空調システム(「ガス交換」システムとも呼ばれる)を介してシリンダを流れる。燃料は、燃料送出システムからの噴射によって送出される。エンジンがサイクルするにつれて、制御の機械化は、エンジンの動作状態に応答して空調システムおよび燃料送出システムを作動することにより、燃焼を管理する。空調システムは、燃焼の間の望ましくない化合物の生成を減らすために、排気ガス再循環(「EGR」)システムを装備する場合がある。
対向ピストンエンジンでは、空調システムは、外気をエンジン内へ取り込み、かつ燃焼ガス(排気)をエンジンから移送するが、これには、ポンプ作業が必要である。ポンプ作業は、コンプレッサ等のガスタービン駆動ポンプによって行われてもよく、かつ/またはスーパーチャージャ等の機械駆動ポンプによって行われてもよい。場合によっては、ターボチャージャのコンプレッサユニットは、下流側スーパーチャージャの入口を2段階ポンピング構成で供給してもよい。ポンピング配置(単段、2段またはその他)は、有効燃焼の保証にとって極めて重要な掃気プロセスを駆動し、エンジンの熱効率表示を増加させ、かつピストン、リングおよびシリンダ等のエンジン構成要素の寿命を延ばす。また、ポンプ作業は、排気ガス再循環システムも駆動する。
図1は、ユニフロー掃気式のターボチャージ式2行程サイクル対向ピストンエンジン10を示す。エンジン10は、少なくとも1つのポートシリンダ50を有する。例えば、このエンジンは、1つのポートシリンダ、2つのポートシリンダまたは3つ以上のポートシリンダを有してもよい。各ポートシリンダ50は、ボア52と、シリンダ壁の個々の端部の近くに形成または機械加工される、長手方向に離隔された吸気ポートおよび排気ポート54および56とを有する。吸気ポートおよび排気ポートは、各々、1つまたは複数の周方向の開口または穿孔アレイを含む。記述法によっては、各開口は、「ポート」と称されるが、このような「ポート」による1つまたは複数の周方向アレイの構造は、図1に示されているポート構造と何ら変わりはない。ピストン60および62は、ボア52内に、それらの端面61および63を対向させて滑動可能式に配置される。ピストン60は、吸気ポート54を制御し、かつピストン62は、排気ポート56を制御する。図示されている例において、エンジン10は、さらに、少なくとも1つのクランク軸を含み、好ましくは、エンジンは、2つのクランク軸71および72を含む。エンジンの吸気ピストン60は、クランク軸71へ結合され、かつ排気ピストン62は、クランク軸72へ結合される。
ピストン60およびピストン62がそれらのTC位置に存在するとき、ボア52内で両ピストンの端面61と端面63との間に燃焼室が画定される。着火時期は、ピストンの端面が互いに最も近づくことから、圧縮サイクルにおける、最小の燃焼室容積が発生する時点が参照されることが多く、この時点を「最小容積」と称する。燃料は、端面61と端面63との間に位置決めされるシリンダ空間内へ直に噴射される。一部の例では、噴射は、最小容積において、または最小容積の近くで発生するが、他の例では、噴射は、最小容積になる前に発生してもよい。燃料は、シリンダ50の側壁を介する個々の開口内に位置合わせされる1つまたは複数の燃料噴射器ノズルを介して噴射される。このようなノズル70が、2つ図示されている。燃料は、吸気ポート54を介してボア52内へ入れられる給気と混合する。端面61と端面63との間で混合気が圧縮されるにつれて、圧縮空気は、燃料を点火させる温度および圧力に達する。次には、燃焼が起こる。
図1をさらに参照すると、エンジン10は、エンジン10への給気およびエンジン10からの排気の移送を管理する空調システム80を含む。ある代表的な空調システム構造は、給気サブシステムと、排気サブシステムとを含む。空調システム80において、給気ソースは、吸気を受け入れ、かつこれを処理して加圧空気(以後、「給気」)にする。給気サブシステムは、給気をエンジンの吸気ポートへ移送する。排気サブシステムは、排気生成物を、他の排気コンポーネントへ送出するためにエンジンの排気ポートから移送する。
空調システム80は、共通のシャフト123上で回転するタービン121およびコンプレッサ122を有するターボチャージャ120を含む場合がある。タービン121は、排気サブシステムと流体連通し、かつコンプレッサ122は、給気サブシステムと流体連通している。ターボチャージャ120は、エネルギーを、排気ポート56を出て排気ポート56から直に排気チャネル124へ流れ込む排気ガスから、または排気ポート56を介して出力される排気ガスを収集する排気マニホルドアッセンブリ125から抽出する。その際、タービン121は、タービン121を通過して排気出口チャネル128に至る排気ガスによって回転される。これにより、コンプレッサ122が回転し、外気が圧縮されて給気が発生する。給気サブシステムは、スーパーチャージャ110と、吸気マニホルド130とを含んでもよい。給気サブシステムは、さらに、給気を受け入れかつこれを、エンジンの1つまたは複数の吸気ポートへ送出する前に冷却するための少なくとも1つの給気冷却器(以後、「冷却器」)を含んでもよい。コンプレッサ122により出力される給気は、給気チャネル126を介して冷却器127へと流れ、スーパーチャージャ110によって吸気ポートへポンピングされる。スーパーチャージャ110によって圧縮された給気は、吸気マニホルド130へ出力される。吸気ポート54は、スーパーチャージャ110によりポンピングされる給気を、吸気マニホルド130を介して受け入れる。スーパーチャージャ110の出口と吸気マニホルド130への入口との間には、第2の冷却器129が設けられてもよい。
態様によっては、空調システム80は、燃焼により生成される望ましくない放出物を、燃焼により生成される排気ガスの一部をエンジンのポートシリンダを通して再循環させることによって減らすように構成される場合がある。再循環された排気ガスは、燃焼ピーク温度を下げるために給気と混合され、これにより、望ましくない放出物の生成が減る。このプロセスは、排気再循環(「EGR」)と称される。図示されているEGR構造は、掃気の間にポート56から流れる排気ガスの一部を入手し、かつこれを、シリンダ外部のEGRチャネル131を介して給気サブシステム内の到来する吸気流へと移送する。再循環される排気ガスは、EGRチャネル131を介してバルブ138(「EGRバルブ」と称する)の制御下で流れる。
図2は、図1の空調システム80を詳細略図で示している。この点に関連して、給気サブシステムは、吸気をコンプレッサ122へ提供する。コンプレッサ122が回転すると、圧縮された空気がコンプレッサの出口から給気チャネル126を介して流れ、スーパーチャージャ110へ入る。スーパーチャージャ110によりポンピングされる給気は、冷却器129を介して吸気マニホルド130へ流れ込む。加圧された給気は、吸気マニホルド130から、シリンダブロック160内に支持されるシリンダ50の吸気ポートへ送出される。態様によっては、エンジンは、スーパーチャージャ110の出口をその入口へ結合する再循環チャネル112を含んでもよい。再循環チャネル112内へバルブ139を設けることにより、スーパーチャージャ出口下流側の給気圧力を修正すれば、シリンダへの給気の流れを変えることができるようになる。
シリンダ50の排気ポートからの排気ガスは、排気マニホルド125からタービン121へ流れ込み、かつタービンから排気出口チャネル128へ流れ込む。例によっては、排気出口チャネル128内に1つまたは複数の後処理デバイス(AT)162が設けられる。排気は、EGRバルブ138の制御下で、EGRチャネル131を介して再循環される。EGRチャネル131は、EGRミキサ(不図示)を介して給気サブシステムと流体連通している。
対向ピストンエンジンは、エンジンのガス(給気、排気)をシリンダへ、かつシリンダから移送するように設計される様々な構造を含んできている。例えば、米国特許第1,517,634号明細書は、他のシリンダの管と共に1つの排気管へと合体する、各シリンダの排気エリアと連通する管を有する多管排気マニホルドを利用した、初期の対向ピストン航空機エンジンについて記載している。このマニホルドは、エンジンの片側に取り付けられた。
その後、1930年代において、対向ピストン航空機エンジンのJumo205ファミリが、二重クランク軸直列対向ピストンエンジンの基本的な空調アーキテクチャを確立した。各エンジンには、個々の対向する管ペアを各シリンダの環状排気エリアと連通して配置するように、6気筒の直列シリンダブロックの反対側面へボルトで締まる多管排気マニホルドが装備された。各排気マニホルドの出口管は、タービンへの2つの入口のそれぞれへ接続された。2段給圧システムは、加圧給気を提供した。第2の段により出力される加圧給気は、エンジン底部にまたがる中間冷却器を介して流れた。給気は、次に、中間冷却器から管を介して流出し、排気マニホルドのようにエンジンの両側に沿って延びる吸気導管に入る。この排気および吸気システムの構造は、結果的にエンジンの容積、重量およびコストを増加させかつパフォーマンスを低減させるという重大な重荷を課すものであった。
この先行技術による排気マニホルドは、エンジンのサイズおよび重量が増加するという罰則を引き出した。個々の管はすべて、管開口とシリンダの環状排気空間とを密接に結合するための構造用支持材を必要とした。典型的には、この支持材は、フランジをシリンダブロックの側面上の対応する面積へ密封可能に締め付けるためのねじ締結具を受け入れるに足る面積を有する、各管の端におけるフランジの形状であった。各マニホルドのフランジは、シリンダの直列配置に整合するように横方向に配置される。フランジの幅は、シリンダ間のスペーシングを制限し、よってエンジンは、比較的重く、かつ大型である必要があった。
先行技術によるこのJumo205の吸気構造は、エンジンの各側面に1つずつ存在する2つの吸気導管へ長さ、曲がりおよびくびれを冷却器と導管との間の給気通路内へ案内する管および取付具を介して結合される、エンジンへ取り付けられる中間冷却器を必要とした。方向および流れ抵抗が変動する結果、シリンダ毎に給気圧力の急な変動をもたらしかつ変化するエンジン状態に応じて変わる寄生的な渦および揺動が生じた。吸気ポートへ送出される給気圧力のサージ、スパイクおよび他の急激な不整合および非対称性は、統一性のない燃焼および不完全な掃気をもたらす可能性があり、エンジンの効率が下がり、走行汚れが増し、かつエンジン設計が意図したエンジン動作状態の範囲に渡る制御がより困難になる。
このJumo吸気構造は、空間をシリンダの入口エリアのための個々の区画に細分することによりシリンダブロック内部に形成されるマニホルド構造も含んでいる。各区画は、吸気導管からの給気を受け入れるために、シリンダブロックの反対側面を介して開放されていた。このようなマニホルド構造は、吸気ポート間の給気圧力差をもたらす場合があり、これにより、エンジンの動作状態が変わるにつれて燃焼および掃気が変動する可能性がある。
米国特許第1,517,634号明細書
複数のシリンダが直列構成で配置される対向ピストンエンジンのサイズ、重量およびコストは、最小限に抑えることが望ましい。これは、シリンダブロックの内部に、全てのシリンダ排気ポートを含む単一の排気室を設けることによって達成され、これにより、フランジ付き多管マニホルド構造の必要性が排除される。個々の排気ポートから放出される排気ガスを専用の管ペアによって収集しかつ移送する代わりに、全ての排気ポートにより放出される排気ガスは、シリンダブロック内の単一の排気室に収集され、ここから単一の管によって移送される。放出される排気ガスは、シリンダブロックを介して開放される少なくとも1つの排気出口を介して排気室を出る。効果的には、排気ガスの排気出口から排気サブシステムまでの移送に必要な管は、1つのみであり、よって、先行技術による排気マニホルドの別々の管の間のフランジ間スペーシングがなくなる。その結果、多管マニホルドの重量がなくなり、シリンダ間のスペーシングを縮小することが可能であり、かつエンジンは、より小型に製造することが可能である。
一貫した確実な燃焼および掃気を保証するためには、対向ピストンエンジンの吸気ポートへ供給される給気の流れのスパイク、サージ、揺動および他の非対称性を排除することが望ましく、かつ有益である。対向ピストンエンジンにおいて、給気圧力の変動は、全てのシリンダ吸気ポートを含むシリンダブロック内部の開放された分割されていない吸気室にぴったりと結合される給気冷却器を設けることによって弱められる。吸気室は、シリンダブロックの反対側面を介して開放される対向する細長い吸気口を含む。個々の給気冷却器は、個々の細長い吸気口の近くに位置合わせされ、かつ、細長い吸気口と整合されかつこれへぴったりと結合される細長い出口開口を有する。態様によっては、給気冷却器の出口開口の幅は、吸気口のそれと略同じである。他の態様において、給気冷却器の出口開口の幅は、吸気口の幅以下である。給気冷却器は、給気圧力のスパイクおよびサージを弱め、かつ空気流の非対称性を減らす、またはなくする。給気冷却器の出口開口の延びは、空気流の対称性を保全し、かつ吸気室へ入る給気の速度を低減する。その結果、給気サブシステムにおける寄生的な流体フローの効果により生じる燃焼の不整合は、低減され、またはなくされる。
図1は、先行技術によるユニフロー掃気式2行程サイクル対向ピストンエンジンを示す略図であり、適宜「先行技術」と記されている。
図2は、図1の対向ピストンエンジンの先行技術による空調システムの詳細を示す略図であり、適宜「先行技術」と記されている。
図3Aは、車両内の装備品用に構成された2行程サイクル対向ピストンエンジンの正面図である。 図3Bは、図3Aのエンジンの上部を示す平面図である。 図3Cは、図3Aのエンジンの側面図である。 図3Dは、図3Cの拡大図であり、図3Aに示すエンジンのシリンダブロック内における吸気室および排気室の位置および開口をより良く示すためにエンジンのコンポーネントが取り除かれている。
図4Aは、図3Aのエンジンの線A−Aに沿った側断面図である。 図4Bは、図3Aのエンジンの線B−Bに沿った断面図である。 図4Cは、図3Aのエンジンの線C−Cに沿った断面図である。
図5Aは、EGRを装備した図3Aのエンジンを示す。 図5Bは、EGRを装備した図3Aのエンジンを示す。
図6は、本明細書による、対向ピストンエンジンの吸気/排気サブシステムを示している。
図7は、本明細書による、吸気室への給気の流れを示す略図である。
図8は、図7の吸気室内への空気流路を略示したものである。
本明細書は、単一平面が全てのエンジン気筒の長手軸を含むように複数のシリンダが一列に位置合わせされたシリンダブロックを有する、2行程サイクル、二重クランク軸の対向ピストンエンジンに関する。シリンダの横方向の位置合わせは、エンジン分野の標準的名称に沿って「直列」構成と称する。さらに、直列配置は、「真っ直ぐ」であって、長手軸を含む平面が略垂直である可能性もあれば、「傾斜」していて、長手軸を含む平面が傾斜している可能性もある。したがって、以下の説明は、直列構成に限って行なうが、真っ直ぐな変形例および傾斜した変形例にも当てはまる。また、エンジンを、長手軸を含む平面を略水平に配置するようにして位置合わせすることも可能であって、この場合、直列配置は、「水平」になる。
図3A、図3Bおよび図3Cは、エンジンのシリンダ(これらの図では見えない)を備えるシリンダブロック202を有する2行程サイクル対向ピストンエンジン200を示し、これらのシリンダは、エンジン200の長手方向Lに配向されて傾斜した直列構成に配置される。エンジンは、車両、機関車、海洋船舶、静止電源、等々といったアプリケーションにおいて占有するスペースが最小限になるように、コンパクトに構成される。エンジン200には、ターボチャージャ210、スーパーチャージャ214、給気冷却器215および216、シリンダブロック202内に形成または機械加工される吸排気室(これらの図では見えない)および様々な管、マニホルドおよび導管を含む空調システムが取り付けられる。吸排気室を除いて、これらのエレメントは、従来手段を用いてシリンダブロック上に支持されてもよい。吸排気室は、シリンダブロック内部に細長いオープンギャラリまたはオープンチェストとして形成される。好ましくは、吸排気室は、少なくとも、これらが、各々が単一シリンダのみの吸気(または排気)エリアを含む個々のチャンバまたはサブチャンバに区分化されないという意味において、分割されていない。ターボチャージャ210は、排気駆動タービン211と、コンプレッサ213とを備える。好ましくは、スーパーチャージャ214は、例えばクランク軸によって機械的に駆動されるが、この限りではない。コンプレッサ213の出口は、導管217および給気冷却器215を介してスーパーチャージャ214の入口と流体連通している。スーパーチャージャ214の出口は、マニホルド220を介して各給気冷却器216と流体連通し、マニホルド220の各分岐221は、個々の給気冷却器216へカバー223によって結合される。排気室の出口開口は、カバー230によって閉鎖される。カバー230を介する管231は、排気室とタービン211の入口との間を流体連通させる。これらの図には示されていないが、エンジン200は、EGR用に、排気室とスーパーチャージャ214との間にバルブ制御式導管を装備してもよい。
図3Dは、吸気室240および排気室245が見えるように幾つかのコンポーネントを取り除いた、エンジン200の片側を示す。吸気室240および排気室245の双方は、図中に見えるシリンダブロック202の側面を介して、かつシリンダブロックの反対側面をも介して開いている。
図3Dおよび図4Aは、複数のシリンダを備えたシリンダブロック202の構造を示している。3つのシリンダ250は、例として示されている。本明細書において、「シリンダ」は、シリンダブロック202内に形成されるシリンダトンネル内に保持されるライナ(「スリーブ」と呼ばれることもある)で構成される。各ライナは、シリンダの長手軸に沿ってシリンダ排気ポート256を含む環状排気部分から分離される、シリンダ吸気ポート254を含む環状吸気部分を有する。吸気ポート254および排気ポート256をエンジン200の別個のレベルに置いて、シリンダ250はシリンダブロック202内に直列に配置される。好ましくは、排気ポート256は、吸気ポート254より下位に配置される。各ライナのボア内には、2つの逆移動するピストン260、262が配置される。ピストン260は、エンジンの吸気ポートを制御し、ピストン262は、排気ポートを制御する。シリンダブロック202の上部分に支持される第1のクランク軸271は、伸び寸法Lと並行に位置合わせして配置される。ピストン260は全て、第1のクランク軸271へ結合される。シリンダブロック202の底部分に支持される第2のクランク軸272は、伸び寸法Lと並行に位置合わせして配置される。ピストン262は全て、第2のクランク軸272へ結合される。
図3Dおよび図4Bを参照すると、吸気室240の構造は、全てのシリンダ吸気ポート254を含む分割されていない容積を有する、シリンダブロック202内部の細長いオープンチェストの構造である。言い替えれば、エンジンの吸気ポートは悉く、全ての吸気ポートにより共有される吸気室240内の同じ容積内に位置合わせされ、かつ前記同じ容積から給気を受け入れる。図4Bの通り、吸気室240は、シリンダブロック202の第1の側面を介して開く第1の細長い吸気口241と、シリンダブロック202の第1の側面とは反対側の第2の側面を介して開く第2の細長い吸気口241とを含む。したがって、細長い吸気口241は、互いに位置合わせされかつ吸気室240の反対側面に配置されて存在する。好ましくは、吸気室240および吸気口241の伸びは、長手方向Lにある。図3Dおよび図4Bから分かるように、吸気室240内の支柱262は、吸気室240の床と天井との間の構造用支持材となる。好ましくは、柱262は、シリンダ250から離れて吸気口241に隣接して、または吸気口241の内部へと位置合わせされる。
図3Bおよび図6から分かるように、給気冷却器216は、シリンダブロック202の反対側面に隣接して位置合わせされる。図4Bおよび図6の通り、各給気冷却器216は、冷却器216の出口面と位置合わせされかつ前記出口面と同延である第1端と、吸気口と位置合わせされかつ吸気口と同延である第2端とを有するフランジアダプタ264によって、個々の吸気室吸気口241へ短結合される。フランジアダプタ264は、シリンダブロック202と一体形成されても、シリンダブロック202へ付着される別個の部品を備えてもよい。好ましくは、フランジアダプタは、空気流を吸気室240内へ最小限の途絶で案内するように成形される。例えば、フランジアダプタは、曲げられてもよい。態様によっては、給気冷却器216は、対向する主要面218を備える略ボックス状の構造を有有する。
図3Aおよび図6の通り、給気冷却器は、好ましくは、シリンダブロック202に対して折り畳み形状で配置され、各冷却器216は、主要面218を側面に向けてブロックの各側面に隣接して位置合わせされる。別の態様から見ると、給気冷却器216は、シリンダブロック202に対してサドルバッグ様形状で配置され、給気冷却器216は、シリンダブロック202の対向する個々の側面上に整合されて位置づけられる。何れの視点からも、主要面218がシリンダブロック202の反対側面に面する冷却器の配置は、エンジン200のコンパクトな外形に大きく寄与する。例によっては、給気冷却器216は、給気(恐らくは排気ガスを含む)からの熱を液体に変換するように構築される気体-液体熱交換器であってもよい。
図3Dおよび図4Cに関して言えば、排気室245の構造は、全てのシリンダ排気ポート256を含む分割されていない容積を有する、シリンダブロック内部の細長いオープンチェストの構造である。言い替えれば、エンジンの排気ポートは悉く、全ての排気ポートにより共有される排気室245内の同じ容積内に位置合わせされ、かつ前記同じ容積へと排気ガスを放出する。図4Cの通り、排気室は、シリンダブロック202の第1の側面を介して開く細長い排気出口246aと、シリンダブロック202の第2の側面を介して開く細長い排気出口246bとを有する。したがって、排気室245の反対側面に、細長い排気室排気出口246aおよび246bが存在する。図3Dおよび図4Cから分かるように、排気室245内の支柱268は、排気室245の床と天井との間の構造用支持材となる。好ましくは、柱268は、排気ポートから離れた排気出口246aおよび246bの近くに位置合わせされる。エンジンの作動中にシリンダブロック202が担う機械的負荷に鑑みて、吸気室の柱262は、排気室の柱268と位置を合わせることが望ましい場合がある。態様によっては、エンジン作動中の排気室245の構造体における有害な温度効果を減じるために、柱268内に軸方向の冷却材通路269を設けることが望ましい場合がある。排気出口246aは、シリンダブロック202から外向きに曲がる細長いカバー263によって閉鎖される。細長いカバー230は、排気出口246bを覆って広がる。カバー263および230は、シリンダブロック202と一体形成されても、前記ブロックへ付着される別個の部品を備えてもよい。タービン211の入口は、管231を受け入れるカバー230を通した開口267を介して排気室245と流体連通している。好ましくは、排気室245および排気出口246aおよび246bの伸びは、長手方向Lにある。
排気室245のオープンチェスト構造は、近接したシリンダ間スペーシングを許容し得るが、隣接するシリンダスリーブ間の低減された距離は、1つのシリンダから放出される排気ガスが、隣接するシリンダのピストンおよびスリーブに、特にはスリーブの排気部分間の狭い間隙に与える熱衝撃を増大させる可能性がある。したがって、例によっては、シリンダから放出される排気ガスが、隣接するシリンダスカートに与える熱衝撃を低減することが望ましい場合がある。この熱衝撃を低減する1つの方法は、排気室245内の隣接するシリンダ排気部分間に、成形された排気デフレクタ247を設けることである。各デフレクタは、排気室245の床と天井との間に延びる柱として形成されてもよい。排気デフレクタ247は、隣接するシリンダ250間に、シリンダの排気エリアに近接して位置合わせされる。排気デフレクタ247の形状は、一方の排気室開口に面する縁を形成する角度で出合う1対の表面247aおよび247bを含む。例えば、排気デフレクタの断面形状は、菱形状であってもよい。表面247aおよび表面247bは、1つの排気ポートから放出される排気ガスを隣接するシリンダから離れて偏向させる角度に曲げられる。図5Bは、排気デフレクタ247が隣接するシリンダに接触していることを示唆しているが、これは、必須の限定事項ではない。態様によっては、デフレクタは、シリンダに接触しないようなサイズであってもよく、よって、ガスは、シリンダとデフレクタとの間を流れることができる。あるいは(または追加的に)、排気ポート開口は、隣接するライナおよび/または排気室の壁等の近隣構造体の方向よりも、排気室開口の方向でより多くの排気が流れるように、サイズおよび/またはシリンダライナの環状排気部分の周りのスペーシングが変わってもよい。
排気室の片側から反対側への流体連通は、最大化して、排気室245にわたって可能な限り一様な圧力を保持することが望ましい。ブローダウン(排気ポートが開いている時間)中に排気室内の圧力平衡を保持することで、エンジンの掃気パフォーマンスを高める。これらの態様において、排気室245は、エンジンの片側からもう一方の側までの流れ空間を増大するために、何れかの端または両端に追加的な空間を含んでもよい。例えば、排気室245におけるシリンダブロック202の端203に近い追加的な空間を参照されたい。また、カバー230および263の何れかまたは双方の設計によって、輪郭取りされた空間が追加されてもよい。排気室の片側からもう一方の側までの圧力不平衡は、掃気フロントをより対称性にせず片側へ偏らせることから、シリンダを介する質量流量にとって有害である。これらの事例の一部において、排気室245のサイズは、吸気室240のそれを超えてもよい。エンジンの構造的完全性にとって必要であれば、排気室245内に1つまたは複数の追加的な支柱268ペアが設けられてもよい。
対向ピストンエンジン200の空調システムは、スーパーチャージャ214のためのEGRチャネルおよび再循環チャネルの何れかまたは双方も含んでもよい。したがって、態様によっては、エンジン200に排気ガス再循環用の装備をすることが望ましい場合がある。この点に関連して、図5Aおよび図5Bを参照すると、排気室245は、カバー230を介して排気室245へと開く管232を備えた入口があるEGRチャネルと流体連通している。EGRチャネルは、EGRバルブ235と、排気室245からの排気ガスを、供給される給気と混合するために吸気室へ移送する管236とを備える。さらなる態様によっては、排気ガスを再循環の間に冷却することが望ましい場合がある。これらの事例において、管236は、再循環される排気ガスを、マニホルドカバー260を介して給気冷却器215の入口へ送出する。
図5Aおよび図6から分かるように、再循環バルブ254および管256を備える再循環チャネル219は、スーパーチャージャ214の出口と再循環チャネル219の入口とを連結する。バルブ254の制御下で、再循環チャネルは、エンジンの動作状態により必要とされる通りに、スーパーチャージャ214により与えられるブースト圧力を調節する。好ましくは、再循環される給気は、スーパーチャージャ214へと再び入力される前に冷却される。したがって、図3B、図3Cおよび図6に於いて最も良く分かるように、スーパーチャージャ214により出力される加圧給気の一部は、マニホルド220を介して、一般に2つの分岐221と連結される入口を有する再循環バルブ254の制御により、再循環チャネル219を介してスーパーチャージャ214の入口へ再循環されてもよい。 再循環バルブ254の出口は、再循環管256により、導管217を介して冷却器215の入口へ連結される。
EGRおよびスーパーチャージャ再循環のオプションは、給気冷却器215の利用可能性に起因して、冷却器216の折り畳み式(またはサドルバック)配置と良く融和する。給気冷却器215の設備は、再循環される排気も再循環される給気も、スーパーチャージャ214とは独立して冷却器216へ導かれる必要がないことを意味する。結果的に、冷却器216と吸気室240との間の短いカップリング接続は中断されず、冷却器216から吸気室内への対向する一様な質量流量が保全され、かつコンパクトなエンジン外形が維持される。
図5Aおよび図6を参照すると、エンジンの作動中、コンプレッサ213により供給される加圧吸気は、給気冷却器215内で冷却され、スーパーチャージャ214の入口へ供給される。給気は、さらに、スーパーチャージャ214によって加圧され、マニホルド220によって給気冷却器216間に分割される。EGRバルブ235は、マニホルドカバー260内で給気と混合されて冷却器215内で冷却される再循環排気ガスの流れを管理する。再循環される排気ガスと給気との冷却された混合体は、スーパーチャージャ214の入口へ供給される。図6および図7を参照すると、マニホルド220は、給気冷却器216が略等しい質量の空気流を受け入れて給気冷却器216の「サドルバッグ」形状に良く融和する吸気室の吸気口241へ送出するように、給気の流れをマニホルド分岐221間へほぼ均等に分割する。
図7および図8を参照すると、各給気冷却器216の形状および構造によって給気の流れが散開し、空気流の速度が低下され、かつスパイクおよびサージが弱まる。吸気室240には、これらの冷却器から反対方向の空気流が入る。好ましくは、各給気冷却器216のコアは、冷却器の出口面270の幅Wが吸気室240の幅W以下であるような大きさにされ、好ましくは、この制約は、出口面270からフランジアダプタ264を介する吸気室240までの空気流路において維持される。事例によっては、必要な冷却容量および給気冷却器216に利用可能なエンジン空間に依存して、出口面270の幅Wは、吸気室240の幅W未満であってもよく、かつまた、フランジ264の幅W未満であってもよい。これらの事例において、出口面270からフランジアダプタ264を介する吸気室240までの空気流路の幅は、空気流路におけるねじれおよびくびれを回避するために連続的に、または一以上の段階で段階的に増加すること、言い替えれば、W≦W≦Wであること、が望ましい。
図7および図8の通り、給気冷却器216の大きい出口面270は、吸気室240に流れ込む給気の空気速度を低減させる。冷却器出口面に沿ったあらゆる点において、空気は、略同じ流れベクトルを有する。給気冷却器216上流の空気流路における曲がりおよび形状変化によってもたらされる給気の流れの非対称性および揺動は、冷却器を介する給気の通過によって、取り除かれないにしても大幅に抑制される。コンピュータモデリングは、図6に示されている空調システムの給気部分が、シリンダ毎の吸気ポートへの質量流量の変動を減らすことを示している。モデリングは、シリンダへの質量流量がエンジン速度から大幅に独立しているという別の利点を示している。これらの効果は、構造上の柱262を、全ての柱に等しく空気が当たるようにシリンダから離して吸気室の外側へ位置合わせすることにより強化される。
給気部分のこの配置のさらに別の利点は、エンジンの空間および構造要件から生じるパッケージング上の制約が、吸気室240へ入る対向する空気流の相互作用を調整する必要性とうまく均衡していることにある。冷却器216により提供される波動減衰効果がなければ、このような均衡の達成はさらに困難であると思われる。さらに、2つの冷却器間で冷却機能を分けることにより、単一の大型冷却器および冷却器を吸気室に連結する別個のマニホルドを用いて効率的にパッケージされ得るものより大きい冷却器容積のパッケージングが可能になる。
図6に示されている空調システムの排気部分により、排気室245内の空き空間は、排気ガス流に対する低抵抗を提供し、これにより、全てのシリンダにおいて給気比が高まる。デフレクタの成形柱247(図4Cおよび図5B)は、隣接するシリンダスカートに対する熱衝撃を減じる。エンジンの片側に各々排気ランナおよび多管マニホルドを有する従来の対向ピストンエンジン(Jumo205等)の排気システムに比較すると、本明細書に記述しかつ例示している排気部分構造は、表面積が少なく、熱伝達の低減が促進され、かつ保有する気体容積も少なく、エンジンの過渡応答が向上する。図6に示されている空調システムの排気部分のコンピュータモデリングは、ターボチャージャ210と開放型排気室245との間の短いカップリングが排気波の共振を減らし、よって、吸気ポートにおける滑らかな一定の質量流量に寄与することも示している。給気部分における滑らかな一定の質量流量は、新鮮な給気を失うことなく残りの排気生成物をシリンダから押し出す一様な掃気フロントに略寄与する。
したがって、吸排気室のこの新規配置は、より軽量でよりコンパクトな対向ピストンエンジンをもたらし、かつシリンダを介する質量流量を高める。冷却された給気の望ましい効果は、この新規の室配置に、エンジンの吸気ポートへの送出時点で給気の流れを冷却もしかつ滑らかにもする小型でコンパクトな給気冷却器アーキテクチャを装備することによって実現される。本明細書に開示された詳細には、本発明を逸脱することなく、またはその優位点を犠牲にすることなく、様々な変更が行われてもよい。

Claims (10)

  1. 第1および第2の対向する側面と、前記対向する側面間に直列アレイで配置される複数のシリンダ(250)とを伴うシリンダブロック(202)を有し、各シリンダは、排気ポート(256)から前記シリンダの軸方向に分離される吸気ポート(254)を含む、対向ピストンエンジン(200)であって、
    前記シリンダブロック内部の分割されていない吸気室(240)と、
    前記第1の側面を介して前記吸気室内へ開く第1の吸気口(241)、および前記第2の側面を介して前記吸気室内へ開く第2の吸気口(241)であって、各吸気口は、細長い大きさを有し、シリンダ吸気ポートの全てが、内部に給気を受け入れるために前記吸気室内に包含されている、第1の吸気口および第2の吸気口と、
    前記対向する側面のうちの一方を介して開く少なくとも1つの排気出口(246a、246b)を含む、前記シリンダブロック内の排気室であって、シリンダ排気ポートの全てが、排気を内部に放出するために前記排気室内に包含されている、排気室(245)と、
    を備え
    個々の給気冷却器(216)が、前記シリンダブロックの前記対向する側面の各々に隣接し、各給気冷却器は、細長い大きさの吸気口と流体連通し、且つ、前記吸気口と位置合わせされる細長い出口開口を有することを特徴とする対向ピストンエンジン。
  2. 前記給気冷却器をスーパーチャージャ(214)へ連結する空気流マニホルド(220)をさらに含む、請求項に記載の対向ピストンエンジン
  3. 前記少なくとも1つの排気出口(246b)は、タービン(211)入口と流体連通している、請求項に記載の対向ピストンエンジン
  4. 前記少なくとも1つの排気出口(246b)は、タービン(211)入口およびEGR入口と流体連通している、請求項に記載の対向ピストンエンジン
  5. 前記少なくとも1つの排気出口(246b)は、タービン(211)入口と流体連通している、請求項1に記載の対向ピストンエンジン
  6. 前記少なくとも1つの排気出口(246b)は、タービン(211)入口およびEGR入口と流体連通している、請求項1に記載の対向ピストンエンジン
  7. 前記シリンダは、真っ直ぐな直列アレイおよび傾斜した直列アレイのうちの一方で配置される、請求項1に記載の対向ピストンエンジン
  8. 前記対向ピストンエンジンは、前記シリンダブロックに支持される第1および第2のクランク軸(271.272)をさらに含む、請求項に記載の対向ピストンエンジン
  9. 請求項1に記載の対向ピストンエンジンの空調方法であって、
    前記シリンダブロックの対向する側面に位置づけられる給気冷却器内へ圧縮空気を供給する工程と、
    前記給気冷却器から前記シリンダブロック内部の吸気室へ、対向する冷却された圧縮空気の流れを介して供給する工程と、
    全てのシリンダ吸気ポートが、前記吸気室空間に前記圧縮空気を受け入れる工程と、
    全てのシリンダ排気ポートが、前記シリンダブロック内部の排気室空間へ排気を放出する工程と、を含む方法。
  10. 請求項1に記載の対向ピストンエンジンの空調方法であって、
    前記シリンダブロック内の分割されていない吸気室へ、対向する冷却された圧縮空気の流れを供給する工程と、
    全ての吸気ポートが、前記分割されていない吸気室に前記圧縮空気を受け入れる工程と、
    全ての排気ポートが、前記シリンダブロック内の分割されていない排気室へ排気を放出する工程と、を含む空調方法。
JP2016568593A 2014-05-21 2015-05-04 対向ピストンエンジンの空調構造 Active JP6412590B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/284,058 2014-05-21
US14/284,058 US9581024B2 (en) 2014-05-21 2014-05-21 Air handling constructions for opposed-piston engines
PCT/US2015/029033 WO2015179116A1 (en) 2014-05-21 2015-05-04 Air handling constructions for opposed-piston engines

Publications (3)

Publication Number Publication Date
JP2017516022A JP2017516022A (ja) 2017-06-15
JP2017516022A5 JP2017516022A5 (ja) 2018-03-29
JP6412590B2 true JP6412590B2 (ja) 2018-10-24

Family

ID=53181352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016568593A Active JP6412590B2 (ja) 2014-05-21 2015-05-04 対向ピストンエンジンの空調構造

Country Status (5)

Country Link
US (1) US9581024B2 (ja)
EP (2) EP3263834B1 (ja)
JP (1) JP6412590B2 (ja)
CN (1) CN106414987B (ja)
WO (1) WO2015179116A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10001057B2 (en) * 2014-08-04 2018-06-19 Achates Power, Inc. Exhaust layout with accompanying firing sequence for two-stroke cycle, inline, opposed-piston engines
US9435290B2 (en) * 2014-08-04 2016-09-06 Achates Power, Inc. Opposed-piston engine structure with a split cylinder block
US9670823B2 (en) * 2015-03-24 2017-06-06 GM Global Technology Operations LLC Engine with a turbocharger cooling module
US20180306144A1 (en) 2015-04-07 2018-10-25 Achates Power, Inc. Air handling system constructions with externally-assisted boosting for turbocharged opposed-piston engines
US10323563B2 (en) 2016-05-03 2019-06-18 Achates Power, Inc. Open exhaust chamber constructions for opposed-piston engines
JP2020531729A (ja) 2017-08-18 2020-11-05 アカーテース パワー,インク. 対向ピストンエンジン用の遮熱コーティングを含む排気プレナムチャンバ構造
EP3645844A1 (en) 2017-08-18 2020-05-06 Achates Power, Inc. Exhaust manifold constructions including thermal barrier coatings for opposed-piston engines
US11047334B2 (en) 2019-11-12 2021-06-29 Achates Power, Inc. Intake chamber air diffusing feature in an opposed-piston engine

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1517634A (en) 1920-09-08 1924-12-02 Junkers Hugo Exhaust manifold
GB364395A (en) 1930-02-24 1932-01-07 Andre Adolphe Morton Improvements in two-stroke cycle internal combustion engines having opposed pistons in each cylinder
US2295879A (en) 1941-04-07 1942-09-15 James G Davidson Internal combustion engine
US3023743A (en) 1957-11-12 1962-03-06 Jr George A Schauer Engine construction
US3005306A (en) * 1959-05-01 1961-10-24 Bush Vannevar Free piston engine power unit
DE1451902A1 (de) * 1964-05-09 1969-05-29 W U H Gessner Fa Mehrzylindrige Zweitakt-Brennkraftmaschine mit Kurbelgehaeusepumpen
US4071000A (en) * 1975-06-23 1978-01-31 Herbert Chester L Double crankshaft valved two cycle engine
US4269158A (en) 1978-07-06 1981-05-26 Allis-Chalmers Corporation Intercooler for internal combustion engine
JPS57151019A (en) * 1981-03-13 1982-09-18 Yamaha Motor Co Ltd Air cooler of engine
US4714056A (en) 1984-08-03 1987-12-22 Honda Giken Kogyo Kabushiki Kaisha Two-cycle engine
WO1988005862A1 (en) * 1987-01-28 1988-08-11 Johnston Richard P Variable-cycle reciprocating internal combustion engine
FI94893C (fi) 1994-03-29 1995-11-10 Waertsilae Diesel Int Dieselmoottorin paineväliainekanavien kytkentäjärjestelmä
JP3362626B2 (ja) 1997-01-31 2003-01-07 スズキ株式会社 エンジンの吸気装置
DE19840616C1 (de) 1998-09-05 1999-12-02 Daimler Chrysler Ag Brennkraftmaschine in V-Bauweise mit einem mechanisch angetriebenen Lader
JP4149621B2 (ja) * 1999-09-03 2008-09-10 邦彦 奥平 対向ピストン式2サイクルユニフロー型機関
SE522700C2 (sv) 2000-07-07 2004-03-02 Volvo Car Corp Förbränningsmotor
US6554585B1 (en) * 2001-02-05 2003-04-29 Giorgio Maracchi Power generating assembly capable of dual-functionality
US6976479B1 (en) 2004-08-10 2005-12-20 Electro-Motive Diesel, Inc. Engine with optimized engine charge air-cooling system
KR20080005370A (ko) * 2005-05-11 2008-01-11 보그워너 인코포레이티드 엔진 공기 제어시스템
EP2399014B1 (en) * 2009-02-20 2014-12-17 Achates Power, Inc. Multi-cylinder opposed piston engine
DE102009050258B3 (de) 2009-10-21 2010-11-18 Mann + Hummel Gmbh Saugrohr einer Brennkraftmaschine und Kühlfluidladeluftkühler
JP6117695B2 (ja) * 2010-05-18 2017-04-19 アカーテース パワー,インク. 対向ピストンエンジンのためのegr構造
US8549854B2 (en) 2010-05-18 2013-10-08 Achates Power, Inc. EGR constructions for opposed-piston engines
US8677749B2 (en) * 2011-01-28 2014-03-25 EcoMotors International Exhaust system for an internal combustion engine
US8763570B2 (en) * 2011-09-14 2014-07-01 GM Global Technology Operations LLC Engine assembly including multiple bore center pitch dimensions
GB201122432D0 (en) 2011-12-23 2012-02-08 Cox Powertrain Ltd Internal combustion engines
JP5948883B2 (ja) 2012-01-17 2016-07-06 マツダ株式会社 エンジンの吸気装置
JP6215848B2 (ja) 2012-02-21 2017-10-18 アカーテース パワー,インク. 対向ピストン式2ストロークエンジンのための排気管理戦略
US9145858B2 (en) * 2012-02-29 2015-09-29 Ford Global Technologies, Llc Intake system with an integrated charge air cooler

Also Published As

Publication number Publication date
CN106414987A (zh) 2017-02-15
EP3129594A1 (en) 2017-02-15
US20150337727A1 (en) 2015-11-26
EP3263834B1 (en) 2019-08-14
CN106414987B (zh) 2019-07-02
US9581024B2 (en) 2017-02-28
EP3129594B1 (en) 2017-07-19
WO2015179116A1 (en) 2015-11-26
JP2017516022A (ja) 2017-06-15
EP3263834A1 (en) 2018-01-03

Similar Documents

Publication Publication Date Title
JP6412590B2 (ja) 対向ピストンエンジンの空調構造
US11136950B2 (en) Intake air systems and components
JP6538723B2 (ja) 対向ピストンエンジンの空気調整システムの開放型吸排気室構造
US9228485B2 (en) Air handling system having cooling assembly
US9222404B2 (en) Cooling assembly having multiple coolers
AU2006202679C1 (en) An apparatus for a vehicle
CN103403319A (zh) 支座壳体和内燃机
EP3194742B1 (en) Two-stroke cycle, inline, opposed-piston engine and accompanying firing sequence
KR20140030148A (ko) 차지 공기 유도 요소 및 차지 공기 유도 요소를 가지는 내연 엔진
US11542858B2 (en) Charge air cooling unit for a two-staged turbocharger
US8857416B2 (en) Connection box with a charge air cooling arrangement of an internal combustion engine
US20200063641A1 (en) Intake device for multi-cylinder engine
JP2010281308A (ja) 過給装置及びこれを備える内燃機関

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180928

R150 Certificate of patent or registration of utility model

Ref document number: 6412590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250