JP6409953B2 - Method for producing alloy steel powder for sintered member raw material - Google Patents

Method for producing alloy steel powder for sintered member raw material Download PDF

Info

Publication number
JP6409953B2
JP6409953B2 JP2017501723A JP2017501723A JP6409953B2 JP 6409953 B2 JP6409953 B2 JP 6409953B2 JP 2017501723 A JP2017501723 A JP 2017501723A JP 2017501723 A JP2017501723 A JP 2017501723A JP 6409953 B2 JP6409953 B2 JP 6409953B2
Authority
JP
Japan
Prior art keywords
powder
molten steel
alloy steel
sintered member
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017501723A
Other languages
Japanese (ja)
Other versions
JPWO2017043091A1 (en
Inventor
中村 尚道
尚道 中村
小林 聡雄
聡雄 小林
宇波 繁
繁 宇波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2017043091A1 publication Critical patent/JPWO2017043091A1/en
Application granted granted Critical
Publication of JP6409953B2 publication Critical patent/JP6409953B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、焼結部材原料用合金鋼粉の製造方法に関するものであり、特に、Crのように酸化しやすい合金化元素を含む合金鋼粉を水アトマイズ法で製造する際の前記合金化元素の酸化を抑制し、合金鋼粉を安定的に製造することのできる方法に関するものである。   The present invention relates to a method for producing alloy steel powder for sintered member raw material, and in particular, the alloying element when producing alloy steel powder containing an alloying element that is easily oxidized like Cr by the water atomization method. It is related with the method which can suppress the oxidation of and can manufacture an alloy steel powder stably.

鉄粉や合金鋼粉を、金型を用いて所望の形状に圧縮成形した後に焼結する粉末冶金法は、複雑な形状を有する機械部品を低コストで製造できる技術として、例えば、自動車用部品の製造など、幅広い用途に用いられている。粉末冶金法において原料として用いられる鉄粉や合金鋼粉(以下、単に「鉄粉」という場合がある)としては、ミルスケールや鉄鉱石をコークスなどの炭素源を還元剤として固相還元することによって得られる海綿鉄粉や、所定の成分に調整した溶鋼に高圧水ジェットを噴射して粉砕した水アトマイズ鉄粉などが工業的に製造されている。   Powder metallurgy, in which iron powder or alloy steel powder is compressed into a desired shape using a mold and then sintered, is a technology that can manufacture machine parts having complex shapes at low cost, for example, automotive parts It is used in a wide range of applications, such as manufacturing. As iron powder or alloy steel powder (hereinafter sometimes simply referred to as “iron powder”) used as a raw material in powder metallurgy, solid-phase reduction of mill scale or iron ore using a carbon source such as coke as a reducing agent Sponge iron powder obtained by the above, water atomized iron powder pulverized by jetting a high-pressure water jet onto molten steel adjusted to a predetermined component, and the like are industrially produced.

いずれの方法で製造された鉄粉も、水素などの還元雰囲気で焼鈍する熱処理(仕上還元処理)を行うことによって、粉末冶金用の原料に適した品質となる。前記熱処理では、鉄粉に含まれる炭素や酸素が除去されると共に、鉄粉粒子内に含まれる歪が除去され、結晶粒が成長する。   The iron powder produced by any method has a quality suitable for a raw material for powder metallurgy by performing a heat treatment (finish reduction treatment) in which annealing is performed in a reducing atmosphere such as hydrogen. In the heat treatment, carbon and oxygen contained in the iron powder are removed, strain contained in the iron powder particles is removed, and crystal grains grow.

特に高い強度が要求される部材を粉末冶金法によって製造する際には、合金化元素を添加した合金鋼粉が原料粉として用いられる。その時、前記合金化元素として、焼入れ性向上効果が高い元素を用いることにより、原料粉に混合された黒鉛が原料粉粒子に拡散して強化された組織を形成する作用を促進することができる。中でもCrは、比較的低コストであるにもかかわらず焼入れ性向上効果が高いため、Crを主要な合金化元素として含有する合金鋼粉やその応用が、幅広く研究されている。   When a member requiring particularly high strength is produced by powder metallurgy, alloy steel powder to which an alloying element is added is used as a raw material powder. At that time, by using an element having a high effect of improving hardenability as the alloying element, it is possible to promote the action of the graphite mixed in the raw material powder diffusing into the raw material powder particles to form a strengthened structure. Among them, Cr has a high effect of improving hardenability despite its relatively low cost, and therefore, alloy steel powder containing Cr as a main alloying element and its application have been extensively studied.

Crを合金化元素として含む合金鋼粉(Cr含有合金鋼粉)は、水アトマイズ法によって製造することが好適である。水アトマイズ法を用いたCr含有合金鋼粉の製造フローの一例を図2に示す。主原料である鉄源としては、電解鉄やベースメタルなどの高純度のものを用いることが望ましいが、転炉で精錬された溶鋼や高純度スクラップなど低コストで比較的高純度なものも工業的には使用可能である。前記鉄源を加熱溶解し、Cr源やその他の合金化元素、必要に応じてスラグ成分や加炭材などの副原料を添加して、原料溶鋼とする。次に、前記原料溶鋼は、水アトマイズ法によって粉砕され、水アトマイズ鉄基粉末(water-atomized iron-based powder)となる。水アトマイズ法においては、タンディッシュのノズルから流れ出る原料溶鋼に高圧の水を吹き付けることにより、溶鋼が粉砕されるとともに凝固する。得られた水アトマイズ鉄基粉末には、さらに還元のための熱処理(仕上熱処理)が行われ、高強度焼結部材の製造に適したCr含有合金鋼粉が得られる。   Alloy steel powder (Cr-containing alloy steel powder) containing Cr as an alloying element is preferably produced by a water atomization method. An example of a production flow of Cr-containing alloy steel powder using the water atomization method is shown in FIG. Although it is desirable to use high-purity materials such as electrolytic iron and base metal as the iron source as the main raw material, low-cost and relatively high-purity materials such as molten steel smelted in converters and high-purity scrap are also industrial. Can be used. The iron source is heated and melted, and a Cr source, other alloying elements, and auxiliary materials such as a slag component and a carburized material are added as necessary to obtain a raw material molten steel. Next, the raw molten steel is pulverized by a water atomizing method to form a water-atomized iron-based powder. In the water atomization method, molten steel is pulverized and solidified by spraying high-pressure water on the raw molten steel flowing out from the tundish nozzle. The obtained water atomized iron-based powder is further subjected to a heat treatment (finish heat treatment) for reduction, and a Cr-containing alloy steel powder suitable for producing a high-strength sintered member is obtained.

しかし、CrはFeに比べて酸化され易い元素であるため、上述のように水アトマイズ法によって鉄基粉末を製造する時に容易に酸化されてしまう。原料粉末に含まれる酸素の量が多くなると、加圧成形時の圧縮性が低下するため、焼結部材用原料粉として高品質のCr含有合金鋼粉を製造するためには合金鋼粉中に含まれる酸素の量を低減する必要がある。そこで、合金鋼粉の酸素量を低減するために、様々な方法が提案されている。   However, since Cr is an element that is more easily oxidized than Fe, as described above, it is easily oxidized when the iron-based powder is produced by the water atomization method. When the amount of oxygen contained in the raw material powder increases, the compressibility during pressure forming decreases, so in order to produce high-quality Cr-containing alloy steel powder as raw material powder for sintered members, There is a need to reduce the amount of oxygen contained. Therefore, various methods have been proposed to reduce the amount of oxygen in the alloy steel powder.

例えば、特許文献1には、Crを合金化元素として含む水アトマイズ鉄基粉末を、還元雰囲気中ではなく真空中で熱処理して還元する方法が開示されている。前記方法では、水アトマイズ鉄基粉末に含まれている炭素が還元剤として機能する。   For example, Patent Document 1 discloses a method of reducing water atomized iron-based powder containing Cr as an alloying element by heat treatment in a vacuum, not in a reducing atmosphere. In the method, carbon contained in the water atomized iron-based powder functions as a reducing agent.

また、特許文献2には、合金化元素としてCr、Mo、およびMnを含む水アトマイズ鉄基粉末において、酸素と炭素の重量比O:Cを1〜4とし、前記水アトマイズ鉄基粉末を露点が制御された減圧雰囲気中で還元する方法が開示されている。   Patent Document 2 discloses a water atomized iron-based powder containing Cr, Mo, and Mn as alloying elements, wherein the oxygen to carbon weight ratio O: C is 1 to 4, and the water atomized iron-based powder is dew point. Discloses a method of reducing in a controlled reduced pressure atmosphere.

特許文献3には、H2Oガスを含有するH2ガス雰囲気中で水アトマイズ鉄基粉末を熱処理する際に、炉内の酸素ポテンシャル等を測定し、その結果に基づいてH2Oガス量を調整する方法が開示されている。In Patent Document 3, when a water atomized iron-based powder is heat-treated in an H 2 gas atmosphere containing H 2 O gas, the oxygen potential in the furnace is measured, and the amount of H 2 O gas is determined based on the result. A method of adjusting is disclosed.

特許文献4には、水アトマイズ鉄基粉末粉を不活性ガス雰囲気中で加熱して、その際に発生するCOガスの量をモニターし、COガス発生量が増大した際にCOガスを排気する方法が開示されている。前記方法により、前記鉄基粉末中の炭素と酸素の量が、それぞれC:0.005%、O:0.10%まで低減される。   In Patent Document 4, water atomized iron-based powder is heated in an inert gas atmosphere, the amount of CO gas generated at that time is monitored, and the CO gas is exhausted when the CO gas generation amount increases. A method is disclosed. By the method, the amounts of carbon and oxygen in the iron-based powder are reduced to C: 0.005% and O: 0.10%, respectively.

特開昭55−62101号公報JP-A-55-62101 特開2010−159495号公報JP 2010-159495 A 特表2000−514875号公報Special Table 2000-514875 特表2002−501123号公報Special Table 2002-501123

特許文献1〜4に開示されている方法によれば、Crを含有する水アトマイズ鉄基粉末を熱処理によって還元し、合金鋼粉中に含まれる酸素の量を低減することができる。しかし、Crの酸化は、熱処理を行う前の鉄基粉末を得る段階、すなわち、原料溶鋼を水アトマイズする工程において主に進行するため、従来の方法では、Cr含有鉄基粉末を、水アトマイズ法で安定的に製造することができないという問題があった。   According to the methods disclosed in Patent Documents 1 to 4, it is possible to reduce the amount of oxygen contained in the alloy steel powder by reducing the water atomized iron-based powder containing Cr by heat treatment. However, since the oxidation of Cr mainly proceeds in the step of obtaining the iron-based powder before heat treatment, that is, the process of water atomizing the raw molten steel, in the conventional method, the Cr-containing iron-based powder is converted into the water atomizing method. Therefore, there is a problem that it cannot be stably manufactured.

図3は、鉄基粉末の製造に一般的に用いられる水アトマイズ装置100を模式的に示した図である。溶解炉1において、所定の成分組成を有する原料溶鋼2を作製し、次いで、原料溶鋼2をタンディッシュ3に移す。原料溶鋼2は、タンディッシュ3の底部に設けられた溶鋼ノズル4を通過して、溶鋼流5として噴霧槽6内に落下する。溶鋼流5は、水ノズル7から噴射される高圧水ジェット8によって粉砕されて、水アトマイズ鉄基粉末9となる。   FIG. 3 is a diagram schematically showing a water atomizing apparatus 100 that is generally used for the production of iron-based powder. In the melting furnace 1, the raw molten steel 2 having a predetermined component composition is produced, and then the raw molten steel 2 is transferred to the tundish 3. The raw molten steel 2 passes through a molten steel nozzle 4 provided at the bottom of the tundish 3 and falls into the spray tank 6 as a molten steel flow 5. The molten steel flow 5 is pulverized by a high-pressure water jet 8 ejected from a water nozzle 7 to become a water atomized iron-based powder 9.

この際、溶鋼ノズル4から流下する原料溶鋼2の温度は、周囲の雰囲気と接触することにより急激に低下する。その結果、溶鋼中における酸素の溶解度が低下し、飽和溶解度以上の酸素はCrと反応してCr酸化物を生成する。生成したCr酸化物の一部は、溶鋼ノズル4の先端部である溶鋼注入口10の近傍に、溶鋼注入口10を塞ぐように堆積して行く。   At this time, the temperature of the raw molten steel 2 flowing down from the molten steel nozzle 4 is rapidly lowered by contacting with the surrounding atmosphere. As a result, the solubility of oxygen in the molten steel decreases, and oxygen above the saturation solubility reacts with Cr to produce Cr oxide. Part of the generated Cr oxide is deposited in the vicinity of the molten steel inlet 10, which is the tip of the molten steel nozzle 4, so as to close the molten steel inlet 10.

上記のようにCr酸化物が堆積する結果、溶鋼注入量が時間とともに減少し、水アトマイズ鉄基粉末の生産効率が低下する。そして、さらにCr酸化物の堆積が進行すると、ついには溶鋼注入口10が閉塞してしまうので、堆積物を除去するために操業を停止する必要が生じ、さらに生産効率が低下する。   As a result of the deposition of Cr oxide as described above, the molten steel injection amount decreases with time, and the production efficiency of the water atomized iron-based powder decreases. When the deposition of Cr oxide further proceeds, the molten steel inlet 10 is finally closed, so that it is necessary to stop the operation in order to remove the deposit, and the production efficiency is further reduced.

また、溶鋼注入量が時間と共に低下すると、それに伴って、得られる水アトマイズ鉄基粉末の粒度や粒子形状などが変化する。このことは、製造される合金鋼粉の品質のばらつきに繋がり、その結果、焼結部材用原料として好適な合金鋼粉を製造することが困難となる。   Moreover, when the amount of molten steel injection | pouring reduces with time, the particle size, particle shape, etc. of the water atomized iron base powder obtained will change in connection with it. This leads to variations in the quality of the produced alloy steel powder, and as a result, it becomes difficult to produce an alloy steel powder suitable as a raw material for a sintered member.

このように、焼入れ性を向上させるためにCrを添加すると、溶鋼中にCr酸化物が生成することによる生産効率の低下や、鋼粉の品質のばらつきといった問題が生じるため、Cr含有鉄基粉末を水アトマイズ法によって、効率的に、安定して製造することはできなかった。特許文献1〜4に開示された従来の技術は、いずれも、水アトマイズ法によって鉄基粉末を得た後の処理に関するものであるため、前記の問題を解決することはできない。   Thus, when Cr is added to improve the hardenability, problems such as a reduction in production efficiency due to the formation of Cr oxide in the molten steel and variations in the quality of the steel powder occur. Could not be produced efficiently and stably by the water atomization method. Since all of the conventional techniques disclosed in Patent Documents 1 to 4 relate to the treatment after obtaining the iron-based powder by the water atomization method, the above problems cannot be solved.

本発明は、上記事情に鑑みてなされたものであり、酸化されやすいCrを含有する鉄基粉末を水アトマイズ法により製造する際に生じるCrの酸化を抑制し、Cr含有合金鋼粉を、効率的に、安定して製造する方法を提供することを目的とする。あわせて、粒子内部に空孔が少ない稠密な粉末粒子を得ることを目的とする。   The present invention has been made in view of the above circumstances, and suppresses oxidation of Cr that occurs when an iron-based powder containing Cr that is easily oxidized is produced by the water atomization method, and the Cr-containing alloy steel powder is made efficient. In particular, it is an object of the present invention to provide a method for stably producing. In addition, an object is to obtain dense powder particles with few pores inside the particles.

本発明の要旨構成は、次のとおりである。
1.焼結部材原料用合金鋼粉の製造方法であって、
溶鋼を水アトマイズして水アトマイズ鉄基粉末とする水アトマイズ工程と、
前記水アトマイズ鉄基粉末に、熱処理を行って焼結部材原料用合金鋼粉とする熱処理工程とを有し、
前記溶鋼中におけるC含有量[C](質量%)と、前記溶鋼中におけるCr含有量[Cr](質量%)とが、下記(1)式の関係を満たし、
前記焼結部材原料用合金鋼粉が、質量%で、
Cr:0.3〜3.5%および
Mn:0.08%以下、
を合金化元素として含有し、残部Feおよび不可避不純物からなる成分組成を有する、焼結部材原料用合金鋼粉の製造方法。

0.10≦[C]/[Cr]2/3≦0.35 ……(1)
The gist configuration of the present invention is as follows.
1. A method for producing alloy steel powder for a sintered member raw material,
A water atomization process in which molten steel is water atomized to form a water atomized iron-based powder;
The water atomized iron-based powder has a heat treatment step of performing a heat treatment to obtain an alloy steel powder for a sintered member raw material,
The C content [C] (mass%) in the molten steel and the Cr content [Cr] (mass%) in the molten steel satisfy the relationship of the following formula (1),
The alloy steel powder for sintered member raw material is in mass%,
Cr: 0.3-3.5% and Mn: 0.08% or less,
The manufacturing method of the alloy steel powder for sintered member raw materials which has a component composition which consists of remainder Fe and an unavoidable impurity.
Record
0.10 ≦ [C] / [Cr] 2/3 ≦ 0.35 (1)

2.前記焼結部材原料用合金鋼粉の成分組成が、質量%で、
Mo:0.1〜2.0%
を合金化元素としてさらに含有する、上記1に記載の焼結部材原料用合金鋼粉の製造方法。
2. The component composition of the alloy steel powder for sintered member raw material is mass%,
Mo: 0.1 to 2.0%
The manufacturing method of the alloy steel powder for sintered member raw materials of said 1 which further contains as an alloying element.

3.前記溶鋼が、前記焼結部材原料用合金鋼粉中に含まれる前記合金化元素よりも酸化物の標準生成自由エネルギーが低い易酸化性元素を、合計で0.01〜0.1質量%含有する、上記1または2に記載の焼結部材原料用合金鋼粉の製造方法。 3. The molten steel contains 0.01 to 0.1% by mass in total of oxidizable elements whose standard free energy of formation of oxide is lower than that of the alloying element contained in the alloy steel powder for the sintered member raw material The manufacturing method of the alloy steel powder for sintered member raw materials of said 1 or 2 which does.

4.前記易酸化性元素が、Si、V、Ti、およびAlからなる群より選択される1または2以上である、上記3に記載の焼結部材原料用合金鋼粉の製造方法。 4). 4. The method for producing alloy steel powder for sintered member raw material according to 3 above, wherein the easily oxidizable element is 1 or 2 or more selected from the group consisting of Si, V, Ti, and Al.

本発明によれば、Crを合金化元素として含有する鉄基粉末を水アトマイズ法により製造する際に生じるCrの酸化を抑制し、Cr含有合金鋼粉を、効率的に、安定して製造することができる。   According to the present invention, the oxidation of Cr that occurs when an iron-based powder containing Cr as an alloying element is produced by the water atomization method is suppressed, and a Cr-containing alloy steel powder is produced efficiently and stably. be able to.

本発明の一実施形態におけるCr含有合金鋼粉の製造フローを表す図である。It is a figure showing the manufacture flow of Cr content alloy steel powder in one embodiment of the present invention. 従来の、水アトマイズ法を用いたCr含有合金鋼粉の製造フローの一例を表す図である。It is a figure showing an example of the manufacturing flow of the conventional Cr containing alloy steel powder using the water atomization method. 一般的な水アトマイズ装置を模式的に示した図である。It is the figure which showed the general water atomization apparatus typically.

次に、本発明を実施する方法について具体的に説明する。なお、以下の説明において、成分に関する「%」表示は、特に断らない限り「質量%」を意味するものとする。また、「鉄基粉末」とは、Fe含有量が50%以上である金属粉末を指すものとする。   Next, a method for carrying out the present invention will be specifically described. In addition, in the following description, the “%” indication regarding the component means “% by mass” unless otherwise specified. The “iron-based powder” refers to a metal powder having an Fe content of 50% or more.

本発明の焼結部材原料用合金鋼粉の製造方法は、溶鋼を水アトマイズして水アトマイズ鉄基粉末を得る水アトマイズ工程と、前記水アトマイズ鉄基粉末に、還元のための熱処理を施して合金鋼粉を得る熱処理工程とを有している。   The method for producing alloy steel powder for a sintered member raw material of the present invention includes a water atomization step of obtaining a water atomized iron-based powder by water-atomizing molten steel, and subjecting the water atomized iron-based powder to a heat treatment for reduction. A heat treatment step for obtaining alloy steel powder.

図1に、本発明の一実施形態におけるCr含有合金鋼粉の製造フローを示す。まず、鉄源を溶解して原料溶鋼を製造する。前記鉄源としては、転炉溶鋼や高純度スクラップなど、任意のものを用いることができる。電解鉄などの高純度の鉄源を用いることも可能であり、複数の種類の鉄源を組み合わせて使用することもできる。原料溶鋼の製造の際には、最終的に所望の成分組成の合金鋼粉が得られるように、前記鉄源にCr源およびその他の合金化元素を添加することができる。また、必要に応じて、炭材、その他の副原料(スラグ成分など)、および後述する「易酸化性元素」を添加することもできる。   In FIG. 1, the manufacturing flow of Cr containing alloy steel powder in one Embodiment of this invention is shown. First, a raw material molten steel is manufactured by melting an iron source. As said iron source, arbitrary things, such as converter molten steel and a high purity scrap, can be used. A high-purity iron source such as electrolytic iron can also be used, and a plurality of types of iron sources can be used in combination. In the production of raw molten steel, a Cr source and other alloying elements can be added to the iron source so that an alloy steel powder having a desired component composition is finally obtained. Moreover, a carbonaceous material, other auxiliary materials (slag component etc.), and the "easy-oxidizable element" mentioned later can also be added as needed.

前記Cr源としては任意のものを用いることができる。使用できるCr源としては、例えば、フェロクロムや金属クロムなどが挙げられる。また、前記合金化元素は、該合金化元素単体(金属)、該合金化元素を含有する合金、該合金化元素を含有する化合物など、任意の形態で添加することができる。例えば、Mn源としては、金属マンガンやフェロマンガンなどを使用することができる。前記炭材としては、任意の炭素含有材料を用いることができる。前記炭素含有材料としては、例えば、コークスや黒鉛粉などの炭素材料に加え、鋳鉄などの炭素濃度が高い鉄素材が挙げられる。   Any Cr source can be used. Examples of the Cr source that can be used include ferrochrome and metallic chromium. The alloying element can be added in any form such as the alloying element alone (metal), an alloy containing the alloying element, a compound containing the alloying element, and the like. For example, metal manganese or ferromanganese can be used as the Mn source. Any carbon-containing material can be used as the carbon material. Examples of the carbon-containing material include an iron material having a high carbon concentration, such as cast iron, in addition to a carbon material such as coke and graphite powder.

上記のようにして得た原料溶鋼を、水アトマイズ装置に注入して粉砕することによって水アトマイズ鉄基粉末を得る。前記水アトマイズ法による水アトマイズ鉄基粉末の製造には、特に限定されることなく、例えば、図3に示したものなど、任意の水アトマイズ装置を使用することができる。   The raw molten steel obtained as described above is poured into a water atomizer and pulverized to obtain a water atomized iron-based powder. The production of the water atomized iron-based powder by the water atomization method is not particularly limited, and any water atomizer such as the one shown in FIG. 3 can be used.

その後、得られた水アトマイズ鉄基粉末に、還元のための熱処理を行うことによって、Crを含有する焼結部材原料用合金鋼粉が製造される。前記熱処理は、例えば、特許文献1〜4に記載されている方法など、水アトマイズ鉄基粉末を還元することができる方法であれば任意の方法を用いることができる。   Thereafter, the obtained water atomized iron-based powder is subjected to heat treatment for reduction, whereby alloy steel powder for sintered member raw material containing Cr is produced. For the heat treatment, any method can be used as long as it can reduce the water atomized iron-based powder, such as the methods described in Patent Documents 1 to 4.

前記熱処理により、水アトマイズ鉄基粉末が還元されて炭素や酸素が除去される。また、前記熱処理によって鉄基粉末は焼鈍され、鉄粉粒子内に含まれる歪が除去されるとともに、結晶粒が成長する。熱処理後の合金鋼粉に含有されるCとOの量は、C:0.1質量%以下、O:0.2質量%以下とすることが好ましい。熱処理の条件は、水アトマイズ鉄基粉末に含まれているCおよびOの量に応じて調整すればよい。   By the heat treatment, the water atomized iron-based powder is reduced to remove carbon and oxygen. In addition, the iron-based powder is annealed by the heat treatment, the strain contained in the iron powder particles is removed, and crystal grains grow. The amounts of C and O contained in the alloy steel powder after the heat treatment are preferably C: 0.1% by mass or less and O: 0.2% by mass or less. What is necessary is just to adjust the conditions of heat processing according to the quantity of C and O contained in the water atomized iron-base powder.

[溶鋼のC、Cr含有量]
本発明では水アトマイズに供する溶鋼中におけるC含有量[C](質量%)と、前記溶鋼中におけるCr含有量[Cr](質量%)とが、下記(1)式の関係を満たすようにすることが重要である。
0.10≦[C]/[Cr]2/3≦0.35 ……(1)
上記(1)式を満たすように、Cr含有量に応じてC含有量を調整することによって、Crを合金化元素として含有する鉄基粉末を、水アトマイズ法により効率的に、安定して製造することができる。その理由を以下に説明する。
[C and Cr content of molten steel]
In the present invention, the C content [C] (mass%) in the molten steel subjected to water atomization and the Cr content [Cr] (mass%) in the molten steel satisfy the relationship of the following formula (1). It is important to.
0.10 ≦ [C] / [Cr] 2/3 ≦ 0.35 (1)
By adjusting the C content according to the Cr content so as to satisfy the above formula (1), an iron-based powder containing Cr as an alloying element is efficiently and stably produced by the water atomization method. can do. The reason will be described below.

溶鋼中にCが存在すると、該CはOと反応してCOガスを生じる。そこで、Cr含有量に対するC含有量が一定の比率以上、具体的には、0.10≦[C]/[Cr]2/3となるようにC含有量を調整すれば、CがOと反応してCOガスが発生する反応の方が、CrがOと反応してCr酸化物が生成する反応よりも優先的に起こるようになる。その結果、水アトマイズ中にCr酸化物が生成して溶鋼注入ノズル口に付着することが防止され、溶鋼を安定的に注入できるようになる。なお、より好ましい範囲は0.15≦[C]/[Cr]2/3である。When C is present in the molten steel, the C reacts with O to generate CO gas. Therefore, if the C content is adjusted so that the C content with respect to the Cr content is a certain ratio or more, specifically, 0.10 ≦ [C] / [Cr] 2/3 , C becomes O and The reaction in which CO gas is generated by reaction occurs preferentially over the reaction in which Cr reacts with O to produce Cr oxide. As a result, Cr oxide is prevented from being generated during water atomization and adhering to the molten steel injection nozzle port, and the molten steel can be injected stably. A more preferable range is 0.15 ≦ [C] / [Cr] 2/3 .

一方、C含有量が高いほどCr酸化物の生成を抑制する効果は高くなるため、Cr酸化物の付着防止という観点からはC含有量を高くすることが好ましい。しかし、過度にC含有量が高くなると、COガスの発生量が増大し、発生したCOガスがアトマイズ鉄基粉末の内部に残留して空孔が形成される。そこで、前記空孔の形成を抑制するために、[C]/[Cr]2/3≦0.35となるようにC含有量を調整する。なお、より好ましい範囲は[C]/[Cr]2/3≦0.25である。On the other hand, the higher the C content, the higher the effect of suppressing the formation of Cr oxide. Therefore, it is preferable to increase the C content from the viewpoint of preventing the adhesion of Cr oxide. However, if the C content becomes excessively high, the amount of CO gas generated increases, and the generated CO gas remains in the atomized iron-based powder, forming voids. Therefore, in order to suppress the formation of the vacancies, the C content is adjusted so that [C] / [Cr] 2/3 ≦ 0.35. A more preferable range is [C] / [Cr] 2/3 ≦ 0.25.

なお、上記(1)式においては、[C]の好適な範囲を[Cr]2/3に対する比率で規定している。これは、次の(2)式で表される、Crの酸化物であるCr23がCによって還元される反応が熱力学的に成立するかどうかが、[C]と[Cr]2/3との比で決定されるためである。
C+(1/3)Cr23 → (2/3)Cr+CO ……(2)
In the above equation (1), a suitable range of [C] is defined by a ratio to [Cr] 2/3 . This is because [C] and [Cr] 2 represent whether the reaction represented by the following formula (2) in which Cr 2 O 3, which is an oxide of Cr, is reduced by C is established thermodynamically. This is because it is determined by the ratio of / 3 .
C + (1/3) Cr 2 O 3 → (2/3) Cr + CO (2)

原料溶鋼のC含有量は、鉄源を溶解する工程における炭材の投入量を調整することによって制御することができる。同様に、原料溶鋼中のCr含有量は、溶鋼を製造する際に添加されるCr源の量を調整することによって制御することができる。したがって、上記(1)式の関係を満たすように溶鋼製造時の炭材およびCr源の添加量を制御することが好ましい。   The C content of the raw material molten steel can be controlled by adjusting the input amount of the carbonaceous material in the step of melting the iron source. Similarly, the Cr content in the raw molten steel can be controlled by adjusting the amount of Cr source added when the molten steel is produced. Therefore, it is preferable to control the addition amount of the carbonaceous material and the Cr source at the time of manufacturing the molten steel so as to satisfy the relationship of the above formula (1).

なお、本発明の方法により製造される合金鋼粉には、Cr以外にも、Mn、および任意にMoが合金化元素として含まれる。しかし、MoはCrよりも酸化されにくく、また、MnはCrより酸化され易いがその量は0.08質量%以下とCr量に比較して十分小さいので、本発明の条件を満たしていれば、Cr以外の合金化元素の酸化も抑制される。   The alloy steel powder produced by the method of the present invention contains Mn and optionally Mo as alloying elements in addition to Cr. However, Mo is less likely to be oxidized than Cr, and Mn is more easily oxidized than Cr, but its amount is 0.08% by mass or less, which is sufficiently small compared to the amount of Cr, so long as the conditions of the present invention are satisfied. Further, oxidation of alloying elements other than Cr is suppressed.

特許文献1〜4に開示されているような従来の技術においては、水アトマイズ法によって得られた鉄基粉末を熱処理することによって還元する時の条件には注意が払われていたが、本発明のように、水アトマイズを行う際の溶鋼中におけるC含有量とCr含有量の関係を制御することは行われていなかった。また、そのような制御を行うことによって、操業の安定性を向上させるとともに、鉄基粉末内部に空孔が形成されることを抑制できることも知られていなかった。例えば、特許文献2には、Cr:2.5〜3.5%、C:0.1〜0.9%を含有する水アトマイズ鉄基粉末が開示されているが、C含有量は、Cr含有量と無関係に選択されている。   In the conventional techniques as disclosed in Patent Documents 1 to 4, attention has been paid to the conditions when the iron-based powder obtained by the water atomization method is reduced by heat treatment. Thus, it has not been performed to control the relationship between the C content and the Cr content in the molten steel during water atomization. In addition, it has not been known that such control can improve the operational stability and suppress the formation of pores in the iron-based powder. For example, Patent Document 2 discloses a water atomized iron-based powder containing Cr: 2.5 to 3.5% and C: 0.1 to 0.9%. Selected regardless of content.

[易酸化性元素]
本発明においては、水アトマイズに用いる溶鋼が、さらに易酸化性元素を含有することもできる。ここで、「易酸化性元素」とは、後述する合金鋼粉中に含まれる合金化元素よりも酸化物の標準生成自由エネルギーが低い元素を意味する。例えば、合金鋼粉がCrおよびMnを含有する場合、前記易酸化性元素とは、CrおよびMnの両者よりも酸化物の標準生成自由エネルギーが低い元素を意味する。また、合金鋼粉がCr、Mn、およびMoを含有する場合、前記易酸化性元素とは、Cr、Mn、およびMoのいずれよりも酸化物の標準生成自由エネルギーが低い元素を意味する。ただし、Cr、Mn、およびMoの中では、Mnが最も酸化物を形成しやすい(酸化物の標準生成自由エネルギーが最も低い)ため、前記易酸化性元素とは、Mnよりも酸化物の標準生成自由エネルギーが低い(酸化されやすい)元素であると見なすこともできる。
[Easily oxidizable elements]
In the present invention, the molten steel used for water atomization can further contain an easily oxidizable element. Here, the “easily oxidizable element” means an element whose standard free energy of formation of oxide is lower than an alloying element contained in an alloy steel powder described later. For example, when the alloy steel powder contains Cr and Mn, the easily oxidizable element means an element having a lower standard free energy of formation of oxide than both Cr and Mn. Moreover, when alloy steel powder contains Cr, Mn, and Mo, the said easily oxidizable element means the element whose standard formation free energy of an oxide is lower than any of Cr, Mn, and Mo. However, among Cr, Mn, and Mo, since Mn is most likely to form an oxide (the standard free energy of formation of the oxide is the lowest), the oxidizable element is a standard of oxide rather than Mn. It can also be regarded as an element with low free energy of formation (easily oxidized).

前記易酸化性元素としては、例えば、Si、V、Al、Tiなどを用いることができる。前記易酸化性元素としては、1つの元素のみを用いることもできるし、複数の元素を組み合わせて用いることもできる。   As the easily oxidizable element, for example, Si, V, Al, Ti, or the like can be used. As the easily oxidizable element, only one element can be used, or a plurality of elements can be used in combination.

前記易酸化性元素は、溶鋼中に溶解している酸素と反応して酸化物となり、溶鋼中の溶融酸素量を低減させる。そのため、易酸化性元素を溶鋼に添加することにより、水アトマイズの際に、溶鋼が溶鋼注入口から注入されて該溶鋼の温度が低下しても、溶鋼中の酸素が飽和しにくくなり、合金化元素の酸化物の生成が抑制される。この作用により、溶鋼ノズルへの合金化元素の酸化物の付着がさらに抑制されて操業が一層安定化する。また、COガスの発生量も抑制され、その結果、水アトマイズ鉄基粉末中の空孔の形成が抑制される。   The easily oxidizable element reacts with oxygen dissolved in the molten steel to become an oxide, thereby reducing the amount of molten oxygen in the molten steel. Therefore, by adding an easily oxidizable element to the molten steel, when water atomization is performed, even if the molten steel is injected from the molten steel inlet and the temperature of the molten steel decreases, the oxygen in the molten steel is less likely to be saturated, and the alloy Formation of oxides of chemical elements is suppressed. By this action, adhesion of the alloying element oxide to the molten steel nozzle is further suppressed, and the operation is further stabilized. Moreover, the generation amount of CO gas is also suppressed, and as a result, the formation of pores in the water atomized iron-based powder is suppressed.

前記易酸化性元素の溶鋼中における含有量は合計で0.01〜0.1質量%とすることが好ましい。易酸化性元素の合計含有量が0.01質量%未満では、上述の効果を十分に得ることができない。なお、易酸化性元素の酸化物は原料溶鋼表面のスラグに吸収されるため、不可避的に不純物として含有される以上の易酸化性元素がアトマイズされる溶鋼流に混入することはない。しかし、易酸化性元素の合計含有量が0.1質量%を超えると溶鋼流に混入する量が増大し、該易酸化性元素の酸化物が溶鋼注入口に付着して操業不安定性の原因となるため好ましくない。   The total content of the easily oxidizable elements in the molten steel is preferably 0.01 to 0.1% by mass. If the total content of easily oxidizable elements is less than 0.01% by mass, the above-described effects cannot be obtained sufficiently. In addition, since the oxide of an easily oxidizable element is absorbed by the slag on the surface of the raw molten steel, the oxidizable element that is inevitably contained as an impurity is not mixed into the molten steel stream to be atomized. However, when the total content of easily oxidizable elements exceeds 0.1% by mass, the amount mixed into the molten steel flow increases, and the oxides of the easily oxidizable elements adhere to the molten steel inlet and cause operational instability. This is not preferable.

[合金鋼粉の成分組成]
本発明の一実施形態における焼結部材原料用合金鋼粉は、Cr:0.3〜3.5%およびMn:0.08%以下を合金化元素として含有し、残部がFeおよび不可避不純物である成分組成を有する。また、必要に応じて、Mo:0.1〜2.0%を合金化元素としてさらに含有することもできる。以下、前記成分組成の限定理由について説明する。
[Component composition of alloy steel powder]
The alloy steel powder for sintered member raw material in one embodiment of the present invention contains Cr: 0.3 to 3.5% and Mn: 0.08% or less as alloying elements, with the balance being Fe and inevitable impurities. It has a certain composition. Moreover, Mo: 0.1-2.0% can also be further contained as an alloying element as needed. Hereinafter, the reasons for limiting the component composition will be described.

Cr:0.3〜3.5%
Crは、焼入性を向上させて、焼結部材の引張強度および疲労強度を向上させる機能を有する元素である。さらに、Crは、焼結部材を熱処理した後の硬さを高め、耐摩耗性を向上させる効果がある。これらの効果を得るため、Cr含有量を0.3%以上とする。一方、Cr含有量が3.5%を超えると、焼結時に生成されるCr酸化物の量が多くなり、生成された酸化物は疲労破壊の起点となって、焼結部材の疲労強度を低下させる。そのため、Cr含有量は3.5%以下とする。なお、Cr含有量は、0.5〜3.5%とすることが好ましく、1.0〜3.5%とすることがより好ましい。なお、本発明の方法によれば、溶鋼中のCrの酸化が抑制されるため、Cr酸化物の析出による溶鋼中Cr量の減少は殆ど発生しない。したがって、本発明の焼結部材原料用合金鋼粉におけるCr含有量を上記範囲とするためには、水アトマイズ工程で用いられる溶鋼のCr含有量を0.3〜3.5%とすることが好ましい。
Cr: 0.3-3.5%
Cr is an element having a function of improving hardenability and improving tensile strength and fatigue strength of the sintered member. Further, Cr has the effect of increasing the hardness after heat-treating the sintered member and improving the wear resistance. In order to obtain these effects, the Cr content is set to 0.3% or more. On the other hand, if the Cr content exceeds 3.5%, the amount of Cr oxide generated during sintering increases, and the generated oxide becomes the starting point of fatigue failure, and the fatigue strength of the sintered member is increased. Reduce. Therefore, the Cr content is 3.5% or less. The Cr content is preferably 0.5 to 3.5%, more preferably 1.0 to 3.5%. In addition, according to the method of this invention, since the oxidation of Cr in molten steel is suppressed, the decrease in the amount of Cr in molten steel due to precipitation of Cr oxide hardly occurs. Therefore, in order to make the Cr content in the alloy steel powder for sintered member raw material of the present invention within the above range, the Cr content of the molten steel used in the water atomization process should be 0.3 to 3.5%. preferable.

Mn:0.08%以下
Mnは、焼入性向上、固溶強化などによって、焼結体の強度を向上させる機能を有する元素である。前記効果を得るために、本発明ではMnを合金化元素として含有する合金鋼粉を製造する。しかし、Mn含有量が0.08%を超えると、焼結時に生成されるMn酸化物の量が多くなり、生成された酸化物は疲労破壊の起点となって焼結部材の疲労強度を低下させる。そのため、Mn含有量は0.08%以下とする。一方、Mn含有量の下限は特に限定されず、0%超とすることができる。Mnの添加効果を十分に得るという観点からは、Mn含有量を0.01%以上とすることが好ましく、0.04%以上とすることがより好ましい。
Mn: 0.08% or less Mn is an element having a function of improving the strength of the sintered body by improving hardenability, solid solution strengthening, and the like. In order to acquire the said effect, in this invention, the alloy steel powder which contains Mn as an alloying element is manufactured. However, if the Mn content exceeds 0.08%, the amount of Mn oxide generated during sintering increases, and the generated oxide serves as a starting point for fatigue failure and reduces the fatigue strength of the sintered member. Let Therefore, the Mn content is 0.08% or less. On the other hand, the lower limit of the Mn content is not particularly limited and can be more than 0%. From the viewpoint of obtaining a sufficient effect of adding Mn, the Mn content is preferably 0.01% or more, and more preferably 0.04% or more.

Mo:0.1〜2.0%
Moは、焼入性向上、固溶強化、析出強化などによって、焼結体の強度を向上させる機能を有する元素である。前記効果を十分に得るためには、Mo含有量を0.1%以上とすることが好ましい。一方、Mo含有量が2.0%を超えると靭性が低下するため、Mo含有量を2.0%以下とすることが好ましい。したがって、Moを添加する場合は、Mo含有量を0.1〜2.0%とする。
Mo: 0.1 to 2.0%
Mo is an element having a function of improving the strength of the sintered body by improving hardenability, solid solution strengthening, precipitation strengthening, and the like. In order to obtain the effect sufficiently, the Mo content is preferably 0.1% or more. On the other hand, if the Mo content exceeds 2.0%, the toughness decreases, so the Mo content is preferably 2.0% or less. Therefore, when adding Mo, the Mo content is set to 0.1 to 2.0%.

本発明の焼結部材用合金鋼粉は、以上の成分と、残部Feおよび不可避不純物とからなる。本発明の焼結部材用合金鋼粉は、本発明の作用・効果を損なわない限りにおいて、他の微量元素を含有することもできる。   The alloy steel powder for sintered members of the present invention comprises the above components, the remainder Fe and inevitable impurities. The alloy steel powder for sintered members of the present invention can also contain other trace elements as long as the effects and effects of the present invention are not impaired.

前記不可避不純物としては、例えば、C、O、S、およびPが挙げられる。また、上記易酸化性元素を溶鋼に添加した場合は、該易酸化性元素の残留分も、不可避不純物として合金鋼粉に含有される。   Examples of the inevitable impurities include C, O, S, and P. Moreover, when the said easily oxidizable element is added to molten steel, the residue of this easily oxidizable element is also contained in alloy steel powder as an inevitable impurity.

なお、Sは、結晶粒界に偏析して粒界強度を低下させる性質を有しているが、Mnが存在すると、非金属介在物であるMnSを形成する。本発明では、Mn含有量が0.08%以下に抑制されているため、Mnと反応してMnSを形成するSが減少し、結晶粒界に偏析するSが増加する。したがって、合金鋼粉中に過剰のSが含まれていると、Sの偏析に起因する粒界強度の低下が顕著になる。これを防ぐために、合金鋼粉中に不純物として含有されるSの量を0.01%以下とすることが好ましい。なお、S含有量の下限は特に限定されず、0%とすることができるが、工業的には0%超であってよい。   Note that S has a property of segregating at the crystal grain boundaries and lowering the grain boundary strength. However, when Mn is present, MnS, which is a non-metallic inclusion, is formed. In this invention, since Mn content is suppressed to 0.08% or less, S which reacts with Mn and forms MnS decreases, and S which segregates at a crystal grain boundary increases. Therefore, when excessive S is contained in the alloy steel powder, the decrease in grain boundary strength due to segregation of S becomes remarkable. In order to prevent this, the amount of S contained as an impurity in the alloy steel powder is preferably 0.01% or less. In addition, the minimum of S content is not specifically limited, Although it can be set to 0%, industrially it may exceed 0%.

同様に、Pも、結晶粒界に偏析して粒界強度を低下させる性質を有している。そのため、合金鋼粉中に不純物として含有されるPの量を0.01%以下とすることが好ましい。なお、P含有量の下限は特に限定されず、0%とすることができるが、工業的には0%超であってよい。   Similarly, P also has the property of segregating at the grain boundaries and reducing the grain boundary strength. Therefore, the amount of P contained as an impurity in the alloy steel powder is preferably 0.01% or less. In addition, the minimum of P content is not specifically limited, Although it can be 0%, industrially it may exceed 0%.

次に、実施例に基づいて本発明をさらに具体的に説明する。以下の実施例は、本発明の好適な一例を示すものであり、本発明は、該実施例によって何ら限定されるものではない。本発明の実施形態は、本発明の趣旨に適合する範囲で適宜変更することが可能であり、それらは何れも本発明の技術的範囲に包含される。   Next, the present invention will be described more specifically based on examples. The following examples show preferred examples of the present invention, and the present invention is not limited to the examples. Embodiments of the present invention can be modified as appropriate within the scope of the gist of the present invention, and any of them can be included in the technical scope of the present invention.

図3に示した構成の水アトマイズ装置を用いて、種々の成分組成を有する溶鋼から水アトマイズ鉄基粉末を製造した。まず、表1に示す成分組成を有する溶鋼を、誘導加熱炉を用いて、各2000kg作製した。前記溶鋼をタンディッシュに装入し、タンディッシュ底の溶鋼注入ノズルから噴霧槽に落下させ、溶鋼流を水圧15MPaの水ジェットで粉砕してアトマイズ鉄基粉末を得た。アトマイズ中は誘導加熱炉の総重量をロードセルで連続的に計測した。また、誘導加熱炉からタンディッシュへの装入量を調整して、アトマイズ中はタンディッシュ内の溶鋼の液面高さが一定となるようにした。したがって、アトマイズされる溶鋼流の注入速度は、誘導加熱炉の総重量の単位時間当たりの減少率から見積もることができる。なお、溶鋼注入開始直前に誘導加熱炉から溶鋼サンプルを採取して、その成分をカントバック(Quantovac、スパーク放電発光分析法)で分析した。表1に示した溶鋼の成分組成は、前記分析によって得られたものである。溶鋼の成分組成のうち、表1に溶鋼の成分組成として示されている元素以外の残部は、Feと、他の不可避不純物である。また、SおよびPは、溶鋼中に不可避不純物として含有されているものである。また、表中の「Tr.」は検出限界以下であることを意味する。このようにして製造した水アトマイズ鉄基粉末を、ドライ水素雰囲気で1200℃×2時間熱処理して、焼結部材原料用合金鋼粉を製造した。   Water atomized iron-based powders were produced from molten steel having various component compositions using the water atomizing apparatus having the configuration shown in FIG. First, 2000 kg of molten steel having the component composition shown in Table 1 was prepared using an induction heating furnace. The molten steel was charged into a tundish, dropped from a molten steel injection nozzle at the bottom of the tundish into a spray tank, and the molten steel flow was pulverized with a water jet having a water pressure of 15 MPa to obtain an atomized iron-based powder. During atomization, the total weight of the induction furnace was continuously measured with a load cell. In addition, the amount of charging from the induction heating furnace to the tundish was adjusted so that the liquid surface height of the molten steel in the tundish was constant during atomization. Therefore, the injection rate of the atomized molten steel flow can be estimated from the rate of decrease per unit time of the total weight of the induction heating furnace. In addition, the molten steel sample was extract | collected from the induction heating furnace just before the molten steel injection | pouring start, and the component was analyzed by cant back | bag (Quantovac, spark discharge emission spectrometry). The component composition of the molten steel shown in Table 1 is obtained by the above analysis. Of the component composition of the molten steel, the balance other than the elements shown in Table 1 as the component composition of the molten steel is Fe and other inevitable impurities. S and P are contained as inevitable impurities in the molten steel. In addition, “Tr.” In the table means that it is below the detection limit. The water atomized iron-based powder thus produced was heat-treated at 1200 ° C. for 2 hours in a dry hydrogen atmosphere to produce alloy steel powder for a sintered member raw material.

[注入速度安定率]
水アトマイズ工程における溶鋼注入速度の安定性を、以下のようにして評価した。溶鋼の注入開始後5分の時点から2分間における平均溶鋼注入速度を初期注入速度Mi、注入完了5分前から2分間の平均溶鋼注入速度を終期注入速度Mfとし、溶鋼注入の安定性の指標として、次式で定義される注入速度安定率RMを求めた。
M = Mf/Mi×100(%)
[Infusion rate stability rate]
The stability of the molten steel injection rate in the water atomization process was evaluated as follows. Stability of molten steel injection, with the average molten steel injection rate M i for 2 minutes from the beginning of 5 minutes after the start of molten steel injection as the initial injection rate M i and the average molten steel injection rate for 2 minutes 5 minutes before the completion of the injection as the final injection rate M f As an index, an injection rate stability rate R M defined by the following equation was obtained.
R M = M f / M i × 100 (%)

Mが100%に近いほど、注入初期から終期まで注入速度が変化せずに安定して水アトマイズが行えていることを示す。一方、RMが小さいほど、操業時間の経過とともに溶鋼注入速度が低下して不安定な操業となっていることを示す。したがって、RMは100%に近いほど好ましい。なお、RMは70%以上であることが好ましい。The closer RM is to 100%, the more stable water atomization can be achieved without changing the injection rate from the initial stage to the final stage. On the other hand, as the R M is small, indicating that the molten steel injection rate with the lapse of operating time has become unstable operation decreases. Therefore, RM is preferably as close to 100%. Incidentally, R M is preferably 70% or more.

[粒子稠密率]
また、焼結部材原料用合金鋼粉に含まれる個々の粒子内部の空孔生成状態を以下のようにして評価した。まず、上述の方法で製造された水アトマイズ鉄基粉末を、目開き106μmと75μmの篩の間に分級した。次いで、得られた粒子を樹脂に埋め込んだ後、粒子断面を鏡面研磨し、得られた断面を、光学顕微鏡を用いて観察した。その際の観察倍率は100倍とし、800μm×600μmの視野で10箇所写真撮影を行った。撮影された光学顕微鏡像に含まれる粒子の総数をNT、そのうち直径20μm以上の空孔を含む粒子数をNVとし、粒子の稠密性の指標として、次式で定義される粒子稠密率RVを求めた。
V =(1− NV/NT)×100(%)
[Particle density]
Moreover, the void | hole production | generation state inside each particle | grain contained in the alloy steel powder for sintered member raw materials was evaluated as follows. First, the water atomized iron-based powder produced by the above-described method was classified between sieves having openings of 106 μm and 75 μm. Subsequently, after embedding the obtained particle | grains in resin, the particle | grain cross section was mirror-polished and the obtained cross section was observed using the optical microscope. At that time, the observation magnification was 100 times, and 10 places were photographed in a field of view of 800 μm × 600 μm. The total number of particles contained in the photographed optical microscope image is N T , of which the number of particles including pores having a diameter of 20 μm or more is N V, and the particle density ratio R defined by the following equation is used as an index of particle density. V was obtained.
R V = (1−N V / N T ) × 100 (%)

Vが100%に近いほど、大きな空孔を含む粒子が少なく、稠密な粒子が得られていることを示す。一方、RVが小さいほど、多くの粒子に大きな空孔が含まれていることを示す。したがって、RVは100%に近いほど好ましい。なお、RVは80%以上であることが好ましい。It is shown that the closer the R V is to 100%, the smaller the particles containing large vacancies and the denser the particles. On the other hand, the smaller the R V , the greater the number of particles that contain larger pores. Therefore, R V is preferably closer to 100%. R V is preferably 80% or more.

算出されたRMおよびRVの値を、表1に合わせて示す。本発明の条件を満たす発明例においては、RMが高く、溶鋼の注入安定性に優れていた。これに対し、C含有量が低く、本発明の(1)式の条件を満たさない比較例においては、溶鋼の注入安定性が劣っていた。また、[C]/[Cr]2/3が本発明の範囲より低いNo.16の比較例においては、約500kgの原料溶鋼を注入した時点で溶鋼注口が閉塞したが、本発明の条件を満たす発明例においては、原料溶鋼全量をアトマイズすることができた。以上の結果より、本発明の方法によれば、水アトマイズ中におけるCr酸化物の生成を抑制し、Cr含有合金鋼粉を、効率的に、安定して製造できることが分かる。The calculated values of R M and R V are shown in Table 1. In satisfies invention of the present invention, high R M, it was excellent in injection stability of the molten steel. On the other hand, in the comparative example which has a low C content and does not satisfy the condition of the formula (1) of the present invention, the injection stability of the molten steel was inferior. Further, No. [C] / [Cr] 2/3 is lower than the range of the present invention. In 16 comparative examples, the molten steel inlet was closed at the time when about 500 kg of raw molten steel was injected, but in the inventive example satisfying the conditions of the present invention, the total amount of raw molten steel could be atomized. From the above results, it can be seen that according to the method of the present invention, the production of Cr oxide during water atomization is suppressed, and Cr-containing alloy steel powder can be produced efficiently and stably.

また、本発明の条件を満たす発明例においては、RVが高く、得られる水アトマイズ鉄基粉末の稠密性に優れていた。これに対し、溶鋼のC含有量が高く、本発明の(1)式の条件を満たさない比較例においては、水アトマイズ鉄基粉末の稠密性が劣っていた。この結果より、本発明の方法によれば、溶鋼中のCが酸素と反応することによって生じるCOガスが粉末中に残留することに起因する空孔の形成を抑制できることが分かる。Moreover, in the invention examples satisfying the conditions of the present invention, the R V was high and the resulting water atomized iron-based powder was excellent in the denseness. On the other hand, in the comparative example which has high C content of molten steel and does not satisfy | fill the conditions of (1) Formula of this invention, the density of the water atomized iron-base powder was inferior. From this result, it can be seen that according to the method of the present invention, it is possible to suppress the formation of vacancies due to the CO gas generated by the reaction of C in the molten steel with oxygen remaining in the powder.

さらに、易酸化性元素であるSi、Al、Tiの少なくとも1つを溶鋼に添加した発明例においては、易酸化性元素を添加しなかった例に比べてRMおよびRVが向上した。Further, in the invention examples of adding Si is oxidizable elements, Al, at least one of Ti to the molten steel was improved R M and R V as compared to the example without addition of easily oxidizable elements.

なお、表1中で溶鋼中の[C]/[Cr]2/3本発明の範囲にある本発明例では溶鋼中の合金元素の酸化が抑制されるため、熱処理して製造された合金鋼粉における合金化元素の含有量は、表1に示した溶鋼中における合金化元素の含有量と実質的に同じであった。また、Cは酸化されてCOガスとして除去される結果、不可避不純物としての存在するものを除き、本発明例の合金鋼粉にCは残留していなかった。したがって、本発明例における合金鋼粉は本発明における成分組成の条件を満たしていた。一方、溶鋼中の[C]/[Cr]2/3が本発明の範囲よりも低い比較例では、合金鋼粉に含まれるCr量は溶鋼中のCr量よりも0.1質量%以上低かった。なお、溶鋼中の[C]/[Cr]2/3量が本発明の範囲より高い比較例では、粒子稠密率は低いものの溶鋼中の合金元素の酸化は抑制されるため、合金鋼粉の合金化元素含有量は溶鋼成分組成と殆ど差異がなかった。In Table 1, [C] / [Cr] 2/3 in molten steel In the present invention example within the scope of the present invention, oxidation of alloy elements in molten steel is suppressed, so alloy steel manufactured by heat treatment The content of alloying elements in the powder was substantially the same as the content of alloying elements in the molten steel shown in Table 1. In addition, as a result of oxidation of C and removal as CO gas, C did not remain in the alloy steel powder of the present invention example, except for those present as inevitable impurities. Therefore, the alloy steel powder in the examples of the present invention satisfied the component composition conditions in the present invention. On the other hand, in the comparative example in which [C] / [Cr] 2/3 in the molten steel is lower than the range of the present invention, the Cr amount contained in the alloy steel powder is 0.1 mass% or more lower than the Cr amount in the molten steel. It was. In the comparative example in which the amount of [C] / [Cr] 2/3 in the molten steel is higher than the range of the present invention, although the particle density ratio is low, the oxidation of the alloy elements in the molten steel is suppressed. The alloying element content was almost the same as the molten steel composition.

Figure 0006409953
Figure 0006409953

1 溶解炉
2 原料溶鋼
3 タンディッシュ
4 溶鋼ノズル
5 溶鋼流
6 噴霧槽
7 水ノズル
8 高圧水ジェット
9 水アトマイズ鉄基粉末
10 溶鋼注入口
100 水アトマイズ装置
DESCRIPTION OF SYMBOLS 1 Melting furnace 2 Raw material molten steel 3 Tundish 4 Molten steel nozzle 5 Molten steel flow 6 Spraying tank 7 Water nozzle 8 High-pressure water jet 9 Water atomized iron-based powder 10 Molten steel inlet 100 Water atomizer

Claims (4)

焼結部材原料用合金鋼粉の製造方法であって、
溶鋼を水アトマイズして水アトマイズ鉄基粉末とする水アトマイズ工程と、
前記水アトマイズ鉄基粉末に熱処理を行って焼結部材原料用合金鋼粉とする熱処理工程とを有し、
前記溶鋼中におけるC含有量[C](質量%)と、前記溶鋼中におけるCr含有量[Cr](質量%)とが、下記(1)式の関係を満たし、
前記焼結部材原料用合金鋼粉が、質量%で、
Cr:0.3〜3.5%および
Mn:0.08%以下、
を合金化元素として含有し、残部Feおよび不可避不純物からなる成分組成を有する、焼結部材原料用合金鋼粉の製造方法。

0.15≦[C]/[Cr]2/3≦0.25 ……(1)
A method for producing alloy steel powder for a sintered member raw material,
A water atomization process in which molten steel is water atomized to form a water atomized iron-based powder;
A heat treatment step of heat-treating the water atomized iron-based powder to obtain an alloy steel powder for a sintered member raw material,
The C content [C] (mass%) in the molten steel and the Cr content [Cr] (mass%) in the molten steel satisfy the relationship of the following formula (1),
The alloy steel powder for sintered member raw material is in mass%,
Cr: 0.3-3.5% and Mn: 0.08% or less,
The manufacturing method of the alloy steel powder for sintered member raw materials which has a component composition which consists of remainder Fe and an unavoidable impurity.
Record
0.15 ≦ [C] / [Cr] 2/3 ≦ 0.25 (1)
焼結部材原料用合金鋼粉の製造方法であって、
溶鋼を水アトマイズして水アトマイズ鉄基粉末とする水アトマイズ工程と、
前記水アトマイズ鉄基粉末に熱処理を行って焼結部材原料用合金鋼粉とする熱処理工程とを有し、
前記溶鋼中におけるC含有量[C](質量%)と、前記溶鋼中におけるCr含有量[Cr](質量%)とが、下記(1)式の関係を満たし
記焼結部材原料用合金鋼粉が、質量%で、
Cr:0.3〜3.5%および
Mn:0.08%以下、
を合金化元素として含有し、残部Feおよび不可避不純物からなる成分組成を有し、
前記溶鋼が、前記焼結部材原料用合金鋼粉中に含まれる前記合金化元素よりも酸化物の標準生成自由エネルギーが低い易酸化性元素を、合計で0.01〜0.1質量%含有する、焼結部材原料用合金鋼粉の製造方法。

0.10≦[C]/[Cr]2/3≦0.35 ……(1)
A method for producing alloy steel powder for a sintered member raw material,
A water atomization process in which molten steel is water atomized to form a water atomized iron-based powder;
A heat treatment step of heat-treating the water atomized iron-based powder to obtain an alloy steel powder for a sintered member raw material,
The C content [C] (mass%) in the molten steel and the Cr content [Cr] (mass%) in the molten steel satisfy the relationship of the following formula (1) ,
Before Kishoyui member feedstock alloy steel powder, in mass%,
Cr: 0.3-3.5% and Mn: 0.08% or less,
The contained as an alloying element, have a component composition and the balance Fe and unavoidable impurities,
The molten steel contains 0.01 to 0.1% by mass in total of oxidizable elements whose standard free energy of formation of oxide is lower than that of the alloying element contained in the alloy steel powder for the sintered member raw material The manufacturing method of the alloy steel powder for sintered member raw materials.
Record
0.10 ≦ [C] / [Cr] 2/3 ≦ 0.35 (1)
前記易酸化性元素が、Si、V、Ti、およびAlからなる群より選択される1または2以上である、請求項2に記載の焼結部材原料用合金鋼粉の製造方法。   The manufacturing method of the alloy steel powder for sintered member raw materials of Claim 2 whose said oxidizable element is 1 or 2 or more selected from the group which consists of Si, V, Ti, and Al. 前記焼結部材原料用合金鋼粉の成分組成が、質量%で、
Mo:0.1〜2.0%
を合金化元素としてさらに含有し、
前記焼結部材原料用合金鋼粉の成分組成におけるC含有量が0.1質量%以下である、請求項1〜3のいずれか一項に記載の焼結部材原料用合金鋼粉の製造方法。




The component composition of the alloy steel powder for sintered member raw material is mass%,
Mo: 0.1 to 2.0%
Further contained as an alloying element,
The manufacturing method of the alloy steel powder for sintered member raw materials as described in any one of Claims 1-3 whose C content in the component composition of the said alloy steel powder for sintered member raw materials is 0.1 mass% or less. .




JP2017501723A 2015-09-11 2016-09-09 Method for producing alloy steel powder for sintered member raw material Active JP6409953B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015179499 2015-09-11
JP2015179499 2015-09-11
PCT/JP2016/004121 WO2017043091A1 (en) 2015-09-11 2016-09-09 Method for producing alloyed steel powder for sintered member starting material

Publications (2)

Publication Number Publication Date
JPWO2017043091A1 JPWO2017043091A1 (en) 2017-09-07
JP6409953B2 true JP6409953B2 (en) 2018-10-24

Family

ID=58239413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017501723A Active JP6409953B2 (en) 2015-09-11 2016-09-09 Method for producing alloy steel powder for sintered member raw material

Country Status (3)

Country Link
JP (1) JP6409953B2 (en)
KR (1) KR102064146B1 (en)
WO (1) WO2017043091A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102288887B1 (en) * 2017-04-10 2021-08-12 현대자동차주식회사 Method of manufacturing iron powder and iron powder manufactured thereby
KR102663665B1 (en) * 2018-12-28 2024-05-03 현대자동차주식회사 Iron-based powder for powder metallurgy and method for producing same
KR102660345B1 (en) * 2018-12-28 2024-04-23 현대자동차주식회사 Iron-based powder for powder metallurgy and method for producing same
CN112410658B (en) * 2020-09-24 2021-12-03 山东鲁银新材料科技有限公司 Preparation method of high-strength and high-hardness water-atomized prealloyed steel powder

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE7612279L (en) * 1976-11-05 1978-05-05 British Steel Corp FINALLY DISTRIBUTED STEEL POWDER, AND WAY TO PRODUCE THIS.
JPS5810962B2 (en) 1978-10-30 1983-02-28 川崎製鉄株式会社 Alloy steel powder with excellent compressibility, formability and heat treatment properties
JP3224417B2 (en) * 1992-02-14 2001-10-29 川崎製鉄株式会社 Alloy steel powder and sintered body for sintered body having high strength, high fatigue strength and high toughness
JP2797048B2 (en) * 1992-09-25 1998-09-17 山陽特殊製鋼株式会社 Melt erosion resistant material
JPH06306403A (en) * 1993-04-23 1994-11-01 Kawasaki Steel Corp High-strength and high-toughness cr alloy steel powder sintered compact and its production
JPH07233402A (en) * 1993-12-28 1995-09-05 Kawasaki Steel Corp Atomized steel powder excellent in machinability and wear resistance and sintered steel produced therefrom
SE9602835D0 (en) 1996-07-22 1996-07-22 Hoeganaes Ab Process for the preparation of an iron-based powder
SE9800153D0 (en) 1998-01-21 1998-01-21 Hoeganaes Ab Low pressure process
SE9800154D0 (en) 1998-01-21 1998-01-21 Hoeganaes Ab Steel powder for the preparation of sintered products
JP2002322503A (en) * 2001-04-24 2002-11-08 Toyota Motor Corp Method for producing sintered steel parts
JP4281857B2 (en) 2001-08-09 2009-06-17 株式会社不二越 Sintered tool steel and manufacturing method thereof
EP2576104A4 (en) * 2010-06-04 2017-05-31 Höganäs Ab (publ) Nitrided sintered steels

Also Published As

Publication number Publication date
KR102064146B1 (en) 2020-01-08
JPWO2017043091A1 (en) 2017-09-07
KR20180021150A (en) 2018-02-28
WO2017043091A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6093405B2 (en) Nitrogen-containing low nickel sintered stainless steel
JP6409953B2 (en) Method for producing alloy steel powder for sintered member raw material
JP4536166B2 (en) Stainless steel powder
JP6164387B1 (en) Method for producing alloy steel powder for sintered member raw material
JP5972548B2 (en) Method for producing dense solidified body of Fe-based powder with excellent high-temperature strength
JP2010090470A (en) Iron-based sintered alloy and method for producing the same
KR102061839B1 (en) Neutron absorption material and method for manufacturing the same
JP2013519792A (en) Master alloy for producing sintered hardened steel parts and process for producing sintered hardened parts
Sergi et al. The role of powder atomisation route on the microstructure and mechanical properties of hot isostatically pressed Inconel 625
JP2011094187A (en) Method for producing high strength iron based sintered compact
CN113621899B (en) Stainless steel-based composite material and preparation method and application thereof
CN116144937A (en) Electroslag mixing method for inhibiting boron element burning loss in boron-containing nitrogen-containing heat-resistant steel
JP5929084B2 (en) Alloy steel powder for powder metallurgy, iron-based sintered material and method for producing the same
JPWO2019111833A1 (en) Alloy steel powder
EP2969327A1 (en) Powder metal compositions for wear and temperature resistance applications and method of producing same
JP5814500B2 (en) Method for producing stainless steel ingot having carbon [C] of 10 ppm or less in ingot
JP5929320B2 (en) Alloy steel powder for powder metallurgy and method for producing alloy steel powder for powder metallurgy
JPH08209202A (en) Alloy steel powder for high strength sintered material excellent in machinability
CN102021271A (en) Intermediate for adding superfine oxide into steel and preparation method thereof
JPWO2019188833A1 (en) Alloy steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy
JP7060101B2 (en) Alloy steel powder for powder metallurgy, iron-based mixed powder for powder metallurgy, and sintered body
WO2023157386A1 (en) Iron-based mixed powder for powder metallurgy, and iron-based sintered body
CN117265405A (en) Novel bearing steel material for wind turbine generator and manufacturing method
Hansong et al. Experimental Study and Thermodynamic Analysis of Inclusion Precipitation during Solidification in 12% Cr Alloy
JP2021001381A (en) Alloy steel powder for sintered member, iron based mixed powder for sintered member, and sintered member

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180910

R150 Certificate of patent or registration of utility model

Ref document number: 6409953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250