KR102663665B1 - Iron-based powder for powder metallurgy and method for producing same - Google Patents
Iron-based powder for powder metallurgy and method for producing same Download PDFInfo
- Publication number
- KR102663665B1 KR102663665B1 KR1020180171708A KR20180171708A KR102663665B1 KR 102663665 B1 KR102663665 B1 KR 102663665B1 KR 1020180171708 A KR1020180171708 A KR 1020180171708A KR 20180171708 A KR20180171708 A KR 20180171708A KR 102663665 B1 KR102663665 B1 KR 102663665B1
- Authority
- KR
- South Korea
- Prior art keywords
- iron
- based powder
- powder
- molten steel
- ingot
- Prior art date
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 171
- 239000000843 powder Substances 0.000 title claims abstract description 102
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 79
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 41
- 238000004663 powder metallurgy Methods 0.000 title claims abstract description 23
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 47
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 44
- 239000010959 steel Substances 0.000 claims abstract description 44
- 239000011651 chromium Substances 0.000 claims abstract description 36
- 239000000956 alloy Substances 0.000 claims abstract description 23
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 22
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 20
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 17
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 17
- 238000002844 melting Methods 0.000 claims abstract description 16
- 230000008018 melting Effects 0.000 claims abstract description 16
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 16
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 16
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 15
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000011733 molybdenum Substances 0.000 claims abstract description 15
- 239000011574 phosphorus Substances 0.000 claims abstract description 15
- 239000010703 silicon Substances 0.000 claims abstract description 15
- 239000012535 impurity Substances 0.000 claims abstract description 11
- 239000011572 manganese Substances 0.000 claims description 19
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 15
- 229910052796 boron Inorganic materials 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 14
- 238000002347 injection Methods 0.000 claims description 12
- 239000007924 injection Substances 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 28
- 239000001301 oxygen Substances 0.000 description 28
- 229910052760 oxygen Inorganic materials 0.000 description 28
- 238000000465 moulding Methods 0.000 description 21
- 238000011084 recovery Methods 0.000 description 8
- 238000004090 dissolution Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- -1 Cr and Si components Chemical compound 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009692 water atomization Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- B22F1/0003—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/142—Thermal or thermo-mechanical treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/0824—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/35—Iron
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
본 발명은 고내마모성이 요구되는 자동차용 소결부품에 적용되는 분말야금용 철계분말 및 이의 제조방법에 관한 것이다.
한편, 본 발명의 일 실시예에 따른 분말야금용 철계분말의 제조방법은 자동차용 부품의 제조에 사용되는 분말야금용 철계분말을 제조하는 방법으로서, 크롬(Cr), 니켈(Ni), 몰리브덴(Mo), 인(P), 규소(Si), 철(Fe) 및 기타 불가피한 불순물을 함유하는 철계분말의 각 합금성분에 대한 목표 함량을 설정하는 단계와; 크롬(Cr), 인(P) 및 규소(Si)의 목표 함량 대비 0.5 ~ 45% 함량을 증가시키고, 니켈(Ni) 및 몰리브덴(Mo)의 목표 함량에 대응되는 함량으로 잉곳을 준비하는 단계와; 상기 잉곳을 용해시켜 용강을 준비하는 단계와; 상기 용강을 이용하여 철계분말을 제조하는 단계를 포함한다.The present invention relates to an iron-based powder for powder metallurgy applied to sintered parts for automobiles requiring high wear resistance and a method for manufacturing the same.
Meanwhile, the method of manufacturing iron-based powder for powder metallurgy according to an embodiment of the present invention is a method of manufacturing iron-based powder for powder metallurgy used in the manufacture of automobile parts, and is a method of manufacturing iron-based powder for powder metallurgy, which contains chromium (Cr), nickel (Ni), and molybdenum ( Setting a target content for each alloy component of the iron-based powder containing Mo), phosphorus (P), silicon (Si), iron (Fe) and other unavoidable impurities; Increasing the target content of chromium (Cr), phosphorus (P), and silicon (Si) by 0.5 to 45%, and preparing an ingot with a content corresponding to the target content of nickel (Ni) and molybdenum (Mo); ; preparing molten steel by melting the ingot; It includes manufacturing iron-based powder using the molten steel.
Description
본 발명은 분말야금용 철계분말 및 이의 제조방법에 관한 것으로서, 더욱 상세하게는 고내마모성이 요구되는 자동차용 소결부품에 적용되는 분말야금용 철계분말 및 이의 제조방법에 관한 것이다.The present invention relates to an iron-based powder for powder metallurgy and a method for manufacturing the same, and more specifically, to an iron-based powder for powder metallurgy applied to sintered parts for automobiles requiring high wear resistance and a method for manufacturing the same.
일반적으로 철계분말은 고철 스크랩과 제선 공정에서 생산된 용선을 제강로에서 혼합하고 용해하여 원하는 성분함량으로 조정된 용강을 준비한 다음, 턴디쉬에 용강을 공급하여 수분사 장비 등을 통하여 제조되고 있다. 이러한 철계분말은 자동차 부품 등을 제조하기 위한 분말 야금용 원료 및 각종 첨가제 등 다양한 용도로 사용되고 있다.In general, iron-based powder is manufactured by mixing and dissolving scrap iron scrap and molten iron produced in the iron making process in a steelmaking furnace to prepare molten steel adjusted to the desired component content, and then supplying the molten steel to a tundish using water injection equipment. These iron-based powders are used for various purposes, such as raw materials for powder metallurgy and various additives for manufacturing automobile parts, etc.
최근 자동차 산업은 엔진의 고출력 및 고성능화 트렌드에 따라 엔진이나 변속기 부품 응용을 위해서는 높은 내마모성을 요구하는 재질에 대한 연구가 활발하게 진행되고 있다.Recently, in the automobile industry, research has been actively conducted on materials that require high wear resistance for engine or transmission parts applications in accordance with the trend of high output and high performance of engines.
이러한 트렌드에 맞춰 분말재료 또한 고내마성을 구현할 수 있는 자동차 소결부품 적용 연구가 활성화 되고 있으며, 이를 위해 Cr, Mo, Ni 등이 포함된 다성분계 합금 분말의 제조공정에 대한 개발 필요성이 대두되고 있다.In line with this trend, research on the application of powder materials to automotive sintered parts that can achieve high wear resistance is being activated, and for this, the need to develop a manufacturing process for multi-component alloy powders containing Cr, Mo, Ni, etc. is emerging.
상기의 배경기술로서 설명된 내용은 본 발명에 대한 배경을 이해하기 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.The content described as background technology above is only for understanding the background to the present invention, and should not be taken as an admission that it corresponds to prior art already known to those skilled in the art.
본 발명은 Cr 및 Si 성분과 같이 산소와의 친화도가 매우 높은 합금 성분의 목표 함량 적중률을 향상시킬 수 있는 분말야금용 철계분말 및 이의 제조방법을 제공한다.The present invention provides an iron-based powder for powder metallurgy that can improve the target content hit rate of alloy components with very high affinity for oxygen, such as Cr and Si components, and a method for manufacturing the same.
또한, 이에 따라 고내마모성이 요구되는 자동차용 소결부품에 적용되는 분말야금용 철계분말 및 이의 제조방법을 제공한다.In addition, an iron-based powder for powder metallurgy applied to sintered parts for automobiles requiring high wear resistance and a method for manufacturing the same are provided.
본 발명의 일 실시형태에 따른 분말야금용 철계분말은 자동차용 부품의 제조에 사용되는 분말야금용 철계분말로서, 중량%로, 크롬(Cr): 7 ~ 9%, 니켈(Ni): 1.5 ~ 2.5%, 몰리브덴(Mo): 1.6 ~ 2.2%, 인(P): 0.3 ~ 0.7%, 규소(Si): 0.5 ~ 1.1%, 나머지 철(Fe) 및 기타 불가피한 불순물을 함유한다.The iron-based powder for powder metallurgy according to an embodiment of the present invention is an iron-based powder for powder metallurgy used in the manufacture of automobile parts, and has chromium (Cr): 7 to 9%, nickel (Ni): 1.5 to 1.5% by weight. 2.5%, molybdenum (Mo): 1.6 to 2.2%, phosphorus (P): 0.3 to 0.7%, silicon (Si): 0.5 to 1.1%, the remainder contains iron (Fe) and other inevitable impurities.
상기 철계분말은 산소(O): 0.2% 이하를 더 함유한다.The iron-based powder further contains oxygen (O): 0.2% or less.
상기 철계분말의 성형밀도는 600MPa 압력에서 6.2g/㎤ 이상인 것을 특징으로 한다.The molding density of the iron-based powder is characterized in that it is 6.2 g/cm3 or more at a pressure of 600 MPa.
상기 철계분말은 붕소(B): 0.001 ~ 0.01% 더 함유한다.The iron-based powder further contains boron (B): 0.001 to 0.01%.
상기 철계분말의 경도는 60HRC 이상이고, 마모율은 10mg/M 이하인 것이 바람직하다.The hardness of the iron-based powder is preferably 60 HRC or more, and the wear rate is preferably 10 mg/M or less.
한편, 본 발명의 일 실시예에 따른 분말야금용 철계분말의 제조방법은 자동차용 부품의 제조에 사용되는 분말야금용 철계분말을 제조하는 방법으로서, 크롬(Cr), 니켈(Ni), 몰리브덴(Mo), 인(P), 규소(Si), 철(Fe) 및 기타 불가피한 불순물을 함유하는 철계분말의 각 합금성분에 대한 목표 함량을 설정하는 단계와; 크롬(Cr), 인(P) 및 규소(Si)의 목표 함량 대비 0.5 ~ 45% 함량을 증가시키고, 니켈(Ni) 및 몰리브덴(Mo)의 목표 함량에 대응되는 함량으로 잉곳을 준비하는 단계와; 상기 잉곳을 용해시켜 용강을 준비하는 단계와; 상기 용강을 이용하여 철계분말을 제조하는 단계를 포함한다.Meanwhile, the method of manufacturing iron-based powder for powder metallurgy according to an embodiment of the present invention is a method of manufacturing iron-based powder for powder metallurgy used in the manufacture of automobile parts, and includes chromium (Cr), nickel (Ni), molybdenum ( Setting a target content for each alloy component of the iron-based powder containing Mo), phosphorus (P), silicon (Si), iron (Fe) and other unavoidable impurities; Increasing the target content of chromium (Cr), phosphorus (P), and silicon (Si) by 0.5 to 45%, and preparing an ingot with a content corresponding to the target content of nickel (Ni) and molybdenum (Mo); ; preparing molten steel by melting the ingot; It includes manufacturing iron-based powder using the molten steel.
상기 합금성분에 대한 목표 함량을 설정하는 단계에서, 각 합금성분의 목표 함량은 중량%로, 크롬(Cr): 7 ~ 9%, 니켈(Ni): 1.5 ~ 2.5%, 몰리브덴(Mo): 1.6 ~ 2.2%, 인(P): 0.3 ~ 0.7%, 규소(Si): 0.5 ~ 1.1%, 나머지 철(Fe)인 것을 특징으로 한다.In the step of setting the target content for the alloy component, the target content of each alloy component is expressed in weight%, chromium (Cr): 7 to 9%, nickel (Ni): 1.5 to 2.5%, molybdenum (Mo): 1.6. ~ 2.2%, phosphorus (P): 0.3 ~ 0.7%, silicon (Si): 0.5 ~ 1.1%, the remainder being iron (Fe).
상기 잉곳을 준비하는 단계에서, 상기 잉곳에는 망간(Mn): 0.2 ~ 0.45%가 더 함유되는 것을 특징으로 한다.In the step of preparing the ingot, the ingot is characterized in that it further contains manganese (Mn): 0.2 to 0.45%.
상기 용강을 준비하는 단계에서, 상기 잉곳을 용해시키면서 탈산제를 적어도 1회 이상 투입하는 것을 특징으로 한다.In the step of preparing the molten steel, a deoxidizing agent is added at least once while dissolving the ingot.
상기 탈산제는 알루미늄(Al)이고, 최종 용강 내 알루미늄(Al)의 함량은 0.1% 이하가 되도록 탈산제를 투입하는 것을 특징으로 한다.The deoxidizer is aluminum (Al), and the deoxidizer is added so that the aluminum (Al) content in the final molten steel is 0.1% or less.
상기 용강을 준비하는 단계에서, 상기 잉곳의 용해 온도는 1590 ~ 1630℃인 것을 특징으로 한다.In the step of preparing the molten steel, the melting temperature of the ingot is 1590 to 1630°C.
상기 용강을 준비하는 단계에서, 상기 잉곳이 용해되는 동안 용강에 붕소(B)을 0.001 ~ 0.01%를 첨가하는 것을 특징으로 한다.In the step of preparing the molten steel, 0.001 to 0.01% of boron (B) is added to the molten steel while the ingot is melting.
상기 철계분말을 제조하는 단계는 수분사법 또는 가스분사법으로 철계분말을 제조하고, 철계분말을 제조하기 전 용강은 1540 ~ 1560℃로 유지되는 것을 특징으로 한다.The step of manufacturing the iron-based powder is characterized in that the iron-based powder is manufactured by a water injection method or a gas injection method, and the molten steel is maintained at 1540 to 1560° C. before manufacturing the iron-based powder.
상기 철계분말을 제조하는 단계 이후에는 철계분말을 열처리하는 단계를 더 포함한다.After the step of manufacturing the iron-based powder, the step of heat treating the iron-based powder is further included.
상기 철계분말을 열처리하는 단계는 환원분위기에서 400 ~ 600℃의 열처리 온도로 실시되는 것을 특징으로 한다.The step of heat treating the iron-based powder is characterized in that it is performed at a heat treatment temperature of 400 to 600 ° C. in a reducing atmosphere.
본 발명의 실시예에 따르면, 합금 성분의 목표 함량을 맞추기 위하여 합금 성분의 산소 친화도에 따라 각 성분의 함량을 조정한 잉곳을 사용하여 철계분말을 제조함에 따라 목표로 하는 합금 성분을 맞출 수 있어 철계분말을 품질을 향상시킬 수 있다.According to an embodiment of the present invention, in order to meet the target content of the alloy component, the target alloy component can be adjusted by manufacturing iron-based powder using an ingot in which the content of each component is adjusted according to the oxygen affinity of the alloy component. The quality of iron-based powder can be improved.
또한, 잉곳에 망간(Mn)을 첨가함으로써 각 성분의 회수율을 향상시킬 수 있다.Additionally, the recovery rate of each component can be improved by adding manganese (Mn) to the ingot.
또한, 잉곳의 용해 중 붕소(B)을 적정량 첨가하여 철계분말의 내마모성을 향상시킬 수 있다.Additionally, the wear resistance of iron-based powder can be improved by adding an appropriate amount of boron (B) during dissolution of the ingot.
도 1은 본 발명의 일 실시예에 따른 분말야금용 철계분말의 제조단계를 보여주는 순서도이고,
도 2는 비교예와 실시예에 따른 분말 입자의 상태를 보여주는 사진이다.1 is a flowchart showing the manufacturing steps of iron-based powder for powder metallurgy according to an embodiment of the present invention;
Figure 2 is a photograph showing the state of powder particles according to comparative examples and examples.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the attached drawings. However, the present invention is not limited to the embodiments disclosed below and will be implemented in various different forms. These embodiments only serve to ensure that the disclosure of the present invention is complete and to fully convey the scope of the invention to those skilled in the art. This is provided to inform you.
본 발명의 일 실시예에 따른 분말야금용 철계분말은 고내마모성이 요구되는 자동차용 부품을 소결방법으로 제조하기 위하여 준비되는 철계분말로서, 캠샤프트 캠로브 부품의 요구 특성을 만족하기 위하여 중량%로, 크롬(Cr): 7 ~ 9%, 니켈(Ni): 1.5 ~ 2.5%, 몰리브덴(Mo): 1.6 ~ 2.2%, 인(P): 0.3 ~ 0.7%, 규소(Si): 0.5 ~ 1.1%, 나머지 철(Fe) 및 기타 불가피한 불순물을 함유하는 것이 바람직하다.The iron-based powder for powder metallurgy according to an embodiment of the present invention is an iron-based powder prepared for manufacturing automobile parts requiring high wear resistance by a sintering method, and is divided into weight percent to satisfy the required characteristics of camshaft cam lobe parts. , Chromium (Cr): 7 ~ 9%, Nickel (Ni): 1.5 ~ 2.5%, Molybdenum (Mo): 1.6 ~ 2.2%, Phosphorus (P): 0.3 ~ 0.7%, Silicon (Si): 0.5 ~ 1.1% , it is desirable to contain the remaining iron (Fe) and other inevitable impurities.
그리고, 철계분말에는 산소(O)를 0.2% 이하의 범위로 함유하도록 제어되는 것이 바람직하다.In addition, it is preferable that the iron-based powder is controlled to contain oxygen (O) in the range of 0.2% or less.
상기와 같은 조성을 갖는 철계분말은 캠로브 부품에 적용하기 위하여 600MPa 압력에서 성형밀도가 6.2g/㎤ 이상을 만족하여야 한다. 성형밀도가 6.2g/㎤ 미만일 경우에는 목표 성형밀도 확보를 위해 더 높은 성형압력이 요구되고, 이때 발생하는 스프링백(탄성복원에 의한 치수팽창율)이 커져, 캠로브 내경/외경 치수변화율에 영향을 주기 때문에 샤프트와의 조립성이 저하된다. 또한, 성형밀도가 6.2g/㎤ 미만일 경우에는, 목표 소결밀도인 7.2g/㎤ 이상을 확보하기 위해 1,200℃ 이상의 고온소결 공정이 필요하기 때문에 제조비용의 증가를 야기한다.The iron-based powder having the above composition must have a molding density of 6.2 g/cm3 or more at a pressure of 600 MPa in order to be applied to cam lobe parts. If the molding density is less than 6.2g/cm3, a higher molding pressure is required to secure the target molding density, and the springback (dimensional expansion rate due to elastic recovery) that occurs at this time increases, affecting the dimensional change rate of the inner/outer diameter of the cam lobe. Because of this, assembly with the shaft deteriorates. In addition, when the molding density is less than 6.2 g/cm3, a high temperature sintering process of 1,200°C or more is required to secure the target sintering density of 7.2 g/cm3 or more, resulting in an increase in manufacturing costs.
따라서 본 발명에서 제안하는 철계분말의 성형특성은 600MPa 압력에서 6.2g/㎤ 이상의 성형밀도를 만족하는 것이 바람직하다.Therefore, it is desirable that the molding characteristics of the iron-based powder proposed in the present invention satisfy a molding density of 6.2 g/cm3 or more at a pressure of 600 MPa.
또한, 철계분말은 경도 및 내마모성의 향상을 위하여 붕소(B): 0.001 ~ 0.01% 더 함유하는 것이 바람직하다.In addition, the iron-based powder preferably contains 0.001 to 0.01% of boron (B) to improve hardness and wear resistance.
붕소(B)는 미량의 첨가만으로도 우수한 경화능 향상을 나타내는 원소로서, 붕소(B)는 초석 페라이트의 핵생성을 억제함으로써 소입성을 증대시킨다. 그래서 붕소(B)의 첨가에 의해 경도 및 내마모성의 향상이 발휘될 수 있도록 붕소의 함량은 0.001 ~ 0.01%로 제한하는 것이 바람직하다.Boron (B) is an element that shows excellent hardenability improvement even with the addition of a small amount. Boron (B) increases hardenability by suppressing the nucleation of proeutectoid ferrite. Therefore, it is desirable to limit the boron content to 0.001 to 0.01% so that hardness and wear resistance can be improved by the addition of boron (B).
이에 따라 철계분말의 경도는 60HRC 이상이고, 마모율은 10mg/M 이하를 만족할 수 있다. Accordingly, the hardness of the iron-based powder can be 60 HRC or more, and the wear rate can be 10 mg/M or less.
상기와 같이 형성되는 분말야금용 금속분말의 제조방법에 대하여 설명한다.A method for manufacturing the metal powder for powder metallurgy formed as described above will be described.
도 1은 본 발명의 일 실시예에 따른 분말야금용 철계분말의 제조단계를 보여주는 순서도이다.Figure 1 is a flowchart showing the manufacturing steps of iron-based powder for powder metallurgy according to an embodiment of the present invention.
도면에 도시된 바와 같이 본 발명의 일 실시예에 따른 분말야금용 철계분말의 제조방법은 크롬(Cr), 니켈(Ni), 몰리브덴(Mo), 인(P), 규소(Si), 철(Fe) 및 기타 불가피한 불순물을 함유하는 철계분말의 각 합금성분에 대한 목표 함량을 설정하는 단계와; 크롬(Cr), 인(P) 및 규소(Si)의 목표 함량 대비 0.5 ~ 45% 함량을 증가시키고, 니켈(Ni) 및 몰리브덴(Mo)의 목표 함량에 대응되는 함량으로 잉곳을 준비하는 단계와; 상기 잉곳을 용해시켜 용강을 준비하는 단계와; 상기 용강을 이용하여 철계분말을 제조하는 단계를 포함한다.As shown in the drawing, the method for manufacturing iron-based powder for powder metallurgy according to an embodiment of the present invention includes chromium (Cr), nickel (Ni), molybdenum (Mo), phosphorus (P), silicon (Si), and iron ( Setting a target content for each alloy component of the iron-based powder containing Fe) and other unavoidable impurities; Increasing the target content of chromium (Cr), phosphorus (P), and silicon (Si) by 0.5 to 45%, and preparing an ingot with a content corresponding to the target content of nickel (Ni) and molybdenum (Mo); ; preparing molten steel by melting the ingot; It includes manufacturing iron-based powder using the molten steel.
각 단계에 대하여 구체적으로 설명한다.Each step is explained in detail.
1. 각 합금성분에 대한 목표 함량을 설정하는 단계1. Step of setting target content for each alloy component
철계분말을 구성하는 합금성분 각각의 목표 함량을 설정하는 단계로서, 본 실시예에서는 캠샤프트 캠로브 부품의 요구 특성을 만족하기 위하여 중량%로, 크롬(Cr): 7 ~ 9%, 니켈(Ni): 1.5 ~ 2.5%, 몰리브덴(Mo): 1.6 ~ 2.2%, 인(P): 0.3 ~ 0.7%, 규소(Si): 0.5 ~ 1.1%, 나머지 철(Fe)로 목표 함량을 설정한다.This is a step of setting the target content of each alloy component constituting the iron powder. In this embodiment, in order to satisfy the required characteristics of the camshaft cam lobe parts, chromium (Cr): 7 to 9%, nickel (Ni) is set in weight%. ): 1.5 to 2.5%, molybdenum (Mo): 1.6 to 2.2%, phosphorus (P): 0.3 to 0.7%, silicon (Si): 0.5 to 1.1%, and the remaining iron (Fe).
2. 잉곳을 준비하는 단계2. Steps to prepare ingots
크롬(Cr), 니켈(Ni), 몰리브덴(Mo), 인(P), 규소(Si) 및 철(Fe)을 함유하는 잉곳을 준비한다.Prepare an ingot containing chromium (Cr), nickel (Ni), molybdenum (Mo), phosphorus (P), silicon (Si), and iron (Fe).
이때 각 합급성분은 산소와의 친화도에 따라 목표 함량 대비 조성되는 함량을 조정한다.At this time, the content of each alloy component is adjusted compared to the target content according to its affinity with oxygen.
예를 들어 크롬(Cr), 인(P) 및 규소(Si)와 같이 산소와의 친화도가 높은 합금성분은 목표 함량 대비 0.5 ~ 45% 함량을 증가시키고, 니켈(Ni) 및 몰리브덴(Mo)과 같이 산소와의 친화도가 매우 낮은 합금원소는 목표 함량에 대응되는 함량으로 함량을 조정한다.For example, alloy components with high affinity for oxygen, such as chromium (Cr), phosphorus (P), and silicon (Si), increase the content by 0.5 to 45% compared to the target content, and nickel (Ni) and molybdenum (Mo) For alloy elements with very low affinity for oxygen, the content is adjusted to correspond to the target content.
예를 들어 Cr 성분은 최종 철계분말의 목표 함량인 7 ~ 9%를 기준으로 잉곳 내 Cr 성분을 0.5 ~ 3% 증가시키고, Si 성분은 최종 철계분말의 목표 함량인 0.5 ~ 1.1%를 기준으로 20 ~ 45%까지 증가시키며, P 성분은 최종 철계분말의 목표 함량인0.3 ~ 0.7%를 기준으로 10 ~ 16%까지 증가시켜 각 성분의 함량을 설계하였다.For example, the Cr component in the ingot is increased by 0.5 to 3% based on the target content of 7 to 9% of the final iron-based powder, and the Si component is increased by 20% based on the target content of 0.5 to 1.1% of the final iron-based powder. The content of each component was designed by increasing it to ~ 45%, and the P component was increased to 10 ~ 16% based on the target content of 0.3 ~ 0.7% of the final iron powder.
이때 Ni 성분과 Mo 성분은 산소와의 친화도가 매우 낮아 각각 최종 철계분말의 목표 함량을 기준으로 동일한 함량으로 설계하였다.At this time, the Ni and Mo components had very low affinity for oxygen, so they were designed to have the same content based on the target content of the final iron powder.
한편, 각 합금성분의 회수율을 향상시키기 위하여 잉곳에는 추가로 Mn 성분을 중량비로 0.2 ~ 0.45% 더 첨가할 수 있다. Mn을 0.2 ~ 0.45% 정도 첨가하는 경우 각 성분의 회수율을 80 ~ 95%까지 향상시킬 수 있다. 하지만, Mn이 0.45%를 초과하여 첨가되는 경우 철계분말 내에 Mn 성분이 잔류되어 분말 내 성형성을 저하시킬 수 있으므로 Mn 함량은 0.2 ~ 0.45%로 제한하는 것이 바람직하다.Meanwhile, in order to improve the recovery rate of each alloy component, an additional 0.2 to 0.45% by weight of Mn component can be added to the ingot. When Mn is added in an amount of 0.2 to 0.45%, the recovery rate of each component can be improved to 80 to 95%. However, if Mn is added in excess of 0.45%, the Mn component may remain in the iron-based powder and reduce moldability within the powder, so it is preferable to limit the Mn content to 0.2 to 0.45%.
3. 용강을 준비하는 단계3. Steps to prepare molten steel
잉곳을 용해시켜 철계분말을 형성하기 위한 용강을 준비한다.Prepare molten steel to form iron-based powder by dissolving the ingot.
잉곳의 용해는 대기용해를 실시하며, 용해 온도는 1590 ~ 1630℃를 유지하는 것이 바람직하다. 본 실시예에서 용해는 유도로를 사용하여 용해 공정을 진행하였으나, 본 유도로 공정 외에도 대기분위기에서 진행하는 아크로, 반사로 등에도 적용이 가능하다.The ingot is melted in the air, and the melting temperature is preferably maintained at 1590 to 1630°C. In this embodiment, the melting process was carried out using an induction furnace, but in addition to this induction furnace process, it can also be applied to arc furnaces, reverberatory furnaces, etc. that are carried out in an atmospheric atmosphere.
한편, 캠샤프트 캠로브에 사용되는 철계분말은 분말 내 산소성분이 0.2%를 초과할 경우 성형 중 성형성이 저하되고, 분말 내 개재물이 형성되어 부품 특성에 큰 악영향을 미친다. 따라서, 분말 내 산소성분의 함량에 영향을 미치는 용강의 용해 온도는 1590 ~ 1630℃, 바람직하게는 1590 ~ 1610℃를 유지하는 것이 바람직하다. 만약 용강의 용해 온도가 제시된 온도보다 낮으면 합금성분의 원활한 용해가 이루어지 않고, 용강의 용해 온도가 제시된 온도보다 높으면 분말 내 산소함량이 증가하고, 이에 따라 성형밀도가 저하되는 문제가 발생할 수 있다.On the other hand, when the oxygen content in the iron-based powder used in the camshaft cam lobe exceeds 0.2%, the moldability decreases during molding and inclusions are formed in the powder, which has a significant adverse effect on the properties of the part. Therefore, the melting temperature of molten steel, which affects the content of oxygen in the powder, is preferably maintained at 1590 to 1630°C, preferably 1590 to 1610°C. If the melting temperature of the molten steel is lower than the suggested temperature, smooth dissolution of the alloy components does not occur, and if the melting temperature of the molten steel is higher than the suggested temperature, the oxygen content in the powder increases, which may cause a problem of lowering the molding density. .
그리고, 잉곳을 용해시키는 동안 탈산제를 투입하면, 잉곳의 용해 중 산소친화력이 높은 Cr 및 P에 의한 산화물의 생성을 제어할 수 있다. Additionally, if a deoxidizing agent is added while dissolving the ingot, the production of oxides due to Cr and P, which have high oxygen affinity, can be controlled during dissolution of the ingot.
잉곳을 용해시키는 동안 탈산제는 1회 이상 투입하는 것이 바람직하다. 그리고 탈산제로는 알루미늄(Al)을 사용할 수 있다.It is desirable to add the deoxidizer more than once while dissolving the ingot. And aluminum (Al) can be used as a deoxidizer.
예를 들어 잉곳을 용해시키는 동안 탈산제로 알루미늄(Al)을 최소 1회에서 수차례 투입할 수 있다. 하지만, 최종 용강 내 Al 함량이 0.1% 이하를 만족하도록 투입량을 조절한다. 바람직하게는 탈산제를 잉곳이 30 ~ 50% 수준으로 용해된 시점에 탈산제 전체 중량의 30 ~ 50%를 투입하고, 잉곳이 완전히 용해된 이후에 나머지 탈산제를 투입하는 것이 좋다.For example, while dissolving the ingot, aluminum (Al) can be added as a deoxidizer at least once to several times. However, the input amount is adjusted so that the Al content in the final molten steel satisfies 0.1% or less. Preferably, 30 to 50% of the total weight of the deoxidizer is added when the ingot is 30 to 50% dissolved, and the remaining deoxidizer is added after the ingot is completely dissolved.
이렇게 탈산제를 여러 차례로 나누어 투입하는 경우 알루미늄(Al)은 용강 내 산소와 결합하여 Al 산화물을 생성하고, Si 산화물과 함께 용강의 탕면으로 부상하여 상부 피막을 생성한다. 이에 따라 용강 내 용존산소량을 낮추는데 효과적이다.When the deoxidizer is added in several batches, aluminum (Al) combines with oxygen in the molten steel to form Al oxide, and rises to the surface of the molten steel together with Si oxide to form an upper film. Accordingly, it is effective in lowering the amount of dissolved oxygen in molten steel.
이때, 탈산제의 투입량을 0.1%로 제안하는 이유는, 탈산제의 투입량이 0.1%를 초과하는 경우 아래 분말 내 알루미늄에 의해 형성된 불순물이 혼입되거나 턴디쉬 노즐을 잠식하여 막힘 현상이 발생할 수 있기 때문이다.At this time, the reason why the amount of deoxidizer is proposed to be 0.1% is because if the amount of deoxidizer is more than 0.1%, impurities formed by aluminum in the powder below may be mixed or encroach on the tundish nozzle, causing clogging.
한편, 본 실시예에서는 철계분말의 경도 및 내마모성을 향상시키기 위하여 잉곳이 용해되는 동안 용강에 붕소(B)을 0.001 ~ 0.01%를 투입하여 함유시킬 수 있다. 이때 붕소(B)는 용강 전체에서 균일한 화학성분을 갖도록 잉곳의 용해 중 투입하는 것이 바람직하다.Meanwhile, in this embodiment, in order to improve the hardness and wear resistance of the iron-based powder, 0.001 to 0.01% of boron (B) can be added to the molten steel while the ingot is melting. At this time, it is desirable to add boron (B) during melting of the ingot so that it has a uniform chemical composition throughout the molten steel.
4. 철계분말을 제조하는 단계4. Steps for manufacturing iron-based powder
준비된 용강을 이용하여 분말 형태의 철계분말을 제조한다.Iron-based powder in powder form is manufactured using the prepared molten steel.
이때 용강을 이용하여 분말 형태의 철계분말을 제조하는 방법으로는 수분사법(Water Atomization) 또는 가스분사법(Gas Atomization)이 적용될 수 있다. 다만, 본 실시예에서는 수분사법을 적용하여 설명한다.At this time, water atomization or gas atomization can be applied as a method of manufacturing iron-based powder in powder form using molten steel. However, in this embodiment, the water injection method is used for explanation.
그래서, 준비된 용강은 수분사를 위하여 턴디쉬로 이동된다. 이때 턴디쉬 내 용강의 온도는 1540 ~ 1560℃로 유지하는 것이 바람직하다. 수분사 공정 시간은 제조된 용강의 양에 따라 결정되나 최소 10분에서 최대 90분까지 소요된다. 본 실시예에서 수분사 공정 시간은 15분으로써 턴디쉬 내 용강 온도를 1540 ~ 1560℃으로 유지하지 않을 경우, 수분사 공정 동안 용강 내 산소함량이 증가하여, 최종 분말 내 산소성분이 목표로 하는 최대값보다 많이 함유됨으로써 철계분말의 성형성이 저하된다. 아울러 산소함량을 낮추기 위하여 용강온도를 1540℃ 미만으로 관리할 경우 용강의 냉각이 일어나고, 고체화 현상이 발생하여 턴디쉬 노즐 막힘 현상이 일어나 정상적인 분말의 제조가 어려워지는 문제가 발생할 수 있다.So, the prepared molten steel is moved to the tundish for water injection. At this time, it is desirable to maintain the temperature of the molten steel in the tundish at 1540 to 1560°C. The water injection process time is determined by the amount of molten steel manufactured, but takes from a minimum of 10 minutes to a maximum of 90 minutes. In this embodiment, the water injection process time is 15 minutes, and if the temperature of the molten steel in the tundish is not maintained at 1540 to 1560°C, the oxygen content in the molten steel increases during the water injection process, and the oxygen content in the final powder reaches the target maximum. If it is contained more than the value, the moldability of iron-based powder deteriorates. In addition, if the molten steel temperature is managed below 1540°C to lower the oxygen content, cooling of the molten steel may occur, solidification may occur, and clogging of the tundish nozzle may occur, making it difficult to manufacture normal powder.
턴디쉬로 이동되어 온도가 유지된 용강은 턴디쉬 노즐을 통해 수분사 설비로 유입되어 수분사 공정을 통해 분말화된다. The molten steel, which is moved to the tundish and maintained at its temperature, flows into the water injection facility through the tundish nozzle and is powdered through the water injection process.
이렇게 제조된 철계분말은 탈수 및 건조를 실시한다.The iron-based powder prepared in this way is dehydrated and dried.
5. 철계분말을 열처리하는 단계5. Step of heat treatment of iron-based powder
제조된 철계분말은 성형성을 확보하기 위하여 후속 열처리 공정을 진행할 수 있다. 열처리 온도는 400 ~ 600℃로 진행된다. 열처리를 통하여 분말 내 산소성분의 함량을 감소시킬 수 있고, 이로 인해 성형성을 향상시킬 수 있다.The manufactured iron-based powder can be subjected to a subsequent heat treatment process to ensure moldability. The heat treatment temperature is 400 to 600°C. Through heat treatment, the content of oxygen in the powder can be reduced, thereby improving formability.
다만, 열처리 온도가 600℃ 보다 높은 경우에는 크롬의 산화성으로 인해 분말이 재산화되어 오히려 산소성분이 증가되는 문제가 발생할 수 있다.However, if the heat treatment temperature is higher than 600°C, the powder may be reoxidized due to the oxidizing property of chromium, which may cause the oxygen content to increase.
한편, 열처리는 합금성분의 재산화를 방지하기 위하여 환원분위기에서 실시되는 것이 바람직하다. 본 실시예에서 질소(30%)와 수소(70%)의 혼합가스를 사용하였지만, 환원분위기를 조성하는 100%의 수소, 메탄, 암모니아 분해가스, 천연가스 분해가스 등이 분위기 가스로 적용될 수 있다.Meanwhile, heat treatment is preferably performed in a reducing atmosphere to prevent re-oxidation of alloy components. In this example, a mixed gas of nitrogen (30%) and hydrogen (70%) was used, but 100% hydrogen, methane, ammonia decomposition gas, natural gas decomposition gas, etc. that create a reducing atmosphere can be used as the atmospheric gas. .
다음으로서, 비교예와 실시예를 통하여 본 발명을 설명한다.Next, the present invention will be explained through comparative examples and examples.
먼저, 망간(Mn)의 첨가에 따른 각 성분의 회수율 및 성형밀도를 측정하였다.First, the recovery rate and molding density of each component according to the addition of manganese (Mn) were measured.
각 시료는 하기의 표 1과 같이 망간의 첨가 여부 및 함량을 변경하였고, 이에 따른 각 합금성분의 회수율과 성형밀도를 측정하여 표 1에 함께 나타내었다.For each sample, the addition and content of manganese were changed as shown in Table 1 below, and the recovery rate and molding density of each alloy component were measured accordingly and are shown in Table 1.
표 1에서 확인할 수 있듯이, Mn을 미첨가한 경우보다 Mn을 첨가한 경우에 각 합금성분의 회수율이 증가한 것을 확인할 수 있습니다. 다만, Mn의 첨가 함량이 0.45%를 초과하는 경우에는 Mn 성분이 분말 내에 잔류하여 성형성을 저하시킬 수 있으로 그 함유량을 0.2 ~ 0.45%로 제한하는 것이 바람직하다.As can be seen in Table 1, the recovery rate of each alloy component increased when Mn was added compared to when Mn was not added. However, if the added content of Mn exceeds 0.45%, the Mn component may remain in the powder and reduce moldability, so it is preferable to limit the content to 0.2 to 0.45%.
다음으로, 잉곳의 용해 온도에 따른 분말 내 산소성분 및 성형밀도 변화를 측정하였다.Next, changes in oxygen content and molding density in the powder according to the melting temperature of the ingot were measured.
각 시료는 하기의 표 2와 같이 용해온도를 변경하였고, 이에 따른 분말 내 산소성분과 성형밀도를 측정하여 표 2에 함께 나타내었다.The dissolution temperature of each sample was changed as shown in Table 2 below, and the oxygen content and molding density in the powder were measured accordingly and are shown in Table 2.
(%)Oxygen component in powder
(%)
(600MPa 성형시)Molded density (g/cc)
(at 600MPa molding)
표 3에서 확인할 수 있듯이, 용해 온도가 높아질 경우, 분말 내 산소성분은 증가하며, 성형밀도가 낮아지는 것을 확인할 수 있었다. 따라서, 용강의 용해 온도는 1590 ~ 1630℃, 바람직하게는 1590 ~ 1610℃를 유지하는 것이 바람직하다.As can be seen in Table 3, when the dissolution temperature increases, the oxygen content in the powder increases and the molding density decreases. Therefore, it is desirable to maintain the melting temperature of molten steel at 1590 to 1630°C, preferably 1590 to 1610°C.
다음으로, 잉곳의 용해 시 탈산제인 Al의 투입량에 따른 최종 분말 내 불순물의 형성 여부를 관찰하였다.Next, the formation of impurities in the final powder was observed depending on the amount of Al, a deoxidizing agent, added during dissolution of the ingot.
도 2는 비교예와 실시예에 따른 분말 입자의 상태를 보여주는 사진으로서, 도 2의 (a)는 Al를 0.1% 이하로 투입한 철계분말의 SEM 사진이고, (b)는 Al를 0.1% 초과하여 투입한 철계분말의 SEM 사진이다.Figure 2 is a photograph showing the state of powder particles according to comparative examples and examples. Figure 2 (a) is an SEM photograph of iron-based powder with Al added at less than 0.1%, and (b) is an SEM photograph showing Al at more than 0.1%. This is an SEM photo of the iron-based powder added.
도 2에서 확인할 수 있듯이, Al를 0.1% 이하로 투입한 철계분말에서는 Al으로 인한 불순물이 관찰되지 않았지만, Al를 0.1% 초과하여 투입한 철계분말에서는 Al으로 인한 불순물이 관찰되었다.As can be seen in Figure 2, impurities due to Al were not observed in the iron-based powder containing less than 0.1% of Al, but impurities due to Al were observed in the iron-based powder containing more than 0.1% of Al.
따라서, Al를 0.1% 초과하여 투입하는 경우에 Al에 의해 형성된 불순물이 분말 내에 혼입되거나 턴디쉬 노즐을 잠식하여 막힘 현상이 발생할 수 있다.Therefore, when more than 0.1% of Al is added, impurities formed by Al may be mixed into the powder or encroach on the tundish nozzle, causing clogging.
다음으로, 붕소(B)의 투입량에 따른 소결체의 특성 변화를 측정하였다.Next, changes in the properties of the sintered body according to the amount of boron (B) added were measured.
각 시료는 하기의 표 3와 같이 붕소(B)의 투입량을 변경하였고, 이에 따라 제조된 철계분말을 이용하여 제조된 소결체의 경도, 마모율 및 샤르피 충격강도를 측정하였으며, 그 결과를 표 3에 함께 나타내었다. 이때 마모율은 80메시의 샌드페이퍼를 이용하여 42N의 힘으로 시료를 연삭하여 시료의 중량가소를 평균치로 미터당 중량감소로 표시 하였다.For each sample, the input amount of boron (B) was changed as shown in Table 3 below, and the hardness, wear rate, and Charpy impact strength of the sintered body manufactured using the iron-based powder produced accordingly were measured, and the results are shown in Table 3. indicated. At this time, the wear rate was expressed as weight loss per meter by grinding the sample with a force of 42N using 80 mesh sandpaper and averaging the weight plasticity of the sample.
(%)B input amount
(%)
(HRC)Hardness
(HRC)
(mg/M)wear rate
(mg/M)
(J)Charpy impact strength
(J)
표 3에서 확인할 수 있듯이, 붕소(B)가 첨가됨에 따라 경도, 내마모성은 증가하나, 0.01% 이상 첨가되면, 충격강도가 급격하게 낮아져 쉽게 파손될 수 있으므로 본 실시예에서 붕소(B)의 첨가량은 최대값을 0.01%로 제한하는 것이 바람직하다.As can be seen in Table 3, hardness and wear resistance increase as boron (B) is added, but if more than 0.01% is added, the impact strength rapidly decreases and may be easily broken, so in this example, the amount of boron (B) added is the maximum. It is desirable to limit the value to 0.01%.
다음으로, 열처리시 열처리 온도에 따른 분말 내 산소성분 및 성형밀도 변화를 측정하였다.Next, changes in oxygen content and molding density in the powder according to heat treatment temperature during heat treatment were measured.
각 시료는 하기의 표 4와 같이 열처리 온도를 변경하였고, 이에 따른 분말 내 산소성분과 성형밀도를 측정하여 표 4에 함께 나타내었다.For each sample, the heat treatment temperature was changed as shown in Table 4 below, and the oxygen content and molding density in the powder were measured accordingly and are shown in Table 4.
(℃)heat treatment temperature
(℃)
(%)Oxygen content in powder
(%)
(600MPa 성형시)Molded density (g/cc)
(at 600MPa molding)
표 4에서 확인할 수 있듯이, 열처리를 실시함에 따라 분말 내 산소성분의 함량이 감소하고, 성형밀도가 증가하는 것을 확인할 수 있었다. 다만, 열처리 온도가 600℃를 초과하는 경우에는 크롬의 산화성으로 인해 철계분말 내에서 재산화가 발생하여 오히려 산소성분이 증가되는 것을 확인할 수 있었다.As can be seen in Table 4, it was confirmed that as heat treatment was performed, the content of oxygen in the powder decreased and the molding density increased. However, when the heat treatment temperature exceeded 600°C, it was confirmed that re-oxidation occurred within the iron-based powder due to the oxidizing property of chromium, and the oxygen component increased.
본 발명을 첨부 도면과 전술된 바람직한 실시예를 참조하여 설명하였으나, 본 발명은 그에 한정되지 않으며, 후술되는 특허청구범위에 의해 한정된다. 따라서, 본 기술분야의 통상의 지식을 가진 자라면 후술되는 특허청구범위의 기술적 사상에서 벗어나지 않는 범위 내에서 본 발명을 다양하게 변형 및 수정할 수 있다.Although the present invention has been described with reference to the accompanying drawings and the above-described preferred embodiments, the present invention is not limited thereto and is limited by the claims described below. Accordingly, those skilled in the art can make various changes and modifications to the present invention without departing from the technical spirit of the claims described later.
Claims (15)
크롬(Cr), 니켈(Ni), 몰리브덴(Mo), 인(P), 규소(Si), 철(Fe) 및 기타 불가피한 불순물을 함유하는 철계분말의 각 합금성분에 대한 목표 함량을 설정하는 단계와;
크롬(Cr), 인(P) 및 규소(Si)의 목표 함량 대비 중량%로, 0.5 ~ 45% 함량을 증가시키고, 니켈(Ni) 및 몰리브덴(Mo)의 목표 함량에 대응되는 함량으로 잉곳을 준비하는 단계와;
상기 잉곳을 용해시켜 용강을 준비하는 단계와;
상기 용강을 이용하여 철계분말을 제조하는 단계를 포함하고,
상기 용강을 준비하는 단계에서, 상기 잉곳의 용해 온도는 1590 ~ 1630℃이며,
상기 철계분말을 제조하는 단계는 수분사법 또는 가스분사법으로 철계분말을 제조하고, 철계분말을 제조하기 전 용강은 1540 ~ 1560℃로 유지되며,
상기 철계분말을 제조하는 단계 이후에는 철계분말을 열처리하는 단계를 더 포함하고,
상기 철계분말을 열처리하는 단계는 환원분위기에서 400 ~ 600℃의 열처리 온도로 실시되는 것을 특징으로 하는 분말야금용 철계분말의 제조방법.A method of manufacturing iron-based powder for powder metallurgy used in the manufacture of automobile parts,
Setting the target content for each alloy component of iron-based powder containing chromium (Cr), nickel (Ni), molybdenum (Mo), phosphorus (P), silicon (Si), iron (Fe), and other unavoidable impurities. and;
The content of chromium (Cr), phosphorus (P), and silicon (Si) is increased by 0.5 to 45% in weight percent compared to the target content, and the ingot is made with a content corresponding to the target content of nickel (Ni) and molybdenum (Mo). Preparation steps;
preparing molten steel by melting the ingot;
Comprising the step of manufacturing iron-based powder using the molten steel,
In the step of preparing the molten steel, the melting temperature of the ingot is 1590 to 1630°C,
In the step of manufacturing the iron-based powder, the iron-based powder is manufactured by a water injection method or a gas injection method, and the molten steel is maintained at 1540 to 1560 ° C. before manufacturing the iron-based powder,
After the step of manufacturing the iron-based powder, the step of heat-treating the iron-based powder is further included,
A method of producing iron-based powder for powder metallurgy, characterized in that the step of heat-treating the iron-based powder is carried out at a heat treatment temperature of 400 to 600° C. in a reducing atmosphere.
상기 합금성분에 대한 목표 함량을 설정하는 단계에서, 각 합금성분의 목표 함량은 중량%로, 크롬(Cr): 7 ~ 9%, 니켈(Ni): 1.5 ~ 2.5%, 몰리브덴(Mo): 1.6 ~ 2.2%, 인(P): 0.3 ~ 0.7%, 규소(Si): 0.5 ~ 1.1%, 나머지 철(Fe)인 것을 특징으로 하는 철계분말의 제조방법.
In claim 6,
In the step of setting the target content for the alloy component, the target content of each alloy component is expressed in weight%, chromium (Cr): 7 to 9%, nickel (Ni): 1.5 to 2.5%, molybdenum (Mo): 1.6. ~ 2.2%, phosphorus (P): 0.3 ~ 0.7%, silicon (Si): 0.5 ~ 1.1%, the remainder being iron (Fe).
상기 잉곳을 준비하는 단계에서, 상기 잉곳에는 중량%로, 망간(Mn): 0.2 ~ 0.45%가 더 함유되는 것을 특징으로 하는 철계분말의 제조방법.
In claim 7,
In the step of preparing the ingot, the ingot further contains manganese (Mn): 0.2 to 0.45% by weight.
상기 용강을 준비하는 단계에서,
상기 잉곳을 용해시키면서 탈산제를 적어도 1회 이상 투입하는 것을 특징으로 하는 분말야금용 철계분말의 제조방법.
In claim 6,
In the step of preparing the molten steel,
A method for producing iron-based powder for powder metallurgy, characterized in that a deoxidizing agent is added at least once while dissolving the ingot.
상기 탈산제는 알루미늄(Al)이고, 최종 용강 내 알루미늄(Al)의 함량은 중량%로, 0.1% 이하가 되도록 탈산제를 투입하는 것을 특징으로 하는 분말야금용 철계분말의 제조방법.
In claim 9,
The deoxidizer is aluminum (Al), and the deoxidizer is added so that the content of aluminum (Al) in the final molten steel is 0.1% or less in weight percent.
상기 용강을 준비하는 단계에서, 상기 잉곳이 용해되는 동안 용강에 중량%로, 붕소(B)을 0.001 ~ 0.01%를 첨가하는 것을 특징으로 하는 분말야금용 철계분말의 제조방법.
In claim 6,
In the step of preparing the molten steel, a method for producing iron-based powder for powder metallurgy, characterized in that 0.001 to 0.01% by weight of boron (B) is added to the molten steel while the ingot is melting.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180171708A KR102663665B1 (en) | 2018-12-28 | 2018-12-28 | Iron-based powder for powder metallurgy and method for producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180171708A KR102663665B1 (en) | 2018-12-28 | 2018-12-28 | Iron-based powder for powder metallurgy and method for producing same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200081813A KR20200081813A (en) | 2020-07-08 |
KR102663665B1 true KR102663665B1 (en) | 2024-05-03 |
Family
ID=71600261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180171708A KR102663665B1 (en) | 2018-12-28 | 2018-12-28 | Iron-based powder for powder metallurgy and method for producing same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102663665B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115595500B (en) * | 2022-09-21 | 2023-12-15 | 西北工业大学 | High-strength and high-toughness steel powder for additive manufacturing and regulation and control method of internal oxide inclusions of high-strength and high-toughness steel powder |
KR20240047177A (en) | 2022-10-04 | 2024-04-12 | 현대자동차주식회사 | Metal powder for mold cladding and metal lamination method using same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3997123B2 (en) * | 2002-08-12 | 2007-10-24 | 株式会社神戸製鋼所 | Iron-based powder material for forming iron-based sintered body and method for producing iron-based sintered body |
JP2015180767A (en) | 2014-03-04 | 2015-10-15 | セイコーエプソン株式会社 | Metal powder for powder metallurgy, compound, granulated powder, and sintered body |
JP2017534754A (en) * | 2014-09-16 | 2017-11-24 | ホガナス アクチボラグ (パブル) | Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method for producing press-molded and sintered parts from iron-based powder mixture |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120044155A (en) * | 2010-10-27 | 2012-05-07 | 현대제철 주식회사 | 400hv grade high hardness heat treated rail alloy, and method for manufacturing the same |
KR20160002089A (en) | 2014-06-30 | 2016-01-07 | 현대제철 주식회사 | Method of manufacturing iron powder |
DE112015005554T5 (en) * | 2014-12-12 | 2017-09-07 | Hyundai Motor Company | IRON-BASED ALLOY POWDER FOR POWDER METALLURGY AND A SINTER-FORGED COMPONENT |
KR102064146B1 (en) * | 2015-09-11 | 2020-01-08 | 제이에프이 스틸 가부시키가이샤 | Method for producing alloyed steel powder for sintered member starting material |
RU2735532C2 (en) * | 2016-03-18 | 2020-11-03 | Хеганес Аб (Пабл) | Powdered metal composition for easy processing by cutting |
KR20180020754A (en) * | 2016-08-19 | 2018-02-28 | 영남대학교 산학협력단 | Manufacturing method for metal composite and metal composite manufacrured by the same |
KR102288887B1 (en) * | 2017-04-10 | 2021-08-12 | 현대자동차주식회사 | Method of manufacturing iron powder and iron powder manufactured thereby |
KR101981893B1 (en) * | 2018-07-05 | 2019-05-23 | 영남대학교 산학협력단 | Manufacturing method for metal composite and metal composite manufacrured by the same |
-
2018
- 2018-12-28 KR KR1020180171708A patent/KR102663665B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3997123B2 (en) * | 2002-08-12 | 2007-10-24 | 株式会社神戸製鋼所 | Iron-based powder material for forming iron-based sintered body and method for producing iron-based sintered body |
JP2015180767A (en) | 2014-03-04 | 2015-10-15 | セイコーエプソン株式会社 | Metal powder for powder metallurgy, compound, granulated powder, and sintered body |
JP2017534754A (en) * | 2014-09-16 | 2017-11-24 | ホガナス アクチボラグ (パブル) | Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method for producing press-molded and sintered parts from iron-based powder mixture |
Also Published As
Publication number | Publication date |
---|---|
KR20200081813A (en) | 2020-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109252104B (en) | High-speed steel and production method thereof | |
KR101608912B1 (en) | Powdered metal alloy composition for wear and temperature resistance applications and method of producing same | |
JP6040163B2 (en) | Iron powder for powder injection molding | |
EP2285996B1 (en) | Iron- based pre-alloyed powder | |
KR101711496B1 (en) | High strength low alloyed sintered steel | |
KR101673484B1 (en) | Low alloyed steel powder | |
JP5958144B2 (en) | Iron-based mixed powder for powder metallurgy, high-strength iron-based sintered body, and method for producing high-strength iron-based sintered body | |
KR101766039B1 (en) | Austenitic heat resistant bolt and method of manufacturing the same | |
KR102663665B1 (en) | Iron-based powder for powder metallurgy and method for producing same | |
CN105903952A (en) | Rare earth alloy composite material and preparation method | |
US10926332B2 (en) | Method of manufacturing iron powder and iron powder manufactured thereby | |
JP6271310B2 (en) | Iron-based sintered material and method for producing the same | |
JPS6364483B2 (en) | ||
KR100978901B1 (en) | MANUFACTURING METHOD OF Fe-BASED SINTERED BODY WITH HIGH TENSILE STRENGTH AND HIGH HARDNESS | |
JP6645631B1 (en) | Alloy steel powder for powder metallurgy and iron-base mixed powder for powder metallurgy | |
JP3475545B2 (en) | Mixed steel powder for powder metallurgy and sintering material containing it | |
JP5929320B2 (en) | Alloy steel powder for powder metallurgy and method for producing alloy steel powder for powder metallurgy | |
CN111893395A (en) | High-strength die steel and heat treatment method thereof | |
CN110964972A (en) | Rare earth silicon-nitrogen-vanadium alloy and preparation method and application thereof | |
WO2021044869A1 (en) | Iron-based pre-alloyed powder for powder metallurgy, diffusion-bonded powder for powder metallurgy, iron-based alloy powder for powder metallurgy, and sinter-forged member | |
CN107552800A (en) | A kind of gear bush | |
JP2012126972A (en) | Alloy steel powder for powder metallurgy, iron-based sintered material, and method for manufacturing the same | |
JP3938944B2 (en) | Method for producing water atomized iron powder for powder metallurgy | |
JPH0841606A (en) | Ferrous sintering material excellent in strength and toughness and its production | |
JPH0225502A (en) | Alloy steel powder for high strength sintered part having excellent carburization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |