JP6398596B2 - Two-layer flexible wiring board and flexible wiring board using the same - Google Patents

Two-layer flexible wiring board and flexible wiring board using the same Download PDF

Info

Publication number
JP6398596B2
JP6398596B2 JP2014214216A JP2014214216A JP6398596B2 JP 6398596 B2 JP6398596 B2 JP 6398596B2 JP 2014214216 A JP2014214216 A JP 2014214216A JP 2014214216 A JP2014214216 A JP 2014214216A JP 6398596 B2 JP6398596 B2 JP 6398596B2
Authority
JP
Japan
Prior art keywords
layer
copper
flexible wiring
wiring board
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014214216A
Other languages
Japanese (ja)
Other versions
JP2015108187A (en
Inventor
雅司 野口
雅司 野口
宏 竹之内
宏 竹之内
芳英 西山
芳英 西山
富雄 島村
富雄 島村
政士 鴻上
政士 鴻上
宏樹 秦
宏樹 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014214216A priority Critical patent/JP6398596B2/en
Publication of JP2015108187A publication Critical patent/JP2015108187A/en
Application granted granted Critical
Publication of JP6398596B2 publication Critical patent/JP6398596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • C25D5/56Electroplating of non-metallic surfaces of plastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0338Layered conductor, e.g. layered metal substrate, layered finish layer or layered thin film adhesion layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

本発明は、銅層の一部を銅電気めっき法で析出させ、耐折れ性を改良した2層フレキシブル配線用基板、及びその2層フレキシブル配線用基板を用いたフレキシブル配線板に関する。   The present invention relates to a two-layer flexible wiring board in which a part of a copper layer is deposited by a copper electroplating method to improve folding resistance, and a flexible wiring board using the two-layer flexible wiring board.

フレキシブル配線板は、その屈曲性を活かしてハードディスクの読み書きヘッドやプリンターヘッドなど電子機器の屈折ないし屈曲を要する部分や、液晶ディスプレイ内の屈折配線などに広く用いられている。
かかるフレキシブル配線板の製造には、銅層と樹脂層を積層したフレキシブル配線用基板(銅張積層板、FCCL:Flexible Copper Clad Laminationとも称す。)を、サブトラクティブ法等を用いて配線加工する方法が用いられている。
A flexible wiring board is widely used for a portion requiring refraction or bending of an electronic device such as a read / write head of a hard disk or a printer head, or a refraction wiring in a liquid crystal display, taking advantage of its flexibility.
For manufacturing such a flexible wiring board, a method for wiring a flexible wiring board (copper-clad laminated board, also referred to as FCCL: Flexible Copper Clad Lamination) in which a copper layer and a resin layer are laminated using a subtractive method or the like. Is used.

このサブトラクティブ法とは、フレキシブル配線用基板の銅層を化学エッチング処理して不要部分を除去する方法である。即ち、フレキシブル配線用基板の銅層のうち導体配線として残したい部分の表面にレジストを設け、銅に対応するエッチング液による化学エッチング処理と水洗を経て、銅層の不要部分を選択的に除去して導体配線を形成するものである。   This subtractive method is a method of removing unnecessary portions by chemically etching the copper layer of the flexible wiring board. That is, a resist is provided on the surface of the copper layer of the flexible wiring board to be left as the conductor wiring, and unnecessary portions of the copper layer are selectively removed through chemical etching treatment and water washing with an etching solution corresponding to copper. Thus, the conductor wiring is formed.

ところで、フレキシブル配線用基板(FCCL)は、3層FCCL板(以下、3層FCCLと称す。)と2層FCCL板(2層FCCLと称す。)に分類することができる。
3層FCCLは、電解銅箔や圧延銅箔をベース(絶縁層)の樹脂フィルムに接着した構造(銅箔/接着剤層/樹脂フィルム)となっている。一方、2層FCCLは、銅層若しくは銅箔と樹脂フィルム基材とが積層された構造(銅層若しくは銅箔/樹脂フィルム)となっている。
By the way, the flexible wiring board (FCCL) can be classified into a three-layer FCCL board (hereinafter referred to as a three-layer FCCL) and a two-layer FCCL board (referred to as a two-layer FCCL).
The three-layer FCCL has a structure (copper foil / adhesive layer / resin film) in which an electrolytic copper foil or a rolled copper foil is bonded to a base (insulating layer) resin film. On the other hand, the two-layer FCCL has a structure (copper layer or copper foil / resin film) in which a copper layer or copper foil and a resin film substrate are laminated.

また、上記2層FCCLには大別して3種のものがある。
即ち、樹脂フィルムの表面に下地金属層と銅層を順次めっきして形成したFCCL(通称メタライジング基板)、銅箔に樹脂フィルムのワニスを塗って絶縁層を形成したFCCL(通称キャスト基板)、及び銅箔に樹脂フィルムをラミネートしたFCCL(通称ラミネート基板)である。
The two-layer FCCL is roughly divided into three types.
That is, FCCL (commonly known as a metalizing substrate) formed by sequentially plating a base metal layer and a copper layer on the surface of a resin film, FCCL (commonly referred to as a cast substrate) in which an insulating layer is formed by applying a resin film varnish to a copper foil, And FCCL (commonly referred to as a laminate substrate) in which a resin film is laminated on a copper foil.

上記メタライジング基板、即ち樹脂フィルムの表面に下地金属層と銅層を順次めっきして形成したFCCLは、銅層の薄膜化が可能で、且つポリイミドフィルムと銅層界面の平滑性が高いため、キャスト基板やラミネート基板あるいは3層FCCLと比較して、配線のファインパターン化に適している。
例えば、メタライジング基板の銅層は、乾式めっき法及び電気めっき法により層厚を自由に制御できるのに対し、キャスト基板やラミネート基板あるいは3層FCCLは使用する銅箔によって、その厚みなどは制約されてしまう。
FCCL, which is formed by sequentially plating the base metal layer and the copper layer on the surface of the metalizing substrate, ie, the resin film, can reduce the thickness of the copper layer and has high smoothness at the interface between the polyimide film and the copper layer. Compared with cast substrate, laminate substrate, or three-layer FCCL, it is suitable for fine wiring.
For example, the thickness of the copper layer of the metalizing board can be freely controlled by dry plating and electroplating, whereas the thickness of the cast board, laminate board or three-layer FCCL is limited by the copper foil used. Will be.

また、フレキシブル配線板の配線に用いられる銅箔については、例えば、銅箔に熱処理を施す方法(特許文献1参照。)や、圧延加工を行う方法(特許文献2参照。)により、耐折れ性の向上が図られている。
しかし、これらの方法は、3層FCCLの圧延銅箔や電解銅箔、2層FCCLのうちのキャスト基板とラミネート基板に用いられる銅箔自体の処理に関するものである。
Moreover, about copper foil used for the wiring of a flexible wiring board, for example, the method of performing heat processing (refer patent document 1) to copper foil, or the method of performing a rolling process (refer patent document 2) WHEREIN: Improvements are being made.
However, these methods relate to the processing of the copper foil itself used for the cast substrate and the laminate substrate of the three-layer FCCL rolled copper foil and the electrolytic copper foil and the two-layer FCCL.

なお、銅箔の耐折れ性評価は、「JIS C−5016−1994」等や「ASTM D2176」で規格されるMIT耐屈折度試験(Folding Endurance Test)が工業的に使用されている。
この試験では、試験片に形成した回路パターンが断線するまでの屈折回数をもって評価し、この屈折回数が大きいほど耐折れ性が良いとされている。
In addition, the MIT refraction resistance test (Folding Endurance Test) standardized by “JIS C-5016-1994” or “ASTM D2176” is used industrially for the evaluation of the folding resistance of the copper foil.
In this test, evaluation is performed based on the number of refractions until the circuit pattern formed on the test piece breaks, and the greater the number of refractions, the better the folding resistance.

特開平8−283886号公報JP-A-8-283886 特開平6−269807号公報JP-A-6-269807

本発明が対象とする2層フレキシブル配線用基板は、樹脂フィルム基材の少なくとも片面に接着剤を介せずに形成したシード層と銅めっき層からなる金属層を順次形成しためっき基板であるため、先行技術文献に開示されるような銅めっき層のみの熱処理や圧延加工を施して耐折性を向上させることは困難であり、めっき基板に於いて耐折れ性に優れためっき基板の製造が望まれていた。
このような状況に鑑み、本発明は、耐折れ性に優れた2層フレキシブル配線用基板及びフレキシブル配線板を提供するものである。
The substrate for two-layer flexible wiring targeted by the present invention is a plating substrate in which a metal layer composed of a seed layer and a copper plating layer formed on at least one surface of a resin film base material without an adhesive is sequentially formed. However, it is difficult to improve the folding endurance by subjecting only the copper plating layer to heat treatment or rolling as disclosed in the prior art documents. It was desired.
In view of such a situation, the present invention provides a two-layer flexible wiring board and a flexible wiring board excellent in folding resistance.

本発明者らは上記課題を解決するために、めっき法によりポリイミド樹脂層に形成した銅層の耐折れ性について鋭意研究した結果、耐折れ性前後での結晶配向性の変化および結晶子径の増加が耐折れ性試験結果に与える影響を確認し、本発明に至った。   In order to solve the above problems, the present inventors have intensively studied the bending resistance of a copper layer formed on a polyimide resin layer by plating, and as a result, the change in crystal orientation and the crystallite diameter before and after the folding resistance. The effect of the increase on the folding resistance test result was confirmed, and the present invention was achieved.

本発明の第1の発明は、ポリイミドフィルムの表面に接着剤を介することなくニッケル合金からなる下地金属層と、この下地金属層の表面に銅層を設けた積層構造の2層フレキシブル配線用基板において、前記銅層が、前記下地金属層の表面に備わる銅薄膜層と前記銅薄膜層の表面に備わる銅電気めっき層から構成され、且つ、JIS C−5016−1994に規定される耐折れ性試験の実施前後において得られる銅層の結晶配向比[(200)/(111)]の差d[(200)/(111)]が、0.03以上で、銅層の(111)面における結晶配向度指数が、1.2以上、結晶子径が300nm以上であることを特徴とする2層フレキシブル配線用基板である。 A first invention of the present invention is a two-layer flexible wiring board having a laminated structure in which a base metal layer made of a nickel alloy is not provided on the surface of a polyimide film and a copper layer is provided on the surface of the base metal layer. The copper layer is composed of a copper thin film layer provided on the surface of the base metal layer and a copper electroplating layer provided on the surface of the copper thin film layer, and has a folding resistance defined in JIS C-5016-1994. The difference d [(200) / (111)] in the crystal orientation ratio [(200) / (111)] of the copper layer obtained before and after the test is 0.03 or more, and the (111) plane of the copper layer is A double-layer flexible wiring board having a crystal orientation degree index of 1.2 or more and a crystallite diameter of 300 nm or more.

本発明の第2の発明は、第1の発明における銅層の膜厚が、5μm〜12μmであることを特徴とする2層フレキシブル配線用基板である。   According to a second aspect of the present invention, there is provided the two-layer flexible wiring board according to the first aspect, wherein the copper layer has a thickness of 5 μm to 12 μm.

本発明の第3の発明は、第1及び第2の発明における銅層が、前記下地金属層の表面に備わる銅薄膜層と、前記銅薄膜層の表面に備わる銅電気めっき層から構成され、前記銅層の表面から前記ポリイミドフィルム方向に前記銅電気めっき層の膜厚の10%以上の厚み範囲で、結晶子径が200nm〜400nmであることを特徴とする2層フレキシブル配線用基板である。 According to a third aspect of the present invention, the copper layer in the first and second aspects is composed of a copper thin film layer provided on the surface of the base metal layer and a copper electroplating layer provided on the surface of the copper thin film layer, A double-layer flexible wiring board having a crystallite diameter of 200 nm to 400 nm in a thickness range of 10% or more of the thickness of the copper electroplating layer from the surface of the copper layer toward the polyimide film. .

本発明の第4の発明は、第1から第3の発明における銅層の表面粗さが、算術平均粗さRaで0.2μm以下であることを特徴とする2層フレキシブル配線用基板である。   A fourth invention of the present invention is a two-layer flexible wiring board characterized in that the surface roughness of the copper layer in the first to third inventions is an arithmetic average roughness Ra of 0.2 μm or less. .

本発明の第5の発明は、ポリイミドフィルムの表面に接着剤を介することなくニッケル合金からなる下地金属層と、この下地金属層の表面に銅層を備える積層構造の配線が設けられるフレキシブル配線板において、前記銅層が、前記下地金属層の表面に備わる銅薄膜層と前記銅薄膜層の表面に備わる銅電気めっき層から構成され、且つ、JIS−P−8115に規定される耐折れ性試験の実施前後において得られる前記銅層の結晶配向比[(200)/(111)]の差d[(200)/(111)]が、0.03以上であることと、前記銅層の(111)面における結晶配向度指数が、1.2以上で結晶子径が300nm以上であることを特徴とするフレキシブル配線板である。 According to a fifth aspect of the present invention, there is provided a flexible wiring board in which a base metal layer made of a nickel alloy is provided on the surface of a polyimide film without using an adhesive and a wiring having a laminated structure including a copper layer on the surface of the base metal layer The copper layer is composed of a copper thin film layer provided on the surface of the base metal layer and a copper electroplating layer provided on the surface of the copper thin film layer, and is a folding resistance test defined in JIS-P-8115. The difference d [(200) / (111)] of the crystal orientation ratio [(200) / (111)] of the copper layer obtained before and after the execution of the step is 0.03 or more, crystal orientation index in 111) plane, a flexible wiring board, characterized in that the crystallite diameter of 1.2 or more and 300nm or more.

本発明の第6の発明は、第5の発明における銅層が、下地金属層の表面に備わる銅薄膜層と前記銅薄膜層の表面に備わる銅電気めっき層から構成され、前記銅層の表面から前記ポリイミドフィルム方向に前記銅電気めっき層膜厚の10%以上の厚み範囲で、結晶子径が200nm〜400nmであることを特徴とするフレキシブル配線板である。 According to a sixth aspect of the present invention, the copper layer in the fifth aspect is composed of a copper thin film layer provided on the surface of the underlying metal layer and a copper electroplating layer provided on the surface of the copper thin film layer, and the surface of the copper layer. From the thickness of the copper electroplating layer in the polyimide film direction to a thickness range of 10% or more, the crystallite diameter is 200 nm to 400 nm .

本発明の第7の発明は、第5及び第6の発明における銅層の表面粗さが、算術平均粗さRaで0.2μm以下であることを特徴とするフレキシブル配線板である。 Seventh aspect of the present invention, the surface roughness of the copper layer in the invention of the fifth and sixth, a flexible wiring board, characterized in that at 0.2μm or less in terms of arithmetic average roughness Ra.

ポリイミドフィルムの表面に接着剤を介することなくニッケル合金からなる下地金属層と、その下地金属層の表面に銅層を設けた積層構造を有し、JIS C−5016−1994に規定される耐折れ性試験の実施前後において得られる銅層の結晶配向比[(200)/(111)]の差d[(200)/(111)]が、0.03以上、その銅層の(111)面における結晶配向度指数が1.2以上、且つ結晶子径が300nm以上であることを示す本発明に係る2層フレキシブル配線用基板によれば、基板の耐折れ性が著しく改善され、工業上顕著な効果を奏するものである。   It has a laminated structure with a base metal layer made of a nickel alloy on the surface of a polyimide film and a copper layer provided on the surface of the base metal layer, and has a folding resistance defined in JIS C-5016-1994. The difference d [(200) / (111)] of the crystal orientation ratio [(200) / (111)] of the copper layer obtained before and after the performance test is 0.03 or more, and the (111) plane of the copper layer According to the substrate for a two-layer flexible wiring according to the present invention showing that the crystal orientation degree index at 1.2 is 1.2 or more and the crystallite diameter is 300 nm or more, the folding resistance of the substrate is remarkably improved, and it is industrially remarkable. It has a great effect.

メタラインジング法で作製した2層フレキシブル配線用基板の断面模式図である。It is a cross-sectional schematic diagram of the board | substrate for two-layer flexible wiring produced by the metalining method. 2層フレキシブル配線用基板の下地金属層および銅薄膜層を成膜するロール・ツー・ロールスパッタリング装置を示す概要図である。It is a schematic diagram showing a roll-to-roll sputtering apparatus for forming a base metal layer and a copper thin film layer of a two-layer flexible wiring board. 2層フレキシブル配線用基板の製造における電気めっきを行うロール・ツー・ロール方式の連続めっき装置を示す概要図である。It is a schematic diagram which shows the continuous plating apparatus of the roll-to-roll system which performs electroplating in manufacture of the board | substrate for 2 layer flexible wiring. 本発明におけるPR電流の時間と電流密度を模式的に示した図である。It is the figure which showed typically the time and current density of PR current in this invention.

(1)2層フレキシブル配線用基板
まず、本発明の2層フレキシブル配線用基板について説明する。
本発明の2層フレキシブル配線用基板は、ポリイミドフィルムの少なくとも片面に接着剤を介さずに下地金属層と銅層が逐次的に積層された積層構造を採り、その銅層は、銅薄膜層と銅電気めっき層により構成されている。
(1) Two-layer flexible wiring board First, the two-layer flexible wiring board of the present invention will be described.
The two-layer flexible wiring board of the present invention has a laminated structure in which a base metal layer and a copper layer are sequentially laminated on at least one surface of a polyimide film without using an adhesive, and the copper layer includes a copper thin film layer and a copper thin film layer. It is comprised by the copper electroplating layer.

図1は、メタラインジング法で作製された2層フレキシブル配線用基板6の断面を示した模式図である。
樹脂フィルム基板1にポリイミドフィルムを用い、そのポリイミドフィルムの少なくとも一方の面には、ポリイミドフィルム側から下地金属層2、銅薄膜層3、銅電気めっき層4の順に成膜、積層されている。銅薄膜層3と銅電気めっき層4から銅層5が構成される。
FIG. 1 is a schematic view showing a cross section of a substrate 6 for a two-layer flexible wiring manufactured by a metalining method.
A polyimide film is used for the resin film substrate 1, and the base metal layer 2, the copper thin film layer 3, and the copper electroplating layer 4 are sequentially formed and laminated on at least one surface of the polyimide film from the polyimide film side. The copper thin film layer 3 and the copper electroplating layer 4 constitute a copper layer 5.

使用する樹脂フィルム基板としては、ポリイミドフィルムのほかに、ポリアミドフィルム、ポリエステルフィルム、ポリテトラフルオロエチレンフィルム、ポリフェニレンサルファイドフィルム、ポリエチレンナフタレートフィルム、液晶ポリマーフィルムなどを用いることができる。
特に、機械的強度や耐熱性や電気絶縁性の観点から、ポリイミドフィルムが好ましい。
さらに、フィルムの厚みが12.5〜75μmの上記樹脂フィルム基板が好ましく使用できる。
As the resin film substrate to be used, in addition to the polyimide film, a polyamide film, a polyester film, a polytetrafluoroethylene film, a polyphenylene sulfide film, a polyethylene naphthalate film, a liquid crystal polymer film, or the like can be used.
In particular, a polyimide film is preferable from the viewpoint of mechanical strength, heat resistance, and electrical insulation.
Furthermore, the said resin film board | substrate whose film thickness is 12.5-75 micrometers can be used preferably.

下地金属層2は、樹脂フィルム基板と銅などの金属層との密着性や耐熱性などの信頼性を確保するものである。従って、下地金属層の材質は、ニッケル、クロム又はこれらの合金の中から選ばれる何れか1種とするが、密着強度や配線作製時のエッチングしやすさを考慮すると、ニッケル・クロム合金が適している。   The base metal layer 2 ensures reliability such as adhesion and heat resistance between the resin film substrate and a metal layer such as copper. Therefore, the material of the base metal layer is any one selected from nickel, chromium, or an alloy thereof, but a nickel / chromium alloy is suitable in consideration of adhesion strength and ease of etching during wiring production. ing.

そのニッケル・クロム合金の組成は、クロム15重量%以上、22重量%以下が望ましく、耐食性や耐マイグレーション性の向上が望める。
このうち20重量%クロムのニッケル・クロム合金は、ニクロム合金として流通し、マグネトロンスパッタリング法のスパッタリングターゲットとして容易に入手可能である。また、ニッケルを含む合金には、クロム、バナジウム、チタン、モリブデン、コバルト等を添加しても良い。
さらに、クロム濃度の異なる複数のニッケル・クロム合金の薄膜を積層して、ニッケル・クロム合金の濃度勾配を設けた下地金属層を構成しても良い。
The composition of the nickel-chromium alloy is desirably 15% by weight or more and 22% by weight or less of chromium, and an improvement in corrosion resistance and migration resistance can be expected.
Of these, nickel / chromium alloy of 20% by weight chromium is distributed as a nichrome alloy and is easily available as a sputtering target for the magnetron sputtering method. Further, chromium, vanadium, titanium, molybdenum, cobalt, or the like may be added to the alloy containing nickel.
Furthermore, a plurality of nickel-chromium alloy thin films having different chromium concentrations may be laminated to form a base metal layer having a nickel-chromium alloy concentration gradient.

下地金属層2の膜厚は、3nm〜50nmが望ましい。
下地金属層の膜厚が3nm未満では、ポリイミドフィルムと銅層の密着性を保てず、耐食性や耐マイグレーション性で劣る。一方、下地金属層の膜厚が50nmを越えると、サブトラクティブ法で配線加工する際に、下地金属層の十分な除去が困難な場合が生じる。その下地金属層の除去が不十分な場合は、配線間のマイグレーション等の不具合が懸念される。
The film thickness of the base metal layer 2 is desirably 3 nm to 50 nm.
When the film thickness of the underlying metal layer is less than 3 nm, the adhesion between the polyimide film and the copper layer cannot be maintained, and the corrosion resistance and migration resistance are poor. On the other hand, if the thickness of the base metal layer exceeds 50 nm, it may be difficult to sufficiently remove the base metal layer when wiring processing is performed by the subtractive method. If the removal of the underlying metal layer is insufficient, there is a concern about problems such as migration between wirings.

銅薄膜層3は、主に銅で構成され、その膜厚は、10nm〜1μmが望ましい。
銅薄膜層の膜厚が10nm未満では、銅薄膜層上に銅電気めっき層を電気めっき法で成膜する際の導電性が確保できず、電気めっきの際の外観不良に繋がる。銅薄膜層の膜厚が1μmを越えても2層フレキシブル配線用基板の品質上の問題は生じないが、生産性が劣る問題がある。
The copper thin film layer 3 is mainly composed of copper, and the film thickness is desirably 10 nm to 1 μm.
When the film thickness of the copper thin film layer is less than 10 nm, the conductivity when the copper electroplating layer is formed on the copper thin film layer by the electroplating method cannot be ensured, leading to an appearance defect during electroplating. Even if the film thickness of the copper thin film layer exceeds 1 μm, the quality problem of the two-layer flexible wiring board does not occur, but the productivity is inferior.

(2)下地金属層と銅薄膜層の成膜方法
下地金属層および銅薄膜層は、乾式めっき法で形成することが好ましい。
乾式めっき法には、スパッタリング法、イオンプレーティング法、クラスターイオンビーム法、真空蒸着法、CVD法等が挙げられるが、下地金属層の組成制御等の観点から、スパッタリング法が望ましい。
樹脂フィルム基板へのスパッタリング成膜には、公知のスパッタリング装置で成膜することができ、長尺の樹脂フィルム基板への成膜には、公知のロール・ツー・ロール方式スパッタリング装置で行うことができる。このロール・ツー・ロールスパッタリング装置を用いれば、長尺のポリイミドフィルムの表面に、下地金属層および銅薄膜層を連続して成膜することができる。
(2) Film formation method for base metal layer and copper thin film layer The base metal layer and the copper thin film layer are preferably formed by a dry plating method.
Examples of the dry plating method include a sputtering method, an ion plating method, a cluster ion beam method, a vacuum evaporation method, a CVD method, and the like. From the viewpoint of controlling the composition of the underlying metal layer, the sputtering method is preferable.
The sputtering film formation on the resin film substrate can be performed with a known sputtering apparatus, and the film formation on the long resin film substrate can be performed with a known roll-to-roll sputtering apparatus. it can. If this roll-to-roll sputtering apparatus is used, a base metal layer and a copper thin film layer can be continuously formed on the surface of a long polyimide film.

図2はロール・ツー・ロールスパッタリング装置の一例である。
ロール・ツー・ロールスパッタリング装置10は、その構成部品のほとんどを収納した直方体状の筐体12を備えている。
筐体12は円筒状でも良く、その形状は問わないが、10−4Pa〜1Paの範囲に減圧された状態を保持できれば良い。
この筐体12内には、長尺の樹脂フィルム基板であるポリイミドフィルムFを、供給する巻出ロール13、キャンロール14、スパッタリングカソード15a、15b、15c、15d、前フィードロール16a、後フィードロール16b、テンションロール17a、テンションロール17b、巻取ロール18を有する。
FIG. 2 is an example of a roll-to-roll sputtering apparatus.
The roll-to-roll sputtering apparatus 10 includes a rectangular parallelepiped casing 12 that accommodates most of its components.
The casing 12 may have a cylindrical shape, and the shape is not limited as long as it can maintain a reduced pressure in a range of 10 −4 Pa to 1 Pa.
Inside this housing 12, a polyimide film F, which is a long resin film substrate, is supplied with an unwinding roll 13, a can roll 14, sputtering cathodes 15a, 15b, 15c, 15d, a front feed roll 16a, and a rear feed roll. 16b, a tension roll 17a, a tension roll 17b, and a winding roll 18.

巻出ロール13、キャンロール14、前フィードロール16a、巻取ロール18にはサーボモータによる動力を備える。巻出ロール13、巻取ロール18は、パウダークラッチ等によるトルク制御によってポリイミドフィルムFの張力バランスが保たれるようになっている。
テンションロール17a、17bは、表面が硬質クロムめっきで仕上げられ張力センサーが備えられている。
スパッタリングカソード15a〜15dは、マグネトロンカソード式でキャンロール14に対向して配置される。スパッタリングカソード15a〜15dのポリイミドフィルムFの巾方向の寸法は、ポリイミドフィルムFの巾より広ければよい。
The unwinding roll 13, the can roll 14, the front feed roll 16a, and the take-up roll 18 are provided with power by a servo motor. The unwinding roll 13 and the winding roll 18 are configured so that the tension balance of the polyimide film F is maintained by torque control using a powder clutch or the like.
The tension rolls 17a and 17b are finished with hard chrome plating and provided with a tension sensor.
The sputtering cathodes 15a to 15d are of a magnetron cathode type and are arranged to face the can roll 14. The width direction dimension of the polyimide film F of the sputtering cathodes 15a to 15d only needs to be wider than the width of the polyimide film F.

ポリイミドフィルムFは、ロール・ツー・ロール真空成膜装置であるロール・ツー・ロールスパッタリング装置10内を搬送されて、キャンロール14に対向するスパッタリングカソード15a〜15dで成膜され、銅薄膜層付ポリイミドフィルムF2に加工される。
キャンロール14は、その表面が硬質クロムめっきで仕上げられ、その内部には筐体12の外部から供給される冷媒や温媒が循環し、略一定の温度に調整される。
The polyimide film F is transported through a roll-to-roll sputtering apparatus 10 which is a roll-to-roll vacuum film forming apparatus, and is formed by sputtering cathodes 15 a to 15 d facing the can roll 14, with a copper thin film layer. Processed into a polyimide film F2.
The surface of the can roll 14 is finished with hard chrome plating, and a coolant or a heating medium supplied from the outside of the housing 12 circulates inside the can roll 14 to be adjusted to a substantially constant temperature.

ロール・ツー・ロールスパッタリング装置10を用いて下地金属層と銅薄膜層を成膜する場合、下地金属層の組成を有するターゲットをスパッタリングカソード15aに、銅ターゲットをスパッタリングカソード15b〜15dにそれぞれ装着し、ポリイミドフィルムを巻出ロール13にセットした装置内を真空排気した後、アルゴン等のスパッタリングガスを導入して装置内を1.3Pa程度に保持する。
また、下地金属層をスパッタリングで成膜した後に、銅薄膜層を蒸着法で成膜しても良い。
When the base metal layer and the copper thin film layer are formed using the roll-to-roll sputtering apparatus 10, the target having the composition of the base metal layer is attached to the sputtering cathode 15a, and the copper target is attached to the sputtering cathodes 15b to 15d. The inside of the apparatus in which the polyimide film is set on the unwinding roll 13 is evacuated, and then the inside of the apparatus is held at about 1.3 Pa by introducing a sputtering gas such as argon.
Further, after forming the base metal layer by sputtering, the copper thin film layer may be formed by vapor deposition.

(3)銅電気めっき層とその成膜方法
銅電気めっき層は、電気めっき法により成膜される。その銅電気めっき層の膜厚は、1μm〜20μmが望ましい。
ここで、使用する電気めっき法は、鉄イオンを含む硫酸銅のめっき浴中にて、不溶性アノードを用いて電気めっきを行うもので、使用する銅めっき浴の組成は、通常用いられるプリント配線板用のハイスロー硫酸銅めっき浴でも良い。
(3) Copper electroplating layer and film forming method The copper electroplating layer is formed by electroplating. The thickness of the copper electroplating layer is desirably 1 μm to 20 μm.
Here, the electroplating method used is to perform electroplating using an insoluble anode in a copper sulfate plating bath containing iron ions, and the composition of the copper plating bath used is a commonly used printed wiring board. High throw copper sulfate plating bath may be used.

図3は、本発明に係る2層フレキシブル配線用基板の製造に用いることができるロール・ツー・ロール連続電気めっき装置(以下めっき装置20という)の一例である。
下地金属層と銅薄膜層を成膜して得られた銅薄膜層付ポリイミドフィルムF2は、巻出ロール22から巻き出され、電気めっき槽21内のめっき液28への浸漬を繰り返しながら連続的に搬送される。なお、28aはめっき液の液面を指している。
銅薄膜層付ポリイミドフィルムF2は、めっき液28に浸漬されている間に電気めっきにより金属薄膜の表面に銅層が成膜され、所定の膜厚の銅層が形成された後、金属化樹脂フィルム基板である2層フレキシブル配線用基板Sとして、巻取ロール29に巻き取れられる。なお、銅薄膜層付ポリイミドフィルムF2の搬送速度は、数m〜数十m/分の範囲が好ましい。
FIG. 3 is an example of a roll-to-roll continuous electroplating apparatus (hereinafter referred to as a plating apparatus 20) that can be used in the production of the two-layer flexible wiring board according to the present invention.
A polyimide film F2 with a copper thin film layer obtained by forming a base metal layer and a copper thin film layer is unwound from the unwinding roll 22 and continuously immersed in the plating solution 28 in the electroplating tank 21. It is conveyed to. Incidentally, 28a indicates the surface of the plating solution.
The polyimide film F2 with a copper thin film layer is formed by depositing a copper layer on the surface of the metal thin film by electroplating while being immersed in the plating solution 28, and after forming a copper layer with a predetermined thickness, the metallized resin The film is wound around a winding roll 29 as a two-layer flexible wiring substrate S which is a film substrate. In addition, the conveyance speed of the polyimide film F2 with a copper thin film layer has the preferable range of several m-several dozen m / min.

具体的に説明すると、銅薄膜層付ポリイミドフィルムF2は、巻出ロール22から巻き出され、給電ロール26aを経て、電気めっき槽21内のめっき液28に浸漬される。電気めっき槽21内に入った銅薄膜層付ポリイミドフィルムF2は、反転ロール23を経て搬送方向が反転され、給電ロール26bにより電気めっき槽21外へ引き出される。
このように、銅薄膜層付ポリイミドフィルムF2が、めっき液への浸漬を複数回(図3では10回)繰り返す間に、銅薄膜層付ポリイミドフィルムF2の金属薄膜上に銅層を形成するものである。
If it demonstrates concretely, the polyimide film F2 with a copper thin film layer will be unwound from the unwinding roll 22, and will be immersed in the plating solution 28 in the electroplating tank 21 through the electric power feeding roll 26a. The copper thin film layer-attached polyimide film F2 that has entered the electroplating tank 21 is reversed in the conveying direction through the reversing roll 23, and is drawn out of the electroplating tank 21 by the power supply roll 26b.
Thus, while the polyimide film F2 with a copper thin film layer repeats immersion in a plating solution a plurality of times (10 times in FIG. 3), a copper layer is formed on the metal thin film of the polyimide film F2 with a copper thin film layer. It is.

給電ロール26aとアノード24aの間には電源(図示せず)が接続されている。
給電ロール26a、アノード24a、めっき液、銅薄膜層付ポリイミドフィルムF2および電源により、電気めっき回路が構成される。
また、アノードは不溶性アノードが好ましい。不溶性アノードは、特別なものを必要とせず、導電性セラミックで表面をコーティングした公知のアノードでよい。なお、電気めっき槽21の外部に、めっき液28に銅イオンを供給する機構を備える。
A power source (not shown) is connected between the power supply roll 26a and the anode 24a.
An electroplating circuit is configured by the power supply roll 26a, the anode 24a, the plating solution, the polyimide film F2 with a copper thin film layer, and the power source.
The anode is preferably an insoluble anode. The insoluble anode does not require a special one, and may be a known anode whose surface is coated with a conductive ceramic. A mechanism for supplying copper ions to the plating solution 28 is provided outside the electroplating tank 21.

めっき液28への銅イオンの供給は、酸化銅水溶液、水酸化銅水溶液、炭酸銅水溶液等で供給する。もしくはめっき液中に微量の鉄イオンを添加して、無酸素銅ボールを溶解して銅イオンを供給する方法もある。銅の供給方法は上記のいずれかの方法を用いることができる。   The copper ions are supplied to the plating solution 28 using an aqueous copper oxide solution, an aqueous copper hydroxide solution, an aqueous copper carbonate solution, or the like. Alternatively, there is a method in which a small amount of iron ions is added to the plating solution to dissolve the oxygen-free copper balls and supply the copper ions. Any of the above methods can be used as a method for supplying copper.

めっき中における電流密度は、アノード24aから搬送方向下流に進むにつれて電流密度を段階的に上昇させ、アノード24oから24tで最大の電流密度となるようにする。
このように電流密度を上昇させることで、銅層の変色を防ぐことができる。特に銅層の膜厚が薄い場合に電流密度が高いと銅層の変色が起こりやすいために、めっき中の電流密度は、後述するPeriodic Reverse電流の反転電流を除き0.1A/dm〜8A/dmが望ましい。電流密度が高くなると銅電気めっき層の外観不良が発生する。
The current density during plating is increased stepwise from the anode 24a toward the downstream in the transport direction so that the maximum current density is reached at 24t from the anode 24o.
Thus, discoloration of the copper layer can be prevented by increasing the current density. In particular, when the current density is high when the copper layer is thin, discoloration of the copper layer is likely to occur. Therefore, the current density during plating is 0.1 A / dm 2 to 8 A except for the reverse current of Periodic Reverse current described later. / Dm 2 is desirable. When the current density is increased, a poor appearance of the copper electroplating layer occurs.

本発明に係る2層フレキシブル配線用基板を製造するためには銅電気めっき層の膜厚の表面から10%以上の範囲でPR電流を用いて形成する。
Periodic Reverse電流(以下PR電流ということがある。)を使用する場合、反転電流は正電流の1〜9倍の電流を加えると良い。
反転電流時間割合としては1〜10%程度が望ましい。
また、PR電流の次の反転電流が流れる周期は、10m秒以上が望ましく、より望ましくは20m秒〜300m秒である。
図4はPR電流の時間と電流密度を模式的に示したものである。
なお、めっき電圧は、上述の電流密度が実現できるように適宜調整すればよい。
In order to manufacture the two-layer flexible wiring board according to the present invention, the copper electroplating layer is formed using a PR current in a range of 10% or more from the surface of the film thickness.
In the case of using a periodic reverse current (hereinafter also referred to as a PR current), it is preferable to add a current that is 1 to 9 times as large as the positive current.
The reversal current time ratio is preferably about 1 to 10%.
Further, the period in which the reversal current next to the PR current flows is desirably 10 milliseconds or more, and more desirably 20 milliseconds to 300 milliseconds.
FIG. 4 schematically shows the time and current density of the PR current.
In addition, what is necessary is just to adjust a plating voltage suitably so that the above-mentioned current density is realizable.

本発明に係る2層フレキシブル配線用基板を、ロール・ツー・ロール連続電気めっき装置(以下めっき装置20という)で製造するには、搬送経路の下流側から1つ以上のアノードでPR電流を流せばよく、PR電流を流すアノード数は、銅電気めっき層の表面からポリイミドフィルム側にPR電流で成膜する範囲の割合をどのようにするかで決まる。すなわち、少なくともアノード24tはPR電流が流れ、必要に応じてアノード24s、アノード24r、アノード24qにPR電流が流れることとなる。
なお、全アノードにPR電流を流してもよいが、PR電流用の整流器が高価な為、製造コストが増加する。そこで、本発明に係る2層フレキシブル配線用基板では、銅電気めっき層の表面からポリイミド方向に膜厚の10%をPR電流で成膜すれば、耐折れ性試験(JIS C−5016−1994)の実施前後で、銅層の結晶配向比[(200)/(111)]の差d[(200)/(111)]が0.03以上となるので、結果的に耐折れ性試験(MIT試験)の向上が望める。
In order to manufacture the two-layer flexible wiring board according to the present invention with a roll-to-roll continuous electroplating apparatus (hereinafter referred to as a plating apparatus 20), a PR current is allowed to flow at one or more anodes from the downstream side of the conveyance path. The number of anodes through which the PR current flows is determined by the ratio of the range in which the PR current is formed from the surface of the copper electroplating layer to the polyimide film side. That is, at least the anode 24t causes a PR current to flow, and if necessary, the PR current flows to the anode 24s, the anode 24r, and the anode 24q.
Although a PR current may be supplied to all the anodes, a manufacturing cost increases because a rectifier for PR current is expensive. Therefore, in the two-layer flexible wiring board according to the present invention, if 10% of the film thickness is formed with a PR current in the polyimide direction from the surface of the copper electroplating layer, a fold resistance test (JIS C-5016-1994). The difference d [(200) / (111)] of the crystal orientation ratio [(200) / (111)] of the copper layer is 0.03 or more before and after the execution of the above, and as a result, the folding resistance test (MIT Improvement of the test).

PR電流を使用した銅電気めっきが望ましい理由は、電流を反転させると、銅電気めっき層の銅の結晶子径は300nm程度以上とすることができ、結晶粒界を少なくできるので、粒界で発生するクラックの起点を少なくすることができるためである。   The reason why copper electroplating using a PR current is desirable is that when the current is reversed, the copper crystallite diameter of the copper electroplating layer can be about 300 nm or more, and the grain boundaries can be reduced. This is because the starting point of the generated crack can be reduced.

さらに銅めっき液に鉄イオンを添加することで、溶けやすい(111)以外の配向が優先的に溶解し、(111)配向の結晶を成長することができる。
銅めっき液中に含まれる鉄イオンの濃度は、2価と3価のイオンの合計で0.1g〜20g/リットルが好ましい。
鉄イオンは、銅めっきの過程で、3価から2価へそして2価から3価へ価数が循環して変化する。そこで、鉄イオンの濃度が20g/リットルを越えると鉄のイオンの消費が増加し経済的ではないことと、銅めっき層が溶解しやすくなる悪影響を与える。一方、鉄イオン濃度が0.1g/リットル未満では(111)配向の結晶の優先的な成長が期待できない。
Furthermore, by adding iron ions to the copper plating solution, orientations other than (111) that are easily soluble are preferentially dissolved, and crystals of (111) orientation can be grown.
The concentration of iron ions contained in the copper plating solution is preferably 0.1 to 20 g / liter in total of divalent and trivalent ions.
Iron ions change in a circulatory manner from trivalent to divalent and from divalent to trivalent in the course of copper plating. Therefore, if the iron ion concentration exceeds 20 g / liter, the consumption of iron ions is increased, which is not economical, and the copper plating layer is easily dissolved. On the other hand, when the iron ion concentration is less than 0.1 g / liter, preferential growth of (111) oriented crystals cannot be expected.

一般に電気めっき法では、めっき析出する銅は、銅めっきされる基材表面の影響を受けるが、銅電気めっき層の表面から膜厚の10%以上をPR電流で成膜すれば、結晶粒界を制御できる。従って、2層フレキシブル配線用基板の銅電気めっき層の表面から膜厚の10%以上が、耐折れ性に合致した結晶になっていれば、銅電気めっき層の耐折れ性に対する効果が得られ、本発明の課題を達成することができる。
なお、得られた2層フレキシブル配線用基板の銅層の厚みを化学研磨などで調整する場合は、研磨後の銅層の表面から膜厚の10%以上のPR電流で成膜された層が残留すれば、本発明の効果が発揮できる。
In general, in the electroplating method, the deposited copper is affected by the surface of the substrate to be copper-plated, but if 10% or more of the film thickness from the surface of the copper electroplating layer is formed by PR current, the grain boundary Can be controlled. Therefore, if 10% or more of the film thickness from the surface of the copper electroplating layer of the two-layer flexible wiring board is a crystal that matches the folding resistance, an effect on the folding resistance of the copper electroplating layer can be obtained. The object of the present invention can be achieved.
In addition, when adjusting the thickness of the copper layer of the obtained two-layer flexible wiring board by chemical polishing or the like, a layer formed with a PR current of 10% or more of the film thickness from the surface of the copper layer after polishing is used. If it remains, the effect of the present invention can be exhibited.

(4)銅電気めっき層の特徴
本発明の2層フレキシブル配線用基板における銅層の特徴は、1.2以上の銅の(111)結晶配向度指数を示すことである。この状態では、MIT耐折れ試験(JIS C−5016−1994)において、結晶が滑りやすくなる。なお、本発明のフレキシブル配線用基板の銅層には(111)配向のほかに(200)、(220)、(311)配向も含むが、そのうち(111)配向が殆どを占め、その結晶配向度指数が1.20以上を示すということである。
(4) Features of the copper electroplating layer A feature of the copper layer in the two-layer flexible wiring board of the present invention is that it shows a (111) crystal orientation index of copper of 1.2 or more. In this state, the crystal becomes slippery in the MIT folding resistance test (JIS C-5016-1994). The copper layer of the flexible wiring board of the present invention includes (200), (220), and (311) orientations in addition to the (111) orientation, of which the (111) orientation occupies most of the crystal orientation. The degree index is 1.20 or more.

さらなる特徴は、MIT耐折れ性試験(JIS C−5016−1994)前後における結晶の配向比[(200)/(111)]の差が0.03以上の状態となることにある。この状態は、MIT耐折れ試験をすることで結晶が滑り、再結晶が起こったと考えられる。
表面の光沢性は、表面の凹凸が切り欠きの要因とならないよう光沢膜が好ましい。
A further feature is that the difference in crystal orientation ratio [(200) / (111)] before and after the MIT folding resistance test (JIS C-5016-1994) is 0.03 or more. In this state, it is considered that the crystal slipped due to the MIT folding resistance test and recrystallization occurred.
For the glossiness of the surface, a glossy film is preferable so that unevenness on the surface does not cause a notch.

また、結晶子径の大きさは、大きいほど良いが、フレキシブル配線用基板をサブトラクティブ法でフレキシブル配線板に配線加工する際の銅層のエッチングにも影響するので留意する必要がある。
サブトラクティブ法での銅層のエッチングに塩化第二鉄水溶液を用いる場合には、銅層の結晶子径は影響しないこともあるが、銅層の結晶粒子の粒界をエッチングする場合には、結晶子径が配線の形状にも影響するのである。結晶子径としては、200nm〜400nm程度が望ましい。200nm以下であると結晶粒界が多く、破断の起点となるクラックが入りやすくなり、400nm以下とするのは、金属表面の平滑性を保つためである。
In addition, the larger the crystallite diameter, the better. However, it should be noted that it also affects the etching of the copper layer when the flexible wiring board is processed into a flexible wiring board by the subtractive method.
When using an aqueous ferric chloride solution for etching the copper layer in the subtractive method, the crystallite size of the copper layer may not affect, but when etching the grain boundaries of the crystal grains of the copper layer, The crystallite diameter also affects the shape of the wiring. The crystallite size is preferably about 200 nm to 400 nm. If it is 200 nm or less, there are many crystal grain boundaries, and cracks that are the starting points of fracture are likely to occur, and the reason why it is 400 nm or less is to maintain the smoothness of the metal surface.

また、本発明のフレキシブル配線用基板の銅層は、上記銅層の成膜方法で得られ、MIT耐折れ試験前後における結晶配向比[(200)/(111)]の差が0.03以上であるという特性と、結晶子径が300nm以上という特性等を有する銅層となる。なお、銅電気めっき層の結晶配向と結晶子径はX線回折装置から知ることができる。   In addition, the copper layer of the flexible wiring board of the present invention is obtained by the above-described method for forming a copper layer, and the difference in crystal orientation ratio [(200) / (111)] before and after the MIT folding resistance test is 0.03 or more. And a copper layer having the characteristics that the crystallite diameter is 300 nm or more. The crystal orientation and crystallite diameter of the copper electroplating layer can be known from an X-ray diffractometer.

さらに、上記方法で得られた銅層の銅結晶は、屈折時に常温下での動的再結晶効果を有する。耐折れ性試験後の平均結晶子径は再結晶で100nm〜200nm程度となる傾向である。
一般に、銅の電気めっき膜は、常温下で動的再結晶しないと考えられてきた。しかし、本発明のフレキシブル配線用基板は、常温下で動的再結晶するので、結果的に、MIT試験のような屈折試験を行うと試料が切れ難い。銅層の平均結晶粒径と常温下での動的再結晶は、断面SIM像での観察することができる。
Furthermore, the copper crystal of the copper layer obtained by the above method has a dynamic recrystallization effect at room temperature during refraction. The average crystallite size after the bending resistance test tends to be about 100 nm to 200 nm by recrystallization.
In general, it has been considered that a copper electroplated film does not dynamically recrystallize at room temperature. However, since the flexible wiring substrate of the present invention is dynamically recrystallized at room temperature, it is difficult to cut the sample when a refraction test such as the MIT test is performed. The average crystal grain size of the copper layer and dynamic recrystallization at room temperature can be observed with a cross-sectional SIM image.

ついで、算術表面粗さRaは0.2μm以下が望ましい。
表面粗さRaが、0.2μmを超えると、MIT耐折れ試験前後の結晶配向比[(200)/(111)]の差が0.03以上であっても耐折れ性の改善効果は少ない。そのため、MIT耐折れ試験前後の結晶配向比[(200)/(111)]の差が0.03以上、かつ、算術表面粗さRaは、0.2μm以下が望ましいのである。
当然、銅層の表面を化学研磨等で研磨する場合は、化学研磨後の銅層の表面の算術表面粗さRaが0.2μm以下ならば良い。
Next, the arithmetic surface roughness Ra is preferably 0.2 μm or less.
When the surface roughness Ra exceeds 0.2 μm, even if the difference in crystal orientation ratio [(200) / (111)] before and after the MIT bending resistance test is 0.03 or more, the effect of improving the bending resistance is small. . Therefore, it is desirable that the difference in the crystal orientation ratio [(200) / (111)] before and after the MIT bending resistance test is 0.03 or more and the arithmetic surface roughness Ra is 0.2 μm or less.
Naturally, when the surface of the copper layer is polished by chemical polishing or the like, the arithmetic surface roughness Ra of the surface of the copper layer after chemical polishing may be 0.2 μm or less.

(5)フレキシブル配線板
本発明に係るフレキシブル配線板は、本発明に係る2層フレキシブル配線用基板をサブトラクティブ法で配線加工して製造する。
銅電気めっき層などを配線に加工するエッチング加工に用いるエッチング液は、特別な配合の塩化第二鉄と塩化第二銅と硫酸銅とを含む水溶液や特殊な薬液には限定されず、一般的な比重1.30〜1.45の塩化第二鉄水溶液や比重1.30〜1.45の塩化第二銅水溶液を含む市販のエッチング液を用いることができる。
(5) Flexible wiring board The flexible wiring board according to the present invention is manufactured by performing wiring processing on the two-layer flexible wiring board according to the present invention by a subtractive method.
Etching solution used for etching process to process copper electroplating layer etc. into wiring is not limited to aqueous solution or special chemical solution containing ferric chloride, cupric chloride and copper sulfate with special blending, general A commercially available etching solution containing a ferric chloride aqueous solution having a specific gravity of 1.30 to 1.45 or a cupric chloride aqueous solution having a specific gravity of 1.30 to 1.45 can be used.

配線の表面には、錫めっき、ニッケルめっき、金めっきなどを必要に応じて、必要な箇所に施し、公知のソルダーレジストなどで表面が覆われる。そして、半導体素子などの電子部品が実装されて電子装置を形成する。   The surface of the wiring is subjected to tin plating, nickel plating, gold plating, or the like as required, and the surface is covered with a known solder resist or the like. And electronic parts, such as a semiconductor element, are mounted and an electronic device is formed.

以下、実施例を用いて本発明をより説明する。
銅薄膜層付ポリイミドフィルムは、ロール・ツー・ロールスパッタリング装置10を用いて製造した。
下地金属層を成膜する為のニッケル−20重量%クロム合金ターゲットをスパッタリングカソード15aに、銅ターゲットをスパッタリングカソード15b〜15dにそれぞれ装着し、厚み38μmのポリイミドフィルム(カプトン 登録商標 東レ・デュポン株式会社製)をセットした装置内を真空排気した後、アルゴンガスを導入して装置内を1.3Paに保持して銅薄膜層付ポリイミドフィルムを製造した。下地金属層(ニッケル−クロム合金)の膜厚は20nm、銅薄膜層の膜厚は200nmであった。
Hereinafter, the present invention will be described in more detail using examples.
The polyimide film with a copper thin film layer was produced using a roll-to-roll sputtering apparatus 10.
A nickel-20 wt% chromium alloy target for forming a base metal layer is mounted on the sputtering cathode 15a, and a copper target is mounted on the sputtering cathodes 15b to 15d, respectively, and a polyimide film (Kapton registered trademark Toray DuPont Co., Ltd.) After vacuuming the inside of the apparatus in which the product was set, argon gas was introduced and the inside of the apparatus was held at 1.3 Pa to produce a polyimide film with a copper thin film layer. The film thickness of the base metal layer (nickel-chromium alloy) was 20 nm, and the film thickness of the copper thin film layer was 200 nm.

得られた銅薄膜層付ポリイミドフィルムに、めっき装置20を用いて銅電気めっきを行い、銅電気めっき層を成膜した。めっき液はpH1以下の硫酸銅水溶液を用い、アノード24oから24tは特に断らない限り最大の電流密度(PR電流の反転電流を除く)となるようにし、最終的に銅電気めっき層の膜厚が8.5μmとなるように電流密度を調整した。   The obtained polyimide film with a copper thin film layer was subjected to copper electroplating using a plating apparatus 20 to form a copper electroplating layer. The plating solution is a copper sulfate aqueous solution having a pH of 1 or less, and the anodes 24o to 24t are set to have the maximum current density (excluding the reversal current of the PR current) unless otherwise specified. The current density was adjusted to 8.5 μm.

耐折れ性試験は、塩化第二鉄をエッチング液にもちいてサブトラクティブ法でJIS−C−5016−1994のテストパターンを形成し、同規格に従い評価した。
耐折れ性試験前後の銅電気めっき層の結晶配向はX線回折でWilsonの配向度指数を用い測定した。
In the bending resistance test, a test pattern of JIS-C-5016-1994 was formed by a subtractive method using ferric chloride as an etching solution, and evaluated according to the same standard.
The crystal orientation of the copper electroplating layer before and after the folding resistance test was measured by X-ray diffraction using Wilson's orientation degree index.

銅電気めっき層の表面から10%の膜厚範囲までPR電流を用いて電気めっきを行う為に、アノード24tにPR電流を流して、実施例1の2層フレキシブル配線用基板を作製した。鉄イオン濃度を5g/リットルとした。
MIT耐折れ性試験前の銅電気めっき層の(111)結晶配向度指数が1.34で、MIT耐折れ性試験前後のX線配向度指数で表す結晶配向比[(200)/(111)]の差が0.04、結晶子径383nm、算術表面粗さRaが0.06μmの実施例1のサンプルは、MIT耐折れ性試験で349回という良好な結果を得た。
In order to perform electroplating using a PR current from the surface of the copper electroplating layer to a film thickness range of 10%, a PR current was passed through the anode 24t to produce a two-layer flexible wiring board of Example 1. The iron ion concentration was 5 g / liter.
The (111) crystal orientation index of the copper electroplating layer before the MIT fold resistance test is 1.34, and the crystal orientation ratio represented by the X-ray orientation index before and after the MIT fold resistance test [(200) / (111) ], The sample of Example 1 having a crystallite diameter of 383 nm and an arithmetic surface roughness Ra of 0.06 μm obtained a good result of 349 times in the MIT folding resistance test.

MIT耐折れ性試験前の銅電気めっき層の結晶配向は(111)結晶配向度指数が1.36で、銅電気めっき層の表面から40%の膜厚範囲までPR電流を用いて電気めっきを行う為、アノード24r〜24tにPR電流を流した以外は、実施例1と同様に行い、実施例2の2層フレキシブル配線用基板を作製した。
MIT耐折れ性試験前後のX線配向度指数で表す結晶配向比[(200)/(111)]の差が0.05、結晶子径363nm、算術表面粗さRaが0.18μmの実施例2のサンプルは、MIT耐折れ性試験で247回という良好な結果を得た。
The crystal orientation of the copper electroplating layer before the MIT folding resistance test is (111) crystal orientation degree index of 1.36, and electroplating is performed using a PR current from the surface of the copper electroplating layer to a film thickness range of 40%. For this purpose, the same procedure as in Example 1 was conducted except that a PR current was passed through the anodes 24r to 24t, and a two-layer flexible wiring board of Example 2 was produced.
Example in which the difference in crystal orientation ratio [(200) / (111)] expressed by the X-ray orientation index before and after the MIT folding resistance test is 0.05, the crystallite diameter is 363 nm, and the arithmetic surface roughness Ra is 0.18 μm. Sample 2 gave good results of 247 in the MIT fold resistance test.

MIT耐折れ性試験前の銅電気めっき層の結晶配向は、(111)結晶配向度指数が、1.37で、銅電気めっき層の表面から40%の膜厚範囲までPR電流を用いて電気めっきを行う為、アノード24r〜24tにPR電流を流し、鉄イオン濃度を0.1g/リットルとした以外は、実施例1と同様に行い、実施例3の2層フレキシブル配線用基板を作製した。
MIT耐折れ性試験前後のX線配向度指数で表す結晶配向比[(200)/(111)]の差が0.05、結晶子径327nm、算術表面粗さRaが0.20μmの実施例3のサンプルは、MIT耐折れ性試験で180回という結果を得た。
The crystal orientation of the copper electroplating layer before the MIT bending resistance test was (111) crystal orientation degree index of 1.37, and the electric current was measured using PR current from the surface of the copper electroplating layer to a film thickness range of 40%. In order to perform the plating, a PR current was passed through the anodes 24r to 24t, and the same procedure as in Example 1 was performed except that the iron ion concentration was changed to 0.1 g / liter, and a two-layer flexible wiring board of Example 3 was produced. .
Example in which the difference in crystal orientation ratio [(200) / (111)] expressed by the X-ray orientation index before and after the MIT folding resistance test is 0.05, the crystallite diameter is 327 nm, and the arithmetic surface roughness Ra is 0.20 μm. The sample of 3 obtained a result of 180 times in the MIT folding resistance test.

(比較例1)
MIT耐折れ性試験前の銅電気めっき層の結晶配向は(111)結晶配向度指数が、0.98で、銅電気めっき層の表面から8%の膜厚範囲までPR電流を用いて電気めっきを行う為、アノード24tにPR電流を流し、そのアノードの電流密度を実施例1の80%とした以外は、実施例1と同様に行い、比較例1の2層フレキシブル配線用基板を作製した。
MIT体折れ性試験前後のX線配向度指数で表す結晶配向比[(200)/(111)]の差が0.02、結晶子径280nm、算術表面粗さRaが0.15μmの比較例1のサンプルは、MIT耐折れ性試験で135回という改善効果が見られない結果であった。
(Comparative Example 1)
The crystal orientation of the copper electroplating layer before the MIT folding resistance test is (111) crystal orientation degree index of 0.98, and electroplating using PR current from the surface of the copper electroplating layer to a film thickness range of 8%. Thus, a PR layer was passed through the anode 24t, and the anode current density was changed to 80% of Example 1, and the same procedure as in Example 1 was performed to produce a two-layer flexible wiring board of Comparative Example 1. .
Comparative example in which the difference in crystal orientation ratio [(200) / (111)] expressed by the X-ray orientation index before and after the MIT body foldability test is 0.02, the crystallite diameter is 280 nm, and the arithmetic surface roughness Ra is 0.15 μm. Sample No. 1 was a result in which the improvement effect of 135 times was not observed in the MIT folding resistance test.

(比較例2)
MIT耐折れ性試験前の銅電気めっき層の結晶配向は(111)結晶配向度指数が、0.85で、銅電気めっき層の表面から5%の膜厚範囲までPR電流で電気めっきを行う為、アノード24tにPR電流を流し、そのアノードの電流密度を実施例1の50%とした以外は、実施例1と同様に行い、比較例2の2層フレキシブル配線用基板を作製した。
MIT耐折れ性試験前後のX線配向度指数で表す結晶配向比[(200)/(111)]の差が0.01、結晶子径195nm、算術表面粗さRaが0.16μmの比較例2のサンプルは、MIT耐折れ性試験で83回という改善効果が見られない結果であった。
(Comparative Example 2)
The crystal orientation of the copper electroplating layer before the MIT bending resistance test is (111) crystal orientation degree index is 0.85, and electroplating is performed with PR current from the surface of the copper electroplating layer to a film thickness range of 5%. Therefore, a substrate for two-layer flexible wiring of Comparative Example 2 was produced in the same manner as in Example 1 except that a PR current was passed through the anode 24t and the current density of the anode was changed to 50% of Example 1.
Comparative example in which the difference in crystal orientation ratio [(200) / (111)] expressed by the X-ray orientation degree index before and after the MIT folding resistance test is 0.01, the crystallite diameter is 195 nm, and the arithmetic surface roughness Ra is 0.16 μm. The sample of 2 was a result in which the improvement effect of 83 times was not seen in the MIT folding resistance test.

(比較例3)
MIT耐折れ性試験前の銅電気めっき層の結晶配向は(111)結晶配向度指数が、1.06で、銅電気めっき層の表面から9%の膜厚範囲までPR電流を用いて電気めっきを行う為、アノード24tにPR電流を流し、そのアノードの電流密度を実施例1の90%とした以外は、実施例1と同様に行い、比較例3の2層フレキシブル配線用基板を作製した。
MIT体折れ性試験前後のX線配向度指数で表す結晶配向比[(200)/(111)]の差が0.02、結晶子径190nm、算術表面粗さRaが0.11μmの比較例3のサンプルは、MIT耐折れ性試験で141回という改善効果が見られない結果であった。
(Comparative Example 3)
The crystal orientation of the copper electroplating layer before the MIT folding resistance test is (111) crystal orientation degree index of 1.06, and electroplating using PR current from the surface of the copper electroplating layer to a film thickness range of 9%. Thus, a PR layer was passed through the anode 24t, and the anode current density was changed to 90% of Example 1, and the same procedure as in Example 1 was performed to produce a two-layer flexible wiring board of Comparative Example 3. .
Comparative example in which the difference in crystal orientation ratio [(200) / (111)] expressed by the X-ray orientation index before and after the MIT body foldability test is 0.02, the crystallite diameter is 190 nm, and the arithmetic surface roughness Ra is 0.11 μm. The sample of 3 was a result in which the improvement effect of 141 times was not seen in the MIT folding resistance test.

1 ポリイミドフィルム(樹脂フィルム基板)
2 下地金属層
3 銅薄膜層
4 銅電気めっき層
5 銅層
6 2層フレキシブル配線用基板
10 ロール・ツー・ロールスパッタリング装置
12 筐体
13 巻出ロール
14 キャンロール
15a、15b、15c、15d スパッタリングカソード
16a 前フィードロール
16b 後フィードロール
17a、17b テンションロール
18 巻取ロール
20 ロール・ツー・ロール方式の連続めっき装置
21 電気めっき槽
22 巻出ロール
23 反転ロール
24a〜24t アノード
26a〜26k 給電ロール
28 めっき液
28a めっき液の液面
29 巻取ロール
F 樹脂フィルム基板(ポリイミドフィルム)
F2 銅薄膜層付ポリイミドフィルム(銅薄膜層付樹脂フィルム基板)
S 2層フレキシブル配線用基板
1 Polyimide film (resin film substrate)
DESCRIPTION OF SYMBOLS 2 Base metal layer 3 Copper thin film layer 4 Copper electroplating layer 5 Copper layer 6 Two-layer flexible wiring board 10 Roll-to-roll sputtering apparatus 12 Housing 13 Unwinding roll 14 Can rolls 15a, 15b, 15c, 15d Sputtering cathode 16a Front feed roll 16b Rear feed rolls 17a, 17b Tension roll 18 Winding roll 20 Roll-to-roll type continuous plating apparatus 21 Electroplating tank 22 Unwinding roll 23 Reversing rolls 24a-24t Anode 26a-26k Feeding roll 28 Plating Liquid 28a Plating liquid level 29 Winding roll F Resin film substrate (polyimide film)
F2 Polyimide film with copper thin film layer (resin film substrate with copper thin film layer)
S 2 layer flexible wiring board

Claims (7)

ポリイミドフィルムの表面に接着剤を介することなくニッケル合金からなる下地金属層と、前記下地金属層の表面に銅層を設けた積層構造の2層フレキシブル配線用基板において、
前記銅層が、前記下地金属層の表面に備わる銅薄膜層と前記銅薄膜層の表面に備わる銅電気めっき層から構成され、且つ、
JIS C−5016−1994に規定される耐折れ性試験の実施前後において得られる前記銅層の結晶配向比[(200)/(111)]の差d[(200)/(111)]が、0.03以上であることと、前記銅層の(111)面における結晶配向度指数が、1.2以上で、結晶子径が300nm以上であることを特徴とする2層フレキシブル配線用基板。
In the substrate for a two-layer flexible wiring having a laminated structure in which a base metal layer made of a nickel alloy is not provided on the surface of the polyimide film and a copper layer is provided on the surface of the base metal layer,
The copper layer is composed of a copper thin film layer provided on the surface of the base metal layer and a copper electroplating layer provided on the surface of the copper thin film layer, and
The difference d [(200) / (111)] of the crystal orientation ratio [(200) / (111)] of the copper layer obtained before and after the execution of the folding resistance test specified in JIS C-5016-1994 is A substrate for two-layer flexible wiring, characterized by being 0.03 or more, a crystal orientation index in the (111) plane of the copper layer being 1.2 or more, and a crystallite diameter of 300 nm or more.
前記銅層の膜厚が、5μm〜12μmであることを特徴とする請求項1に記載の2層フレキシブル配線用基板。   The board | substrate for 2 layers flexible wiring of Claim 1 whose film thickness of the said copper layer is 5 micrometers-12 micrometers. 前記銅層が、前記下地金属層の表面に備わる銅薄膜層と、前記銅薄膜層の表面に備わる銅電気めっき層から構成され、
前記銅層の表面から前記ポリイミドフィルム方向に前記銅電気めっき層の膜厚の10%以上の厚み範囲で、結晶子径が200nm〜400nmであることを特徴とする請求項1又は2に記載の2層フレキシブル配線用基板。
The copper layer is composed of a copper thin film layer provided on the surface of the base metal layer and a copper electroplating layer provided on the surface of the copper thin film layer,
The crystallite diameter is 200 nm to 400 nm in a thickness range of 10% or more of the film thickness of the copper electroplating layer in the polyimide film direction from the surface of the copper layer. Two-layer flexible wiring board.
前記銅層の表面粗さが、算術平均粗さRaで0.2μm以下であることを特徴とする請求項1から3のいずれか1項に記載の2層フレキシブル配線用基板。   4. The substrate for two-layer flexible wiring according to claim 1, wherein the surface roughness of the copper layer is an arithmetic average roughness Ra of 0.2 μm or less. 5. ポリイミドフィルムの表面に接着剤を介することなくニッケル合金からなる下地金属層と、前記下地金属層の表面に銅層を備える積層構造の配線が設けられるフレキシブル配線板において、
前記銅層が、前記下地金属層の表面に備わる銅薄膜層と前記銅薄膜層の表面に備わる銅電気めっき層から構成され、且つ、
JIS−P−8115に規定される耐折れ性試験の実施前後において得られる前記銅層の結晶配向比[(200)/(111)]の差d[(200)/(111)]が、0.03以上であることと、前記銅層の(111)面における結晶配向度指数が、1.2以上で結晶子径が300nm以上であることを特徴とするフレキシブル配線板。
In a flexible wiring board provided with a base metal layer made of a nickel alloy without using an adhesive on the surface of the polyimide film, and a wiring having a laminated structure including a copper layer on the surface of the base metal layer,
The copper layer is composed of a copper thin film layer provided on the surface of the base metal layer and a copper electroplating layer provided on the surface of the copper thin film layer, and
The difference d [(200) / (111)] of the crystal orientation ratio [(200) / (111)] of the copper layer obtained before and after the execution of the bending resistance test specified in JIS-P-8115 is 0. 0.03 or more, a crystal orientation degree index in the (111) plane of the copper layer is 1.2 or more, and a crystallite diameter is 300 nm or more.
前記銅層が、前記下地金属層の表面に備わる銅薄膜層と、前記銅薄膜層の表面に備わる銅電気めっき層から構成され、
前記銅層の表面から前記ポリイミドフィルム方向に前記銅電気めっき層膜厚の10%以上の厚み範囲で、結晶子径が200nm〜400nmであることを特徴とする請求項5に記載のフレキシブル配線板。
The copper layer is composed of a copper thin film layer provided on the surface of the base metal layer and a copper electroplating layer provided on the surface of the copper thin film layer,
6. The flexible wiring board according to claim 5, wherein a crystallite diameter is 200 nm to 400 nm in a thickness range of 10% or more of the thickness of the copper electroplating layer in a direction from the surface of the copper layer to the polyimide film. .
前記銅層の表面粗さが、算術平均粗さRaで0.2μm以下であることを特徴とする請求項5または6に記載のフレキシブル配線板。   7. The flexible wiring board according to claim 5, wherein a surface roughness of the copper layer is an arithmetic average roughness Ra of 0.2 μm or less.
JP2014214216A 2013-10-22 2014-10-21 Two-layer flexible wiring board and flexible wiring board using the same Active JP6398596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014214216A JP6398596B2 (en) 2013-10-22 2014-10-21 Two-layer flexible wiring board and flexible wiring board using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013219366 2013-10-22
JP2013219366 2013-10-22
JP2014214216A JP6398596B2 (en) 2013-10-22 2014-10-21 Two-layer flexible wiring board and flexible wiring board using the same

Publications (2)

Publication Number Publication Date
JP2015108187A JP2015108187A (en) 2015-06-11
JP6398596B2 true JP6398596B2 (en) 2018-10-03

Family

ID=53038016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014214216A Active JP6398596B2 (en) 2013-10-22 2014-10-21 Two-layer flexible wiring board and flexible wiring board using the same

Country Status (4)

Country Link
JP (1) JP6398596B2 (en)
KR (1) KR101626214B1 (en)
CN (1) CN104582257B (en)
TW (1) TWI540549B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102525201B1 (en) 2016-03-22 2023-04-25 삼성디스플레이 주식회사 Flexible electronic device
KR102589528B1 (en) * 2018-03-23 2023-10-13 후루카와 덴키 고교 가부시키가이샤 Lead frame material and manufacturing method thereof, and semiconductor package using the same
JP7087759B2 (en) * 2018-07-18 2022-06-21 住友金属鉱山株式会社 Copper-clad laminate
KR102364447B1 (en) * 2020-07-20 2022-02-17 도레이첨단소재 주식회사 Flexible copper clad laminate film, and electronic device including the same
JP7569006B2 (en) 2020-10-23 2024-10-17 住友金属鉱山株式会社 Manufacturing method of copper clad laminate
CN116940464A (en) * 2021-02-18 2023-10-24 Tdk株式会社 Laminated resin film, current collector, and secondary battery
CN113113973B (en) * 2021-04-19 2023-01-03 重庆触视科技有限公司 Wireless quick charging design method and device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3563730B2 (en) * 2002-06-07 2004-09-08 松下電器産業株式会社 Flexible printed circuit board
JP4175060B2 (en) * 2002-08-30 2008-11-05 宇部興産株式会社 Bonding sheets and laminates
JP4899816B2 (en) * 2006-11-16 2012-03-21 住友金属鉱山株式会社 Copper-coated polyimide substrate and manufacturing method thereof
KR101088571B1 (en) * 2007-01-24 2011-12-05 스미토모 긴조쿠 고잔 가부시키가이샤 Two-layer flexible substrate, method for manufacturing the two-layer flexible substrate, and flexible printed wiring board manufactured from the two-layer flexible substrate
JP5055088B2 (en) * 2007-10-31 2012-10-24 Jx日鉱日石金属株式会社 Copper foil and flexible printed circuit board using the same
JP2009295656A (en) * 2008-06-03 2009-12-17 Sumitomo Metal Mining Co Ltd Substrate for flexible wiring board and method for manufacturing the same
JP5223481B2 (en) * 2008-06-16 2013-06-26 住友金属鉱山株式会社 Metal-coated polyimide substrate and manufacturing method thereof
TW201037105A (en) * 2009-03-23 2010-10-16 Nippon Mining Co Double layered flexible board, and copper electrolytic liquid for making the same
JP2011014801A (en) * 2009-07-03 2011-01-20 Mitsui Mining & Smelting Co Ltd Flexible copper-clad laminate, flexible printed wiring board for cof, and method of manufacturing them
JP5587567B2 (en) 2009-07-07 2014-09-10 株式会社Jcu Copper plating method
JP2011100846A (en) * 2009-11-05 2011-05-19 Sumitomo Metal Mining Co Ltd Two-layer flexible board, method of manufacturing the same, two-layer flexible wiring board, method of manufacturing the same, and plasma processing device
KR101593282B1 (en) * 2010-11-22 2016-02-11 미쓰이금속광업주식회사 Surface-treated copper foil
JP5834251B2 (en) * 2011-11-22 2015-12-16 パナソニックIpマネジメント株式会社 Flexible metal-clad substrate, method for producing flexible metal-clad substrate, printed wiring board, multilayer flexible printed wiring board, and flex-rigid printed wiring board
WO2013161507A1 (en) * 2012-04-24 2013-10-31 住友金属鉱山株式会社 Two-layered flexible wiring substrate, flexible wiring board, and methods for producing same

Also Published As

Publication number Publication date
KR20150046751A (en) 2015-04-30
CN104582257A (en) 2015-04-29
CN104582257B (en) 2018-03-27
TW201528232A (en) 2015-07-16
KR101626214B1 (en) 2016-05-31
TWI540549B (en) 2016-07-01
JP2015108187A (en) 2015-06-11

Similar Documents

Publication Publication Date Title
JP6083433B2 (en) Two-layer flexible wiring board, flexible wiring board, and manufacturing method thereof
JP6398596B2 (en) Two-layer flexible wiring board and flexible wiring board using the same
JP5940256B2 (en) Copper electroplating method and metallized resin film having a copper plating film formed using the copper electroplating method
JP5769030B2 (en) Metallized resin film and method for producing the same
TWI568865B (en) Layer 2 flexible wiring substrate and manufacturing method thereof, and two-layer flexible wiring board and manufacturing method thereof
JP5532706B2 (en) Method for producing flexible copper-clad laminate
JP6403095B2 (en) Flexible wiring board and flexible wiring board
JP6035678B2 (en) Method for manufacturing flexible wiring board and flexible wiring board
JP6398175B2 (en) Two-layer flexible wiring board and manufacturing method thereof
JP6953698B2 (en) A method for transporting a film to be filmed, a dry film forming apparatus, and a method for forming a film to be filmed using the transport method.
JP6880810B2 (en) A surface treatment method for a resin film and a method for manufacturing a copper-clad laminated substrate having the same.
JP6667982B2 (en) Flexible wiring board
JP5835670B2 (en) Printed wiring board and manufacturing method thereof
JP6201191B2 (en) Method for producing copper clad laminate
JP6405615B2 (en) Two-layer flexible wiring board and manufacturing method thereof
JP5754275B2 (en) Metalized polyimide film and printed wiring board
JP6264530B2 (en) Method for forming electric resistance thin film layer and method for producing copper clad laminate
JP2015140447A (en) flexible wiring board
JP6252987B2 (en) Two-layer copper-clad laminate and method for producing the same
JP2014172182A (en) Carrier-provided copper foil, method of producing carrier-provided copper foil, printed wiring board, printed circuit board, copper-clad laminate and method of producing printed wire board
JP2010153537A (en) Flexible wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180820

R150 Certificate of patent or registration of utility model

Ref document number: 6398596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150