JP6398381B2 - Light emitting device and manufacturing method thereof - Google Patents

Light emitting device and manufacturing method thereof Download PDF

Info

Publication number
JP6398381B2
JP6398381B2 JP2014135260A JP2014135260A JP6398381B2 JP 6398381 B2 JP6398381 B2 JP 6398381B2 JP 2014135260 A JP2014135260 A JP 2014135260A JP 2014135260 A JP2014135260 A JP 2014135260A JP 6398381 B2 JP6398381 B2 JP 6398381B2
Authority
JP
Japan
Prior art keywords
electrode
light emitting
emitting element
light
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014135260A
Other languages
Japanese (ja)
Other versions
JP2016015356A (en
Inventor
米田 章法
章法 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2014135260A priority Critical patent/JP6398381B2/en
Publication of JP2016015356A publication Critical patent/JP2016015356A/en
Application granted granted Critical
Publication of JP6398381B2 publication Critical patent/JP6398381B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)

Description

発光装置及びその製造方法に関する。   The present invention relates to a light emitting device and a manufacturing method thereof.

従来、発光装置のサイズを発光素子に近いレベルまで小型化したCSP(Chip Size Package又はChip Scale Package)構造を有する発光装置において、より一層の小型化を実現するために、基板上に半導体層を形成した後、レーザリフトオフ法やエッチングなどにより基板を除去して発光素子とし、半導体層の実装面側を樹脂層で覆う発明が提案された(特許文献1参照)。   2. Description of the Related Art Conventionally, in a light emitting device having a CSP (Chip Size Package or Chip Scale Package) structure in which the size of the light emitting device is reduced to a level close to that of a light emitting element, a semiconductor layer is formed on the substrate in order to realize further miniaturization. After the formation, an invention has been proposed in which the substrate is removed by a laser lift-off method or etching to form a light emitting element, and the mounting surface side of the semiconductor layer is covered with a resin layer (see Patent Document 1).

特開2013−247247号公報JP 2013-247247 A

発光装置の幅が発光素子の幅と同程度に維持されたCSP構造を有する発光装置において、発光素子上に設けられた保護素子を樹脂層内に埋没させることができる発光装置を提供することを目的とする。   A light-emitting device having a CSP structure in which the width of the light-emitting device is maintained to be approximately the same as the width of the light-emitting element, and a light-emitting device capable of burying a protective element provided on the light-emitting element in a resin layer. Objective.

上記課題は、次の手段により解決される。   The above problem is solved by the following means.

半導体層の実装面側にp側電極及びn側電極を備えた発光素子と、前記発光素子のp側電極及びn側電極を覆う樹脂層と、前記樹脂層内で前記発光素子上に設けられ、前記発光素子のp側電極及びn側電極に電気的に接続された保護素子と、前記樹脂層内に設けられ、前記発光素子のp側電極に接続されるとともに前記樹脂層における前記発光素子とは反対側の面において露出するp側導電性部材と、前記樹脂層内に設けられ、前記発光素子のn側電極に接続されるとともに前記樹脂層における前記発光素子とは反対側の面において露出するn側導電性部材と、を備え、前記p側導電性部材及び前記n側導電性部材は、それぞれワイヤを有することを特徴とする発光装置。   A light-emitting element having a p-side electrode and an n-side electrode on the mounting surface side of the semiconductor layer; a resin layer covering the p-side electrode and the n-side electrode of the light-emitting element; and provided on the light-emitting element in the resin layer A protective element electrically connected to the p-side electrode and the n-side electrode of the light-emitting element, and the light-emitting element provided in the resin layer and connected to the p-side electrode of the light-emitting element and in the resin layer P-side conductive member exposed on the surface opposite to the surface of the resin layer, and provided in the resin layer, connected to the n-side electrode of the light-emitting element and on the surface of the resin layer opposite to the light-emitting element An exposed n-side conductive member, wherein each of the p-side conductive member and the n-side conductive member includes a wire.

半導体層の実装面側にp側電極及びn側電極を有する発光素子と、p側電極及びn側電極を同一面側に有する保護素子と、を準備する工程と、前記発光素子のp側電極と前記保護素子のp側電極とが電気的に接続され、かつ前記発光素子のn側電極と前記保護素子のn側電極とが電気的に接続されるように、前記発光素子上に前記保護素子を実装する工程と、ワイヤの一端を前記発光素子のp側電極に接続し、かつワイヤの他端を前記発光素子のn側電極に接続する工程と、前記半導体層の実装面側に樹脂層を形成し、前記保護素子と前記ワイヤを前記樹脂層内に埋没させる工程と、前記樹脂層の一部を除去して前記樹脂層内に埋没させたワイヤの一部を前記樹脂層における発光素子とは反対側の面において露出させる工程と、を有することを特徴とする発光装置の製造方法。   A step of preparing a light emitting element having a p-side electrode and an n-side electrode on the mounting surface side of the semiconductor layer, and a protective element having a p-side electrode and an n-side electrode on the same surface side; and the p-side electrode of the light-emitting element And the p-side electrode of the protection element are electrically connected, and the protection is provided on the light-emitting element so that the n-side electrode of the light-emitting element and the n-side electrode of the protection element are electrically connected. Mounting the element, connecting one end of the wire to the p-side electrode of the light-emitting element and connecting the other end of the wire to the n-side electrode of the light-emitting element, and mounting the resin on the mounting surface side of the semiconductor layer Forming a layer and burying the protective element and the wire in the resin layer; and removing a part of the resin layer and burying a part of the wire embedded in the resin layer in the resin layer And a step of exposing on a surface opposite to the element. Method of manufacturing a light emitting device according to claim.

半導体層の実装面側にp側電極及びn側電極を有する発光素子と、p側電極およびn側電極を同一面側に有する保護素子と、を準備する工程と、前記発光素子とは反対側にp側電極及びn側電極を有するように前記保護素子を前記発光素子上に載置する工程と、第1ワイヤの一端を前記発光素子のp側電極に接続し、かつ前記第1ワイヤの他端を前記保護素子のp側電極に接続するとともに、第2ワイヤの一端を前記発光素子のn側電極に接続し、かつ前記第2ワイヤの他端を前記保護素子のn側電極に接続する工程と、前記半導体層の実装面側に樹脂層を形成し、前記保護素子と前記第1ワイヤ及び前記第2ワイヤとを前記樹脂層内に埋没させる工程と、前記樹脂層の一部を除去して前記樹脂層内に埋没させた第1ワイヤ及び第2ワイヤの一部を前記樹脂層における発光素子とは反対側の面において露出させる工程と、を有することを特徴とする発光装置の製造方法。   A step of preparing a light-emitting element having a p-side electrode and an n-side electrode on the mounting surface side of the semiconductor layer, and a protective element having a p-side electrode and an n-side electrode on the same surface side; A step of placing the protective element on the light emitting element so as to have a p-side electrode and an n-side electrode, connecting one end of the first wire to the p-side electrode of the light-emitting element, and The other end is connected to the p-side electrode of the protection element, one end of the second wire is connected to the n-side electrode of the light emitting element, and the other end of the second wire is connected to the n-side electrode of the protection element Forming a resin layer on the mounting surface side of the semiconductor layer, burying the protective element, the first wire, and the second wire in the resin layer, and a part of the resin layer. Of the first and second wires removed and buried in the resin layer Method of manufacturing a light emitting device characterized by the light emitting element in the resin layer part and a step of exposing the surface of the opposite side.

上記の発光装置及びその製造方法によれば、発光装置の幅が発光素子の幅と同程度に維持されたCSP構造を有する発光装置において、発光素子上に設けられた保護素子を樹脂層内に埋没させることができる発光装置を提供することができる。   According to the light emitting device and the manufacturing method thereof, in the light emitting device having a CSP structure in which the width of the light emitting device is maintained to be approximately the same as the width of the light emitting element, the protective element provided on the light emitting element is disposed in the resin layer. A light-emitting device that can be buried can be provided.

実施形態1に係る発光装置の構成を示す模式的平面図である。1 is a schematic plan view showing a configuration of a light emitting device according to Embodiment 1. FIG. 図1A中のA−A線断面を示す模式図である。It is a schematic diagram which shows the AA line cross section in FIG. 1A. 実施形態1に係る発光装置の製造方法の一例を説明する模式的断面図である。6 is a schematic cross-sectional view illustrating an example of a method for manufacturing the light emitting device according to Embodiment 1. FIG. 実施形態1に係る発光装置の製造方法の一例を説明する模式的断面図である。6 is a schematic cross-sectional view illustrating an example of a method for manufacturing the light emitting device according to Embodiment 1. FIG. 実施形態1に係る発光装置の製造方法の一例を説明する模式的断面図である。6 is a schematic cross-sectional view illustrating an example of a method for manufacturing the light emitting device according to Embodiment 1. FIG. 実施形態1に係る発光装置の製造方法の一例を説明する模式的断面図である。6 is a schematic cross-sectional view illustrating an example of a method for manufacturing the light emitting device according to Embodiment 1. FIG. 実施形態1に係る発光装置の製造方法の一例を説明する模式的断面図である。6 is a schematic cross-sectional view illustrating an example of a method for manufacturing the light emitting device according to Embodiment 1. FIG. 実施形態1に係る発光装置の製造方法の一例を説明する模式的断面図である。6 is a schematic cross-sectional view illustrating an example of a method for manufacturing the light emitting device according to Embodiment 1. FIG. 実施形態1に係る発光装置の製造方法の一例を説明する模式的断面図である。6 is a schematic cross-sectional view illustrating an example of a method for manufacturing the light emitting device according to Embodiment 1. FIG. 実施形態1に係る発光装置の製造方法の一例を説明する模式的断面図である。6 is a schematic cross-sectional view illustrating an example of a method for manufacturing the light emitting device according to Embodiment 1. FIG. 実施形態2に係る発光装置の構成を示す模式的平面図である。6 is a schematic plan view showing a configuration of a light emitting device according to Embodiment 2. FIG. 図3A中のA−A線断面を示す模式図である。It is a schematic diagram which shows the AA cross section in FIG. 3A. 実施形態2に係る発光装置の製造方法の一例を説明する模式的断面図である。FIG. 6 is a schematic cross-sectional view illustrating an example of a method for manufacturing a light emitting device according to Embodiment 2. 実施形態2に係る発光装置の製造方法の一例を説明する模式的断面図である。FIG. 6 is a schematic cross-sectional view illustrating an example of a method for manufacturing a light emitting device according to Embodiment 2. 実施形態2に係る発光装置の製造方法の一例を説明する模式的断面図である。FIG. 6 is a schematic cross-sectional view illustrating an example of a method for manufacturing a light emitting device according to Embodiment 2. 実施形態2に係る発光装置の製造方法の一例を説明する模式的断面図である。FIG. 6 is a schematic cross-sectional view illustrating an example of a method for manufacturing a light emitting device according to Embodiment 2. 実施形態2に係る発光装置の製造方法の一例を説明する模式的断面図である。FIG. 6 is a schematic cross-sectional view illustrating an example of a method for manufacturing a light emitting device according to Embodiment 2. 実施形態2に係る発光装置の製造方法の一例を説明する模式的断面図である。FIG. 6 is a schematic cross-sectional view illustrating an example of a method for manufacturing a light emitting device according to Embodiment 2. 実施形態2に係る発光装置の製造方法の一例を説明する模式的断面図である。FIG. 6 is a schematic cross-sectional view illustrating an example of a method for manufacturing a light emitting device according to Embodiment 2. 実施形態2に係る発光装置の製造方法の一例を説明する模式的断面図である。FIG. 6 is a schematic cross-sectional view illustrating an example of a method for manufacturing a light emitting device according to Embodiment 2. 実施形態3に係る発光装置の模式的平面図である。6 is a schematic plan view of a light emitting device according to Embodiment 3. FIG. 図5A中のA−A線断面を示す模式図である。It is a schematic diagram which shows the AA line cross section in FIG. 5A. 実施形態4に係る発光装置の模式的平面図である。6 is a schematic plan view of a light emitting device according to Embodiment 4. FIG. 図6A中のA−A線断面を示す模式図である。It is a schematic diagram which shows the AA line cross section in FIG. 6A. 図1B、図3B、図5B、及び図6Bにおいて模式的に示した発光素子の断面を拡大した図である。It is the figure which expanded the cross section of the light emitting element typically shown in FIG. 1B, FIG. 3B, FIG. 5B, and FIG. 6B.

[実施形態1に係る発光装置1]
図1Aは実施形態1に係る発光装置の模式的平面図であり、図1Bは図1A中のA−A線断面を示す模式図である。図1Aおよび図1Bに示すように、実施形態1に係る発光装置1は、半導体層11の実装面側にp側電極12及びn側電極13を備えた発光素子10と、発光素子10のp側電極12及びn側電極13を覆う樹脂層20と、樹脂層20内で発光素子10上に設けられ、発光素子10のp側電極12及びn側電極13に電気的に接続された保護素子40と、樹脂層20内に設けられ、発光素子10のp側電極12に接続されるとともに樹脂層20における発光素子10とは反対側の面において露出するp側導電性部材31と、樹脂層20内に設けられ、発光素子10のn側電極13に接続されるとともに樹脂層20における発光素子10とは反対側の面において露出するn側導電性部材32と、を備え、p側導電性部材31及びn側導電性部材32は、それぞれワイヤWを有する発光装置である。以下、順に説明する。
[Light Emitting Device 1 According to Embodiment 1]
FIG. 1A is a schematic plan view of the light emitting device according to Embodiment 1, and FIG. 1B is a schematic view showing a cross section taken along line AA in FIG. 1A. As shown in FIGS. 1A and 1B, the light emitting device 1 according to Embodiment 1 includes a light emitting element 10 including a p-side electrode 12 and an n-side electrode 13 on the mounting surface side of the semiconductor layer 11, and p of the light emitting element 10. A resin layer 20 covering the side electrode 12 and the n-side electrode 13, and a protection element provided on the light-emitting element 10 in the resin layer 20 and electrically connected to the p-side electrode 12 and the n-side electrode 13 of the light-emitting element 10 40, a p-side conductive member 31 provided in the resin layer 20, connected to the p-side electrode 12 of the light-emitting element 10 and exposed on the surface of the resin layer 20 opposite to the light-emitting element 10, and a resin layer And an n-side conductive member 32 that is connected to the n-side electrode 13 of the light-emitting element 10 and is exposed on the surface of the resin layer 20 opposite to the light-emitting element 10. Member 31 and n-side conductive member 2 is a light-emitting device having a wire W, respectively. Hereinafter, it demonstrates in order.

(発光素子10)
発光素子10は、例えば発光ダイオードチップなどである。発光素子10は、半導体層11の実装面側にp側電極12とn側電極13とを備えている。半導体層11の実装面は、成長用基板80が存在している面(あるいは存在していた面)とは反対側の面である。成長用基板80が存在している面(あるいは存在していた面)は半導体層11の光出射面であり、光出射面からは半導体層11で生成された光が出射される。なお、本実施形態では、成長用基板80に半導体層11を積層した後、成長用基板80が完全に除去され、成長用基板80が完全に除去された半導体層11の光出射面に蛍光体層60が設けられる。
(Light emitting element 10)
The light emitting element 10 is, for example, a light emitting diode chip. The light emitting element 10 includes a p-side electrode 12 and an n-side electrode 13 on the mounting surface side of the semiconductor layer 11. The mounting surface of the semiconductor layer 11 is the surface opposite to the surface on which the growth substrate 80 exists (or the surface on which the growth substrate 80 exists). The surface on which the growth substrate 80 is present (or the surface on which it is present) is the light emitting surface of the semiconductor layer 11, and light generated by the semiconductor layer 11 is emitted from the light emitting surface. In this embodiment, after the semiconductor layer 11 is stacked on the growth substrate 80, the growth substrate 80 is completely removed, and the phosphor is formed on the light emitting surface of the semiconductor layer 11 from which the growth substrate 80 is completely removed. A layer 60 is provided.

半導体層11は、成長用基板80の上に例えばMOCVD法(有機金属気相成長法)、HVPE法(ハイドライド気相成長法)、MBE法(分子線エピタキシャル成長法)などの方法を用いて積層される。成長用基板80としては、例えば、サファイアやスピネル(MgAl)のような絶縁性基板、また炭化ケイ素(SiC)、ZnS、ZnO、Si、GaAs、ダイヤモンド、及び窒化物半導体と格子接合するニオブ酸リチウム、ガリウム酸ネオジム等の酸化物基板を用いることができる。成長用基板80は、半導体層11の作製後に完全に除去されていてもよいし、一部が除去されていてもよいし、まったく除去されていなくてもよい。成長用基板80は、例えばレーザリフトオフ法や研磨やエッチングなどにより除去することができる。 The semiconductor layer 11 is laminated on the growth substrate 80 by using a method such as MOCVD method (metal organic vapor phase epitaxy), HVPE method (hydride vapor phase epitaxy), MBE method (molecular beam epitaxy). The As the growth substrate 80, for example, an insulating substrate such as sapphire or spinel (MgAl 2 O 4 ), and lattice bonding with silicon carbide (SiC), ZnS, ZnO, Si, GaAs, diamond, and a nitride semiconductor. An oxide substrate such as lithium niobate or neodymium gallate can be used. The growth substrate 80 may be completely removed after the semiconductor layer 11 is manufactured, a part thereof may be removed, or it may not be removed at all. The growth substrate 80 can be removed by, for example, a laser lift-off method, polishing, etching, or the like.

蛍光体層60としては、波長変換材料(例:蛍光体)を含有した樹脂材料を用いることができる。   As the phosphor layer 60, a resin material containing a wavelength conversion material (eg, phosphor) can be used.

樹脂材料としては、半導体層11や波長変換材料から出射した光に対して透光性を有する材料を用いることができる。このような材料としては、例えば、シリコーン樹脂、変性シリコーン樹脂、エポキシ樹脂、変性エポキシ樹脂、ユリア樹脂、フェノール樹脂、アクリレート樹脂、ウレタン樹脂、フッ素樹脂若しくはこれらの樹脂を少なくとも1種以上含む樹脂、又はハイブリッド樹脂などを好適に用いることができる。   As the resin material, a material having translucency with respect to light emitted from the semiconductor layer 11 or the wavelength conversion material can be used. Examples of such a material include a silicone resin, a modified silicone resin, an epoxy resin, a modified epoxy resin, a urea resin, a phenol resin, an acrylate resin, a urethane resin, a fluororesin, or a resin containing at least one of these resins, or A hybrid resin or the like can be suitably used.

波長変換材料としては、半導体層11から出射した光を励起光として、この励起光と異なる波長の光を発する材料を用いることができ、特に、粒状の蛍光体を好適に用いることができる。例えば、Ce(セリウム)で賦活されたYAG(イットリウム・アルミニウム・ガーネット)系蛍光体、Ceで賦活されたLAG(ルテチウム・アルミニウム・ガーネット)系蛍光体、Eu(ユーロピウム)及び/又はCr(クロム)で賦活された窒素含有アルミノ珪酸カルシウム(CaO−Al−SiO)系蛍光体、Euで賦活されたシリケート((Sr,Ba)SiO)系蛍光体、βサイアロン蛍光体、KSF(KSiF:Mn)系蛍光体などは、波長変換材料の一例である。また、量子ドット蛍光体も波長変換材料の一例である。 As the wavelength conversion material, a material that emits light having a wavelength different from that of the excitation light using the light emitted from the semiconductor layer 11 as excitation light can be used. In particular, a granular phosphor can be preferably used. For example, Ce (cerium) activated YAG (yttrium aluminum garnet) phosphor, Ce activated LAG (lutetium aluminum garnet) phosphor, Eu (europium) and / or Cr (chromium) Activated nitrogen-containing calcium aluminosilicate (CaO—Al 2 O 3 —SiO 2 ) -based phosphor, Eu-activated silicate ((Sr, Ba) 2 SiO 4 ) -based phosphor, β sialon phosphor, KSF A (K 2 SiF 6 : Mn) -based phosphor is an example of a wavelength conversion material. A quantum dot phosphor is also an example of a wavelength conversion material.

蛍光体層60の膜厚は、波長変換材料の含有量や所望する色調などに応じて定めることができるが、例えば、1〜500μmとすることができ、5〜200μmとすることがより好ましく、10〜100μmとすることが更に好ましい。   The film thickness of the phosphor layer 60 can be determined according to the content of the wavelength conversion material, the desired color tone, etc., for example, can be 1 to 500 μm, more preferably 5 to 200 μm, More preferably, it is 10-100 micrometers.

蛍光体層60は、半導体層11の光出射面に設けられていてもよいが、設けられていなくてもよい。蛍光体層60が半導体層11の光出射面に設けられない場合は、半導体層11の光出射面それ自体から光が取り出される。   The phosphor layer 60 may be provided on the light emitting surface of the semiconductor layer 11 or may not be provided. When the phosphor layer 60 is not provided on the light emitting surface of the semiconductor layer 11, light is extracted from the light emitting surface of the semiconductor layer 11 itself.

発光素子10のp側電極12やn側電極13は、例えば、半導体層11が有するp型半導体層113やn型半導体層111に電気的に接続されるパッド電極である。p側電極12やn側電極13には、金属材料を用いることができ、例えば、Ag、Al、Ni、Rh、Au、Cu、Ti、Pt、Pd、Mo、Cr、Wなどの単体金属又はこれらの金属を主成分とする合金などを好適に用いることができる。なお、合金を用いる場合は、例えば、AlSiCu合金(ASC)のように、組成元素としてSiなどの非金属元素を含有するものであってもよい。また、p側電極12やn側電極13としては、これらの金属材料を単層で、又は積層したものを利用することができる。   The p-side electrode 12 and the n-side electrode 13 of the light emitting element 10 are, for example, pad electrodes that are electrically connected to the p-type semiconductor layer 113 and the n-type semiconductor layer 111 included in the semiconductor layer 11. A metal material can be used for the p-side electrode 12 and the n-side electrode 13, for example, a single metal such as Ag, Al, Ni, Rh, Au, Cu, Ti, Pt, Pd, Mo, Cr, W, or the like. An alloy containing these metals as a main component can be preferably used. In addition, when using an alloy, you may contain nonmetallic elements, such as Si, as a composition element like an AlSiCu alloy (ASC), for example. In addition, as the p-side electrode 12 and the n-side electrode 13, a single layer or a laminate of these metal materials can be used.

(樹脂層20)
樹脂層20は、発光素子10のp側電極12とn側電極13とを覆っている。樹脂層20は例えば半導体層11の実装面に設けられている。樹脂層20には、例えば、シリコーン樹脂、変性シリコーン樹脂、エポキシ樹脂、変性エポキシ樹脂、ユリア樹脂、フェノール樹脂、アクリレート樹脂、ウレタン樹脂、フッ素樹脂若しくはこれらの樹脂を少なくとも1種以上含む樹脂、又はハイブリッド樹脂などを用いることができる。樹脂層20には、粒状のカーボンブラックやAlN(窒化アルミニウム)、SiC(炭化ケイ素)などの熱伝導部材を含有させるようにしてもよい。このようにすれば、熱伝導率が高まるため、発光素子10で生じた熱を迅速に伝導して外部に放熱させることができる。なお、透光性の樹脂材料を樹脂層20として用いる場合には、樹脂層20に光反射性のフィラーを含有させることが好ましい。このようにすれば、半導体層11の光出射面から効率良く光を取り出すことができる。樹脂層20の厚みは、機械強度の観点から30μm以上500μm以下程度であることが好ましく、100μm以上300μm以下程度であることが更に好ましい。樹脂層20は例えば金型を用いた圧縮成形やトランスファーモールド、スピンコートなどにより設けることができる。
(Resin layer 20)
The resin layer 20 covers the p-side electrode 12 and the n-side electrode 13 of the light emitting element 10. For example, the resin layer 20 is provided on the mounting surface of the semiconductor layer 11. Examples of the resin layer 20 include a silicone resin, a modified silicone resin, an epoxy resin, a modified epoxy resin, a urea resin, a phenol resin, an acrylate resin, a urethane resin, a fluororesin, or a resin containing at least one of these resins, or a hybrid Resins can be used. The resin layer 20 may contain a heat conductive member such as granular carbon black, AlN (aluminum nitride), or SiC (silicon carbide). In this way, since the thermal conductivity is increased, the heat generated in the light emitting element 10 can be quickly conducted and radiated to the outside. In addition, when using a translucent resin material as the resin layer 20, it is preferable to make the resin layer 20 contain a light-reflective filler. In this way, light can be efficiently extracted from the light emitting surface of the semiconductor layer 11. The thickness of the resin layer 20 is preferably about 30 μm to 500 μm, more preferably about 100 μm to 300 μm from the viewpoint of mechanical strength. The resin layer 20 can be provided by, for example, compression molding using a mold, transfer molding, spin coating, or the like.

(p側導電性部材31、n側導電性部材32)
p側導電性部材31とn側導電性部材32は、樹脂層20内に設けられるとともに、樹脂層20における発光素子10とは反対側の面において露出する。p側導電性部材31とn側導電性部材32は、発光素子10のp側電極12とn側電極13にそれぞれ接続される。p側導電性部材31及びn側導電性部材32としてはワイヤWが用いることができる。これにより、発光装置の量産性が向上する。
(P-side conductive member 31, n-side conductive member 32)
The p-side conductive member 31 and the n-side conductive member 32 are provided in the resin layer 20 and exposed on the surface of the resin layer 20 opposite to the light emitting element 10. The p-side conductive member 31 and the n-side conductive member 32 are connected to the p-side electrode 12 and the n-side electrode 13 of the light emitting element 10, respectively. As the p-side conductive member 31 and the n-side conductive member 32, a wire W can be used. Thereby, the mass productivity of the light emitting device is improved.

ワイヤWとしては、良好な電気伝導性及び熱伝導性を有する金属材料を用いることが好ましく、例えば、Au、Cu、Al、Ag又はこれらの金属を主成分とする合金などを好適に用いることができる。ワイヤWの表面にはコーティングを施してもよい。発光素子10にて生じる熱を効率よく伝導するために、ワイヤWの径は太いほど好ましい。具体的には、20μm程度以上であることが好ましく、30μm程度以上であることがさらに好ましい。なお、ワイヤWの径の上限は、発光素子10のn側電極13及びp側電極12に配線可能なサイズであれば特に限定されるものではないが、ワイヤボンディングを行う際の衝撃で半導体層11にダメージが生じない程度、例えば、3mm程度以下とすることが好ましく、1mm程度以下とすることが更に好ましい。なお、Cu、Al又はこれらを主成分とする合金からなる材料をワイヤWとして用いれば、より太いワイヤWを安価に利用することができる。ワイヤWの形状は特に限定されず、円形の断面形状を有するワイヤWの他に、楕円形や長方形などの断面形状を有するリボン状のワイヤWを用いるようにしてもよい。   As the wire W, it is preferable to use a metal material having good electrical conductivity and thermal conductivity. For example, Au, Cu, Al, Ag, or an alloy containing these metals as a main component is preferably used. it can. The surface of the wire W may be coated. In order to efficiently conduct the heat generated in the light emitting element 10, the diameter of the wire W is preferably as thick as possible. Specifically, it is preferably about 20 μm or more, and more preferably about 30 μm or more. The upper limit of the diameter of the wire W is not particularly limited as long as it is a size that can be wired to the n-side electrode 13 and the p-side electrode 12 of the light emitting element 10, but the semiconductor layer is affected by an impact when wire bonding is performed. 11 is not damaged, for example, about 3 mm or less, more preferably about 1 mm or less. In addition, if the material which consists of Cu, Al, or an alloy which has these as a main component is used as the wire W, the thicker wire W can be utilized cheaply. The shape of the wire W is not particularly limited. In addition to the wire W having a circular cross-sectional shape, a ribbon-shaped wire W having a cross-sectional shape such as an ellipse or a rectangle may be used.

(保護素子40)
保護素子40は、樹脂層20内で発光素子10上に設けられ、発光素子10のp側電極12とn側電極13とに電気的に接続される。より具体的に説明すると、保護素子40は発光素子10に対向する側にp側電極41及びn側電極42を有しており、保護素子40のp側電極41及びn側電極42は接合部材70(例:半田バンプ、銅バンプ、金バンプ、銀ペースト)を用いて発光素子10のp側電極12及びn側電極13に電気的に接続される。
(Protective element 40)
The protective element 40 is provided on the light emitting element 10 in the resin layer 20 and is electrically connected to the p-side electrode 12 and the n-side electrode 13 of the light emitting element 10. More specifically, the protection element 40 has a p-side electrode 41 and an n-side electrode 42 on the side facing the light emitting element 10, and the p-side electrode 41 and the n-side electrode 42 of the protection element 40 are joined members. 70 (example: solder bump, copper bump, gold bump, silver paste) is used to electrically connect to the p-side electrode 12 and the n-side electrode 13 of the light emitting element 10.

保護素子40としては、例えば、発光素子10に印加される逆方向の電圧を短絡したり、発光素子10の動作電圧より高い所定の電圧以上の順方向電圧を短絡したりさせることができる素子、つまり、過熱、過電圧、過電流、保護回路、静電保護素子等が挙げられる。具体的には、ツェナーダイオードやトランジスタのダイオード、コンデンサなどを用いることができる。   As the protective element 40, for example, an element capable of short-circuiting a reverse voltage applied to the light-emitting element 10 or short-circuiting a forward voltage equal to or higher than a predetermined voltage higher than the operating voltage of the light-emitting element 10, That is, overheating, overvoltage, overcurrent, a protection circuit, an electrostatic protection element, etc. are mentioned. Specifically, a Zener diode, a transistor diode, a capacitor, or the like can be used.

(p側外部電極51、n側外部電極52)
樹脂層20における発光素子10とは反対側の面には、p側導電性部材31とn側導電性部材32とにそれぞれ接続されたp側外部電極51とn側外部電極52とを設けてもよい。p側外部電極51やn側外部電極52によれば、発光装置1を外部基板に実装することが容易になる。p側外部電極51やn側外部電極52は、Au−Sn共晶半田などのAu合金系の接合材料を用いた実装基板との接合性を高めるため、少なくとも最上層がAuで形成されていることが好ましい。例えば、スパッタリング法により、まず、Ti及びNiの薄膜を順次に形成し、Ni層の上層にAu層を積層して形成することが好ましい。p側外部電極51やn側外部電極52は、総膜厚が0.1〜5μm程度であることが好ましく、0.5〜4μm程度であることが更に好ましい。なお、ワイヤWがAuで形成されている場合は、p側外部電極51やn側外部電極52を設けずに、ワイヤWの上面を外部との接続面としてもよい。
(P-side external electrode 51, n-side external electrode 52)
A p-side external electrode 51 and an n-side external electrode 52 respectively connected to the p-side conductive member 31 and the n-side conductive member 32 are provided on the surface of the resin layer 20 opposite to the light emitting element 10. Also good. According to the p-side external electrode 51 and the n-side external electrode 52, it becomes easy to mount the light emitting device 1 on the external substrate. The p-side external electrode 51 and the n-side external electrode 52 have at least the uppermost layer formed of Au in order to improve the bondability with a mounting substrate using an Au alloy-based bonding material such as Au—Sn eutectic solder. It is preferable. For example, it is preferable to form a thin film of Ti and Ni sequentially by sputtering, and then stack an Au layer on top of the Ni layer. The p-side external electrode 51 and the n-side external electrode 52 preferably have a total film thickness of about 0.1 to 5 μm, and more preferably about 0.5 to 4 μm. When the wire W is formed of Au, the upper surface of the wire W may be used as a connection surface with the outside without providing the p-side external electrode 51 and the n-side external electrode 52.

以上説明したように、実施形態1に係る発光装置1によれば、発光装置1の幅が発光素子10の幅と同程度に維持されたCSP構造を有する発光装置において、発光素子10上に設けられた保護素子40を樹脂層40内に埋没させることができる発光装置を提供することができる。   As described above, according to the light emitting device 1 according to the first embodiment, in the light emitting device having the CSP structure in which the width of the light emitting device 1 is maintained at the same level as the width of the light emitting element 10, the light emitting device 1 is provided on the light emitting element 10. It is possible to provide a light emitting device capable of burying the formed protective element 40 in the resin layer 40.

また、実施形態1に係る発光装置1によれば、p側導電性部材31とn側導電性部材32が、めっきよりも簡単に形成することが可能なワイヤWを有して構成されるため、樹脂層20内に保護素子40が設けられた樹脂層20が比較的厚い発光装置の量産性を効果的に向上させることができる。なお、実施形態1は、樹脂層20内に保護素子40を設ける発光装置のなかでも、小型化を実現するために成長用基板80を完全に除去したりその厚さを薄くしたりする発光装置に対して特に好ましく適用することができる。このようにして小型化が図られた発光装置では、このような小型化が図られていない発光装置よりも、発光装置の機械強度を維持するために樹脂層20が厚く設けられることが多いからである。   Further, according to the light emitting device 1 according to the first embodiment, the p-side conductive member 31 and the n-side conductive member 32 are configured to have the wires W that can be formed more easily than plating. The mass productivity of a light-emitting device having a relatively thick resin layer 20 in which the protective element 40 is provided in the resin layer 20 can be effectively improved. In the first embodiment, among the light-emitting devices in which the protective element 40 is provided in the resin layer 20, the light-emitting device in which the growth substrate 80 is completely removed or the thickness thereof is reduced in order to realize downsizing. It can be particularly preferably applied to. In such a light emitting device that has been reduced in size, the resin layer 20 is often provided thicker in order to maintain the mechanical strength of the light emitting device than in a light emitting device that has not been reduced in size. It is.

[実施形態1に係る発光装置1の製造方法]
図2Aから図2Hは、実施形態1に係る発光装置の製造方法の一例を説明する模式的断面図である。
[Method for Manufacturing Light-Emitting Device 1 According to Embodiment 1]
2A to 2H are schematic cross-sectional views illustrating an example of a method for manufacturing the light emitting device according to Embodiment 1.

(第1工程)
まず、半導体層11の実装面側にp側電極12およびn側電極13を有する発光素子10と、p側電極41およびn側電極42を同一面側に有する保護素子40と、を準備する。発光素子10の半導体層11は、具体的には、MOCVD法(有機金属気相成長法)、HVPE法(ハイドライド気相成長法)、MBE法(分子線エピタキシャル成長法)などの方法により、成長用基板80の上に半導体層11を積層し、積層された半導体層11の上面(実装面)側にp側電極12及びn側電極13を形成する。p側電極12及びn側電極13は、例えばスパッタリングにより形成する。
(First step)
First, the light emitting element 10 having the p-side electrode 12 and the n-side electrode 13 on the mounting surface side of the semiconductor layer 11 and the protection element 40 having the p-side electrode 41 and the n-side electrode 42 on the same surface side are prepared. Specifically, the semiconductor layer 11 of the light-emitting element 10 is grown for growth by a method such as MOCVD (metal organic vapor phase epitaxy), HVPE (hydride vapor phase epitaxy), MBE (molecular beam epitaxy). The semiconductor layer 11 is laminated on the substrate 80, and the p-side electrode 12 and the n-side electrode 13 are formed on the upper surface (mounting surface) side of the laminated semiconductor layer 11. The p-side electrode 12 and the n-side electrode 13 are formed by sputtering, for example.

(第2工程)
次に、図2Aに示すように、発光素子10のp側電極12と保護素子40のp側電極41とが電気的に接続され、かつ発光素子10のn側電極13と保護素子40のn側電極42とが電気的に接続されるように、発光素子10上に保護素子40を実装する。具体的には、例えば半田などの接合部材70を用いて、保護素子40のp側電極41を発光素子10のp側電極12に電気的に接続し、かつ保護素子40のn側電極42を発光素子10のn側電極13に電気的に接続する。
(Second step)
Next, as shown in FIG. 2A, the p-side electrode 12 of the light-emitting element 10 and the p-side electrode 41 of the protective element 40 are electrically connected, and the n-side electrode 13 of the light-emitting element 10 and the n-side of the protective element 40 The protective element 40 is mounted on the light emitting element 10 so that the side electrode 42 is electrically connected. Specifically, for example, the p-side electrode 41 of the protection element 40 is electrically connected to the p-side electrode 12 of the light emitting element 10 using a bonding member 70 such as solder, and the n-side electrode 42 of the protection element 40 is connected. It is electrically connected to the n-side electrode 13 of the light emitting element 10.

(第3工程)
次に、図2Bに示すように、ワイヤボンディング装置により、ワイヤWの一端を発光素子10のp側電極12に接続し、かつワイヤWの他端を発光素子10のn側電極13に接続する。
(Third step)
Next, as shown in FIG. 2B, one end of the wire W is connected to the p-side electrode 12 of the light emitting element 10 and the other end of the wire W is connected to the n-side electrode 13 of the light emitting element 10 by a wire bonding apparatus. .

(第4工程)
次に、図2Cに示すように、金型を用いた圧縮成形により半導体層11の実装面側に樹脂層20を形成し、保護素子40とワイヤWを樹脂層20内に埋没させる。
(4th process)
Next, as illustrated in FIG. 2C, the resin layer 20 is formed on the mounting surface side of the semiconductor layer 11 by compression molding using a mold, and the protection element 40 and the wire W are embedded in the resin layer 20.

(第5工程)
次に、図2Dに示すように、樹脂層20を硬化させた後、切削装置を用いて樹脂層20の一部を除去して樹脂層20内に埋没させたワイヤWの一部を樹脂層20における発光素子10とは反対側の面において露出させる。これによって、ワイヤWは、2本のワイヤWに分離される。また、樹脂層20の上面と同一面となるように、ワイヤWの一部が露出する。
(5th process)
Next, as shown in FIG. 2D, after the resin layer 20 is cured, a part of the resin layer 20 is removed by using a cutting device, and a part of the wire W embedded in the resin layer 20 is replaced with the resin layer. 20 is exposed on the surface opposite to the light emitting element 10. As a result, the wire W is separated into two wires W. Further, a part of the wire W is exposed so as to be flush with the upper surface of the resin layer 20.

(第6工程)
次に、図2Eに示すように、ワイヤWの上面及びその近傍の樹脂層20の上面に、n側外部電極52及びp側外部電極51としての金属膜を形成する。金属膜は、例えばスパッタリング法により成膜した金属膜をパターニングすることにより形成することができる。金属膜のパターニングは、エッチングによるパターン形成法やリフトオフによるパターン形成法などを用いることができる。
(Sixth step)
Next, as shown in FIG. 2E, a metal film is formed as the n-side external electrode 52 and the p-side external electrode 51 on the upper surface of the wire W and the upper surface of the resin layer 20 in the vicinity thereof. The metal film can be formed, for example, by patterning a metal film formed by a sputtering method. For patterning the metal film, a pattern formation method by etching, a pattern formation method by lift-off, or the like can be used.

(第7工程)
次に、図2Fに示すように、例えば、LLO(レーザーリフトオフ法)やケミカルリフトオフ法等により、成長用基板80を除去する。このとき、半導体層11は、樹脂層20により補強されているため、割れやひびなどの損傷を受けない。露出した半導体層11の下面(光出射面)には、研磨やウェットエッチングなどによる粗面化により凹凸形状を形成してもよい。なお、除去した成長用基板80は、表面を研磨することで、別個の半導体層11の成長用基板80として再利用することができる。
(Seventh step)
Next, as shown in FIG. 2F, the growth substrate 80 is removed by, for example, LLO (laser lift-off method) or chemical lift-off method. At this time, since the semiconductor layer 11 is reinforced by the resin layer 20, it is not damaged such as cracks or cracks. An uneven shape may be formed on the exposed lower surface (light emitting surface) of the semiconductor layer 11 by roughening by polishing or wet etching. The removed growth substrate 80 can be reused as the growth substrate 80 of the separate semiconductor layer 11 by polishing the surface.

(第8工程)
次に、図2Gに示すように、半導体層11の下面(光出射面)側に蛍光体層60を形成する。蛍光体層60は、例えば、溶剤に樹脂材料及び蛍光体を含有させたスラリーをスプレー塗布することにより形成することができる。
(8th step)
Next, as shown in FIG. 2G, the phosphor layer 60 is formed on the lower surface (light emitting surface) side of the semiconductor layer 11. The phosphor layer 60 can be formed, for example, by spraying a slurry containing a resin material and a phosphor in a solvent.

(第9工程)
次に、図2Hに示すように、ダイシングにより集合基板を個片化して複数の発光装置1とする。
(9th step)
Next, as shown in FIG. 2H, the collective substrate is divided into pieces by dicing to form a plurality of light emitting devices 1.

以上説明した製造方法例によれば、実施形態1に係る発光装置1を容易に製造することができる。また、実施形態1に係る発光装置1の量産性を向上させることができる。   According to the manufacturing method example described above, the light-emitting device 1 according to Embodiment 1 can be easily manufactured. Moreover, the mass productivity of the light emitting device 1 according to Embodiment 1 can be improved.

[実施形態2に係る発光装置2]
図3Aは実施形態2に係る発光装置の模式的平面図であり、図3Bは図3A中のA−A線断面を示す模式図である。
[Light Emitting Device 2 According to Embodiment 2]
3A is a schematic plan view of the light-emitting device according to Embodiment 2, and FIG. 3B is a schematic diagram showing a cross section taken along line AA in FIG. 3A.

図3A及び図3Bに示すように、実施形態2に係る発光装置2は、保護素子40が発光素子10とは反対側にp側電極41及びn側電極42を有するとともに、保護素子40のp側電極41及びn側電極42がワイヤWを介してp側外部電極51及びn側外部電極52にそれぞれ電気的に接続されている点で、実施形態1に係る発光装置1と相違する。実施形態2によっても、実施形態1と同様に、発光装置2の幅が発光素子10の幅と同程度に維持されたCSP構造を有する発光装置において、発光素子10上に設けられた保護素子40を樹脂層40内に埋没させることができる発光装置を提供することができる。また、発光装置2の量産性を向上させることができる。   As illustrated in FIGS. 3A and 3B, in the light emitting device 2 according to the second embodiment, the protection element 40 includes the p-side electrode 41 and the n-side electrode 42 on the side opposite to the light emitting element 10, and the p of the protection element 40. The side electrode 41 and the n-side electrode 42 are different from the light emitting device 1 according to the first embodiment in that the side electrode 41 and the n-side electrode 42 are electrically connected to the p-side external electrode 51 and the n-side external electrode 52 through the wires W, respectively. Also in the second embodiment, similarly to the first embodiment, in the light emitting device having the CSP structure in which the width of the light emitting device 2 is maintained at the same level as the width of the light emitting element 10, the protective element 40 provided on the light emitting element 10. It is possible to provide a light emitting device that can be embedded in the resin layer 40. Further, the mass productivity of the light emitting device 2 can be improved.

実施形態2においては、保護素子40を発光素子10上に載置する接合部材70として、樹脂材料を用いることができる。具体的には、エポキシ樹脂、シリコーン樹脂、ポリイミド樹脂、アクリル系樹脂や不飽和ポリエステルなどの樹脂などが好適に挙げられる。これらは、単独又は2種類以上混合して使用することもできる。   In the second embodiment, a resin material can be used as the bonding member 70 for placing the protection element 40 on the light emitting element 10. Specifically, an epoxy resin, a silicone resin, a polyimide resin, an acrylic resin, an unsaturated polyester resin, or the like is preferably used. These may be used alone or in combination of two or more.

[実施形態2に係る発光装置2の製造方法]
図4Aから図4Hは、実施形態2に係る発光装置の製造方法の一例を説明する模式的断面図である。
[Method for Manufacturing Light-Emitting Device 2 According to Embodiment 2]
4A to 4H are schematic cross-sectional views illustrating an example of a method for manufacturing a light emitting device according to Embodiment 2.

(第1工程)
第1工程は実施形態1の第1工程と同じであるので説明を省略する。
(First step)
Since the first step is the same as the first step of the first embodiment, description thereof is omitted.

(第2工程)
次に、図4Aに示すように、発光素子10上に保護素子40を載置する。具体的には、保護素子40は、p側電極41及びn側電極42を同一面側に有しており、発光素子10とは反対側にp側電極41及びn側電極42が位置するように、発光素子10上に樹脂材料などの接合部材70を介して載置される。
(Second step)
Next, as shown in FIG. 4A, the protection element 40 is placed on the light emitting element 10. Specifically, the protection element 40 has a p-side electrode 41 and an n-side electrode 42 on the same surface side, and the p-side electrode 41 and the n-side electrode 42 are located on the opposite side to the light emitting element 10. Then, it is placed on the light emitting element 10 via a bonding member 70 such as a resin material.

(第3工程)
次に、図4Bに示すように、ワイヤボンディング装置により、第1ワイヤW1の一端を発光素子10のp側電極12に接続し、かつ第1ワイヤW1の他端を保護素子40のp側電極41に接続するとともに、第2ワイヤW2の一端を発光素子10のn側電極13に接続し、かつ第2ワイヤW2の他端を保護素子40のn側電極42に接続する。
(Third step)
Next, as shown in FIG. 4B, one end of the first wire W1 is connected to the p-side electrode 12 of the light emitting element 10 and the other end of the first wire W1 is connected to the p-side electrode of the protection element 40 by a wire bonding apparatus. 41, one end of the second wire W2 is connected to the n-side electrode 13 of the light emitting element 10, and the other end of the second wire W2 is connected to the n-side electrode 42 of the protection element 40.

(第4工程)
次に、図4Cに示すように、金型を用いた圧縮成型により半導体層11の実装面側に樹脂層20を形成し、保護素子40と第1ワイヤW1及び第2ワイヤW2を樹脂層20内に埋没させる。
(4th process)
Next, as shown in FIG. 4C, the resin layer 20 is formed on the mounting surface side of the semiconductor layer 11 by compression molding using a mold, and the protective element 40, the first wire W1, and the second wire W2 are connected to the resin layer 20. Buried inside.

(第5工程)
次に、図4Dに示すように、樹脂層20を硬化させた後、切削装置を用いて樹脂層20の一部を除去して樹脂層20内に埋没させた第1ワイヤW1及び第2ワイヤW2の一部を樹脂層20における発光素子10とは反対側の面において露出させる。これによって、第1ワイヤW1及び第2ワイヤW2は、それぞれ2本のワイヤWに分離される(合計4本)。また、樹脂層20の上面と同一面となるように、第1ワイヤW1及び第2ワイヤW2の一部が露出する。
(5th process)
Next, as shown in FIG. 4D, after the resin layer 20 is cured, a part of the resin layer 20 is removed using a cutting device, and the first wire W <b> 1 and the second wire embedded in the resin layer 20. A part of W2 is exposed on the surface of the resin layer 20 opposite to the light emitting element 10. Thereby, the first wire W1 and the second wire W2 are each separated into two wires W (four in total). Moreover, a part of 1st wire W1 and 2nd wire W2 are exposed so that it may become the same surface as the upper surface of the resin layer 20. FIG.

(第6工程)
次に、図4Eに示すように、第1ワイヤW1及び第2ワイヤW2の上面及びその近傍の樹脂層20の上面に、n側外部電極52及びp側外部電極51としての金属膜を形成する。金属膜は、例えばスパッタリング法により成膜した金属膜をパターニングすることにより形成することができる。金属膜のパターニングは、エッチングによるパターン形成法やリフトオフによるパターン形成法などを用いることができる。
(Sixth step)
Next, as shown in FIG. 4E, metal films as the n-side external electrode 52 and the p-side external electrode 51 are formed on the top surfaces of the first wire W1 and the second wire W2 and the top surface of the resin layer 20 in the vicinity thereof. . The metal film can be formed, for example, by patterning a metal film formed by a sputtering method. For patterning the metal film, a pattern formation method by etching, a pattern formation method by lift-off, or the like can be used.

(第7工程から第9工程)
第7工程から第9工程(図4Fから図4H参照)は、実施形態1の第7工程から第9工程と同じであるので説明を省略する。
(7th to 9th steps)
Since the seventh step to the ninth step (see FIGS. 4F to 4H) are the same as the seventh step to the ninth step of the first embodiment, description thereof will be omitted.

以上説明した製造方法例によれば、実施形態2に係る発光装置2を容易に製造することができる。また、発光装置2の量産性を向上させることができる。   According to the manufacturing method example described above, the light-emitting device 2 according to Embodiment 2 can be easily manufactured. Further, the mass productivity of the light emitting device 2 can be improved.

[実施形態3に係る発光装置]
図5Aは実施形態3に係る発光装置の模式的平面図であり、図5Bは図5A中のA−A線断面を示す模式図である。図5A、図5Bに示すように、実施形態3に係る発光装置3は、放熱性を向上させるために、p側導電性部材31とn側導電性部材32が、発光装置の量産性が悪化しない程度の厚さで、めっき層31(P)、32(P)をその一部に有している点で、実施形態1と相違する。このように、発光装置の量産性が悪化しない程度の厚さであれば、p側導電性部材31とn側導電性部材32は、ワイヤ31(W)、32(W)に加えて、めっき層31(P)、32(P)をその一部に有していてもよい。
[Light Emitting Device According to Embodiment 3]
FIG. 5A is a schematic plan view of the light emitting device according to Embodiment 3, and FIG. 5B is a schematic view showing a cross section taken along line AA in FIG. 5A. As shown in FIGS. 5A and 5B, in the light emitting device 3 according to Embodiment 3, the p-side conductive member 31 and the n-side conductive member 32 are deteriorated in mass productivity of the light-emitting device in order to improve heat dissipation. This is different from the first embodiment in that the plating layers 31 (P) and 32 (P) are included in a part of the thickness so as not to be used. In this way, the p-side conductive member 31 and the n-side conductive member 32 are plated in addition to the wires 31 (W) and 32 (W) as long as the mass productivity of the light emitting device does not deteriorate. The layers 31 (P) and 32 (P) may be included in a part thereof.

[実施形態4に係る発光装置]
図6Aは実施形態4に係る発光装置の模式的平面図であり、図6Bは図6A中のA−A線断面を示す模式図である。図6A、図6Bに示すように、実施形態4に係る発光装置4は、保護素子40が、発光素子10に対向する側及び発光素子10とは反対側にn側電極42及びp側電極41をそれぞれ有しており、発光素子10に対向する側の保護素子40のn側電極42が接続部材70によって発光素子10のn側電極13に電気的に接続され、発光素子10とは反対側の保護素子40のp側電極41がワイヤWによって発光素子10のp側電極12に電気的に接続されている点で、実施形態1と相違する。保護素子40のp側電極41及びn側電極42のいずれか一方が発光素子10とは反対側に設けられ、いずれか他方が発光素子10に対向する側に設けられる場合には、樹脂層20が厚く設けられる傾向にあるが、このような場合であっても、実施形態4によれば、発光装置の量産性を向上させることができる。
[Light Emitting Device According to Embodiment 4]
6A is a schematic plan view of the light-emitting device according to Embodiment 4, and FIG. 6B is a schematic diagram showing a cross section taken along line AA in FIG. 6A. As illustrated in FIGS. 6A and 6B, in the light emitting device 4 according to the fourth embodiment, the protection element 40 has an n-side electrode 42 and a p-side electrode 41 on the side facing the light emitting element 10 and the side opposite to the light emitting element 10. And the n-side electrode 42 of the protective element 40 on the side facing the light-emitting element 10 is electrically connected to the n-side electrode 13 of the light-emitting element 10 by the connecting member 70, and is opposite to the light-emitting element 10. This is different from the first embodiment in that the p-side electrode 41 of the protective element 40 is electrically connected to the p-side electrode 12 of the light emitting element 10 by the wire W. When one of the p-side electrode 41 and the n-side electrode 42 of the protection element 40 is provided on the side opposite to the light emitting element 10 and the other is provided on the side facing the light emitting element 10, the resin layer 20 However, even in such a case, according to the fourth embodiment, the mass productivity of the light emitting device can be improved.

[発光素子10]
図7は図1B、図3B、図5B、及び図6Bにおいて模式的に示した発光素子10の断面を拡大した図である。図7に示すように、発光素子10は、半導体層11とp側電極12とn側電極13と絶縁膜14とを備えている。半導体層11は、例えば、InAlGa1−X−YN(0≦X、0≦Y、X+Y<1)などの半導体が用いられる。半導体層11は、より具体的には、例えばn型半導体層111、活性層112、及びp型半導体層113などからなる。n型半導体層111、活性層112、及びp型半導体層113は、それぞれ単層構造でもよいが、組成及び膜厚等が異なる層を有する積層構造、超格子構造等であってもよい。特に、活性層112は、量子効果が生ずる薄膜を積層した単一量子井戸又は多重量子井戸構造であることが好ましい。図7に示した発光素子10を用いれば、半導体層11の実装面側におけるn側電極13の高さとp側電極12の高さとを同じ高さ(ほぼ同じ高さを含む。)に形成することができるため、発光素子10上に保護素子40を載置しやすくなり、好ましい。
[Light emitting element 10]
FIG. 7 is an enlarged view of a cross section of the light-emitting element 10 schematically shown in FIGS. 1B, 3B, 5B, and 6B. As shown in FIG. 7, the light emitting element 10 includes a semiconductor layer 11, a p-side electrode 12, an n-side electrode 13, and an insulating film 14. The semiconductor layer 11 is, for example, In X Al Y Ga 1- X-Y N (0 ≦ X, 0 ≦ Y, X + Y <1) is a semiconductor like. More specifically, the semiconductor layer 11 includes, for example, an n-type semiconductor layer 111, an active layer 112, a p-type semiconductor layer 113, and the like. The n-type semiconductor layer 111, the active layer 112, and the p-type semiconductor layer 113 may each have a single-layer structure, but may have a stacked structure including layers having different compositions, film thicknesses, or the like, a superlattice structure, or the like. In particular, the active layer 112 preferably has a single quantum well or multiple quantum well structure in which thin films that generate quantum effects are stacked. If the light emitting element 10 shown in FIG. 7 is used, the height of the n-side electrode 13 and the height of the p-side electrode 12 on the mounting surface side of the semiconductor layer 11 are formed at the same height (including almost the same height). Therefore, the protective element 40 can be easily placed on the light emitting element 10, which is preferable.

以上、実施形態について説明したが、これらの説明は一例に関するものであり、特許請求の範囲に記載された構成は、これらの説明によって何ら限定されるものではない。   The embodiments have been described above. However, these descriptions relate to examples, and the configurations described in the claims are not limited by these descriptions.

1 発光装置
2 発光装置
3 発光装置
4 発光装置
10 発光素子
11 半導体層
111 n型半導体層
112 活性層
113 p型半導体層
12 発光素子のp側電極
13 発光素子のn側電極
14 絶縁膜
20 樹脂層
31 p側導電性部材
31(W) p側導電性部材(ワイヤ)
31(P) p側導電性部材(めっき層)
32 n側導電性部材
32(W) n側導電性部材(ワイヤ)
32(P) n側導電性部材(めっき層)
40 保護素子
41 保護素子のp側電極
42 保護素子のn側電極
51 p側外部電極
52 n側外部電極
60 蛍光体層
70 接合部材
80 成長用基板
W ワイヤ
W1 第1ワイヤ
W2 第2ワイヤ
DESCRIPTION OF SYMBOLS 1 Light-emitting device 2 Light-emitting device 3 Light-emitting device 4 Light-emitting device 10 Light-emitting element 11 Semiconductor layer 111 n-type semiconductor layer 112 Active layer 113 p-type semiconductor layer 12 p-side electrode 13 of light-emitting element n-side electrode 14 of light-emitting element Insulating film 20 Resin Layer 31 P-side conductive member 31 (W) P-side conductive member (wire)
31 (P) p-side conductive member (plating layer)
32 n-side conductive member 32 (W) n-side conductive member (wire)
32 (P) n-side conductive member (plating layer)
40 protection element 41 p-side electrode 42 of protection element n-side electrode 51 of protection element p-side external electrode 52 n-side external electrode 60 phosphor layer 70 bonding member 80 growth substrate W wire W1 first wire W2 second wire

Claims (6)

半導体層の実装面側にp側電極及びn側電極を備えた発光素子と、
前記発光素子のp側電極及びn側電極を覆う樹脂層と、
前記樹脂層内で前記発光素子上に設けられ、前記発光素子のp側電極及びn側電極に電気的に接続された保護素子と、
前記樹脂層内に設けられ、前記発光素子のp側電極に接続されるとともに前記樹脂層における前記発光素子とは反対側の面において露出するp側導電性部材と、
前記樹脂層内に設けられ、前記発光素子のn側電極に接続されるとともに前記樹脂層における前記発光素子とは反対側の面において露出するn側導電性部材と、
前記樹脂層における前記発光素子とは反対側の面に、前記p側導電性部材と前記n側導電性部材とにそれぞれ接続されたp側外部電極とn側外部電極と、を備え
前記p側導電性部材及び前記n側導電性部材は、それぞれワイヤを有することを特徴とする発光装置。
A light emitting device including a p-side electrode and an n-side electrode on the mounting surface side of the semiconductor layer;
A resin layer covering the p-side electrode and the n-side electrode of the light emitting element;
A protective element provided on the light-emitting element in the resin layer and electrically connected to the p-side electrode and the n-side electrode of the light-emitting element;
A p-side conductive member provided in the resin layer, connected to the p-side electrode of the light-emitting element and exposed on the surface of the resin layer opposite to the light-emitting element;
An n-side conductive member provided in the resin layer, connected to the n-side electrode of the light-emitting element and exposed on the surface of the resin layer opposite to the light-emitting element;
A p-side external electrode and an n-side external electrode respectively connected to the p-side conductive member and the n-side conductive member on a surface of the resin layer opposite to the light emitting element ;
The p-side conductive member and the n-side conductive member each have a wire .
前記保護素子は、前記発光素子に対向する側に第1電極及び第2電極を有し、
前記保護素子の第1電極は、前記発光素子のp側電極に電気的に接続され、
前記保護素子の第2電極は、前記発光素子のn側電極に電気的に接続されることを特徴とする請求項1に記載の発光装置。
The protective element has a first electrode and a second electrode on a side facing the light emitting element,
The first electrode of the protection element is electrically connected to the p-side electrode of the light emitting element,
The light emitting device according to claim 1, wherein the second electrode of the protection element is electrically connected to the n-side electrode of the light emitting element.
前記保護素子は、前記発光素子に対向する側に第1電極を有し、前記発光素子とは反対側に第2電極を有し、
前記保護素子の第1電極及び第2電極の一方は、前記発光素子のp側電極に電気的に接続され、
前記保護素子の第1電極及び第2電極の他方は、前記発光素子のn側電極に電気的に接続されることを特徴とする請求項1に記載の発光装置。
The protective element has a first electrode on the side facing the light emitting element, and has a second electrode on the opposite side to the light emitting element,
One of the first electrode and the second electrode of the protection element is electrically connected to the p-side electrode of the light emitting element,
The light emitting device according to claim 1, wherein the other of the first electrode and the second electrode of the protection element is electrically connected to the n-side electrode of the light emitting element.
前記保護素子は、前記発光素子とは反対側に第1電極及び第2電極を有し、
前記保護素子の第1電極及び第2電極の一方は、ワイヤを介して、前記p側外部電極に電気的に接続され、
前記保護素子の第1電極及び第2電極の他方は、ワイヤを介して、前記n側外部電極に電気的に接続されていることを特徴とする請求項1に記載の発光装置。
The protective element has a first electrode and a second electrode on a side opposite to the light emitting element,
One of the first electrode and the second electrode of the protection element is electrically connected to the p-side external electrode via a wire,
2. The light emitting device according to claim 1, wherein the other of the first electrode and the second electrode of the protection element is electrically connected to the n-side external electrode through a wire.
半導体層の実装面側にp側電極及びn側電極を有する発光素子と、第1電極及び第2電極を同一面側に有する保護素子と、を準備する工程と、
前記発光素子のp側電極と前記保護素子の第1電極及び第2電極の一方とが電気的に接続され、かつ前記発光素子のn側電極と前記保護素子の第1電極及び第2電極の他方とが電気的に接続されるように、前記発光素子上に前記保護素子を実装する工程と、
ワイヤの一端を前記発光素子のp側電極に接続し、かつワイヤの他端を前記発光素子のn側電極に接続する工程と、
前記半導体層の実装面側に樹脂層を形成し、前記保護素子と前記ワイヤを前記樹脂層内に埋没させる工程と、
前記樹脂層の一部を除去して前記樹脂層内に埋没させたワイヤの一部を前記樹脂層における発光素子とは反対側の面において露出させる工程と、
を有することを特徴とする発光装置の製造方法。
Preparing a light emitting element having a p-side electrode and an n-side electrode on the mounting surface side of the semiconductor layer, and a protection element having a first electrode and a second electrode on the same surface side;
The p-side electrode of the light-emitting element and one of the first electrode and the second electrode of the protection element are electrically connected, and the n-side electrode of the light-emitting element and the first electrode and the second electrode of the protection element Mounting the protective element on the light emitting element so that the other is electrically connected;
Connecting one end of the wire to the p-side electrode of the light-emitting element and connecting the other end of the wire to the n-side electrode of the light-emitting element;
Forming a resin layer on the mounting surface side of the semiconductor layer, and burying the protective element and the wire in the resin layer;
Removing a part of the resin layer and exposing a part of the wire embedded in the resin layer on a surface of the resin layer opposite to the light emitting element;
A method for manufacturing a light-emitting device, comprising:
半導体層の実装面側にp側電極及びn側電極を有する発光素子と、第1電極及び第2電極を同一面側に有する保護素子と、を準備する工程と、
前記発光素子とは反対側に前記第1電極及び前記第2電極を有するように前記保護素子を前記発光素子上に載置する工程と、
第1ワイヤの一端を前記発光素子のp側電極に接続し、かつ前記第1ワイヤの他端を前記保護素子の第1電極及び第2電極の一方に接続するとともに、第2ワイヤの一端を前記発光素子のn側電極に接続し、かつ前記第2ワイヤの他端を前記保護素子の第1電極及び第2電極の他方に接続する工程と、
前記半導体層の実装面側に樹脂層を形成し、前記保護素子と前記第1ワイヤ及び前記第2ワイヤとを前記樹脂層内に埋没させる工程と、
前記樹脂層の一部を除去して前記樹脂層内に埋没させた第1ワイヤ及び第2ワイヤの一部を前記樹脂層における発光素子とは反対側の面において露出させる工程と、
を有することを特徴とする発光装置の製造方法。
Preparing a light emitting element having a p-side electrode and an n-side electrode on the mounting surface side of the semiconductor layer, and a protection element having a first electrode and a second electrode on the same surface side;
Placing the protective element on the light emitting element so as to have the first electrode and the second electrode on the opposite side of the light emitting element;
One end of the first wire is connected to the p-side electrode of the light emitting element, the other end of the first wire is connected to one of the first electrode and the second electrode of the protection element, and one end of the second wire is connected Connecting to the n-side electrode of the light-emitting element and connecting the other end of the second wire to the other of the first electrode and the second electrode of the protection element;
Forming a resin layer on the mounting surface side of the semiconductor layer, and burying the protective element, the first wire, and the second wire in the resin layer;
Removing a part of the resin layer and exposing a part of the first wire and the second wire embedded in the resin layer on a surface opposite to the light emitting element in the resin layer;
A method for manufacturing a light-emitting device, comprising:
JP2014135260A 2014-06-30 2014-06-30 Light emitting device and manufacturing method thereof Active JP6398381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014135260A JP6398381B2 (en) 2014-06-30 2014-06-30 Light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014135260A JP6398381B2 (en) 2014-06-30 2014-06-30 Light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016015356A JP2016015356A (en) 2016-01-28
JP6398381B2 true JP6398381B2 (en) 2018-10-03

Family

ID=55231368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014135260A Active JP6398381B2 (en) 2014-06-30 2014-06-30 Light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6398381B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6635007B2 (en) 2016-11-30 2020-01-22 日亜化学工業株式会社 Light emitting device manufacturing method
JP7004948B2 (en) 2019-04-27 2022-01-21 日亜化学工業株式会社 Manufacturing method of light emitting module

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62299092A (en) * 1986-06-18 1987-12-26 Fujitsu Ltd Light emitting diode
JPH0350338U (en) * 1989-09-20 1991-05-16
JP2606267Y2 (en) * 1992-10-22 2000-10-10 日本航空電子工業株式会社 Chip light emitting diode for surface mounting and membrane sheet switch using the same
JP3156399B2 (en) * 1992-11-04 2001-04-16 松下電器産業株式会社 Optical print head and its manufacturing method.
US6333522B1 (en) * 1997-01-31 2001-12-25 Matsushita Electric Industrial Co., Ltd. Light-emitting element, semiconductor light-emitting device, and manufacturing methods therefor
JPH11260850A (en) * 1998-03-11 1999-09-24 Toshiba Corp Semiconductor device and its manufacture
JP3985332B2 (en) * 1998-04-02 2007-10-03 松下電器産業株式会社 Semiconductor light emitting device
JP2000012913A (en) * 1998-06-19 2000-01-14 Matsushita Electron Corp Electrostatic protective diode used for semiconductor light-emitting device and manufacture thereof
JP2000150969A (en) * 1998-11-16 2000-05-30 Matsushita Electronics Industry Corp Semiconductor light emitting device
KR100379835B1 (en) * 1998-12-31 2003-06-19 앰코 테크놀로지 코리아 주식회사 Semiconductor Package and Manufacturing Method
JP4296644B2 (en) * 1999-01-29 2009-07-15 豊田合成株式会社 Light emitting diode
JP3655267B2 (en) * 2002-07-17 2005-06-02 株式会社東芝 Semiconductor light emitting device
TWI223890B (en) * 2004-02-06 2004-11-11 Opto Tech Corp Light-emitting diode device with multi-lead pins
JP4926787B2 (en) * 2007-03-30 2012-05-09 アオイ電子株式会社 Manufacturing method of semiconductor device
SG148901A1 (en) * 2007-07-09 2009-01-29 Micron Technology Inc Packaged semiconductor assemblies and methods for manufacturing such assemblies
JP2012015187A (en) * 2010-06-29 2012-01-19 Citizen Holdings Co Ltd Semiconductor light emission element and manufacturing method of the same
JP2014026993A (en) * 2010-11-08 2014-02-06 Panasonic Corp Ceramic substrate and light emitting diode module
KR101761834B1 (en) * 2011-01-28 2017-07-27 서울바이오시스 주식회사 Wafer level led package and method of fabricating the same
US9269878B2 (en) * 2011-05-27 2016-02-23 Lg Innotek Co., Ltd. Light emitting device and light emitting apparatus
JP2013219071A (en) * 2012-04-04 2013-10-24 Kyocera Corp Light-emitting element mounting component and light-emitting device
JP5832956B2 (en) * 2012-05-25 2015-12-16 株式会社東芝 Semiconductor light emitting device
JP6116846B2 (en) * 2012-10-01 2017-04-19 株式会社東芝 Semiconductor device and manufacturing method of semiconductor device
JP6057282B2 (en) * 2012-10-04 2017-01-11 セイコーインスツル株式会社 Optical device and method for manufacturing optical device
JP2014086630A (en) * 2012-10-25 2014-05-12 Kyocera Corp Light-emitting element mounting component and light-emitting device

Also Published As

Publication number Publication date
JP2016015356A (en) 2016-01-28

Similar Documents

Publication Publication Date Title
JP6687073B2 (en) Light emitting device
US10297737B2 (en) Method of manufacturing light emitting device with exposed wire end portions
JP6398222B2 (en) Light emitting device and manufacturing method thereof
US8866179B2 (en) Semiconductor light emitting device and method for manufacturing same
JP6256026B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
EP2325906B1 (en) Semiconductor light-emitting device and method for manufacturing same
KR101158242B1 (en) Semiconductor light emitting device and method of fabricating semiconductor light emitting device
JP5603813B2 (en) Semiconductor light emitting device and light emitting device
TWI637537B (en) Light emitting device and method of manufacturing the same
JP2011129861A (en) Semiconductor light emitting device and method of manufacturing the same
JP6354273B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP6273945B2 (en) Light emitting device
US9831379B2 (en) Method of manufacturing light emitting device
JP5837456B2 (en) Semiconductor light emitting device and light emitting module
JP6947995B2 (en) Light emitting device
JP6015004B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP6398381B2 (en) Light emitting device and manufacturing method thereof
JP6349953B2 (en) Method for manufacturing light emitting device
US20190097086A1 (en) Light emitting element and light emitting device
JP6237344B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP6551210B2 (en) Light emitting device
JP6614313B2 (en) Light emitting device
JP2010199248A (en) Light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180820

R150 Certificate of patent or registration of utility model

Ref document number: 6398381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250