JP6396260B2 - Vanadium oxide fluorescent powder and production method - Google Patents

Vanadium oxide fluorescent powder and production method Download PDF

Info

Publication number
JP6396260B2
JP6396260B2 JP2015130417A JP2015130417A JP6396260B2 JP 6396260 B2 JP6396260 B2 JP 6396260B2 JP 2015130417 A JP2015130417 A JP 2015130417A JP 2015130417 A JP2015130417 A JP 2015130417A JP 6396260 B2 JP6396260 B2 JP 6396260B2
Authority
JP
Japan
Prior art keywords
fluorescent powder
excitation light
vanadium oxide
quantum efficiency
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015130417A
Other languages
Japanese (ja)
Other versions
JP2017014349A (en
Inventor
智彦 中島
智彦 中島
哲男 土屋
哲男 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2015130417A priority Critical patent/JP6396260B2/en
Publication of JP2017014349A publication Critical patent/JP2017014349A/en
Application granted granted Critical
Publication of JP6396260B2 publication Critical patent/JP6396260B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Description

本発明は白色LED等の発光材料に好適な紫外・近紫外域の光を励起光として白色発光する、内部量子効率が高いバナジウム酸化物蛍光体とその製造方法に関するものである。   The present invention relates to a vanadium oxide phosphor having high internal quantum efficiency that emits white light using ultraviolet / near ultraviolet light suitable as a light emitting material such as a white LED as excitation light, and a method for producing the same.

近年、白色LEDは携帯電話や様々な表示装置に用いられると同時に省エネルギーなどの観点から蛍光灯の代わりの室内照明装置としても注目されている。白色LEDは近紫外や青色LEDを励起光源とし、種々の波長に発光強度を持つ蛍光体を組み合わせて白色光を生み出している。具体的には青色LEDを励起光に黄色や、緑色、赤色蛍光体を発光させて白色光を得るというものである。(特許文献1)   In recent years, white LEDs are used in mobile phones and various display devices, and at the same time, are attracting attention as indoor lighting devices instead of fluorescent lamps from the viewpoint of energy saving. White LEDs use near-ultraviolet or blue LEDs as excitation light sources, and produce white light by combining phosphors having emission intensities at various wavelengths. Specifically, a blue LED emits yellow, green, and red phosphors as excitation light to obtain white light. (Patent Document 1)

しかしながら、複数の蛍光体を組み合わせて得る白色LEDの白色光には色抜けや特定波長のみに強い発光を示すなどの問題点もあり、室内照明として使用するには演色性を向上させるための努力が必要となる。そのため、照明用白色LEDに用いる蛍光体は発光波長が幅広い波長に広がり、特定波長に急峻な発光ピークがなく、さらには出来うる限り少ない蛍光体の組み合わせで白色蛍光を示すことが最も望ましい。近年青色LEDによって励起されるα−サイアロン蛍光体など比較的広い発光波長を持つ蛍光体(特許文献2)が開発されているが、発光スペクトル範囲が充分に広くないために演色性の良い白色とはならず、さらにいくつかの蛍光体との組み合わせで演色性を向上させる必要があった。
このように単一物質で出来るだけ演色性の良い白色蛍光を示すことは困難であった。本発明者等は、このような問題点を解決するために、鋭意検討した結果、バナジウム酸化物AVO3(AはK、Rb、Csからなる群より選ばれる1種以上であって、Li、Na、NH4からなる群より選ばれる1種以上を含んでいてもよい)が、単一物質でブロードな発光スペクトルを示し、紫外・近紫外光励起により蛍光スペクトルが500〜540nm付近に極大を持ち400〜800nmの範囲にブロードに広がる白色蛍光を発する蛍光体であり、特にCsVO3において励起波長345nmにおいて内部量子効率87%を達成する極めて良い蛍光体であることを知見した(非特許文献1)。
However, the white LED white light obtained by combining a plurality of phosphors has problems such as color loss and strong light emission only at a specific wavelength, and efforts to improve color rendering properties when used as indoor lighting. Is required. For this reason, it is most desirable that the phosphor used in the white LED for illumination has a wide emission wavelength, does not have a sharp emission peak at a specific wavelength, and further exhibits white fluorescence with as few phosphor combinations as possible. In recent years, phosphors having a relatively wide emission wavelength such as α-sialon phosphors excited by blue LEDs (Patent Document 2) have been developed. However, since the emission spectrum range is not sufficiently wide, In addition, it was necessary to improve the color rendering properties in combination with some phosphors.
Thus, it was difficult to show white fluorescence with a color rendering property as good as possible with a single substance. As a result of intensive studies to solve such problems, the present inventors have found that vanadium oxide AVO 3 (A is one or more selected from the group consisting of K, Rb, Cs, Li, It may contain one or more selected from the group consisting of Na and NH 4 ), but exhibits a broad emission spectrum with a single substance, and has a fluorescence spectrum at a maximum around 500 to 540 nm by ultraviolet / near ultraviolet light excitation. It has been found that this phosphor emits white fluorescence broadly in the range of 400 to 800 nm, and is a particularly good phosphor that achieves an internal quantum efficiency of 87% at an excitation wavelength of 345 nm in CsVO 3 (Non-patent Document 1). .

この出願発明の蛍光体から発せられる蛍光スペクトルは、現在民生で使われている照明器具、通常の蛍光灯のスペクトルに近い発光スペクトルであることから、白色LED用の蛍光体としても期待され、発光スペクトルのピークは500〜540nmの範囲にあるため色温度は高いが、長波長側に強い発光を持つ蛍光体と組み合わせることも可能であり、より暖色系の白色が得ることもできる上、水銀や鉛などを含まないため、環境・人体への悪影響も少ない、あるいは希土類イオンを含まないため希少資源に左右されないなどの数多くの利点を有するものである。しかし、バナジウム酸化物蛍光体は、作製過程において原料の吸湿性が得られる蛍光体の特性に大きな影響を及ぼし、特に合成作業環境の温度・湿度によって安定的な生産に難があった。通常、酸化バナジウムV25とアルカリ金属(A)炭酸塩A2CO3を混合して焼成することによる固相反応法が用いられるが、合成作業環境を左右する季節や天候などによって得られる蛍光粉体の内部量子効率に大きな差が現れることが明らかとなっていた。例えばCsVO3の場合、内部量子効率(励起波長345nm)が70%以上〜92%未満の範囲内でばらつきが確認された。原料の吸湿を利用して室温で合成を行う手法も開発されているが(特許文献3)、その内部量子効率は焼成を行う場合に比して高くないことを確認した。また、最終生成物として吸湿に伴う特性の変動を抑えることを目的としたGeを添加したCsVO3なども開発されているが(特許文献4)、製造段階の不確定要素による特性の変動の可能性は依然として内包されたままであった。このように極めて高い発光効率を示す素地を持ちながら、本材料の安定供給に課題があったため、良質なAVO3を高い収率で得る手法の開発が強く望まれていた。製造方法の問題に加えて、本材料系の励起波長が380nm付近から大きく失活してくる問題も存在した。AVO3は350nm付近の励起波長で内部量子効率が極大を持つが、一般的な白色LEDなどの照明用近紫外励起光は385nmから405nmまでの近紫外LEDが有用であった。そのため、AVO3の強い蛍光発光を存分に利用出来ない大きな問題もあった。故に発光材料として励起スペクトルの長波長シフト(385nmから405nmの近紫外光に対する内部量子効率の大幅な向上)もまた重要な課題の一つであった。 The fluorescent spectrum emitted from the phosphor of the present invention is an emission spectrum that is close to the spectrum of lighting fixtures currently used in consumer and ordinary fluorescent lamps. Since the spectrum peak is in the range of 500 to 540 nm, the color temperature is high, but it can also be combined with a phosphor having strong emission on the long wavelength side, and a warmer white color can be obtained, as well as mercury and Because it does not contain lead or the like, it has many advantages such as less adverse effects on the environment and human body, or it does not depend on rare resources because it does not contain rare earth ions. However, the vanadium oxide phosphor has a great influence on the properties of the phosphor from which the hygroscopicity of the raw material can be obtained in the production process, and it has been difficult to produce stably depending on the temperature and humidity of the synthesis work environment. Usually, a solid-phase reaction method is used in which vanadium oxide V 2 O 5 and alkali metal (A) carbonate A 2 CO 3 are mixed and baked. However, it is obtained depending on the season or weather that affects the synthesis work environment. It has been clarified that a large difference appears in the internal quantum efficiency of the fluorescent powder. For example, in the case of CsVO 3 , variation was confirmed when the internal quantum efficiency (excitation wavelength: 345 nm) was in the range of 70% to less than 92%. Although a method of synthesizing at room temperature using moisture absorption of the raw material has been developed (Patent Document 3), it was confirmed that its internal quantum efficiency is not higher than that in the case of firing. In addition, CsVO 3 to which Ge is added as a final product to suppress fluctuations in characteristics due to moisture absorption has been developed (Patent Document 4). However, fluctuations in characteristics due to uncertainties at the manufacturing stage are possible. Sex remained encapsulated. Since there was a problem in the stable supply of this material while having a substrate exhibiting extremely high luminous efficiency in this way, development of a method for obtaining high-quality AVO 3 in a high yield was strongly desired. In addition to the problem of the manufacturing method, there was a problem that the excitation wavelength of this material system was largely deactivated from around 380 nm. Although AVO 3 has a maximum internal quantum efficiency at an excitation wavelength near 350 nm, a near-ultraviolet LED of 385 nm to 405 nm is useful as a near-ultraviolet excitation light for illumination such as a general white LED. For this reason, there is a big problem that the strong fluorescence of AVO 3 cannot be fully utilized. Therefore, the long wavelength shift of the excitation spectrum as a luminescent material (a significant improvement in internal quantum efficiency with respect to near-ultraviolet light from 385 nm to 405 nm) was also one of the important issues.

特開平11−31845号公報JP-A-11-31845 特開2006−257326号公報JP 2006-257326 A 特開2011−16670号公報JP 2011-16670 A 特開2013−107947号公報JP 2013-107947 A

Nature Materials 7 (2008) 735.Nature Materials 7 (2008) 735.

本発明は、高輝度白色蛍光体AVO3の問題点である合成作業環境に左右される特性(345nmの励起光下での内部量子効率)の大きなばらつきを改善し、加えて近紫外励起光領域においても高い内部量子効率を示す蛍光粉体及びその製造方法を提供することを課題とする。 The present invention improves a large variation in characteristics (internal quantum efficiency under excitation light of 345 nm), which is a problem of the high-intensity white phosphor AVO 3 , and is in addition to the near-ultraviolet excitation light region. It is an object to provide a fluorescent powder exhibiting high internal quantum efficiency and a method for producing the same.

本発明者は、前記課題のもと試験・研究を進める過程で、水分添加を考慮した製造方法により平均一次粒子径が従来のものより大きい2μm以上のバナジウム酸化物蛍光粉体を製造できること、A(AはCsを必ず含有するアルカリ金属で、Li、Na、K、Rbを含んでいても良い)とVとOで構成され、AdVO3(d=0.99〜1.04)の組成比を持つバナジウム酸化物蛍光粉体は、平均一次粒子径を2μm以上とすることにより、345nmの励起光下での内部量子効率が90%以上とばらつきが少なく、しかも、390nmの励起光下で80%以上、405nmの励起光下で60%以上の内部量子効率を有することを知見した。 The present inventor is able to produce a vanadium oxide fluorescent powder having an average primary particle size of 2 μm or more larger than the conventional one by a production method considering moisture addition in the course of proceeding tests and research under the above problems, A (A is an alkali metal that necessarily contains Cs, and may contain Li, Na, K, and Rb) and V and O, and A d VO 3 (d = 0.99 to 1.04) The vanadium oxide fluorescent powder having a composition ratio has an internal quantum efficiency of 90% or more under the excitation light of 345 nm with little variation, by setting the average primary particle diameter to 2 μm or more, and under the excitation light of 390 nm. It was found to have an internal quantum efficiency of 80% or more and 60% or more under 405 nm excitation light.

本発明は、そのような知見に基づくものであり、この出願によれば、以下の発明が提供される。
<1>A(AはCsを必ず含有するアルカリ金属で、Li、Na、K、Rbを含んでいても良い)とVとOで構成され、AdVO3(d=0.99〜1.04)の組成比を持つバナジウム酸化物蛍光粉体であって、平均一次粒子径が2μm以上であり、440nm以下の青色〜紫外励起光下で400nm以上800nm以下の範囲全域に蛍光発光を示すことを特徴とするバナジウム酸化物蛍光粉体。
<2>A2CO3、NH4VO3を1+f(mol):2(mol)(f>0)(A/V>1)の割合で混合し、混合粉末に対して1wt%以上のH2Oを加えた後、0℃以上100℃未満の温度で乾燥、次に400℃以上500℃未満の温度で焼成することによって得られた反応粉末を室温に冷却して、A:V=1:1よりも過剰に加えたAイオン(f相当分)を水に溶解させて洗浄し、再び400℃以上500℃未満の温度で焼成することによって得られる<1>に記載のバナジウム酸化物蛍光粉体の製造方法。
The present invention is based on such knowledge, and according to this application, the following invention is provided.
<1> A (A is an alkali metal that necessarily contains Cs, and may contain Li, Na, K, and Rb), V, and O, and A d VO 3 (d = 0.99 to 1) .04) having a compositional ratio of vanadium oxide and having an average primary particle diameter of 2 μm or more and exhibiting fluorescence emission in the entire range of 400 nm to 800 nm under blue to ultraviolet excitation light of 440 nm or less. Vanadium oxide fluorescent powder characterized by that.
<2> A 2 CO 3 and NH 4 VO 3 are mixed in a ratio of 1 + f (mol): 2 (mol) (f> 0) (A / V> 1), and 1 wt% or more of the mixed powder is H After adding 2 O, the reaction powder obtained by drying at a temperature of 0 ° C. or more and less than 100 ° C. and then firing at a temperature of 400 ° C. or more and less than 500 ° C. is cooled to room temperature, and A: V = 1 The vanadium oxide fluorescence according to <1>, obtained by dissolving A ion (corresponding to f) added in excess of 1: 1 in water, washing, and baking again at a temperature of 400 ° C. or higher and lower than 500 ° C. Powder manufacturing method.

本発明のバナジウム酸化物蛍光粉体は、平均一次粒子径が2μm以上のものであり、345nmの励起光下での内部量子効率が90%以上とばらつきが少なく、しかも、390nmの励起光下で80%以上、405nmの励起光下で60%以上の内部量子効率を有する。その上、440nm以下の青色〜紫外励起光下で400nm以上800nm以下の範囲全域に蛍光発光を示す。
また、本発明の製造方法を用いれば、高い収率で平均一次粒子径が2μm以上で345nmの励起光下での内部量子効率が90%以上とばらつきが少なく、しかも、390nmの励起光下で80%以上、405nmの励起光下で60%以上の内部量子効率を有するAVO粉体を安定的に得ることが出来る。
本蛍光粉体を用いれば385nm以上405nm以下の近紫外LEDを励起光源とする白色LEDとして用いることも可能である。
The vanadium oxide fluorescent powder of the present invention has an average primary particle diameter of 2 μm or more, the internal quantum efficiency under 345 nm excitation light is less than 90%, and has little variation, and under 390 nm excitation light. It has an internal quantum efficiency of 60% or more under excitation light of 80% or more and 405 nm. In addition, fluorescence is emitted over the entire range of 400 nm to 800 nm under blue to ultraviolet excitation light of 440 nm or less.
Further, when the production method of the present invention is used, the average primary particle diameter is 2 μm or more with high yield and the internal quantum efficiency under 345 nm excitation light is 90% or less, and there is little variation, and under the excitation light of 390 nm. An AVO 3 powder having an internal quantum efficiency of 60% or more under an excitation light of 80% or more and 405 nm can be stably obtained.
If this fluorescent powder is used, it can also be used as a white LED using a near-ultraviolet LED of 385 nm to 405 nm as an excitation light source.

実施例1及び比較例1で得たCsVO3の内部量子効率の励起波長依存性と実施例1で得たCsVO3の従来手法(比較例5)で得たCsVO3からの内部量子効率増加量(%)。Excitation wavelength dependence of the internal quantum efficiency of CsVO 3 obtained in Example 1 and Comparative Example 1 and increase in internal quantum efficiency from CsVO 3 obtained by the conventional method (Comparative Example 5) of CsVO 3 obtained in Example 1 (%). 実施例1及び比較例5で得たCsVO3のSEM顕微鏡写真像及び一次粒子径。The SEM micrograph image and primary particle diameter of CsVO 3 obtained in Example 1 and Comparative Example 5.

A(AはCsを必ず含有するアルカリ金属で、Li、Na、K、Rbを含んでいても良い)とVとOで構成され、AdVO3(d=0.99〜1.04)の組成比を持つバナジウム酸化物であって平均一次粒子径が2μm以上であり、440nm以下の青色〜紫外光下で400nm以上800nm以下の範囲全域に蛍光発光を示し、345nmの励起光下で90%以上の高い内部量子効率を有することを特徴とする蛍光粉体を得るためには、A2CO3、NH4VO3を1+f(mol):2(mol)(f>0)(A/V>1)の割合で混合し、混合粉末に対して1wt%以上のH2Oを加えた後、0℃以上100℃未満の温度で乾燥、次に400℃以上500℃未満の温度で焼成することによって得られた反応粉末を室温に冷却して、A:V=1:1よりも過剰に加えたAイオン(f相当分)を水に溶解させて洗浄し、再び400℃以上500℃未満の温度で焼成することによって得られる。 A (A is an alkali metal that necessarily contains Cs and may contain Li, Na, K, and Rb), V, and O, and A d VO 3 (d = 0.99 to 1.04) Vanadium oxide having an average compositional particle size of 2 μm or more, showing fluorescence emission in the entire range of 400 nm to 800 nm under blue to ultraviolet light of 440 nm or less, and 90 under excitation light of 345 nm. In order to obtain a fluorescent powder characterized by having a high internal quantum efficiency of at least%, A 2 CO 3 and NH 4 VO 3 are added to 1 + f (mol): 2 (mol) (f> 0) (A / V> 1) Mixing, adding 1 wt% or more of H 2 O to the mixed powder, drying at a temperature of 0 ° C or more and less than 100 ° C, then firing at a temperature of 400 ° C or more and less than 500 ° C The reaction powder obtained is cooled to room temperature, and A: V 1: excessively added was A ions than 1 (f equivalent) was washed by dissolving in water, obtained by re-sintering at a temperature below 400 ° C. or higher 500 ° C..

原料粉末の混合に関し、A2CO3の過剰量fであるが、必ず混合金属組成をA/V>1とするためにf>0としなければならないが、最後の工程でfの余剰分を洗浄するためにfの上限に特段の制限はないが、f=0.05〜0.15程度が望ましい。混合粉末に加える水の量は1wt%以上であれば有効であるが、ハンドリング上10wt%以上20wt%以下が望ましい。原料粉末混合後0℃以上100℃未満の温度で乾燥させる工程では、60℃2時間程度が望ましく、400℃以上500℃未満の温度で焼成する工程の前に300℃以上400℃未満で仮焼を行っても良く、未反応の部分が多ければ300℃以上400℃未満で再仮焼を行っても良い。再仮焼の前にもう一度1wt%以上のH2Oを加えて混合しても構わない。焼成によって得られた蛍光粉体を余剰なAイオンを水で洗浄する際には室温で蛍光粉体を十分な量の水中に投入し、撹拌して沈殿した蛍光粉体を採取する方法でもろ紙上に配置した蛍光粉体にアスピレーター(あるいは自然濾過)などを用いて水で洗い流す方法でも構わない。水洗浄後には乾燥、及び結晶表面の再構築のため必ず400℃以上500℃未満の温度で再度焼成する。平均一次粒子径は電子顕微鏡写真で観察した20μm×20μm四方以上の大きさの任意視野内で無作為で選択された40個の一次粒子の長辺方向の長さを計測し平均したものである。凝集した二次粒子と区別するため光散乱・回折などを利用する粒度分布計測器は用いない。蛍光内部量子効率は積分球と受光素子(CCDが望ましい)及び分光励起光源を用いて[内部量子効率]=Nem/Nabs × 100(Nem は発光フォトン数、Nabsは吸収フォトン数)で計算される。 Regarding the mixing of the raw material powder, the excess amount of A 2 CO 3 is f, but in order to make the mixed metal composition A / V> 1, f> 0 must be satisfied. There is no particular limitation on the upper limit of f for cleaning, but f is preferably about 0.05 to 0.15. The amount of water added to the mixed powder is effective if it is 1 wt% or more, but is preferably 10 wt% or more and 20 wt% or less in terms of handling. In the step of drying at a temperature of 0 ° C. or more and less than 100 ° C. after mixing the raw material powders, about 60 ° C. for about 2 hours is desirable. If there are many unreacted parts, recalcination may be performed at 300 ° C. or higher and lower than 400 ° C. Before recalcination, 1 wt% or more of H 2 O may be added and mixed again. Even when the fluorescent powder obtained by firing is washed with excess A ions with water, the fluorescent powder is put into a sufficient amount of water at room temperature and stirred to collect the precipitated fluorescent powder. The fluorescent powder arranged above may be washed with water using an aspirator (or natural filtration) or the like. After washing with water, it is baked again at a temperature of 400 ° C. or higher and lower than 500 ° C. for drying and restructuring of the crystal surface. The average primary particle size is obtained by measuring and averaging the lengths in the long side direction of 40 primary particles randomly selected within an arbitrary visual field having a size of 20 μm × 20 μm square or more observed with an electron micrograph. . In order to distinguish it from aggregated secondary particles, a particle size distribution measuring instrument using light scattering / diffraction is not used. Fluorescence internal quantum efficiency is calculated by using [integral quantum efficiency] = Nem / Nabs × 100 (Nem is the number of emitted photons, and Nabs is the number of absorbed photons) using an integrating sphere, a light receiving element (CCD is desirable) and a spectral excitation light source. .

本発明において得られるAdVO3(d=0.99〜1.04)で示されるバナジウム酸化物蛍光粉体は、白色LEDの励起光源である紫外・近紫外LEDによって励起出来る250〜410nmの範囲に強い励起スペクトルを持つ。従来の同化学組成の蛍光粉体と比して380〜410nm程度近紫外領域の発光強度(内部量子効率:図1)が極めて大きく向上しており、従来の同組成蛍光粉体では難しかった385nm〜405nmの近紫外LEDが励起光源として利用可能である。この励起光によって発せられる蛍光スペクトルは400〜800nmに広がり、白色に発光する。そのため白色LED用の蛍光体として好適である。本蛍光粉体は水銀や鉛などを含まないため、環境・人体への悪影響も少ない。したがって、本発明のバナジウム酸化物蛍光粉体は白色LED用としてきわめて有用なものであり、日常灯等の照明器具や各種表示機器に用いられるバックライト等の表示器具等として利用することができる。 The vanadium oxide fluorescent powder represented by A d VO 3 (d = 0.99 to 1.04) obtained in the present invention has a wavelength of 250 to 410 nm that can be excited by an ultraviolet / near ultraviolet LED that is an excitation light source of a white LED. Has a strong excitation spectrum in the range. Compared with the conventional fluorescent powder having the same chemical composition, the emission intensity in the near ultraviolet region (internal quantum efficiency: FIG. 1) is greatly improved by about 380 to 410 nm, which is difficult with the conventional fluorescent powder having the same composition. A near ultraviolet LED of ˜405 nm can be used as an excitation light source. The fluorescence spectrum emitted by this excitation light extends from 400 to 800 nm and emits white light. Therefore, it is suitable as a phosphor for white LED. Since this fluorescent powder does not contain mercury or lead, it has little adverse effect on the environment and human body. Therefore, the vanadium oxide fluorescent powder of the present invention is extremely useful for white LEDs, and can be used as lighting devices such as daily lights and display devices such as backlights used in various display devices.

本発明のバナジウム酸化物蛍光粉体は、上記組成式に含まれる元素のみから構成することが望ましいが、内部量子効率を大幅に低下しない範囲(例えば5.0原子%以内、好ましくは1.0原子%以内、より好ましくは0.1原子%以内の範囲)で他の元素(例えば、Ge、Mg、Ca、Sr、Ba、Zn、NH4等)を含有することも許容される。 The vanadium oxide fluorescent powder of the present invention is preferably composed of only the elements contained in the above composition formula, but the range in which the internal quantum efficiency is not significantly reduced (for example, within 5.0 atomic%, preferably 1.0). It is allowed to contain other elements (for example, Ge, Mg, Ca, Sr, Ba, Zn, NH 4, etc.) within the atomic percent, more preferably within the range of 0.1 atomic percent.

以下、実施例により本発明を更に詳細に説明するが、本発明は、この実施例に限定されず、本発明の要旨を逸脱しない範囲で適宜材料変更や設定調整等が可能である。尚、蛍光内部量子効率は浜松ホトニクス製絶対PL量子収率測定装置C9920−02を用いて測定を行った。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to this Example, A material change, a setting adjustment, etc. are possible suitably in the range which does not deviate from the summary of this invention. The fluorescence internal quantum efficiency was measured using an absolute PL quantum yield measuring device C9920-02 manufactured by Hamamatsu Photonics.

実施例1
固相法を用いてCsVO3の合成を行った。Cs、Vに対して各々Cs2CO3、NH4VO3を出発材料とし、Cs/V=1.1の組成比となるよう秤量して、全量に対し15wt%の水を加えて混合した後、室温(20℃)にて1時間放置後、60℃で2時間乾燥させ、350℃で12時間仮焼を行った。室温へ取り出したのち、再び15wt%の水を加えて混合し、再び350℃で12時間仮焼した。その後、450℃まで昇温し12時間焼成して反応を進行させた。得られたCsVO3を水で洗浄し余剰に存在するCsを水へ溶解させて取り除いた。その後、もう一度450℃まで昇温し12時間焼成して反応を完了させた。得られたCsVO3蛍光粉体は、平均一次粒子径が4μmであり〔図2(b)、(c)参照〕、紫外・近紫外LEDによって励起出来る250〜410nmの範囲に強い励起スペクトルを持ち、しかも、従来の同化学組成の蛍光粉体と比して380〜410nm程度の近紫外領域の発光強度(内部量子効率)が極めて大きく向上していた(図1参照)。また、440nm以下の青色〜紫外光下で400nm以上800nm以下の範囲全域に蛍光発光を示し、345nmの励起光下で95.8%、390nmの励起光下で88%以上、405nmの励起光下で81%以上の内部量子効率を有していることを確認した。
Example 1
CsVO 3 was synthesized using a solid phase method. Cs 2 CO 3 and NH 4 VO 3 were used as starting materials for Cs and V, respectively, and weighed so that the composition ratio was Cs / V = 1.1, and 15 wt% water was added to the total amount and mixed. Then, after leaving at room temperature (20 degreeC) for 1 hour, it dried at 60 degreeC for 2 hours, and calcined at 350 degreeC for 12 hours. After taking out to room temperature, 15 wt% water was added and mixed again, and it was calcined again at 350 ° C. for 12 hours. Then, it heated up to 450 degreeC and baked for 12 hours, and reaction was advanced. The obtained CsVO 3 was washed with water, and excess Cs was dissolved in water and removed. Thereafter, the temperature was once again raised to 450 ° C. and baked for 12 hours to complete the reaction. The obtained CsVO 3 fluorescent powder has an average primary particle size of 4 μm (see FIGS. 2B and 2C), and has a strong excitation spectrum in the range of 250 to 410 nm that can be excited by ultraviolet / near ultraviolet LEDs. In addition, the emission intensity (internal quantum efficiency) in the near ultraviolet region of about 380 to 410 nm was significantly improved as compared with the conventional fluorescent powder having the same chemical composition (see FIG. 1). Also, it emits fluorescence in the entire range of 400 nm to 800 nm under blue to ultraviolet light of 440 nm or less, shows 95.8% under excitation light of 345 nm, 88% or more under excitation light of 390 nm, and under excitation light of 405 nm. It was confirmed that the internal quantum efficiency was 81% or higher.

実施例2
実施例1の同じ製造方法で10回合成を行ったところ、全ての合成例の蛍光粉体は、平均粒子径が2μmを超えるもので、345nmの励起光下で測定した内部量子効率の平均値は92.3%であり、最低値は90.1%最高値は95.8%であった。また、440nm以下の青色〜紫外光下で400nm以上800nm以下の範囲全域に蛍光発光を示し、390nmの励起光下で80%以上、405nmの励起光下で60%以上の内部量子効率を有していることを確認した。
Example 2
When synthesis was performed 10 times by the same production method of Example 1, the fluorescent powders of all synthesis examples had an average particle diameter of more than 2 μm, and the average value of internal quantum efficiency measured under 345 nm excitation light. Was 92.3%, the lowest value was 90.1%, and the highest value was 95.8%. In addition, it emits fluorescence over the entire range from 400 nm to 800 nm under blue to ultraviolet light of 440 nm or less, and has an internal quantum efficiency of 80% or more under excitation light of 390 nm and 60% or more under excitation light of 405 nm. Confirmed that.

実施例3
固相法を用いてCsVO3の合成を行った。Cs、Vに対して各々Cs2CO3、NH4VO3を出発材料とし、Cs/V=1.05の組成比となるよう秤量して、全量に対し15wt%の水を加えて混合した後、室温(20℃)にて1時間放置後、60℃で2時間乾燥させ、350℃で12時間仮焼を行った。室温へ取り出したのち、再び15wt%の水を加えて混合し、再び350℃で12時間仮焼した。その後、450℃まで昇温し12時間焼成して反応を進行させた。得られたCsVO3を水で洗浄し余剰に存在するCsを水へ溶解させて取り除いた。その後、もう一度450℃まで昇温し12時間焼成して反応を完了させた。得られたCsVO3蛍光粉体は平均一次粒子径が4μmであり、440nm以下の青色〜紫外光下で400nm以上800nm以下の範囲全域に蛍光発光を示し、345nmの励起光下で92%以上、390nmの励起光下で80%以上、405nmの励起光下で60%以上の内部量子効率を有していることを確認した。
Example 3
CsVO 3 was synthesized using a solid phase method. Using Cs 2 CO 3 and NH 4 VO 3 as starting materials for Cs and V, respectively, weighed so that the composition ratio of Cs / V = 1.05 was obtained, and 15 wt% water was added to the total amount and mixed. Then, after leaving at room temperature (20 degreeC) for 1 hour, it dried at 60 degreeC for 2 hours, and calcined at 350 degreeC for 12 hours. After taking out to room temperature, 15 wt% water was added and mixed again, and it was calcined again at 350 ° C. for 12 hours. Then, it heated up to 450 degreeC and baked for 12 hours, and reaction was advanced. The obtained CsVO 3 was washed with water, and excess Cs was dissolved in water and removed. Thereafter, the temperature was once again raised to 450 ° C. and baked for 12 hours to complete the reaction. The obtained CsVO 3 fluorescent powder has an average primary particle size of 4 μm, exhibits fluorescence emission in the entire range of 400 nm to 800 nm under blue to ultraviolet light of 440 nm or less, and 92% or more under excitation light of 345 nm. It was confirmed that the internal quantum efficiency was 80% or more under excitation light of 390 nm and 60% or more under excitation light of 405 nm.

実施例4
固相法を用いてCsVO3の合成を行った。Cs、Vに対して各々Cs2CO3、NH4VO3を出発材料とし、Cs/V=1.5の組成比となるよう秤量して、全量に対し15wt%の水を加えて混合した後、室温(20℃)にて1時間放置後、60℃で2時間乾燥させ、350℃で12時間仮焼を行った。室温へ取り出したのち、再び15wt%の水を加えて混合し、再び350℃で12時間仮焼した。その後、450℃まで昇温し12時間焼成して反応を進行させた。得られたCsVO3を水で洗浄し余剰に存在するCsを水へ溶解させて取り除いた。その後、もう一度450℃まで昇温し12時間焼成して反応を完了させた。得られたCsVO3蛍光粉体は平均一次粒子径が4μmであり、440nm以下の青色〜紫外光下で400nm以上800nm以下の範囲全域に蛍光発光を示し、345nmの励起光下で92%以上、390nmの励起光下で80%以上、405nmの励起光下で60%以上の内部量子効率を有していることを確認した。
Example 4
CsVO 3 was synthesized using a solid phase method. Cs 2 CO 3 and NH 4 VO 3 were used as starting materials for Cs and V, respectively, and weighed so that the composition ratio was Cs / V = 1.5, and 15 wt% water was added to the total amount and mixed. Then, after leaving at room temperature (20 degreeC) for 1 hour, it dried at 60 degreeC for 2 hours, and calcined at 350 degreeC for 12 hours. After taking out to room temperature, 15 wt% water was added and mixed again, and it was calcined again at 350 ° C. for 12 hours. Then, it heated up to 450 degreeC and baked for 12 hours, and reaction was advanced. The obtained CsVO 3 was washed with water, and excess Cs was dissolved in water and removed. Thereafter, the temperature was once again raised to 450 ° C. and baked for 12 hours to complete the reaction. The obtained CsVO 3 fluorescent powder has an average primary particle size of 4 μm, exhibits fluorescence emission in the entire range of 400 nm to 800 nm under blue to ultraviolet light of 440 nm or less, and 92% or more under excitation light of 345 nm. It was confirmed that the internal quantum efficiency was 80% or more under excitation light of 390 nm and 60% or more under excitation light of 405 nm.

実施例5
実施例1に示した手法で作製したCsVO3蛍光粉体をシリコーン樹脂と混練し385nmの近紫外LED上に固定化することによって希土類フリー白色LEDを作製した。作製した白色LEDはCIE色度座標上で(0.32、0.42)で表現される白色光を示し色温度は6028Kであった。
Example 5
A rare earth-free white LED was produced by kneading the CsVO 3 fluorescent powder produced by the method shown in Example 1 with a silicone resin and immobilizing it on a 385 nm near-ultraviolet LED. The produced white LED showed white light expressed by (0.32, 0.42) on the CIE chromaticity coordinates, and the color temperature was 6028K.

比較例1
固相法を用いてCsVO3を目指した合成を行った。Cs、Vに対して各々Cs2CO3、NH4VO3を出発材料とし、Cs/V=1.0の組成比となるよう秤量して、全量に対し15wt%の水を加えて混合した後、室温(20℃)にて1時間放置後、60℃で2時間乾燥させ、350℃で12時間仮焼を行った。室温へ取り出したのち、再び15wt%の水を加えて混合し、再び350℃で12時間仮焼した。その後、450℃まで昇温し12時間焼成して反応を進行させた。得られた粉体は、本発明の組成範囲を外れており、V25と思われる橙色の不純物相が多く見られ高い量子効率は得られなかった。
Comparative Example 1
A synthesis aimed at CsVO 3 was performed using a solid phase method. Cs 2 CO 3 and NH 4 VO 3 were used as starting materials for Cs and V, respectively, and weighed so that the composition ratio was Cs / V = 1.0, and 15 wt% water was added to the total amount and mixed. Then, after leaving at room temperature (20 degreeC) for 1 hour, it dried at 60 degreeC for 2 hours, and calcined at 350 degreeC for 12 hours. After taking out to room temperature, 15 wt% water was added and mixed again, and it was calcined again at 350 ° C. for 12 hours. Then, it heated up to 450 degreeC and baked for 12 hours, and reaction was advanced. The obtained powder was out of the composition range of the present invention, an orange impurity phase considered to be V 2 O 5 was often observed, and high quantum efficiency was not obtained.

比較例2
固相法を用いてCsVO3の合成を行った。Cs、Vに対して各々Cs2CO3、V25を出発材料とし、Cs/V=1.05の組成比となるよう秤量して、全量に対し15wt%の水を加えて混合した後、室温(20℃)にて1時間放置後、60℃で2時間乾燥させ、350℃で12時間仮焼を行った。室温へ取り出したのち、再び15wt%の水を加えて混合し、再び350℃で12時間仮焼した。その後、450℃まで昇温し12時間焼成して反応を進行させた。得られた粉体はCsVO3と同定されたが平均一次粒子径は2μmを下回り、345nmの励起光下で90%を超える高い量子効率は得られなかった。
Comparative Example 2
CsVO 3 was synthesized using a solid phase method. Cs 2 CO 3 and V 2 O 5 were used as starting materials for Cs and V, respectively, and weighed so that the composition ratio was Cs / V = 1.05, and 15 wt% water was added to the total amount and mixed. Then, after leaving at room temperature (20 degreeC) for 1 hour, it dried at 60 degreeC for 2 hours, and calcined at 350 degreeC for 12 hours. After taking out to room temperature, 15 wt% water was added and mixed again, and it was calcined again at 350 ° C. for 12 hours. Then, it heated up to 450 degreeC and baked for 12 hours, and reaction was advanced. Although the obtained powder was identified as CsVO 3 , the average primary particle size was less than 2 μm, and high quantum efficiency exceeding 90% was not obtained under excitation light of 345 nm.

比較例3
固相法を用いてCsVO3の合成を行った。Cs、Vに対して各々Cs2CO3、NH4VO3を出発材料とし、Cs/V=1.0の組成比となるよう秤量し、水を加えずに350℃で12時間仮焼を行った。室温へ取り出したのち、再び良く混合して450℃まで昇温し12時間焼成して反応を進行させた。得られた粉体はCsVO3と同定されたが平均一次粒子径は2μmを下回り、345nmの励起光下で90%を超える高い量子効率は得られなかった。
Comparative Example 3
CsVO 3 was synthesized using a solid phase method. Using Cs 2 CO 3 and NH 4 VO 3 as starting materials for Cs and V, respectively, weighed so that the composition ratio of Cs / V = 1.0, and calcined at 350 ° C. for 12 hours without adding water. went. After taking out to room temperature, it mixed well again, heated up to 450 degreeC, baked for 12 hours, and reaction was advanced. Although the obtained powder was identified as CsVO 3 , the average primary particle size was less than 2 μm, and high quantum efficiency exceeding 90% was not obtained under excitation light of 345 nm.

比較例4
固相法を用いてCsVO3を目指した合成を行った。Cs、Vに対して各々Cs2CO3、NH4VO3を出発材料とし、Cs/V=1.0の組成比となるよう秤量して、全量に対し15wt%の水を加えて混合した後、室温(20℃)にて1時間放置後、60℃で2時間乾燥させ、350℃で12時間仮焼を行った。室温へ取り出したのち、再び15wt%の水を加えて混合し、再び350℃で12時間仮焼した。その後、450℃まで昇温し12時間焼成して反応を進行させた。その後、水を用いて洗浄は行わずに得られた粉体は、本発明の組成範囲を外れており、その量子効率を345nmの励起光下で測定したが90%を超える高い量子効率は得られなかった。
Comparative Example 4
A synthesis aimed at CsVO 3 was performed using a solid phase method. Cs 2 CO 3 and NH 4 VO 3 were used as starting materials for Cs and V, respectively, and weighed so that the composition ratio was Cs / V = 1.0, and 15 wt% water was added to the total amount and mixed. Then, after leaving at room temperature (20 degreeC) for 1 hour, it dried at 60 degreeC for 2 hours, and calcined at 350 degreeC for 12 hours. After taking out to room temperature, 15 wt% water was added and mixed again, and it was calcined again at 350 ° C. for 12 hours. Then, it heated up to 450 degreeC and baked for 12 hours, and reaction was advanced. Thereafter, the powder obtained without washing with water was out of the composition range of the present invention, and its quantum efficiency was measured under excitation light of 345 nm, but a high quantum efficiency exceeding 90% was obtained. I couldn't.

比較例5
固相法を用いてCsVO3の合成を行った。Cs、Vに対して各々Cs2CO3、V25を出発材料とし、Cs/V=1.05の組成比となるよう秤量し、水を加えずに350℃で24時間仮焼を行った。室温へ取り出したのち、再び良く混合して450℃まで昇温し24時間焼成して反応を進行させた。得られた粉体はCsVO3と同定されたが、同じ製造方法で10回合成を行ったところ、全ての合成例で平均一次粒子径は2μmを下回り、345nmの励起光下で測定した内部量子効率の平均値は84.4%であり92%を超える高い量子効率は得られなかった。10回の合成のうち一つが91.6%となったが、それを除くと全て90%未満であり、最低値は71.8%であった。
Comparative Example 5
CsVO 3 was synthesized using a solid phase method. Using Cs 2 CO 3 and V 2 O 5 as starting materials for Cs and V, respectively, weighed so that the composition ratio of Cs / V = 1.05, and calcined at 350 ° C. for 24 hours without adding water. went. After taking out to room temperature, it mixed well again, heated up to 450 degreeC, baked for 24 hours, and reaction was advanced. Although the obtained powder was identified as CsVO 3 , synthesis was carried out 10 times by the same production method. In all synthesis examples, the average primary particle diameter was less than 2 μm and the internal quantum measured under excitation light of 345 nm. The average value of efficiency was 84.4%, and a high quantum efficiency exceeding 92% was not obtained. One of the 10 syntheses was 91.6%, but excluding it, all were less than 90% and the lowest value was 71.8%.

本発明の材料を用いれば、白色LEDの励起光源である紫外・近紫外LEDによって励起出来る250〜410nmの範囲に強い励起スペクトルを持つ。従来の同化学組成の蛍光粉体と比して380〜410nm程度近紫外領域の発光強度(内部量子効率:図1)が極めて大きく向上しており、従来の同組成蛍光粉体では難しかった385nm〜405nmの近紫外LEDが励起光源として利用可能である。この励起光によって発せられる蛍光スペクトルは400〜800nmに広がり、白色に発光する。そのため白色LED用の蛍光体として好適である。本蛍光粉体は水銀や鉛などを含まないため、環境・人体への悪影響も少ない。したがって、本発明のバナジウム酸化物蛍光粉体は白色LEDとしてきわめて有用なものであり、日常灯等の照明器具や各種表示機器に用いられるバックライト等の表示器具等として利用することができる。   If the material of this invention is used, it has a strong excitation spectrum in the range of 250-410 nm which can be excited by ultraviolet and near ultraviolet LED which is an excitation light source of white LED. Compared with the conventional fluorescent powder having the same chemical composition, the emission intensity in the near ultraviolet region (internal quantum efficiency: FIG. 1) is greatly improved by about 380 to 410 nm. A near-ultraviolet LED of ˜405 nm can be used as an excitation light source. The fluorescence spectrum emitted by this excitation light extends from 400 to 800 nm and emits white light. Therefore, it is suitable as a phosphor for white LED. Since this fluorescent powder does not contain mercury or lead, it has little adverse effect on the environment and human body. Therefore, the vanadium oxide fluorescent powder of the present invention is extremely useful as a white LED, and can be used as a lighting device such as a daily light or a display device such as a backlight used in various display devices.

Claims (2)

A(AはCsを必ず含有するアルカリ金属で、Li、Na、K、Rbを含んでいても良い)とVとOで構成され、AdVO3(d=0.99〜1.04)の組成比を持つバナジウム酸化物蛍光粉体であって、平均一次粒子径が2μm以上であり、440nm以下の青色〜紫外光下で400nm以上800nm以下の範囲全域に蛍光発光を示すことを特徴とするバナジウム酸化物蛍光粉体。 A (A is an alkali metal that necessarily contains Cs and may contain Li, Na, K, and Rb), V, and O, and A d VO 3 (d = 0.99 to 1.04) Vanadium oxide fluorescent powder having a compositional ratio of 1 to 2, characterized in that the average primary particle diameter is 2 μm or more, and exhibits fluorescence emission in the entire range of 400 nm to 800 nm under blue to ultraviolet light of 440 nm or less. Vanadium oxide fluorescent powder. 2CO3、NH4VO3を1+f(mol):2(mol)(f>0)(A/V>1)の割合で混合し、混合粉末に対して1wt%以上のHOを加えた後、0℃以上100℃未満の温度で乾燥、次に400℃以上500℃未満の温度で焼成することによって得られた反応粉末を室温に冷却して、A:V=1:1よりも過剰に加えたAイオン(f相当分)を水に溶解させて洗浄し、再び400℃以上500℃未満の温度で焼成することによって得られる請求項1に記載のバナジウム酸化物蛍光粉体の製造方法。 A 2 CO 3 and NH 4 VO 3 are mixed in a ratio of 1 + f (mol): 2 (mol) (f> 0) (A / V> 1), and 1 wt% or more of H 2 O is added to the mixed powder. After the addition, the reaction powder obtained by drying at a temperature of 0 ° C. or more and less than 100 ° C. and then firing at a temperature of 400 ° C. or more and less than 500 ° C. is cooled to room temperature, and A: V = 1: 1 The vanadium oxide fluorescent powder according to claim 1 obtained by dissolving excessively added A ions (corresponding to f) in water, washing, and firing again at a temperature of 400 ° C or higher and lower than 500 ° C. Production method.
JP2015130417A 2015-06-29 2015-06-29 Vanadium oxide fluorescent powder and production method Active JP6396260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015130417A JP6396260B2 (en) 2015-06-29 2015-06-29 Vanadium oxide fluorescent powder and production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015130417A JP6396260B2 (en) 2015-06-29 2015-06-29 Vanadium oxide fluorescent powder and production method

Publications (2)

Publication Number Publication Date
JP2017014349A JP2017014349A (en) 2017-01-19
JP6396260B2 true JP6396260B2 (en) 2018-09-26

Family

ID=57827888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015130417A Active JP6396260B2 (en) 2015-06-29 2015-06-29 Vanadium oxide fluorescent powder and production method

Country Status (1)

Country Link
JP (1) JP6396260B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109534811B (en) * 2017-09-21 2021-05-25 中国科学院上海硅酸盐研究所 Metavanadate fluorescent ceramic block material and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6522065B1 (en) * 2000-03-27 2003-02-18 General Electric Company Single phosphor for creating white light with high luminosity and high CRI in a UV led device
JP5267965B2 (en) * 2007-08-30 2013-08-21 独立行政法人産業技術総合研究所 Vanadium oxide phosphor
JP5182851B2 (en) * 2007-10-03 2013-04-17 独立行政法人産業技術総合研究所 Method for producing vanadium oxide phosphor thin film
JP5120949B2 (en) * 2008-07-28 2013-01-16 独立行政法人産業技術総合研究所 Method for producing white phosphor
JP2011016670A (en) * 2009-07-07 2011-01-27 Niigata Univ Method for synthesizing vanadate
JP5765737B2 (en) * 2011-11-18 2015-08-19 国立研究開発法人産業技術総合研究所 Vanadium oxide phosphor

Also Published As

Publication number Publication date
JP2017014349A (en) 2017-01-19

Similar Documents

Publication Publication Date Title
KR102122436B1 (en) Red fluorescent powder, manufacturing method thereof, and light emitting device including the red fluorescent powder
TWI296648B (en) Fluorescent substance, method of manufacturing fluorescent substance, and light emitting device using the fluorescent substance
TWI530550B (en) Nitrogen oxide orange-red fluorescent substance, including its light-emitting film or light-emitting sheet and light-emitting device
JP2009055052A (en) Light emitting device
Zhang et al. Luminescence properties of Ca14Mg2 (SiO4) 8: Eu2+ from various Eu2+ sites for white-light-emitting diodes
TWI545179B (en) Fluorescent material for white light emitting diode and preparation method thereof
TWI655253B (en) Phosphor compositions and lighting apparatus thereof
TW201404868A (en) Alkaline earth metal silicate phosphor and producing method thereof
Xiao et al. Y4MgSi3O13: RE3+ (RE= Ce, Tb and Eu) nanophosphors for a full-color display
US10340426B2 (en) Phosphor and illumination device utilizing the same
JP2023017852A (en) Phosphor and production method thereof, and light-emitting device
Chung et al. Spray pyrolysis synthesis of MAl2O4: Eu2+ (M= Ba, Sr) phosphor for UV LED excitation
JP2009057434A (en) Vanadium oxide phosphor
JP6396260B2 (en) Vanadium oxide fluorescent powder and production method
Wu et al. Comparative investigation on synthesis and luminescence of Sr4Al14O25: Eu2+ applied in InGaN LEDs
JP2009167382A (en) Fluorescent material and luminescent device
TW201531553A (en) Phosphor and light emitting device
JP2019533629A (en) Mn4 + activated luminescent material as conversion phosphor for LED solid state light source
JP2019044018A (en) Fluoride phosphors and light emitting devices
JP5765737B2 (en) Vanadium oxide phosphor
JP2017043686A (en) Fluophor, light source containing fluophor and manufacturing method of fluophor
CN104861969A (en) Aluminum calcium titanate solid-solution type red phosphor and preparation method thereof
JP5820510B1 (en) Method for synthesizing composite fluorescent powder
TWI573855B (en) Inorganic phosphor and light emitting devices comprising same
CN102161890B (en) Single-phase white light fluorescent powder based on ultraviolet light-emitting diode (LED) excitation and production method thereof as well as luminescent device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180829

R150 Certificate of patent or registration of utility model

Ref document number: 6396260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250