JP5267965B2 - Vanadium oxide phosphor - Google Patents

Vanadium oxide phosphor

Info

Publication number
JP5267965B2
JP5267965B2 JP2007224846A JP2007224846A JP5267965B2 JP 5267965 B2 JP5267965 B2 JP 5267965B2 JP 2007224846 A JP2007224846 A JP 2007224846A JP 2007224846 A JP2007224846 A JP 2007224846A JP 5267965 B2 JP5267965 B2 JP 5267965B2
Authority
JP
Japan
Prior art keywords
phosphor
ultraviolet
white
light
phosphor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007224846A
Other languages
Japanese (ja)
Other versions
JP2009057434A (en
Inventor
智彦 中島
正彦 礒部
哲男 土屋
寛 上田
俊弥 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007224846A priority Critical patent/JP5267965B2/en
Publication of JP2009057434A publication Critical patent/JP2009057434A/en
Application granted granted Critical
Publication of JP5267965B2 publication Critical patent/JP5267965B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Description

本発明はバナジウム酸化物からなる蛍光体に関するものであり、とくに白色LEDに好適なバナジウム酸化物からなる蛍光体に関するものである。また、本発明は紫外・近紫外域の光を励起光として白色発光する、組成式A(式中、yが1、zが2.9−3.1のときは、xが0.8−1.2で、AはK、Rb、及びCsからなる群より選ばれる1種又は2種以上を示し、yが1、zが3.4−3.6のときは、xが0.9−1.1で、AはCa、Sr、及びBaからなる群より選ばれる1種又は2種以上を示す。)で表されるバナジウム酸化物からなる蛍光体に関するものである。 The present invention relates to a phosphor made of vanadium oxide, and more particularly to a phosphor made of vanadium oxide suitable for a white LED. The present invention also emit white light to light in the ultraviolet and near ultraviolet as an excitation light, in the composition formula A x V y O z (wherein, when y is 1, z is 2.9-3.1 is, x Is 0.8 to 1.2, A represents one or more selected from the group consisting of K, Rb, and Cs, and when y is 1 and z is 3.4 to 3.6, x is 0.9-1.1, and A represents one or more selected from the group consisting of Ca, Sr, and Ba.) .

近年、白色LEDは携帯電話や様々な表示装置に用いられると同時に省エネルギーなどの観点から蛍光灯の代わりの室内照明装置としても注目されている。白色LEDは近紫外や青色LEDを励起光源とし、種々の波長に発光強度を持つ蛍光体を組み合わせて白色光を生み出している。具体的には青色LEDを励起光に黄色や、緑色、赤色蛍光体を発光させて白色光を得るというものである。(特許文献1)   In recent years, white LEDs are used in mobile phones and various display devices, and at the same time, are attracting attention as indoor lighting devices instead of fluorescent lamps from the viewpoint of energy saving. White LEDs use near-ultraviolet or blue LEDs as excitation light sources, and produce white light by combining phosphors having emission intensities at various wavelengths. Specifically, a blue LED emits yellow, green, and red phosphors as excitation light to obtain white light. (Patent Document 1)

しかしながら複数の蛍光体を組み合わせて得る白色LEDの白色光には色抜けや特定波長のみに強い発光を示すなどの問題点もあり、室内照明として使用するには演色性を向上させるための努力が必要となる。そのため、照明用白色LEDに用いる蛍光体は発光波長が幅広い波長に広がり、特定波長に急峻な発光ピークがなく、さらには出来うる限り少ない蛍光体の組み合わせで白色蛍光を示すことが最も望ましい。近年青色LEDによって励起されるα―サイアロン蛍光体など比較的広い発光波長を持つ蛍光体(特許文献2)が開発されているが、発光スペクトル範囲が充分に広くないために、それだけでは白色にならず、さらにいくつかの蛍光体との組み合わせで白色を得ることができる。このように単一物質で出来るだけ演色性の良い白色蛍光を示すことは困難であった。   However, the white light of white LEDs obtained by combining multiple phosphors also has problems such as color loss and strong light emission only at specific wavelengths, and efforts to improve color rendering properties are required for use as indoor lighting. Necessary. For this reason, it is most desirable that the phosphor used in the white LED for illumination has a wide emission wavelength, does not have a sharp emission peak at a specific wavelength, and further exhibits white fluorescence with as few phosphor combinations as possible. In recent years, phosphors having a relatively wide emission wavelength such as an α-sialon phosphor excited by a blue LED (Patent Document 2) have been developed. However, since the emission spectrum range is not sufficiently wide, it alone becomes white. In addition, white color can be obtained in combination with some phosphors. Thus, it was difficult to show white fluorescence with a color rendering property as good as possible with a single substance.

特開平11−31845号公報JP-A-11-31845 特開2006−257326号公報JP 2006-257326 A J.Inorg.Nucl.Chem.40(1978)215.J. et al. Inorg. Nucl. Chem. 40 (1978) 215.

従来、上記のように青色もしくは紫外線LEDを励起光源とする蛍光体のうち、単一物質だけで演色性の良い白色蛍光を示すものはなく、複数物質の種々の蛍光波長の組み合わせで白色を得てきたが、照明用の用途の場合には演色性、さらには製造コストの点からも単一物質で白色蛍光を示す物質を開発することが望まれる。
そこで、本発明は単一物質で白色光を発光する蛍光体を提供することにある。また、単一物質で紫外・近紫外線により励起し白色光を発光する蛍光体を提供することにある。
Conventionally, among the phosphors using blue or ultraviolet LEDs as an excitation light source as described above, there is no single substance that exhibits white fluorescence with good color rendering, and white is obtained by combining various fluorescent wavelengths of a plurality of substances. However, in the case of lighting applications, it is desirable to develop a single substance exhibiting white fluorescence from the viewpoint of color rendering properties and manufacturing cost.
Accordingly, an object of the present invention is to provide a phosphor that emits white light with a single substance. It is another object of the present invention to provide a phosphor that emits white light when excited by ultraviolet and near ultraviolet rays using a single substance.

本発明者らは上記課題を解決するために、いろいろと工夫する中、蛍光体物質でよく用いられるf電子を持つ希土類イオンからの発光は、周囲の配位環境に大きく依存せず、導入したイオンのエネルギー準位に対応した発光スペクトルを示すために比較的半値幅の狭い発光ピークを示すことに、着目した。そして、本発明者らは上記課題を解決するために、f電子系発光中心イオン等に因らないブロードな蛍光発光を示す蛍光体の合成に取り組んだ。まず、バナジウム酸化物(以下、V酸化物ということがある)はYVOやMg(VOなどにおいて(VO3−の電荷移動遷移による発光を示すことが知られているので(非特許文献1)、VO四面体を構造中に含む物質を探索したところ、意外にも、発光中心イオンを付活していないAVO(AはK、Rb、Csを示す)が250〜390nmの紫外・近紫外光励起により蛍光スペクトルが490〜495nm付近に極大を持ち390〜680nmの範囲にブロードに広がる強い白色蛍光を発することを見出した。本発明者らは、この知見に基づいてさらに研究を重ね、ついに本発明を完成させた。 In order to solve the above-mentioned problems, the present inventors have devised variously, and light emission from rare earth ions having f electrons, which is often used in phosphor materials, has been introduced without largely depending on the surrounding coordination environment. In order to show the emission spectrum corresponding to the energy level of the ion, attention was paid to the fact that the emission peak showed a relatively narrow half-value width. In order to solve the above-mentioned problems, the present inventors have worked on the synthesis of a phosphor exhibiting a broad fluorescence emission that does not depend on the f-electron emission center ion or the like. First, it is known that vanadium oxide (hereinafter sometimes referred to as V oxide) emits light due to a charge transfer transition of (VO 4 ) 3- in YVO 4 or Mg 3 (VO 4 ) 2 . (Non-Patent Document 1) Searching for a substance containing a VO 4 tetrahedron in its structure, surprisingly, AVO 3 (A represents K, Rb, Cs) that does not activate the luminescent center ion is 250. It has been found that the fluorescence spectrum emits strong white fluorescence having a maximum in the vicinity of 490 to 495 nm and broadly spreading in the range of 390 to 680 nm by excitation with ultraviolet and near ultraviolet light at ˜390 nm. Based on this knowledge, the present inventors have made further studies and finally completed the present invention.

すなわち、本発明は以下のようにまとめられる。
請求項1記載の発明は、組成式A(式中、yが1、zが3.4−3.6、xが0.9−1.1で、AはCa、Sr、及びBaからなる群より選ばれる1種又は2種以上を示す。)で表されるバナジウム酸化物からなることを特徴とする蛍光体であって、前記組成式Aを形成するVO四面体同士が頂点共有して二量体を形成し、前記二量体から形成される二次元層間にAイオンが配置する結晶構造を有するバナジウム酸化物であることを特徴とする。より詳しくは、請求項1記載の発明は、組成式A(式中、yが1、zが3.4−3.6、xが0.9−1.1で、AはCa、Sr、及びBaからなる群より選ばれる1種又は2種以上を示す。)を形成するVO四面体同士が頂点共有して二量体を形成し、其の二量体が整列して111結晶軸に対してほぼ垂直な面内において二次元層を形成し、二次元層間にAイオンが配置する結晶構造を有するバナジウム酸化物であることを特徴とする発明でもある。
請求項2記載の発明は、請求項1に記載の蛍光体において、AにはLi、Na、及びNHからなる群より選ばれる1種又は2種以上を含んでいてもよいことを特徴とする。
請求項3記載の発明は、請求項1又は2に記載の蛍光体において、Mn2+、Sb3+、Bi3+、及び希土類イオンから選ばれる1種又は2種以上で付活されていることを特徴とする。
That is, the present invention is summarized as follows.
The invention according to claim 1 has a composition formula A x V y O z (wherein y is 1, z is 3.4 to 3.6, x is 0.9 to 1.1, and A is Ca, Sr. , And Ba selected from the group consisting of Ba and a vanadium oxide represented by the above-mentioned composition formula A x V y O z The VO 4 tetrahedrons share a vertex to form a dimer, and are vanadium oxides having a crystal structure in which A ions are arranged between two-dimensional layers formed from the dimer. More specifically, the invention according to claim 1 has a composition formula A x V y O z (wherein y is 1, z is 3.4 to 3.6, x is 0.9 to 1.1, A Represents one or more selected from the group consisting of Ca, Sr, and Ba.) VO 4 tetrahedrons form a dimer by sharing vertices, and the dimers are aligned. Thus, the invention is also characterized in that the vanadium oxide has a crystal structure in which a two-dimensional layer is formed in a plane substantially perpendicular to the 111 crystal axis and A ions are arranged between the two-dimensional layers.
The invention described in claim 2 is characterized in that in the phosphor according to claim 1, A may include one or more selected from the group consisting of Li, Na, and NH 4. To do.
Invention of Claim 3 is activated by 1 type, or 2 or more types chosen from Mn <2+ >, Sb < 3+ >, Bi <3+ >, and rare earth ions in the fluorescent substance of Claim 1 or 2. And

請求項4記載の発明は、請求項1〜3のいずれか記載の蛍光体において、該蛍光体が紫外・近紫外光励起により蛍光スペクトルが390〜680nmの範囲にブロードに広がる白色蛍光を発することを特徴とする。
請求項5記載の発明は、請求項4記載の蛍光体において、蛍光スペクトルが490〜495nm付近に極大を持つことを特徴とする。
請求項6記載の発明は、請求項4又は5記載の蛍光体において、紫外・近紫外光が250〜390nmの紫外・近紫外光であることを特徴とする。
請求項7記載の発明は、請求項1〜6のいずれか記載の蛍光体を、紫外・近紫外線励起発光素子を用いて励起することを特徴とし、請求項1〜6のいずれか記載の蛍光体を、電子線線励起発光素子を用いて励起することを特徴とする発明が請求項8記載の発明である。
請求項9記載の発明は、請求項1〜8のいずれか1項に記載の蛍光体を有することを特徴とする白色LEDの発明である。請求項10記載の発明は、請求項1〜8のいずれか1項に記載の蛍光体を有することを特徴とする表示器具の発明であり、請求項11記載の発明は、請求項1〜8のいずれか1項に記載の蛍光体を有することを特徴とする照明器具の発明である。
According to a fourth aspect of the present invention, in the phosphor according to any one of the first to third aspects, the phosphor emits white fluorescence that broadens in a range of 390 to 680 nm in fluorescence spectrum by excitation with ultraviolet or near ultraviolet light. Features.
According to a fifth aspect of the present invention, in the phosphor according to the fourth aspect, the fluorescence spectrum has a maximum in the vicinity of 490 to 495 nm.
According to a sixth aspect of the invention, in the phosphor according to the fourth or fifth aspect, the ultraviolet / near ultraviolet light is an ultraviolet / near ultraviolet light of 250 to 390 nm.
The invention according to claim 7 is characterized in that the phosphor according to any one of claims 1 to 6 is excited using an ultraviolet / near ultraviolet excitation light emitting element, and the fluorescence according to any one of claims 1 to 6 is provided. The invention according to claim 8 is characterized in that the body is excited using an electron beam excitation light emitting element.
The invention according to claim 9 is an invention of a white LED comprising the phosphor according to any one of claims 1 to 8. The invention according to claim 10 is an invention of a display device comprising the phosphor according to any one of claims 1 to 8, and the invention according to claim 11 is an invention according to claims 1 to 8. It is invention of the lighting fixture characterized by having the fluorescent substance of any one of these.

以下、本発明を詳細に説明する。
本発明でいうバナジウム酸化物は、組成式A(式中、yが1、zが2.9−3.1のときは、xが0.8−1.2で、AはK、Rb、及びCsからなる群より選ばれる1種又は2種以上を示し、yが1、zが3.4−3.6のときは、xが0.9−1.1で、AはCa、Sr、及びBaからなる群より選ばれる1種又は2種以上を示す。前記Aには、Li、Na、NHからなる群より選ばれる1種以上を含んでいてもよく、それらが含まれる量は、本発明の所期の効果がもたらされる範囲内であれば、特に制限されない。
上記バナジウム組成物は、バナジウム原子、酸素原子及び上記Aを構成する原子がらなり、それら原子の組成比が原子当量比で上記数値を満足するバナジウム酸化物を意味する。その中でも、特に好ましいバナジウム酸化物は、AVO、Aなどが挙げられる。
Hereinafter, the present invention will be described in detail.
The vanadium oxide referred to in the present invention has a composition formula A x V y O z (wherein y is 1 and z is 2.9-3.1, x is 0.8-1.2, A Represents one or more selected from the group consisting of K, Rb, and Cs, and when y is 1 and z is 3.4 to 3.6, x is 0.9 to 1.1, A represents one or more selected from the group consisting of Ca, Sr, and Ba, and A may include one or more selected from the group consisting of Li, Na, NH 4 , The amount of them is not particularly limited as long as the desired effect of the present invention is brought about.
The vanadium composition means a vanadium oxide having a vanadium atom, an oxygen atom, and an atom constituting A, and a composition ratio of these atoms satisfying the above numerical value in terms of an atomic equivalent ratio. Among these, particularly preferable vanadium oxides include AVO 3 and A 2 V 2 O 7 .

上記V酸化物の中では、次のような結晶構造を有するV酸化物が好ましい効果をもたらす。その結晶構造を図1に基づいて説明すると、VO四面体を構造中に含み、VO四面体同士が頂点共有して一次元鎖を形成し、その一次元鎖同士が整列して二次元層を形成し、二次元層間にAイオンが配置する結晶構造を持つ。この結晶請構造はすでに知られており、所謂VO四面体を内包した結晶構造でもある。なお、図1のa及びbは結晶軸を示すもので。aとbは直交あるいはほぼ直交し、b軸は層状構造に対して垂直あるいはほぼ垂直、a軸は層に対して平行方向を示している。
上記V酸化物の中では、次のような結晶構造を有するV酸化物も好ましい効果をもたらす。その結晶構造を図2に基づいて説明すると、VO四面体同士が頂点共有して二量体を形成し、其の二量体が整列して111結晶軸に対してほぼ垂直な面内において二次元層を形成し、二次元層間にAイオンが配置する結晶構造を有する。この結晶請構造はすでに知られており、所謂VO四面体を内包した結晶構造でもある。なお、図2において、[01−1]planeは、01−1結晶軸方向から見た平面を示す。
Among the above V oxides, a V oxide having the following crystal structure brings about a preferable effect. The crystal structure will be described with reference to FIG. 1. A VO 4 tetrahedron is included in the structure, the VO 4 tetrahedrons share a vertex to form a one-dimensional chain, and the one-dimensional chains are aligned to form a two-dimensional A layer is formed and has a crystal structure in which A ions are arranged between two-dimensional layers. This crystal structure is already known, and is also a crystal structure including a so-called VO 4 tetrahedron. In addition, a and b in FIG. 1 indicate crystal axes. a and b are orthogonal or substantially orthogonal, the b-axis is perpendicular or substantially perpendicular to the layered structure, and the a-axis is parallel to the layer.
Among the above V oxides, V oxides having the following crystal structure also bring about a favorable effect. The crystal structure will be described with reference to FIG. 2. The VO 4 tetrahedrons share a vertex to form a dimer, and the dimer is aligned and in a plane substantially perpendicular to the 111 crystal axis. A two-dimensional layer is formed, and has a crystal structure in which A ions are arranged between the two-dimensional layers. This crystal structure is already known, and is also a crystal structure including a so-called VO 4 tetrahedron. In FIG. 2, [01-1] plane indicates a plane viewed from the 01-1 crystal axis direction.

この結晶構造は既知の結晶構造を確認する方法を用いて容易に確認することが出来る。例えば、作製したV酸化物のX線回折データから結晶構造を容易に確認することができる。   This crystal structure can be easily confirmed using a method for confirming a known crystal structure. For example, the crystal structure can be easily confirmed from the X-ray diffraction data of the manufactured V oxide.

この結晶構造を有するV酸化物の製造方法は公知の方法を応用して製造することが出来る。
その一例を示すと、酸化バナジウムV粉末及びAイオンを含む炭酸塩ACO粉末をA:Vの組成比が1:1〜1.05:1(原子当量比からAを5%まで増やす。)となるように秤量し、粉砕・混合する。Aを5%まで増やすのは焼成過程でA成分が昇華しやすく、このように原子当量比から増やすことにより、A:V=1:1(原子当量比)のV酸化物が出来やすいためである。本発明ではA:V=1:1(原子当量比)に限定されない。
粉砕・混合する手段は既知の方法を用いればよい。例えば、ボールミル、ジェットミル等の通常用いられる粉砕機により粉砕・混合する。
次いで、該混合物を大気圧下300℃前後で一度仮焼し、その後450℃程度で焼成する。加熱手段は公知の手段を採用すればよい。例えば、一般的な電気炉を用いればよいのである。昇温速度は200℃/時程度が望ましい。昇温速度が速すぎると自己の反応熱により溶解してしまう場合があり、昇温速度が遅すぎると製造効率が悪く不都合である。
本発明のV酸化物の上記と異なる製造方法は水溶液中から析出させる方法もある。
The manufacturing method of the V oxide having this crystal structure can be manufactured by applying a known method.
For example, a carbonate A 2 CO 3 powder containing vanadium oxide V 2 O 5 powder and A ions has an A: V composition ratio of 1: 1 to 1.05: 1 (from an atomic equivalent ratio of 5 A. And weigh and grind and mix. The reason why A is increased to 5% is that the A component is easily sublimated during the firing process, and thus by increasing from the atomic equivalent ratio, it is easy to form a V oxide of A: V = 1: 1 (atomic equivalent ratio). is there. In the present invention, A: V is not limited to 1: 1 (atomic equivalent ratio).
A known method may be used as a means for pulverizing and mixing. For example, it is pulverized and mixed by a commonly used pulverizer such as a ball mill and a jet mill.
Next, the mixture is temporarily calcined at about 300 ° C. under atmospheric pressure, and then calcined at about 450 ° C. A known means may be adopted as the heating means. For example, a general electric furnace may be used. The temperature rising rate is desirably about 200 ° C./hour. If the rate of temperature increase is too fast, it may dissolve due to its own reaction heat, and if the rate of temperature increase is too slow, the production efficiency is poor and disadvantageous.
Another production method of the V oxide of the present invention different from the above is a method of precipitating from an aqueous solution.

本発明でいうV酸化物の結晶構造には、VO四面体からなる層間にあるAが欠損する場合も含み、電荷補償のためにOもわずかに欠損している場合も含む。Aの欠損の程度は、V酸化物の製法、蛍光体とするときの操作等により受ける影響の度合いにより異なるのであって、例えば本発明の目的を達成することができる程度まで欠損されていてもよい。Oの欠損の程度もAの欠損の程度に大きく影響されるが、本発明の目的を達成することができる程度まで欠損されていてもよい。
結晶構造をとるV酸化物の組成式はAVOで表されるとともに、そのAとOの欠損ためA/Vは1(原子当量比)以下であって、しかもO/Vとが3(原子当量比)以下であって、本発明の目的を達成することができる範囲のものまで含まれる。
The crystal structure of the V oxide referred to in the present invention includes the case where A in the layer composed of the VO 4 tetrahedron is lost and the case where O is also slightly lost for charge compensation. The degree of A deficiency varies depending on the degree of influence caused by the manufacturing process of the V oxide, the operation when the phosphor is used, and the like, for example, even if deficient to the extent that the object of the present invention can be achieved. Good. The degree of O deficiency is also greatly affected by the degree of A deficiency, but may be deficient to the extent that the object of the present invention can be achieved.
The compositional formula of the V oxide having a crystal structure is represented by AVO 3 , and because of the lack of A and O, A / V is 1 (atomic equivalent ratio) or less, and O / V is 3 (atomic (Equivalent ratio) or less, and within the range where the object of the present invention can be achieved.

上記V酸化物をそのまま蛍光体としてもよいが、上記V酸化物にMn2+、Sb3+、Bi3+及び希土類イオン等を少なくとも1種以上付活させてもよい。前記希土類イオンはスカンジウム族元素(アクチノイドは除く)とランタノイド元素のイオンを言い、具体的には、Pr3+、Ce3+、Eu3+、Eu2+、Sm3+、Tb3+、Yb3+などが挙げられる。
上記V酸化物を賦活する手段は特に制限されないのであって、すでに知られている方法を適宜採用すればよい。例えば、Mn2+、Sb3+、Bi3+、及び希土類イオン等を含む物質を所定量秤量し、蛍光体製造原料と混合して、焼成処理する方法がある。
The V oxide may be used as a phosphor as it is, but at least one or more of Mn 2+ , Sb 3+ , Bi 3+ and rare earth ions may be activated in the V oxide. The rare earth ions refer to ions of scandium group elements (excluding actinoids) and lanthanoid elements, and specifically include Pr 3+ , Ce 3+ , Eu 3+ , Eu 2+ , Sm 3+ , Tb 3+ , Yb 3+ and the like.
The means for activating the V oxide is not particularly limited, and a known method may be adopted as appropriate. For example, there is a method in which a predetermined amount of a substance containing Mn 2+ , Sb 3+ , Bi 3+ , rare earth ions, and the like is weighed, mixed with the phosphor manufacturing raw material, and fired.

本発明の蛍光体は励起され、可視光領域にブロードに広がる、特に白色を示す蛍光スペクトルを有することに一つの大きな特徴を有する。また、本発明の蛍光体は励起され、390〜680nmの範囲にブロードに広がる可視光領域にブロードに広がる白色蛍光を発することに一つの大きな特徴を有する。さらに、蛍光スペクトルが490〜495nm付近に極大を持ち390〜680nmの範囲にブロードに広がる白色蛍光を発することが特徴である。励起される手段は特に制限されないが、例えば紫外・近紫外光により励起され、特に、250〜390nmの紫外・近紫外光励起による励起手段が好ましい。白色LEDの励起光源である紫外・近紫外LEDによって励起出来る。このように、本発明の単一の物質が、広範囲のスペクトルの広がりを持つことは、従来からの蛍光体と比較しても画期的なことである。   The phosphor of the present invention has one major characteristic in that it has a fluorescence spectrum that is excited and broadly spreads in the visible light region, particularly showing white. In addition, the phosphor of the present invention is excited and emits white fluorescence broadly in the visible light region broadly spread in the range of 390 to 680 nm. Further, the fluorescence spectrum has a maximum in the vicinity of 490 to 495 nm, and emits white fluorescence that broadens in the range of 390 to 680 nm. The means to be excited is not particularly limited. For example, excitation means by ultraviolet / near ultraviolet light, for example, excitation means by ultraviolet / near ultraviolet light excitation at 250 to 390 nm is preferable. It can be excited by an ultraviolet / near ultraviolet LED that is an excitation light source of a white LED. Thus, the fact that the single substance of the present invention has a broad spectrum spread is epoch-making as compared with conventional phosphors.

本発明の蛍光体の詳細な発光機構はまだ明らかでないが、おそらく(VO3−の電荷移動遷移が発光起源であると考えられる。また、合成されたAVO(AはRbである)に対して、誘導結合プラズマ法(ICP法)により元素分析を行ったところRb:Vがほぼ1:1(原子当量比)であったことも欠損による不純物準位による色中心の形成よりも、前記(VO3−の電荷移動遷移が有力であることを支持する。 Although the detailed light emission mechanism of the phosphor of the present invention is not yet clear, the charge transfer transition of (VO 4 ) 3- is considered to originate from the light emission. Further, when elemental analysis was performed on the synthesized AVO 3 (A is Rb) by the inductively coupled plasma method (ICP method), Rb: V was approximately 1: 1 (atomic equivalent ratio). This also supports that the charge transfer transition of the (VO 4 ) 3− is more powerful than the formation of the color center due to the impurity level due to defects.

かくして得られたV酸化物は、そのまま蛍光体として有効であるが、公知の方法を応用して蛍光体膜を作製することも出来る。   The V oxide thus obtained is effective as a phosphor as it is, but a phosphor film can also be produced by applying a known method.

本発明の蛍光体は、紫外・近紫外光を発光する発光ダイオードと組合わせて白色ダイオード(以下、白色LEDということがある)を製造することができる。
白色LEDの要部の一例をより具体的に説明すると、光源としての紫外発光ダイオードを本発明の蛍光体で覆う構造を取る。前記蛍光体で覆う構造を取るための方法・手段は特に制限されない。
紫外線発光ダイオードから放射された紫外・近紫外の波長光は、蛍光体の中に入射した後、蛍光体内で吸収され、励起されたエネルギーが外部へ白色光として放射される。 従来から知られている白色LEDにおいて、白色とは、人の目で白色に見えるという意味である。人の目には、光の三原色の混合や補色関係にある二色の混合も白色に見える。この場合、連続したスペクトルにより実現される白色光とやや異なる。
それに対して本発明の白色LEDは、紫外線励起で青〜赤までの発光を示す蛍光体を光らせて白色を作るタイプであり、連続したスペクトルにより実現される白色光ということができる。
The phosphor of the present invention can be combined with a light emitting diode that emits ultraviolet / near ultraviolet light to produce a white diode (hereinafter sometimes referred to as white LED).
An example of the main part of the white LED will be described in more detail. The ultraviolet light emitting diode as a light source is covered with the phosphor of the present invention. The method and means for taking the structure covered with the phosphor are not particularly limited.
The ultraviolet / near-ultraviolet light emitted from the ultraviolet light emitting diode is incident on the phosphor and then absorbed in the phosphor, and the excited energy is emitted to the outside as white light. In the conventionally known white LED, white means that it looks white with human eyes. To the human eye, a mixture of the three primary colors of light and a mixture of two colors that are complementary colors appear white. In this case, it is slightly different from the white light realized by the continuous spectrum.
On the other hand, the white LED of the present invention is a type that produces white by emitting phosphors that emit light from blue to red under ultraviolet excitation, and can be said to be white light realized by a continuous spectrum.

本発明の蛍光体は、紫外・近紫外線励起発光素子により励起されてもよい。ここで、紫外・近紫外線励起発光素子は公知のものであり、本発明においては、初期の目的を達成することができる限り、どのような発光素子を用いることができる。具体的には蛍光体の性能や、使用目的に応じて、適宜最適な紫外・近紫外線励起発光素子を使用すればよく、例えば、紫外線を発する有機EL素子などが挙げられるが、本発明はその素子に限定されない。   The phosphor of the present invention may be excited by an ultraviolet / near ultraviolet excitation light emitting element. Here, ultraviolet / near-ultraviolet excitation light-emitting elements are known, and any light-emitting element can be used in the present invention as long as the initial purpose can be achieved. Specifically, an optimal ultraviolet / near ultraviolet excitation light emitting element may be used as appropriate according to the performance of the phosphor and the purpose of use, and examples thereof include an organic EL element that emits ultraviolet light. It is not limited to an element.

本発明の蛍光体は、紫外・近紫外線励起だけでなく、電子線励起発光素子により励起されてもよい。ここで、電子線励起発光素子は公知のものであり、本発明においては、初期の目的を達成することができる限り、どのような発光素子を用いることができる。具体的には蛍光体の性能や、使用目的に応じて、適宜最適な電子線励起発光素子を使用すればよく、例えば、フィールドエミッションディスプレイなどに用いられる各種エミッターなどが挙げられるが、本発明はその素子に限定されない。   The phosphor of the present invention may be excited not only by ultraviolet / near-ultraviolet excitation but also by an electron beam excitation light emitting element. Here, the electron beam-excited light-emitting element is a known element, and any light-emitting element can be used in the present invention as long as the initial purpose can be achieved. Specifically, depending on the performance of the phosphor and the purpose of use, an optimal electron beam excitation light emitting element may be used as appropriate, and examples thereof include various emitters used for field emission displays, etc. It is not limited to the element.

本発明の蛍光体は励起され、可視光領域にブロードに広がる、特に白色を示す蛍光スペクトルを有する。特に250〜390nmの範囲に励起スペクトルを持つ励起光によって本発明の蛍光体から発せられる蛍光スペクトルは390〜680nmに広がり、白色に発光する。この蛍光スペクトルは現在民生で使われている照明器具、通常の蛍光灯のスペクトルに近い発光スペクトルである。そのため本発明の蛍光体単独で白色LED用の蛍光体として使用することが出来、極めて好都合である。発光スペクトルのピークは490〜495nmの範囲にあるため色温度は高い。さらに、長波長側に強い発光を持つ蛍光体とを組み合わせることも可能であり、より暖色系の白色が得ることもできる。また水銀や鉛などを含まないため、環境・人体への悪影響も少ない。
さらに、紫外線LEDや青色LEDを励起源とする蛍光体の多くは、その合成に酸化物であれば空気中1300℃以上、酸窒化物や窒化物であれば10気圧程度の高窒素圧下1600℃の高温が必要とされる場合が多い。一方、本発明の蛍光体は大気圧で450℃程度の温和な条件で製造することができるので、製造プロセスの簡易さ、製造コストの低さなどの点も有利である。
The phosphor of the present invention has a fluorescence spectrum that is excited and broadly spreads in the visible light region, particularly showing white. In particular, the fluorescence spectrum emitted from the phosphor of the present invention by excitation light having an excitation spectrum in the range of 250 to 390 nm extends to 390 to 680 nm and emits white light. This fluorescence spectrum is an emission spectrum that is close to the spectrum of lighting fixtures currently used in the consumer and normal fluorescent lamps. Therefore, the phosphor of the present invention alone can be used as a phosphor for white LED, which is very convenient. Since the peak of the emission spectrum is in the range of 490 to 495 nm, the color temperature is high. Further, it is possible to combine with a phosphor having a strong light emission on the long wavelength side, and a warmer white color can be obtained. In addition, since it does not contain mercury or lead, there are few negative effects on the environment and human body.
Furthermore, most phosphors using ultraviolet LEDs or blue LEDs as excitation sources are 1300 ° C. or higher in air if they are oxides for synthesis, and 1600 ° C. under a high nitrogen pressure of about 10 atm if they are oxynitrides or nitrides. Often, high temperatures are required. On the other hand, since the phosphor of the present invention can be produced under mild conditions of about 450 ° C. at atmospheric pressure, it is advantageous in terms of simplicity of the production process and low production cost.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれら実施例に限定されない。実施例中のデータについて、X線回折はマックサイエンス社製MXP21ディフラクトメーターを用い、蛍光及び励起スペクトル測定は島津製作所製、RF5300PCスペクトルメーターを用いて測定し、組成分析はHORIBA製 JY138KH ULTRACEを用いて行った。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. Regarding the data in the examples, X-ray diffraction was measured using an MXP21 diffractometer made by Mac Science, fluorescence and excitation spectrum measurements were made using Shimadzu Corporation RF5300PC spectrum meter, and composition analysis was performed using HORIBA JY138KH ULTRACE. I went.

酸化バナジウムV粉末(レアメタリック社)及び炭酸ルビジウムRbCO粉末(レアメタリック社)をRb:Vの金属組成比を1:1からRb量をVに対して5%多く混合し(RbCO:V=1.05g:0.7875g)、300℃で6時間仮焼し、その後450℃で24時間焼成し、V酸化物を得た。加熱処理は特に断らない限り加圧していない(以下、同様)。このV酸化物についてICP法を用いた組成分析を行ったところRb:V=0.99(1):1.00(1)の比となり、本発明の一般式に対応するRbVOが形成されていることを確認した。このRbVOについてのX線回折結果を図3に示す。
また、得られたRbVOを250〜390nmの紫外光で励起したところ490nmに極大を持ち、390〜680nmの範囲にブロードに発光スペクトルが広がった白色蛍光を示した。(図4)なお、図3中の「PL」は蛍光を意味し、「PLE」は励起光を意味する(以下、同様)。
Vanadium oxide V 2 O 5 powder (rare metallic company) and rubidium carbonate Rb 2 CO 3 powder (rare metallic company) were mixed with a metal composition ratio of Rb: V from 1: 1 to Rb amount 5% higher than V. (Rb 2 CO 3 : V 2 O 5 = 1.05 g: 0.7875 g), calcined at 300 ° C. for 6 hours, and then calcined at 450 ° C. for 24 hours to obtain a V oxide. The heat treatment is not pressurized unless otherwise specified (hereinafter the same). When this V oxide was subjected to composition analysis using the ICP method, a ratio of Rb: V = 0.99 (1): 1.00 (1) was obtained, and RbVO 3 corresponding to the general formula of the present invention was formed. Confirmed that. The X-ray diffraction results for this RbVO 3 are shown in FIG.
Further, when the obtained RbVO 3 was excited with ultraviolet light of 250 to 390 nm, it had a maximum at 490 nm and showed white fluorescence having a broad emission spectrum in the range of 390 to 680 nm. (FIG. 4) “PL” in FIG. 3 means fluorescence, and “PLE” means excitation light (the same applies hereinafter).

酸化バナジウムV粉末(レアメタリック社)及び炭酸カリウムKCO粉末(レアメタリック社)をK:Vの金属組成比を1:1からK量をVに対して5%多く混合し(KCO:V=1.05g:1.3159g)、300℃で6時間仮焼し、その後450℃で24時間焼成し、V酸化物を得た。このV酸化物の組成式はKVOであること分かった。このKVOについてのX線回折結果を図5に示す。
また、得られたKVOを250〜390nmの紫外光で励起したところ500nmに極大を持ち、390〜680nmの範囲にブロードに発光スペクトルが広がった白色蛍光を示した。(図6)
Vanadium oxide V 2 O 5 powder (rare metallic company) and potassium carbonate K 2 CO 3 powder (rare metallic company) were mixed in a metal composition ratio of K: V from 1: 1 to 5% more than the V amount of V. (K 2 CO 3 : V 2 O 5 = 1.05 g: 1.3159 g), calcined at 300 ° C. for 6 hours, and then calcined at 450 ° C. for 24 hours to obtain a V oxide. The composition formula of the V oxide was found to be a KVO 3. The X-ray diffraction results for this KVO 3 are shown in FIG.
Further, when the obtained KVO 3 was excited with ultraviolet light of 250 to 390 nm, it showed white fluorescence having a maximum at 500 nm and a broad emission spectrum in the range of 390 to 680 nm. (Fig. 6)

酸化バナジウムV粉末(レアメタリック社)及び炭酸セシウムCsCO粉末(レアメタリック社)をCs:Vの金属組成比を1:1からCs量をVに対して5%多く混合し(CsCO:V=1.05g:0.5582g)、300℃で6時間仮焼し、その後450℃で24時間焼成し、V酸化物を得た。このV酸化物の組成式はCsVOであること分かった。
このCsVOについてX線回折結果を図7に示す。また、得られたCsVOを250〜390nmの紫外光で励起したところ490nmに極大を持ち、390〜680nmの範囲にブロードに発光スペクトルが広がった白色蛍光を示した。(図8)
Vanadium oxide V 2 O 5 powder (rare metallic company) and cesium carbonate Cs 2 CO 3 powder (rare metallic company) were mixed at a metal composition ratio of Cs: V from 1: 1 to 5% higher than V by Cs. (Cs 2 CO 3 : V 2 O 5 = 1.05 g: 0.5582 g), calcined at 300 ° C. for 6 hours, and then calcined at 450 ° C. for 24 hours to obtain a V oxide. The composition formula of this V oxide was found to be CsVO 3 .
The X-ray diffraction results for this CsVO 3 are shown in FIG. Further, when the obtained CsVO 3 was excited by ultraviolet light of 250 to 390 nm, it had a maximum at 490 nm and showed white fluorescence having a broad emission spectrum in the range of 390 to 680 nm. (Fig. 8)

酸化バナジウムV粉末(レアメタリック社)及び炭酸ルビジウムRbCO粉末(レアメタリック社)をRb:Vの金属組成比を1:1からRb量をVに対して5%多く混合し(RbCO:V=1.05g:0.7875g)、Sb(レアメタリック社)を5mol%(0.0631g)添加して混合し、300℃で6時間仮焼し、その後450℃で24時間焼成し、V酸化物を得た。このV酸化物の組成式はRbVOであること分かった。このRbVO:Sb5%について250〜390nmの紫外光で励起したところ490nmに極大を持ち、390〜680nmの範囲にブロードに発光スペクトルが広がった白色蛍光を示した(図9)。 Vanadium oxide V 2 O 5 powder (rare metallic company) and rubidium carbonate Rb 2 CO 3 powder (rare metallic company) were mixed with a metal composition ratio of Rb: V from 1: 1 to Rb amount 5% higher than V. (Rb 2 CO 3 : V 2 O 5 = 1.05 g: 0.7875 g), 5 mol% (0.0631 g) of Sb 2 O 3 (Rare Metallic) is added and mixed, and calcined at 300 ° C. for 6 hours. And then calcined at 450 ° C. for 24 hours to obtain a V oxide. The composition formula of this V oxide was found to be RbVO 3 . When this RbVO 3 : Sb 5 % was excited with an ultraviolet light of 250 to 390 nm, it showed white fluorescence having a maximum at 490 nm and a broad emission spectrum in the range of 390 to 680 nm (FIG. 9).

酸化バナジウムV粉末(レアメタリック社)及び炭酸ルビジウムRbCO粉末(レアメタリック社)をRb:Vの金属組成比を1:1からRb量をVに対して5%多く混合し(RbCO:V=1.05g:0.7875g)、MnCO(レアメタリック社)を5mol%(0.0249g)添加して混合し、300℃で6時間仮焼し、その後450℃で24時間焼成し、V酸化物を得た。このV酸化物の組成式はRbVO:Mn5%であること分かった。
このRbVO:Mn5%について250〜390nmの紫外光で励起したところ502nmに極大を持ち、390〜680nmの範囲にブロードに発光スペクトルが広がった白色蛍光を示した。(図10)
(比較例1)
Vanadium oxide V 2 O 5 powder (rare metallic company) and rubidium carbonate Rb 2 CO 3 powder (rare metallic company) were mixed with a metal composition ratio of Rb: V from 1: 1 to Rb amount 5% higher than V. (Rb 2 CO 3 : V 2 O 5 = 1.05 g: 0.7875 g), 5 mol% (0.0249 g) of MnCO 3 (rare metallic) was added and mixed, and calcined at 300 ° C. for 6 hours. Thereafter, firing was performed at 450 ° C. for 24 hours to obtain a V oxide. The composition formula of this V oxide was found to be RbVO 3 : Mn 5%.
When this RbVO 3 : Mn 5% was excited with ultraviolet light of 250 to 390 nm, it had a maximum at 502 nm and showed white fluorescence with a broad emission spectrum in the range of 390 to 680 nm. (Fig. 10)
(Comparative Example 1)

酸化バナジウムV粉末(レアメタリック社)及び炭酸リチウムLiCO粉末(レアメタリック社)をLi:Vの金属組成比を1:1からLi量をVに対して5%多く混合し(LiCO:V=1.05g:2.4616g)、400℃で6時間仮焼し、その後500℃で24時間焼成し、V酸化物を得た。このV酸化物の組成式はLiVOであること分かった。
このLiVOについてX線回折結果を図11に示す。得られたLiVOについて220〜550nmの紫外光を照射したところ360〜500nm付近に非常に弱い蛍光が観測されたが、肉眼で確認出来る発光は得られなかった。
(比較例2)
Vanadium oxide V 2 O 5 powder (rare metallic company) and lithium carbonate Li 2 CO 3 powder (rare metallic company) were mixed with a metal composition ratio of Li: V from 1: 1 to 5% more than the amount of Li. (Li 2 CO 3 : V 2 O 5 = 1.05 g: 2.4616 g), calcined at 400 ° C. for 6 hours, and then calcined at 500 ° C. for 24 hours to obtain a V oxide. The composition formula of this V oxide was found to be LiVO 3 .
The X-ray diffraction results for this LiVO 3 are shown in FIG. When the obtained LiVO 3 was irradiated with ultraviolet light of 220 to 550 nm, very weak fluorescence was observed around 360 to 500 nm, but no luminescence that could be confirmed with the naked eye was obtained.
(Comparative Example 2)

酸化バナジウムV粉末(レアメタリック社)及び炭酸ナトリウムNaCO粉末(レアメタリック社)をNa:Vの金属組成比を1:1からNa量をVに対して5%多く混合し(NaCO:V=1.05g:1.7160g)、400℃で6時間仮焼し、その後500℃で24時間焼成し、V酸化物を得た。このV酸化物の組成式はNaVOであること分かった。
このNaVOについてX線回折結果を図12に示す。得られたNaVOについて220〜550nmの紫外光を照射したが400〜500nm付近に非常に弱い蛍光が見られるだけで強い発光は得られなかった。
(比較例3)
Vanadium oxide V 2 O 5 powder (rare metallic company) and sodium carbonate Na 2 CO 3 powder (rare metallic company) were mixed with a metal composition ratio of Na: V from 1: 1 to 5% more Na than V. (Na 2 CO 3 : V 2 O 5 = 1.05 g: 1.7160 g), calcined at 400 ° C. for 6 hours, and then calcined at 500 ° C. for 24 hours to obtain a V oxide. The composition formula of this V oxide was found to be NaVO 3 .
The X-ray diffraction results for this NaVO 3 are shown in FIG. The obtained NaVO 3 was irradiated with ultraviolet light of 220 to 550 nm, but only very weak fluorescence was observed in the vicinity of 400 to 500 nm, and strong light emission was not obtained.
(Comparative Example 3)

(NH)VO(ジョンソンマッセイ社)について220〜550nmの紫外光を照射したが350〜500nm付近に非常に弱い蛍光が見られるだけで強い発光は得られなかった。 (NH 4 ) VO 3 (Johnson Massey) was irradiated with ultraviolet light of 220 to 550 nm, but only a very weak fluorescence was observed in the vicinity of 350 to 500 nm, and strong light emission was not obtained.

本発明は250〜390nm付近の紫外・近紫外線によって励起され390〜680nmの広範囲に渡って蛍光を示す蛍光体である。そのため、紫外線LED等の励起光源により、白色LEDとしての利用可能性がある。また、他の紫外線を発する有機ELや、その他の紫外線光源、電子線等を励起源とした発光素子としても応用が期待される。本発明の蛍光体の用途は白色光を必要とする日常灯等の照明器具や各種表示機器に用いられるバックライト等の表示器具等が挙げられる。   The present invention is a phosphor exhibiting fluorescence over a wide range of 390 to 680 nm when excited by ultraviolet / near ultraviolet light in the vicinity of 250 to 390 nm. Therefore, it may be used as a white LED by an excitation light source such as an ultraviolet LED. In addition, application is also expected as a light emitting element using an organic EL that emits other ultraviolet rays, other ultraviolet light sources, an electron beam, or the like as an excitation source. Applications of the phosphor of the present invention include lighting devices such as daily lights that require white light, and display devices such as backlights used in various display devices.

AVOの結晶構造の一部分を示す模式図であるIt is a schematic diagram which shows a part of crystal structure of AVO 3 の結晶構造の一部分を示す模式図であるIt is a schematic view of a portion of the crystal structure of A 2 V 2 O 7 実施例1で調整したRbVOのX線回折パターンである。横軸は回折角、縦軸は回折強度を示す(以下、同様)。 2 is an X-ray diffraction pattern of RbVO 3 prepared in Example 1. FIG. The horizontal axis represents the diffraction angle, and the vertical axis represents the diffraction intensity (hereinafter the same). 実施例1で調製したRbVOの250〜390nmの紫外光で励起したときの発光スペクトル示す図である。横軸は波長、縦軸は光強度を示す(以下、同様)。It is a diagram showing the emission spectrum when excited with ultraviolet light 250~390nm of RbVO 3 prepared in Example 1. The horizontal axis represents wavelength, and the vertical axis represents light intensity (hereinafter the same). 実施例2で調整したKVOのX線回折パターンである。 3 is an X-ray diffraction pattern of KVO 3 prepared in Example 2. FIG. 実施例2で調製したKVOを250〜390nmの紫外光で励起したときの発光スペクトル示す図である。Is a diagram showing the emission spectrum when excited with KVO 3 prepared in Example 2 with ultraviolet light 250~390Nm. 実施例3で調整したCsVOのX線回折パターンである。 3 is an X-ray diffraction pattern of CsVO 3 prepared in Example 3. FIG. 実施例3で調製したCsVOの250〜390nmの紫外光で励起したときの発光スペクトル示す図である。It is a diagram showing the emission spectrum when excited with ultraviolet light 250~390nm of CSVO 3 prepared in Example 3. 実施例4で調製したRbVO:Sb5%の250〜390nmの紫外光で励起したときの発光スペクトル示す図である。RbVO prepared in Example 4 3: a diagram showing the emission spectrum when excited with ultraviolet light Sb5% of 250~390Nm. 実施例5で調製したRbVO:Mn5%の250〜390nmの紫外光で励起したときの発光スペクトル示す図である。RbVO prepared in Example 5 3: is a diagram showing the emission spectrum when excited with ultraviolet light Mn5% of 250~390Nm. 比較例1で調整したLiVOのX線回折パターンである。 2 is an X-ray diffraction pattern of LiVO 3 prepared in Comparative Example 1. FIG. 比較例2で調整したNaVOのX線回折パターンである。 3 is an X-ray diffraction pattern of NaVO 3 prepared in Comparative Example 2. FIG.

Claims (11)

組成式A(式中、yが1、zが3.4−3.6、xが0.9−1.1で、AはCa、Sr、及びBaからなる群より選ばれる1種又は2種以上を示す。)で表されるバナジウム酸化物からなることを特徴とする蛍光体であって、前記組成式Aを形成するVO四面体同士が頂点共有して二量体を形成し、前記二量体から形成される二次元層間にAイオンが配置する結晶構造を有するバナジウム酸化物であることを特徴とするバナジウム酸化物からなることを特徴とする蛍光体。 In the composition formula A x V y O z (wherein, y is 1, z is 3.4-3.6, with x is 0.9-1.1, A is selected from the group consisting of Ca, Sr, and Ba And a VO 4 tetrahedron forming the composition formula A x V y O z is a vertex. A vanadium oxide characterized in that it is a vanadium oxide having a crystal structure in which a dimer is formed in common and A ions are arranged between two-dimensional layers formed from the dimer. Phosphor to be used. Aには、Li、Na、及びNHからなる群より選ばれる1種又は2種以上を含んでいてもよいことを特徴とする請求項1に記載の蛍光体。 The phosphor according to claim 1, wherein A may include one or more selected from the group consisting of Li, Na, and NH 4 . Mn2+、Sb3+、Bi3+、及び希土類イオンから選ばれる1種又は2種以上で付活されていることを特徴とする請求項1又は2に記載の蛍光体。 3. The phosphor according to claim 1, wherein the phosphor is activated by one or more selected from Mn 2+ , Sb 3+ , Bi 3+ , and rare earth ions. 蛍光体が紫外・近紫外光励起により蛍光スペクトルが390〜680nmの範囲にブロードに広がる白色蛍光を発することを特徴とする請求項1〜3のいずれか1項に記載の蛍光体。 The phosphor according to any one of claims 1 to 3, wherein the phosphor emits white fluorescence that broadens in a range of 390 to 680 nm when excited by ultraviolet or near ultraviolet light. 蛍光スペクトルが490〜495nm付近に極大を持つことを特徴とする請求項4に記載の蛍光体。 The phosphor according to claim 4, wherein the fluorescence spectrum has a maximum in the vicinity of 490 to 495 nm. 紫外・近紫外光が250〜390nmの紫外・近紫外光であることを特徴とする請求項4又は5に記載の蛍光体。 6. The phosphor according to claim 4, wherein the ultraviolet / near ultraviolet light is an ultraviolet / near ultraviolet light of 250 to 390 nm. 紫外・近紫外線励起発光素子を用いて励起することを特徴と請求項1〜6のいずれか1項に記載の蛍光体。 The phosphor according to any one of claims 1 to 6, which is excited using an ultraviolet / near ultraviolet excitation light emitting element. 電子線線励起発光素子を用いて励起することを特徴とする請求項1〜6のいずれか1項に記載の蛍光体。 It excites using an electron beam excitation light emitting element, The fluorescent substance of any one of Claims 1-6 characterized by the above-mentioned. 請求項1〜8のいずれか1項に記載の蛍光体を有することを特徴とする白色LED A white LED comprising the phosphor according to claim 1. 請求項1〜8のいずれか1項に記載の蛍光体を有することを特徴とする表示器具。 A display device comprising the phosphor according to claim 1. 請求項1〜8のいずれか1項に記載の蛍光体を有することを特徴とする照明器具。 A lighting apparatus comprising the phosphor according to claim 1.
JP2007224846A 2007-08-30 2007-08-30 Vanadium oxide phosphor Expired - Fee Related JP5267965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007224846A JP5267965B2 (en) 2007-08-30 2007-08-30 Vanadium oxide phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007224846A JP5267965B2 (en) 2007-08-30 2007-08-30 Vanadium oxide phosphor

Publications (2)

Publication Number Publication Date
JP2009057434A JP2009057434A (en) 2009-03-19
JP5267965B2 true JP5267965B2 (en) 2013-08-21

Family

ID=40553485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007224846A Expired - Fee Related JP5267965B2 (en) 2007-08-30 2007-08-30 Vanadium oxide phosphor

Country Status (1)

Country Link
JP (1) JP5267965B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5182851B2 (en) * 2007-10-03 2013-04-17 独立行政法人産業技術総合研究所 Method for producing vanadium oxide phosphor thin film
JP2013018869A (en) * 2011-07-11 2013-01-31 Tokai Rika Co Ltd Phosphor
JP2013018870A (en) * 2011-07-11 2013-01-31 Tokai Rika Co Ltd Method for manufacturing phosphor
JP5765737B2 (en) * 2011-11-18 2015-08-19 国立研究開発法人産業技術総合研究所 Vanadium oxide phosphor
JP6396260B2 (en) * 2015-06-29 2018-09-26 国立研究開発法人産業技術総合研究所 Vanadium oxide fluorescent powder and production method
JP6842631B2 (en) * 2017-06-07 2021-03-17 リンテック株式会社 A coating liquid for forming a luminescent film, a method for preparing the same, and a method for producing a luminescent film.

Also Published As

Publication number Publication date
JP2009057434A (en) 2009-03-19

Similar Documents

Publication Publication Date Title
JP4851306B2 (en) Highly saturated red-emitting Mn (IV) active phosphor and method for producing the same
Haque et al. Luminescent properties of Eu3+ activated MLa2 (MoO4) 4 based (M= Ba, Sr and Ca) novel red-emitting phosphors
Tang et al. Realization of color tuning via solid-solution and energy transfer in Ca 3− x Sr x (PO 4) 2: Eu 2+, Mn 2+ phosphors
Bedyal et al. Blue photons excited highly chromatic red light emitting K3La (PO4) 2: Pr3+ phosphors for white light emitting diodes
TW200948932A (en) Novel silicate-based yellow-green phosphors
JP5355613B2 (en) Yellow phosphor having oxyapatite structure, production method and white light emitting diode device thereof
JP5267965B2 (en) Vanadium oxide phosphor
CN104968763A (en) Rare earth-aluminum-garnet-type inorganic oxide, phosphor, and light-emitting device using said phosphor
Zhang et al. Tunable photoluminescence properties of Ca8NaLa (PO4) 6F2: Eu2+, Mn2+ phosphor under UV excitation
Cao et al. Sol–gel synthesis of red-emitting [Na0. 6La0. 8− xEux] 2 (MoO4) 3 phosphors and improvement of its luminescent properties by the co-doping method
JP5360122B2 (en) Yellow fluorosulfide phosphor for light emitting diode and method for producing the same
Yu et al. Photoluminescence properties of a new red-emitting Mn-activated ZnGa2S4 phosphor
Han et al. Luminescence properties of novel single-host white-light-emitting phosphor KBaBP 2 O 8: Dy 3+
JP2009167382A (en) Fluorescent material and luminescent device
Ruan et al. Color-tunable properties based on complex anion substitution in Eu2+ doped Ca8Sc2 (PO4) 6-y (SiO4) 1+ y phosphor
KR101017136B1 (en) A novel phosphor and fabrication of the same
CN104152147B (en) A kind of rare earth oxysalt fluorophor and application thereof
JP5765737B2 (en) Vanadium oxide phosphor
JP2017043686A (en) Fluophor, light source containing fluophor and manufacturing method of fluophor
JP2013110155A (en) Light-emitting device
EP1783192B1 (en) Phosphor and light-emitting device using same
KR102113044B1 (en) Lithium-based garnet phosphor, preparing method of the same, and luminescent property of the same
US9938460B2 (en) Phosphor, light emitting apparatus and method of forming phosphor
JP6519746B2 (en) Phosphor material and light emitting device
WO2019087814A1 (en) Fluorescent body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5267965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees