JP5182851B2 - Method for producing vanadium oxide phosphor thin film - Google Patents

Method for producing vanadium oxide phosphor thin film Download PDF

Info

Publication number
JP5182851B2
JP5182851B2 JP2007259862A JP2007259862A JP5182851B2 JP 5182851 B2 JP5182851 B2 JP 5182851B2 JP 2007259862 A JP2007259862 A JP 2007259862A JP 2007259862 A JP2007259862 A JP 2007259862A JP 5182851 B2 JP5182851 B2 JP 5182851B2
Authority
JP
Japan
Prior art keywords
thin film
vanadium oxide
ultraviolet
substrate
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007259862A
Other languages
Japanese (ja)
Other versions
JP2009084531A (en
Inventor
智彦 中島
哲男 土屋
俊弥 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007259862A priority Critical patent/JP5182851B2/en
Publication of JP2009084531A publication Critical patent/JP2009084531A/en
Application granted granted Critical
Publication of JP5182851B2 publication Critical patent/JP5182851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は白色LED等の発光材料に好適な紫外・近紫外域の光を励起光として白色発光する、バナジウム酸化物蛍光体薄膜の製造方法に関するものである。   The present invention relates to a method for producing a vanadium oxide phosphor thin film that emits white light by using light in an ultraviolet / near ultraviolet region suitable for a light emitting material such as a white LED as excitation light.

近年、白色LEDは携帯電話や様々な表示装置に用いられると同時に省エネルギーなどの観点から蛍光灯の代わりの室内照明装置としても注目されている。白色LEDは近紫外や青色LEDを励起光源とし、種々の波長に発光強度を持つ蛍光体を組み合わせて白色光を生み出している。具体的には青色LEDを励起光に黄色や、緑色、赤色蛍光体を発光させて白色光を得るというものである。(特許文献1)   In recent years, white LEDs are used in mobile phones and various display devices, and at the same time, are attracting attention as indoor lighting devices instead of fluorescent lamps from the viewpoint of energy saving. White LEDs use near-ultraviolet or blue LEDs as excitation light sources, and produce white light by combining phosphors having emission intensities at various wavelengths. Specifically, a blue LED emits yellow, green, and red phosphors as excitation light to obtain white light. (Patent Document 1)

しかしながら、複数の蛍光体を組み合わせて得る白色LEDの白色光には色抜けや特定波長のみに強い発光を示すなどの問題点もあり、室内照明として使用するには演色性を向上させるための努力が必要となる。そのため、照明用白色LEDに用いる蛍光体は発光波長が幅広い波長に広がり、特定波長に急峻な発光ピークがなく、さらには出来うる限り少ない蛍光体の組み合わせで白色蛍光を示すことが最も望ましい。近年青色LEDによって励起されるα―サイアロン蛍光体など比較的広い発光波長を持つ蛍光体(特許文献2)が開発されているが、発光スペクトル範囲が充分に広くないために演色性の良い白色とはならず、さらにいくつかの蛍光体との組み合わせで演色性を向上させる必要があった。
このように単一物質で出来るだけ演色性の良い白色蛍光を示すことは困難であった。
本発明者等は、このような問題点を解決するために、鋭意検討した結果、バナジウム酸化物(AVO;AはK、Rb、Csからなる群より選ばれる1種以上であって、Li、Na、NHからなる群より選ばれる1種以上を含んでいてもよい)が、単一物質でブロードな発光スペクトルを示し、250〜390nmの紫外・近紫外光励起により蛍光スペクトルが490〜495nm付近に極大を持ち390〜680nmの範囲にブロードに広がる白色蛍光を発する蛍光体であることを知見し、先に特許出願した(特許文献3)。
However, the white LED white light obtained by combining a plurality of phosphors has problems such as color loss and strong light emission only at a specific wavelength, and efforts to improve color rendering properties when used as indoor lighting. Is required. For this reason, it is most desirable that the phosphor used in the white LED for illumination has a wide emission wavelength, does not have a sharp emission peak at a specific wavelength, and further exhibits white fluorescence with as few phosphor combinations as possible. In recent years, phosphors having a relatively wide emission wavelength such as α-sialon phosphors excited by blue LEDs (Patent Document 2) have been developed. However, since the emission spectrum range is not sufficiently wide, In addition, it was necessary to improve the color rendering properties in combination with some phosphors.
Thus, it was difficult to show white fluorescence with a color rendering property as good as possible with a single substance.
In order to solve such problems, the present inventors have intensively studied. As a result, vanadium oxide (AVO 3 ; A is one or more selected from the group consisting of K, Rb, and Cs, and Li , Na and NH 4 may be included, but it shows a broad emission spectrum of a single substance, and a fluorescence spectrum of 490 to 495 nm by excitation with ultraviolet / near ultraviolet light at 250 to 390 nm. It has been found that the phosphor has a maximum in the vicinity and emits white fluorescence that broadens in the range of 390 to 680 nm, and a patent application has been filed earlier (Patent Document 3).

この出願発明の蛍光体から発せられる蛍光スペクトルは、現在民生で使われている照明器具、通常の蛍光灯のスペクトルに近い発光スペクトルであることから、そのまま白色LED用の蛍光体として使用することができる。また、発光スペクトルのピークは490〜495nmの範囲にあるため色温度は高いが、長波長側に強い発光を持つ蛍光体と組み合わせることも可能であり、より暖色系の白色が得ることもできる上、水銀や鉛などを含まないため、環境・人体への悪影響も少ないなどの数多くの利点を有するものである。   The fluorescence spectrum emitted from the phosphor of the present invention is an emission spectrum close to the spectrum of lighting fixtures currently used in consumer products and ordinary fluorescent lamps, so that it can be used as it is as a phosphor for white LEDs. it can. Moreover, although the emission spectrum has a peak in the range of 490 to 495 nm, the color temperature is high, but it can be combined with a phosphor having strong emission on the long wavelength side, and a warmer white color can be obtained. Since it does not contain mercury or lead, it has many advantages such as less adverse effects on the environment and human body.

しかし、ここで開示されているバナジウム酸化物蛍光体の製造方法は、酸化バナジウムV粉末及びAイオンを含む炭酸塩ACO粉末を粉砕・混合し、該混合物を大気圧下300℃前後で一度仮焼し、その後450℃程度で焼成して、主に粉末やバルク状のバナジウム酸化物を得るものであって、これらの酸化物を低温下で薄膜化する手法についてまでは具体的に何ら教示されていない。 However, in the method for producing a vanadium oxide phosphor disclosed herein, vanadium oxide V 2 O 5 powder and carbonate A 2 CO 3 powder containing A ions are pulverized and mixed, and the mixture is 300 at atmospheric pressure. Temporarily calcining at around ℃, and then firing at around 450 ℃, mainly to obtain powder and bulk vanadium oxides. Is not taught at all.

ところで、一般に、無機固体の応用において、小型デバイスや平面形状をした部材に適用する場合には、粉末体やバルク体よりもこれを薄膜化することが望まれる。また、基板との関係においては、その製膜温度をできるだけ低下することが好ましいとされており、近年その需要が富に増大している、無機蛍光体の分野においてもその低温下での薄膜化手法が強く要請されるに至っている。
たとえば、ガラス基板に製膜する場合でも600℃以下の低温で行うことが必要で製膜プロセス温度の低減が必要となっている。ここで製膜温度の低減は基板の選択肢を多くすることから、応用範囲も拡大することが期待される。例えば200℃以下程度に製膜温度下げることが可能になればプラスチックなどの有機基板上に製膜が可能となり、フレキシブルな発光材料の開発も期待できる。
By the way, generally, in the application of inorganic solids, when applied to a small device or a member having a planar shape, it is desired to make the film thinner than a powder body or a bulk body. Also, in relation to the substrate, it is considered preferable to lower the film forming temperature as much as possible, and in recent years, the demand for it has been increasing abundantly. There is a strong demand for methods.
For example, even when forming a film on a glass substrate, it is necessary to carry out at a low temperature of 600 ° C. or lower, and it is necessary to reduce the film forming process temperature. Here, the reduction of the film formation temperature increases the choices of the substrate, so that the application range is expected to be expanded. For example, if it becomes possible to lower the film forming temperature to about 200 ° C. or less, it becomes possible to form a film on an organic substrate such as plastic, and development of a flexible light-emitting material can also be expected.

また、AVO系化合物の製膜手法はこれまで水溶液を用いた浸漬法により析出させる手法が開発されているが(特許文献4)、PHを塩酸や硫酸、硝酸等で3以下に調整しなければならず、また、結晶性に劣るものであった。 In addition, as a film formation method for AVO 3 -based compounds, a method of depositing by an immersion method using an aqueous solution has been developed so far (Patent Document 4), but PH must be adjusted to 3 or less with hydrochloric acid, sulfuric acid, nitric acid or the like. In addition, the crystallinity was inferior.

また、ある種の金属酸化物膜を作製する場合、金属有機酸塩ないし有機金属化合物M(ただしM=Si、Ge等の典型元素、Ti、Mn等の遷移金属元素、K、Sr等のアルカリ金属、アルカリ土類金属元素:R=CH、C、C、Cなどのアルキル基、あるいはCHCOO、CCOO、CCOO、CCOOなどのカルボキシル基、あるいはCOのカルボニル基:m、nは整数)を可溶性溶媒に溶かし、あるいは液体のものはそのまま、該溶液を基板上に分散塗布した後、酸素雰囲気下でエキシマレーザを照射することによって、金属酸化物薄膜を製造する方法も知られているが(特許文献5〜6)、酸化バナジウム薄膜をより緩和なプロセスで製膜する方法については何ら教示されていない。 When a certain kind of metal oxide film is produced, a metal organic acid salt or an organic metal compound M m R n (where M = typical elements such as Si and Ge, transition metal elements such as Ti and Mn, K, Sr, etc.) Alkali metal, alkaline earth metal elements such as: R = CH 3 , C 2 H 5 , alkyl groups such as C 3 H 7 , C 4 H 9 , or CH 3 COO , C 2 H 5 COO , C 3 A carboxyl group such as H 7 COO or C 4 H 9 COO or a carbonyl group of CO (m and n are integers) is dissolved in a soluble solvent, or the liquid is dispersed and coated on the substrate as it is. A method of manufacturing a metal oxide thin film by irradiating an excimer laser in an oxygen atmosphere is also known (Patent Documents 5 to 6). However, a vanadium oxide thin film is formed by a more relaxed process. Nothing is taught about the law.

特開平11−31845号公報JP-A-11-31845 特開2006−257326号公報JP 2006-257326 A 特願2007−224846Japanese Patent Application No. 2007-224846 特開昭59−121121号公報JP 59-121121 A 特開2001−31417号公報JP 2001-31417 A 特開2000−256862号公報JP 2000-256862 A

本発明は、結晶性に優れた酸化バナジウム蛍光体の薄膜を、室温〜400℃の低温で製膜することができ、また従来困難であった有機基板上にもバインダーレスで直接製膜しうる方法を提供することを目的とする。   INDUSTRIAL APPLICABILITY In the present invention, a thin film of vanadium oxide phosphor having excellent crystallinity can be formed at a low temperature of room temperature to 400 ° C., and can be directly formed on an organic substrate which has been difficult in the past without using a binder. It aims to provide a method.

この出願によれば、以下の発明が提供される。
〈1〉基板上に形成された、A(AはK、RbおよびCsから選ばれる1種又は2種以上の原子である)とVを実質的に1:1の原子比で含む薄膜を、25℃〜450℃の温度に保持した後、波長400nm以下の紫外線レーザを照射し、バナジウム酸化物を結晶化させることを特徴とする組成式AVOで示されるバナジウム酸化物蛍光体薄膜の製造方法。
〈2〉10〜20mJ/cmの範囲で紫外線レーザを照射することを特徴とする〈1〉に記載のバナジウム酸化物蛍光体薄膜の製造方法。
〈3〉基板上に形成された、A(AはK、RbおよびCsから選ばれる1種又は2種以上の原子である)とVを実質的に1:1の原子比で含む薄膜を、25℃〜450℃の温度に保持した後、波長400nm以下の紫外線ランプを照射し、バナジウム酸化物を結晶化させることを特徴とする組成式AVOで示されるバナジウム酸化物蛍光体薄膜の製造方法。
〈4〉15〜50mW/cmの範囲で紫外線ランプを照射することを特徴とする〈3〉に記載のバナジウム酸化物蛍光体薄膜の製造方法。
〈5〉薄膜に紫外ランプを照射した後、紫外線レーザを照射して結晶化させることを特徴とする〈1〉から〈4〉のいずれかに記載のバナジウム酸化物蛍光体薄膜の製造方法。
According to this application, the following invention is provided.
<1> A thin film formed on a substrate and containing A (A is one or more atoms selected from K, Rb and Cs) and V in an atomic ratio of substantially 1: 1. A method for producing a vanadium oxide phosphor thin film represented by a composition formula AVO 3 characterized by irradiating an ultraviolet laser having a wavelength of 400 nm or less after being maintained at a temperature of 25 ° C. to 450 ° C. to crystallize vanadium oxide. .
<2> The method for producing a vanadium oxide phosphor thin film according to <1>, wherein the ultraviolet laser is irradiated in a range of 10 to 20 mJ / cm 2 .
<3> A thin film formed on a substrate and containing A (A is one or more atoms selected from K, Rb and Cs) and V in an atomic ratio of substantially 1: 1. after holding at a temperature of 25 ° C. to 450 ° C., and irradiated with UV light below the lamp wavelength 400 nm, a method of manufacturing vanadium oxide phosphor thin film represented by the composition formula AVO 3, characterized in that crystallizing the vanadium oxide .
<4> The method for producing a vanadium oxide phosphor thin film according to <3>, wherein the ultraviolet lamp is irradiated in a range of 15 to 50 mW / cm 2 .
<5> The method for producing a vanadium oxide phosphor thin film according to any one of <1> to <4 >, wherein the thin film is irradiated with an ultraviolet lamp and then irradiated with an ultraviolet laser to be crystallized.

本発明方法によれば、基板温度が室温であっても目的のAVO蛍光体の結晶化薄膜を製造することができる。また、光照射による製膜時には200℃以下の低温製膜が可能なためガラス基板等の無機固体基板だけでなく、プラスチック等の有機基板上にも直接製膜できる。そのため、材料コストを抑えられるだけでなく、自在に曲がるディスプレイや照明器具などフレキシブルな発光材料にも応用可能である。
また、本発明において得られる組成式AVOで示されるバナジウム酸化物蛍光体薄膜は白色LEDの励起光源である紫外・近紫外LEDによって励起出来る250〜390nmの範囲に励起スペクトルを持つ。この励起光によって発せられる蛍光スペクトルは390〜680nmに広がり、白色に発光する。そのため白色LED用の蛍光体として好適である。発光スペクトルのピークは490〜502nmの範囲にあるため比較的色温度は高いが、長波長側に強い発光を持つ蛍光体との組み合わせによって暖色系の白色が得ることもできる。また水銀や鉛などを含まないため、環境・人体への悪影響も少ない。
According to the method of the present invention, a target AVO 3 phosphor crystallized thin film can be produced even when the substrate temperature is room temperature. In addition, since film formation by light irradiation can be performed at a low temperature of 200 ° C. or lower, it can be directly formed not only on an inorganic solid substrate such as a glass substrate but also on an organic substrate such as plastic. Therefore, not only can the material cost be reduced, but it can also be applied to flexible light-emitting materials such as displays and lighting fixtures that can be bent freely.
Further, the vanadium oxide phosphor thin film represented by the composition formula AVO 3 obtained in the present invention has an excitation spectrum in a range of 250 to 390 nm that can be excited by an ultraviolet / near ultraviolet LED that is an excitation light source of a white LED. The fluorescence spectrum emitted by this excitation light spreads from 390 to 680 nm and emits white light. Therefore, it is suitable as a phosphor for white LED. Since the peak of the emission spectrum is in the range of 490 to 502 nm, the color temperature is relatively high, but a warm white color can be obtained by combining with a phosphor having strong emission on the long wavelength side. In addition, since it does not contain mercury or lead, there are few negative effects on the environment and human body.

本発明の組成式AVOで示されるバナジウム酸化物蛍光体薄膜の製造方法は、基板上に形成されたA(AはK、RbおよびCsから選ばれる1種又は2種以上の原子である)とV(バナジウム)を実質的に1:1の原子比で含む薄膜を、25℃〜450℃の温度に保持した後、波長400nm以下の紫外線レーザ又は紫外線ランプを照射し、バナジウム酸化物を結晶化させることを特徴とする。 In the method for producing a vanadium oxide phosphor thin film represented by the composition formula AVO 3 of the present invention, A formed on a substrate (A is one or more atoms selected from K, Rb and Cs). And a thin film containing V (vanadium) in a substantially 1: 1 atomic ratio is maintained at a temperature of 25 ° C. to 450 ° C., and then irradiated with an ultraviolet laser or an ultraviolet lamp having a wavelength of 400 nm or less to crystallize vanadium oxide. It is characterized by making it.

基板上に形成されたA(AはK、RbおよびCsから選ばれる1種又は2種以上の原子である)とVを含む薄膜とは、A(イオン)を含む化合物とVを含む化合物との混合物を種々の方法により基板上に製膜させた薄膜を意味する。
A(イオン)を含む化合物としては、K、RbおよびCsから選ばれる1種又は2種以上の原子を含む無機化合物または有機化合物が挙げられる。
無機化合物の例としては、結晶化に至っていないアモルファスなKVO、RbVO、CsVO等の前駆体が挙げられる。
有機化合物の例としては、一般的に、これらの元素を含む、β−ジケトナト、炭素数6以上の長鎖のアルコキシド、ハロゲンを含んでもよい有機酸塩などが挙げられる。
具体的には、ナフテン酸塩、2エチルヘキサン酸塩、アセチルアセトナト塩などが挙げられる。
なお、A(イオン)を含む化合物には、Li、Na、NHから選ばれる1種又は2種以上を含んでいても構わない。
A formed on a substrate (A is one or more atoms selected from K, Rb and Cs) and a thin film containing V are a compound containing A (ion) and a compound containing V Is a thin film obtained by depositing the above mixture on a substrate by various methods.
Examples of the compound containing A (ion) include inorganic compounds or organic compounds containing one or more atoms selected from K, Rb, and Cs.
Examples of inorganic compounds include precursors such as amorphous KVO 3 , RbVO 3 , and CsVO 3 that have not been crystallized.
Examples of organic compounds generally include β-diketonates, long-chain alkoxides having 6 or more carbon atoms, and organic acid salts that may contain halogen.
Specific examples include naphthenate, 2-ethylhexanoate, and acetylacetonate.
In addition, the compound containing A (ion) may contain one or more selected from Li, Na, and NH 4 .

Vを含む化合物としては、これを含む無機化合物または有機化合物が挙げられる。
無機化合物の例としては、結晶化に至っていないアモルファスなKVO、RbVO、CsVO等の前駆体が挙げられる。
有機化合物の例としては、一般的に、バナジウムを含む、β−ジケトナト、炭素数6以上の長鎖のアルコキシド、ハロゲンを含んでもよい有機酸塩などが挙げられる。
具体的には、ナフテン酸塩、2エチルヘキサン酸塩、アセチルアセトナト塩などが挙げられる。
As a compound containing V, the inorganic compound or organic compound containing this is mentioned.
Examples of inorganic compounds include precursors such as amorphous KVO 3 , RbVO 3 , and CsVO 3 that have not been crystallized.
Examples of organic compounds generally include vanadium-containing β-diketonates, long-chain alkoxides having 6 or more carbon atoms, and organic acid salts that may contain halogen.
Specific examples include naphthenate, 2-ethylhexanoate, and acetylacetonate.

上記A及びVを含む化合物は、AとVの原子が実質的に1:1となるように混合して、薄膜形成用の溶液とする。この場合、必要によりトルエン・キシレンなどの溶媒を使用してもよい。
ついでこの溶液は、適宜方法により基板上に有機金属薄膜として製膜される。この場合、酸化物への反応が起こり易く、質の良い膜を製造するために、溶液の作製後(A及びVを含む有機金属溶液の混合後)、速やかに製膜を行うことが望ましい。
製膜方法は制約されず、スパッタリング、MBE,真空蒸着、CVD、化学溶液法(塗布熱分解法、スプレー法)などが適宜用いられる。
The compound containing A and V is mixed so that the atoms of A and V are substantially 1: 1 to obtain a solution for forming a thin film. In this case, a solvent such as toluene / xylene may be used if necessary.
Subsequently, this solution is formed into an organic metal thin film on a substrate by an appropriate method. In this case, in order to produce a high-quality film that easily reacts with an oxide, it is desirable to form a film immediately after the preparation of the solution (after mixing the organometallic solution containing A and V).
The film forming method is not limited, and sputtering, MBE, vacuum deposition, CVD, chemical solution method (coating pyrolysis method, spray method) and the like are appropriately used.

つぎに、製膜された薄膜は、25℃〜450℃の温度に保持された後、波長400nm以下の紫外線レーザ又は紫外線ランプが照射される。
紫外線レーザの場合、具体的には、製膜後、たとえば、100℃で乾燥し、その後、基板温度は室温にし、低エネルギーで紫外レーザ照射を行う。この場合、アブレーションによる膜厚の減少を抑制し、酸化バナジウムの結晶化を促進するために、10〜20mJ/cmの範囲でレーザ照射をすることが望ましい。
また紫外線ランプの場合には、製膜後、基板温度は室温にし、低エネルギーで紫外ランプ照射を行う。この場合、酸化バナジウムの結晶化を促進するために、15〜50mW/cmの条件で紫外線ランプ照射をすることが望ましい。
また、本発明においては、製膜時間の短縮を目的とする場合には、薄膜に紫外ランプを短時間照射した後、紫外線レーザを照射して結晶化させることが好ましい。
Next, after the formed thin film is kept at a temperature of 25 ° C. to 450 ° C., it is irradiated with an ultraviolet laser or an ultraviolet lamp having a wavelength of 400 nm or less.
In the case of an ultraviolet laser, specifically, after film formation, for example, drying is performed at 100 ° C., and then the substrate temperature is set to room temperature, and ultraviolet laser irradiation is performed with low energy. In this case, it is desirable to perform laser irradiation in a range of 10 to 20 mJ / cm 2 in order to suppress a decrease in film thickness due to ablation and promote crystallization of vanadium oxide.
In the case of an ultraviolet lamp, after film formation, the substrate temperature is set to room temperature, and ultraviolet lamp irradiation is performed with low energy. In this case, in order to promote crystallization of vanadium oxide, it is desirable to irradiate with an ultraviolet lamp under a condition of 15 to 50 mW / cm 2 .
In the present invention, when aiming at shortening the film formation time, it is preferable to crystallize the thin film by irradiating it with an ultraviolet lamp for a short time and then irradiating it with an ultraviolet laser.

このような400nm以下の波長を持つ紫外線レーザ又は紫外線ランプによる光照射を用いれば、基板温度が室温でも結晶化し、蛍光を発する。
基板としては、無機基板、有機基板のいずれも使用できるが、無機固体の場合には室温で融解したり、空気中の湿度によって溶けたりすることのないものであれば何れの基板にも製膜可能である。また、有機基板においては光照射によって結晶化するが、実際は光照射した場合、光によって基板温度が10分程度の照射時間で60〜70℃程度に加熱される。そのため、この温度付近で溶けないような材料を用いることが望ましい。また、プラスチック等の有機基板は青色発光するものも多いため、白色光を現すには基板の青色発光が小さいポリカーボネートのようなものを選ぶか、蛍光体の膜厚を厚くすることが望ましい。
When light irradiation by such an ultraviolet laser or ultraviolet lamp having a wavelength of 400 nm or less is used, it is crystallized and emits fluorescence even when the substrate temperature is room temperature.
As the substrate, either an inorganic substrate or an organic substrate can be used. However, in the case of an inorganic solid, it can be formed on any substrate as long as it does not melt at room temperature or melt due to humidity in the air. Is possible. In addition, although the organic substrate is crystallized by light irradiation, in actuality, when light irradiation is performed, the substrate temperature is heated to about 60 to 70 ° C. for an irradiation time of about 10 minutes. Therefore, it is desirable to use a material that does not melt near this temperature. In addition, since many organic substrates such as plastic emit blue light, it is desirable to select a material such as polycarbonate that emits blue light from the substrate or to increase the film thickness of the phosphor in order to exhibit white light.

本発明において得られる組成式AVOで示されるバナジウム酸化物蛍光体薄膜は、白色LEDの励起光源である紫外・近紫外LEDによって励起出来る250〜390nmの範囲に励起スペクトルを持つ。この励起光によって発せられる蛍光スペクトルは390〜680nmに広がり、白色に発光する。そのため白色LED用の蛍光体として好適である。発光スペクトルのピークは490〜502nmの範囲にあるため比較的色温度は高いが、長波長側に強い発光を持つ蛍光体との組み合わせによって暖色系の白色が得ることもできる。また水銀や鉛などを含まないため、環境・人体への悪影響も少ない。
したがって、バナジウム酸化物蛍光体薄膜は白色LEDとしてきわめて有用なものであり、たとえば白色光を必要とする日常灯等の照明器具や各種表示機器に用いられるバックライト等の表示器具等として利用することができる。
The vanadium oxide phosphor thin film represented by the composition formula AVO 3 obtained in the present invention has an excitation spectrum in a range of 250 to 390 nm that can be excited by an ultraviolet / near ultraviolet LED that is an excitation light source of a white LED. The fluorescence spectrum emitted by this excitation light spreads from 390 to 680 nm and emits white light. Therefore, it is suitable as a phosphor for white LED. Since the peak of the emission spectrum is in the range of 490 to 502 nm, the color temperature is relatively high, but a warm white color can be obtained by combining with a phosphor having strong emission on the long wavelength side. In addition, since it does not contain mercury or lead, there are few negative effects on the environment and human body.
Therefore, the vanadium oxide phosphor thin film is extremely useful as a white LED, and can be used, for example, as a lighting device such as a daily light that requires white light or a display device such as a backlight used in various display devices. Can do.

以下、実施例により本願発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例1
2エチルヘキサン酸ルビジウム溶液に2エチルヘキサン酸バナジウム溶液を定比で混合した溶液(C1溶液;Rb:V=1:1(原子比))を作成した。C1溶液をガラス基板に4000rpm、10秒間でスピンコートし、100℃で10分間乾燥した。その後、室温、大気中で308nmのパルスレーザをフルエンス20mJ/cm、10Hz、10分照射した。このようにして作製したRbVO膜は紫外励起による白色蛍光を示した。
Example 1
A solution (C1 solution; Rb: V = 1: 1 (atomic ratio)) in which the vanadium 2-ethylhexanoate solution was mixed with the rubidium 2-ethylhexanoate solution at a constant ratio was prepared. The C1 solution was spin-coated on a glass substrate at 4000 rpm for 10 seconds and dried at 100 ° C. for 10 minutes. Thereafter, a pulse laser of 308 nm was irradiated at a fluence of 20 mJ / cm 2 , 10 Hz, and 10 minutes in the atmosphere at room temperature. The RbVO 3 film thus produced showed white fluorescence due to ultraviolet excitation.

実施例2
実施例1において、レーザフルエンス30mJ/cmで照射したところレーザ照射部は、紫外励起による白色蛍光を示した。
Example 2
In Example 1, when irradiated with a laser fluence of 30 mJ / cm 2 , the laser irradiation part showed white fluorescence by ultraviolet excitation.

実施例3
C1溶液を有機基板(PETフィルム)に4000rpm、10秒間でスピンコートし、100℃で10分間乾燥した。その後、室温、大気中で172nmの紫外線ランプを照射エネルギー38mW/cmで、10分照射した。このようにして作製したRbVO膜は光照射部のみ良い結晶性を持ち、紫外励起による白色蛍光を示した。
Example 3
The C1 solution was spin-coated on an organic substrate (PET film) at 4000 rpm for 10 seconds and dried at 100 ° C. for 10 minutes. Thereafter, an ultraviolet lamp of 172 nm was irradiated at an irradiation energy of 38 mW / cm 2 for 10 minutes in the atmosphere at room temperature. The RbVO 3 film produced in this way had good crystallinity only in the light irradiation part, and showed white fluorescence by ultraviolet excitation.

実施例4
実施例3において、乾燥工程を行わずに紫外線ランプを照射したところ光照射部のみ良い結晶性を持ち、紫外励起による白色蛍光を示した。
Example 4
In Example 3, when the ultraviolet lamp was irradiated without performing the drying step, only the light irradiation part had good crystallinity and showed white fluorescence by ultraviolet excitation.

実施例5
実施例4において紫外線ランプの波長を222nmにして15mW/cmのエネルギー密度で光照射したところ、照射部のみ良い結晶性を持ち、紫外励起による白色蛍光を示した。
Example 5
In Example 4, when the wavelength of the ultraviolet lamp was set to 222 nm and irradiated with light at an energy density of 15 mW / cm 2 , only the irradiated portion had good crystallinity and exhibited white fluorescence by ultraviolet excitation.

実施例6
C1溶液をガラス基板に4000rpm、10秒間でスピンコートし、100℃で10分間乾燥した。その後、室温、大気中で172nmの紫外線ランプを照射エネルギー38mW/cmで、10分照射した。このようにして作製したRbVO膜は光照射部のみ良い結晶性を持ち、紫外励起による白色蛍光を示した。
Example 6
The C1 solution was spin-coated on a glass substrate at 4000 rpm for 10 seconds and dried at 100 ° C. for 10 minutes. Thereafter, an ultraviolet lamp of 172 nm was irradiated at an irradiation energy of 38 mW / cm 2 for 10 minutes in the atmosphere at room temperature. The RbVO 3 film produced in this way had good crystallinity only in the light irradiation part, and showed white fluorescence by ultraviolet excitation.

実施例7
実施例6において、乾燥工程を行わずに紫外線ランプを照射したところ光照射部のみ良い結晶性を持ち、紫外励起による白色蛍光を示した。
Example 7
In Example 6, when the ultraviolet lamp was irradiated without performing the drying process, only the light irradiation part had good crystallinity and showed white fluorescence by ultraviolet excitation.

実施例8
実施例7において、紫外線ランプの波長を222nmにして15mW/cmのエネルギー密度で光照射したところ照射部のみ良い結晶性を持ち、紫外励起による白色蛍光を示した。
Example 8
In Example 7, when the wavelength of the ultraviolet lamp was set to 222 nm and irradiated with light at an energy density of 15 mW / cm 2 , only the irradiated portion had good crystallinity and exhibited white fluorescence by ultraviolet excitation.

本発明方法によれば、基板温度が室温であっても目的のAVO蛍光体の結晶化薄膜を製造することができる。また、光照射による製膜時には200℃以下の低温製膜が可能なためガラス基板等の無機固体基板だけでなく、プラスチック等の有機基板上にも直接製膜できる。そのため、材料コストを抑えられるだけでなく、自在に曲がるディスプレイや照明器具などフレキシブルな発光材料にも応用可能である。
また、本発明において得られる組成式AVOで示されるバナジウム酸化物蛍光体薄膜は白色LEDの励起光源である紫外・近紫外LEDによって励起出来る250〜390nmの範囲に励起スペクトルを持つ。この励起光によって発せられる蛍光スペクトルは390〜680nmに広がり、白色に発光する。そのため白色LED用の蛍光体として好適である。発光スペクトルのピークは490〜502nmの範囲にあるため比較的色温度は高いが、長波長側に強い発光を持つ蛍光体との組み合わせによって暖色系の白色が得ることもできる。また水銀や鉛などを含まないため、環境・人体への悪影響も少ない。
According to the method of the present invention, a target AVO 3 phosphor crystallized thin film can be produced even when the substrate temperature is room temperature. In addition, since film formation by light irradiation can be performed at a low temperature of 200 ° C. or lower, it can be directly formed not only on an inorganic solid substrate such as a glass substrate but also on an organic substrate such as plastic. Therefore, not only can the material cost be reduced, but it can also be applied to flexible light-emitting materials such as displays and lighting fixtures that can be bent freely.
Further, the vanadium oxide phosphor thin film represented by the composition formula AVO 3 obtained in the present invention has an excitation spectrum in a range of 250 to 390 nm that can be excited by an ultraviolet / near ultraviolet LED that is an excitation light source of a white LED. The fluorescence spectrum emitted by this excitation light spreads from 390 to 680 nm and emits white light. Therefore, it is suitable as a phosphor for white LED. Since the peak of the emission spectrum is in the range of 490 to 502 nm, the color temperature is relatively high, but a warm white color can be obtained by combining with a phosphor having strong emission on the long wavelength side. In addition, since it does not contain mercury or lead, there are few negative effects on the environment and human body.

実施例1で得たRbVO薄膜のPLスペクトルPL spectrum of RbVO 3 thin film obtained in Example 1 実施例3で得たRbVO薄膜のPLスペクトルPL spectrum of RbVO 3 thin film obtained in Example 3

Claims (5)

基板上に形成された、A(AはK、RbおよびCsから選ばれる1種又は2種以上の原子である)とVを実質的に1:1の原子比で含む薄膜を、25℃〜450℃の温度に保持した後、波長400nm以下の紫外線レーザを照射し、バナジウム酸化物を結晶化させることを特徴とする組成式AVO3で示されるバナジウム酸化物蛍光体薄膜の製造方法。 A thin film formed on a substrate and containing A (A is one or more atoms selected from K, Rb, and Cs) and V at a substantially 1: 1 atomic ratio, A method for producing a vanadium oxide phosphor thin film represented by the composition formula AVO 3 , wherein the vanadium oxide is crystallized by being irradiated with an ultraviolet laser having a wavelength of 400 nm or less after being held at a temperature of 450 ° C. 10〜20mJ/cm2の範囲で紫外線レーザを照射することを特徴とする請求項1に記載のバナジウム酸化物蛍光体薄膜の製造方法。 2. The method for producing a vanadium oxide phosphor thin film according to claim 1, wherein an ultraviolet laser is irradiated in a range of 10 to 20 mJ / cm < 2 >. 基板上に形成された、A(AはK、RbおよびCsから選ばれる1種又は2種以上の原子である)とVを実質的に1:1の原子比で含む薄膜を、25℃〜450℃の温度に保持した後、波長400nm以下の紫外線ランプを照射し、バナジウム酸化物を結晶化させることを特徴とする組成式AVO3で示されるバナジウム酸化物蛍光体薄膜の製造方法。 A thin film formed on a substrate and containing A (A is one or more atoms selected from K, Rb, and Cs) and V at a substantially 1: 1 atomic ratio, A method for producing a vanadium oxide phosphor thin film represented by the composition formula AVO 3 , wherein the vanadium oxide is crystallized by irradiating an ultraviolet lamp having a wavelength of 400 nm or less after being held at a temperature of 450 ° C. 15〜50mW/cm2の範囲で紫外線ランプを照射することを特徴とする請求項3に記載のバナジウム酸化物蛍光体薄膜の製造方法。 4. The method for producing a vanadium oxide phosphor thin film according to claim 3, wherein the ultraviolet lamp is irradiated in a range of 15 to 50 mW / cm < 2 >. 薄膜に紫外ランプを照射した後、紫外線レーザを照射して結晶化させることを特徴とする請求項1から4のいずれかに記載のバナジウム酸化物蛍光体薄膜の製造方法。   The method for producing a vanadium oxide phosphor thin film according to any one of claims 1 to 4, wherein the thin film is irradiated with an ultraviolet lamp and then irradiated with an ultraviolet laser to cause crystallization.
JP2007259862A 2007-10-03 2007-10-03 Method for producing vanadium oxide phosphor thin film Active JP5182851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007259862A JP5182851B2 (en) 2007-10-03 2007-10-03 Method for producing vanadium oxide phosphor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007259862A JP5182851B2 (en) 2007-10-03 2007-10-03 Method for producing vanadium oxide phosphor thin film

Publications (2)

Publication Number Publication Date
JP2009084531A JP2009084531A (en) 2009-04-23
JP5182851B2 true JP5182851B2 (en) 2013-04-17

Family

ID=40658366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007259862A Active JP5182851B2 (en) 2007-10-03 2007-10-03 Method for producing vanadium oxide phosphor thin film

Country Status (1)

Country Link
JP (1) JP5182851B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6396260B2 (en) * 2015-06-29 2018-09-26 国立研究開発法人産業技術総合研究所 Vanadium oxide fluorescent powder and production method
JP6842631B2 (en) * 2017-06-07 2021-03-17 リンテック株式会社 A coating liquid for forming a luminescent film, a method for preparing the same, and a method for producing a luminescent film.
CN109534811B (en) * 2017-09-21 2021-05-25 中国科学院上海硅酸盐研究所 Metavanadate fluorescent ceramic block material and preparation method thereof
JP7185823B2 (en) * 2018-12-04 2022-12-08 リンテック株式会社 Luminescent film, manufacturing method thereof, and UV irradiation type luminescent sheet
CN114619737A (en) * 2021-10-12 2022-06-14 金华市华翰智能科技合伙企业(有限合伙) Metavanadate fluorescent film and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121121A (en) * 1982-12-25 1984-07-13 Nippon Sheet Glass Co Ltd Method for forming vanadium oxide film to surface of substrate
JPH09157855A (en) * 1995-12-06 1997-06-17 Kansai Shin Gijutsu Kenkyusho:Kk Formation of metal oxide thin film
JP5267965B2 (en) * 2007-08-30 2013-08-21 独立行政法人産業技術総合研究所 Vanadium oxide phosphor

Also Published As

Publication number Publication date
JP2009084531A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP5182851B2 (en) Method for producing vanadium oxide phosphor thin film
TWI418609B (en) MCNO is a phosphor
TW201736573A (en) A composition, color converting sheet and light emitting diode device
JP5120949B2 (en) Method for producing white phosphor
WO2013136732A1 (en) Fluorescent body and light-emitting device using same
CN111269716B (en) Method for in-situ preparation of transition metal doped perovskite quantum dot film
CN112961669A (en) Preparation method of solid-phase carbon quantum dot, solid-phase carbon quantum dot prepared by same and light-emitting device
Zhang et al. Single-phase dual emissive Cu: CdS–ZnSe core–shell nanocrystals with “zero self-absorption” and their application in white light emitting diodes
TWI373513B (en)
JP5912121B2 (en) Mn activated fluorescent material
CN114163997B (en) Semiconductor composite luminescent material, preparation method and luminescent device
KR100458126B1 (en) Green-emitting phosphor for long wavelength ultraviolet and a preparation method thereof
TWI384639B (en) Red phosphor and luminous element using the same
JP5116016B2 (en) Method for manufacturing phosphor thin film
Zhang et al. Synthesis and electroluminescence of novel white fluorescence quantum dots based on a Zn–Ga–S host
US20080044590A1 (en) Manufacturing Method of Phosphor Film
KR101766830B1 (en) Organic/inorganic coating red phosphor and Manufacturing method
JP5765737B2 (en) Vanadium oxide phosphor
JP5331021B2 (en) Yellow phosphor and method for producing the same
WO2014014070A1 (en) Method for manufacturing light-emitting glass thin film
KR101694959B1 (en) Method for fabricating phosphors powder coated with metal oxide material and phosphors powder threby
KR100656993B1 (en) Phospher including sulfur and manufacturing method for it
JP5420015B2 (en) Sulfide phosphor and method for producing the same
JP6952142B2 (en) Manufacturing method of white luminescent material
JP3873507B2 (en) GaN phosphor manufacturing method and GaN phosphor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5182851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250