JP5331021B2 - Yellow phosphor and method for producing the same - Google Patents

Yellow phosphor and method for producing the same Download PDF

Info

Publication number
JP5331021B2
JP5331021B2 JP2010020691A JP2010020691A JP5331021B2 JP 5331021 B2 JP5331021 B2 JP 5331021B2 JP 2010020691 A JP2010020691 A JP 2010020691A JP 2010020691 A JP2010020691 A JP 2010020691A JP 5331021 B2 JP5331021 B2 JP 5331021B2
Authority
JP
Japan
Prior art keywords
sis
added
powder
concentration
yellow phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010020691A
Other languages
Japanese (ja)
Other versions
JP2011157484A (en
Inventor
圭史朗 小原
眞人 垣花
ペトリキン・ヴァレリー
聡子 手束
裕二 高塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Sumitomo Metal Mining Co Ltd
Original Assignee
Tohoku University NUC
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Sumitomo Metal Mining Co Ltd filed Critical Tohoku University NUC
Priority to JP2010020691A priority Critical patent/JP5331021B2/en
Publication of JP2011157484A publication Critical patent/JP2011157484A/en
Application granted granted Critical
Publication of JP5331021B2 publication Critical patent/JP5331021B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a yellow fluorescent substance emitting a light to high luminance with higher efficiency when a required excitation wavelength is from a near-ultraviolet light to a visible light, i.e., in a range of the wavelength of 300-500 nm when further practical use of LED illumination from now is considered, and to provide a method for manufacturing the same. <P>SOLUTION: The yellow fluorescent substance has a crystal structure of the same monoclinic system as Eu<SB>2</SB>SiS<SB>4</SB>, is represented by the composition formula: (Ca<SB>1-y</SB>Sr<SB>y</SB>)<SB>2-x</SB>Eu<SB>x</SB>SiS<SB>4</SB>, has Eu concentration x in a range of 0&lt;x&le;0.2 and Sr concentration y of 0&lt;y&le;0.6, and is excited by a light from the near-ultraviolet ray to the visible area. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、紫外から可視領域の光励起により、高輝度な黄色発光を示す新規な黄色蛍光体およびその製造方法に関するものである。   The present invention relates to a novel yellow phosphor that emits yellow light with high luminance by photoexcitation in the ultraviolet to visible region, and a method for producing the same.

紫外から可視領域の光を吸収して高輝度発光を示す蛍光体は、様々な照明・表示装置などで使用されており、最近、波長300〜500nmの近紫外から可視光を放出する発光ダイオードを励起光源にして高効率に発光する照明が注目されている。特に、高効率の青色発光ダイオードとその青色光により励起される蛍光体を組み合わせることで白色光をつくる照明に注目があつまり、それに適した高効率の蛍光体の開発が進められている。
このような可視光で励起可能な蛍光体を用いた白色LEDはエネルギー変換効率が高く、省エネルギーに有利である。また赤外線や紫外線を発しないことから冷凍食品の展示用照明などに幅広く使用され始めている。
Phosphors that absorb light from the ultraviolet to the visible region and emit light with high brightness are used in various lighting and display devices. Recently, a light emitting diode that emits visible light from the near ultraviolet having a wavelength of 300 to 500 nm is used. Illumination that emits light with high efficiency as an excitation light source has attracted attention. In particular, attention is paid to illumination that produces white light by combining a high-efficiency blue light-emitting diode and a phosphor excited by the blue light, that is, development of a highly-efficient phosphor suitable for it.
A white LED using such a phosphor that can be excited by visible light has high energy conversion efficiency and is advantageous for energy saving. In addition, since it does not emit infrared or ultraviolet light, it has begun to be widely used for lighting for frozen food display.

これまでに、例えば青色蛍光体のBaMgAl1017:Eu2+(BAM)、Sr10(POCl:Eu(SCA)、緑色蛍光体のBaMgAl1017:Eu,Mn(BAM:Mn)やCaScSi12:Ce、SrGa:Euが開発され、ZnSとSrS、CeFを同時スパッタリングして得られるSrS薄膜のSrの一部をZnで置換した緑色のEL発光を示す薄膜も提案されている。 So far, for example, the blue phosphor BaMgAl 10 O 17 : Eu 2+ (BAM), Sr 10 (PO 4 ) 6 Cl 2 : Eu (SCA), and the green phosphor BaMgAl 10 O 17 : Eu, Mn (BAM: Mn), Ca 3 Sc 2 Si 3 O 12 : Ce, SrGa 2 S 4 : Eu were developed, and a part of Sr in a SrS thin film obtained by co-sputtering ZnS, SrS, and CeF 3 was replaced with Zn. A thin film that exhibits EL emission has also been proposed.

また、赤色蛍光体のYS:Eu3+やCaAlSiN:Eu、BaZnS:Euが開発され、また黄色蛍光体としては、YAl12:Ce3(YAG:Ce)やEu賦活Ca−αサイアロンやSrSiO:Euなども開発されている(例えば、非特許文献1、2、および特許文献1参照)。
さらには、BaSiS:Eu2+蛍光体は青緑色の蛍光(非特許文献3参照)を示し、CaSiS:Eu2+蛍光体は黄色と赤色、EuSiSは赤色の蛍光を示すことが知られている(非特許文献4参照)。
Also, red phosphors Y 2 O 2 S: Eu 3+ , CaAlSiN 3 : Eu, Ba 2 ZnS 3 : Eu have been developed, and yellow phosphors include Y 3 Al 5 O 12 : Ce 3 + (YAG: Ce ), Eu-activated Ca-α sialon, Sr 3 SiO 5 : Eu, and the like have also been developed (see, for example, Non-Patent Documents 1 and 2 and Patent Document 1).
Furthermore, Ba 2 SiS 4 : Eu 2+ phosphor exhibits blue-green fluorescence (see Non-Patent Document 3), Ca 2 SiS 4 : Eu 2+ phosphor exhibits yellow and red, and Eu 2 SiS 4 exhibits red fluorescence. It is known (see Non-Patent Document 4).

一方、青色LEDと蛍光体を組み合わせた白色LEDでは、青色LEDと蛍光体の発光の配光が異なるため色の滲みが発生する。すなわち、LEDの発光が見えるため点状の強い発光が見にくいとの指摘があり、近紫外LEDと蛍光体を組み合わせた白色LEDの開発も進められている。しかし近紫外線LEDで励起可能な高効率蛍光体は少なく新規蛍光体が求められている(非特許文献5、6参照)。   On the other hand, in a white LED in which a blue LED and a phosphor are combined, color bleeding occurs because the light distribution of the light emission of the blue LED and the phosphor is different. That is, it has been pointed out that it is difficult to see strong spot-like light emission because the light emission of the LED can be seen, and development of a white LED that combines a near-ultraviolet LED and a phosphor is also underway. However, there are few high-efficiency phosphors that can be excited by near-ultraviolet LEDs, and new phosphors are demanded (see Non-Patent Documents 5 and 6).

特開昭63−000995号公報JP-A-63-000995

「発光デバイスの動向」、東レリサーチ、2006、p.230−239“Trends in light-emitting devices”, Toray Research, 2006, p. 230-239 広崎他、「窒化物蛍光体の開発」、マテリアルインテグレーション、2007、第20巻、第2号、p17−22Hirosaki et al., “Development of Nitride Phosphors”, Material Integration, 2007, Vol. 20, No. 2, p. 17-22 大観、大橋、「白色LED用青色蛍光体Ba2SiS4:CeにおけるAl添加による発光特性の改善」、第321回蛍光体同学会講演会講演集、2008Taikan, Ohashi, “Blue phosphor Ba2SiS4 for white LED: Improvement of light emission characteristics by adding Al in Ce”, Proceedings of the 321st Annual Meeting of the Phosphor Society of Japan, 2008 P F Smet、N Avci、B Loos、J E Van Haecke、D Poelman、Journal Physics Condensed:Matter、2007、19、246223PF Smet, NAvci, B Loos, JE Van Haecke, D Poelman, Journal Physics Condensed: Matter, 2007, 19, 246223 田口常正編、「白色LED照明技術のすべて」、工業調査会、2009Taguchi Tsunemasa, "All about white LED lighting technology", Industrial Research Committee, 2009 大長、榎本、佐々木、四ノ宮、 「近紫外(nUV)励起の新規蛍光体を用いた白色LED」、第330回蛍光体同学会講演会講演集、2009Ocho, Enomoto, Sasaki, and Shinomiya, “White LEDs Using New Phosphors Excited by Near Ultraviolet (nUV)”, Proc. Of the 330th Annual Meeting of the Phosphor Society of Japan, 2009

このように、さまざまな発光色の蛍光体が開発、提案されている中で、これからのLED照明のさらなる実用化を考えた場合には、励起波長が近紫外光から可視光(波長300〜500nm)でより高効率の黄色蛍光体も望まれている。
そこで、本発明は波長300〜500nmの近紫外線から可視領域の光で励起され、高輝度に発光する新規な黄色蛍光体およびその製造方法の提供を目的とする。
As described above, phosphors of various emission colors have been developed and proposed. When considering further practical use of LED lighting in the future, the excitation wavelength is changed from near ultraviolet light to visible light (wavelength 300 to 500 nm). ), A more efficient yellow phosphor is also desired.
Therefore, an object of the present invention is to provide a novel yellow phosphor that is excited by light in the visible region from near ultraviolet rays having a wavelength of 300 to 500 nm and emits light with high luminance, and a method for producing the same.

このような状況の中、本発明者らはCaSiS:Eu2+蛍光体とSrSiS:Eu2+の複合硫化物を検討し、化学式CaSrSiSの化合物が合成できること、そして、この化合物を母体としてEuを賦活剤として添加した場合に、波長300〜500nmの励起光で560nm付近にピークを持つ黄色の高輝度発光を示す新規な黄色蛍光体が得られることを見出した。さらにCaとSrの組成を検討した結果、前記CaSrSiSの結晶相を主成分として含み、組成式(Ca1−ySr2−xEuSiSで表され、0<x≦0.2、0<y≦0.6であれば高輝度な蛍光体が得られることを見出して本発明に至ったものである。 Under such circumstances, the present inventors have studied a composite sulfide of Ca 2 SiS 4 : Eu 2+ and Sr 2 SiS 4 : Eu 2+ , and can synthesize a compound of the chemical formula CaSrSiS 4 , and this compound It was found that when Eu was added as an activator with yellow as a base, a novel yellow phosphor exhibiting yellow high-luminance emission having a peak near 560 nm with excitation light having a wavelength of 300 to 500 nm was obtained. Further, as a result of examining the composition of Ca and Sr, the composition contains the crystal phase of CaSrSiS 4 as a main component, and is represented by a composition formula (Ca 1-y Sr y ) 2−x Eu x SiS 4 , where 0 <x ≦ 0. It has been found that a high-luminance phosphor can be obtained if 2, 0 <y ≦ 0.6, and the present invention has been achieved.

本発明の第一の発明は、近紫外線から可視領域の光で励起される黄色蛍光体であって、EuSiSと同じ単斜晶系の結晶構造を有し、Eu濃度をxとする場合の組成式(Ca1−ySr2−xEuSiSで表される黄色蛍光体であることを特徴とし、この場合において、Eu濃度xは、0<x≦0.2の範囲であり、Sr濃度yは、0<y≦0.6の範囲である
The first invention of the present invention is a yellow phosphor excited by near ultraviolet to visible light, has the same monoclinic crystal structure as Eu 2 SiS 4, and Eu concentration is x The composition formula (Ca 1-y Sr y ) 2−x Eu x SiS 4 is characterized by being a yellow phosphor, and in this case, the Eu concentration x is 0 <x ≦ 0.2 The Sr concentration y is in the range of 0 <y ≦ 0.6 .

この黄色蛍光体の製造方法である第二の発明は、Euが均一に分散するEu添加(Ca1−ySr粉末、Si粉末およびS粉末を、Eu濃度をxとする場合の組成式(Ca1−ySr2−xEuSiSとなるように混合した混合物を、石英アンプルに真空封入し、前記石英アンプルを900℃以上1000℃以下の温度で焼成することで、Eu濃度xが0<x≦0.2の範囲、Sr濃度yが0<y≦0.6の範囲である組成式(Ca1−ySr2−xEuSiSで表される黄色蛍光体を作製することを特徴とする。 Second invention this is a method for producing a yellow phosphor, Eu Addition Eu are uniformly dispersed (Ca 1-y Sr y) 2 S 2 powder, a Si powder and S powder, when the Eu concentration x The mixture of the composition formula (Ca 1-y Sr y ) 2-x Eu x SiS 4 is vacuum-sealed in a quartz ampule, and the quartz ampule is fired at a temperature of 900 ° C. or higher and 1000 ° C. or lower. In the composition formula (Ca 1−y Sr y ) 2−x Eu x SiS 4 where the Eu concentration x is in the range of 0 <x ≦ 0.2 and the Sr concentration y is in the range of 0 <y ≦ 0.6. A yellow phosphor is produced.

さらには、第三の発明として、Euが均一に分散するEu添加(Ca1−ySr粉末が、まず第一の工程として、酸化Euを酸で溶解した溶解液を乾燥して得られた乾燥物を水に溶解し、次いでグリコール、オキシカルボン酸、炭酸Sr、炭酸Caを順次加えた溶解液を作製し、この作製した溶解液を加熱してゲル化させて、そのゲルを熱分解、大気焼成することによりEuが均一に分散するEu添加Ca1−ySrCOを作製する工程、ついで、第二の工程として、第1工程で得られたEuが均一に分散するEu添加Ca1−ySrCOを、硫化水素雰囲気下で硫化してEuが均一に分散するEu添加(Ca1−ySr粉末を作製する工程、によって作製される黄色蛍光体の製造方法で、本発明に係る黄色蛍光体は、前記第一の工程および第二の工程の工程とから製造されるEuが均一に分散するEu添加(Ca1−ySr粉末を用いることにより優れた特性が得られものである。 Furthermore, as a third invention, Eu-added (Ca 1-y Sr y ) 2 S 2 powder in which Eu is uniformly dispersed is first dried as a first step by dissolving a solution obtained by dissolving Eu oxide with an acid. The resulting dried product is dissolved in water, and then a solution in which glycol, oxycarboxylic acid, carbonic acid Sr, and carbonic acid carbonate are sequentially added is prepared. The step of producing Eu-added Ca 1-y Sr y CO 3 in which Eu is uniformly dispersed by pyrolyzing and firing in the atmosphere, and then, as a second step, Eu obtained in the first step is uniformly dispersed The Eu-added Ca 1-y Sr y CO 3 is produced by sulfidizing under a hydrogen sulfide atmosphere to produce Eu-added (Ca 1-y Sr y ) 2 S 2 powder in which Eu is uniformly dispersed. The method of manufacturing the yellow phosphor Yellow phosphor according to Ming, distinguished by the use of the first step and the second Eu Addition Eu are uniformly dispersed to be produced from the process of step (Ca 1-y Sr y) 2 S 2 powder Characteristics are obtained.

本発明は、波長300〜500nmの近紫外線領域から可視領域の光で励起して高輝度に発光する新規な黄色蛍光体およびその製造方法である。
本発明に係る黄色蛍光体は、紫外光で励起するランプや近紫外や可視光を放射する発光ダイオードと組み合わせて、高輝度な黄色発光・表示素子、または他の蛍光体などと組み合わせて白色や色々な色の発光・表示素子の形成を容易にするものである。
The present invention is a novel yellow phosphor that emits light with high luminance by being excited by light in the visible region from the near ultraviolet region having a wavelength of 300 to 500 nm, and a method for producing the same.
The yellow phosphor according to the present invention is combined with a lamp that is excited by ultraviolet light or a light emitting diode that emits near ultraviolet light or visible light, and is combined with a high-luminance yellow light emitting / display element, or another phosphor to produce white or This facilitates the formation of light emitting / display elements of various colors.

本発明のEu添加CaSrSiS蛍光体のX線回折パターンを示す図である。Is a diagram showing an X-ray diffraction pattern of Eu added CaSrSiS 4 phosphor of the present invention. Eu濃度xが0.02の時のCa/Srの異なる(Ca1−ySr2−xEuSiSのX線回折パターンを比較した図である。Eu concentration x is a diagram comparing different (Ca 1-y Sr y) 2-x Eu x X -ray diffraction pattern of SiS 4 of Ca / Sr when 0.02. Eu濃度xが0.02の時の(Ca1−ySr1.98Eu0.02SiSの発光を示す図で、(a)はy=0、(b)はy=0.25、(c)はy=0.5、(d)はy=0.75、(e)はy=1.0の場合である。(Ca 1-y Sr y ) 1.98 Eu 0.02 SiS 4 luminescence when Eu concentration x is 0.02, (a) is y = 0, (b) is y = 0. 25, (c) is for y = 0.5, (d) is for y = 0.75, and (e) is for y = 1.0. 実施例1のEu添加CaSrSiS蛍光体のX線回折パターンを示す図である。 4 is a diagram showing an X-ray diffraction pattern of the Eu-added CaSrSiS 4 phosphor of Example 1. FIG. 実施例1、2および比較例1で作製したEu濃度xが0.02の時のCa/Srの異なる(Ca1−ySr2−xEuSiSのX線回折パターンを比較した図である。The X-ray diffraction patterns of (Ca 1−y Sr y ) 2−x Eu x SiS 4 having different Ca / Sr when the Eu concentration x produced in Examples 1 and 2 and Comparative Example 1 was 0.02 were compared. FIG. 実施例1のEu添加CaSrSiS蛍光体の蛍光強度測定結果を示す図である。FIG. 3 is a graph showing the fluorescence intensity measurement results of the Eu-added CaSrSiS 4 phosphor of Example 1. 実施例1のEu添加CaSrSiS蛍光体の蛍光強度とEu濃度の相関を示す図である。FIG. 3 is a diagram showing a correlation between fluorescence intensity and Eu concentration of Eu-added CaSrSiS 4 phosphor of Example 1. 比較例1のy=0の組成で作製したCa1.98Eu0.02SiSの励起スペクトルと発光スペクトルをYAG:Ceと比較した図である。The excitation and emission spectra of Ca 1.98 Eu 0.02 SiS 4 prepared with the composition of y = 0 in Comparative Example 1 YAG: is a graph comparing the Ce. 実施例2のy=0.25の組成で作製した(Ca0.75Sr0.251.98Eu0.02SiSの励起スペクトルと発光スペクトルをYAG:Ceと比較した図である。The excitation and emission spectra of Example 2 was prepared with the composition of y = 0.25 (Ca 0.75 Sr 0.25 ) 1.98 Eu 0.02 SiS 4 YAG: is a graph comparing the Ce. 実施例1のy=0.5の組成で作製した(Ca0.5Sr0.51.98Eu0.02SiSの励起スペクトルと発光スペクトルをYAG:Ceと比較した図である。The excitation and emission spectra of Example 1 was prepared with the composition of y = 0.5 (Ca 0.5 Sr 0.5 ) 1.98 Eu 0.02 SiS 4 YAG: is a graph comparing the Ce. 比較例1のy=0.75の組成で作製した(Ca0.25Sr0.751.98Eu0.02SiSの励起スペクトルと発光スペクトルをYAG:Ceと比較した図である。The excitation and emission spectra of the fabricated with the composition of the y = 0.75 Comparative Example 1 (Ca 0.25 Sr 0.75) 1.98 Eu 0.02 SiS 4 YAG: is a graph comparing the Ce. 比較例1のy=1の組成で作製したSr1.98Eu0.02SiSの励起スペクトルと発光スペクトルをYAG:Ceと比較した図である。The excitation and emission spectra of Sr 1.98 Eu 0.02 SiS 4 prepared with the composition of y = 1 Comparative Example 1 YAG: is a graph comparing the Ce.

本発明の黄色蛍光体は、組成式(Ca1−ySr2−xEuSiS(0<x≦0.2、0<y≦0.6)で表され、X線回折レベルにおいては、EuSiSと同じ単斜晶系の結晶構造を有するほぼ単一相で構成されている。
この組成式中の変数xはEu濃度を示すもので、Euが含まれていない場合には黄色の蛍光を示さず、xが0.2を超えると濃度消光により輝度が低下することから、このxの範囲は0<x≦0.2であることが必要であり、より好ましいxの範囲は0.001<x≦0.09である。また、この組成式中の変数yはSr濃度を示すものであるが、本発明においては、0<y≦0.6の範囲であることが必要であり、より好ましくは0.2≦y≦0.6の範囲である。
The yellow phosphor of the present invention is represented by a composition formula (Ca 1−y Sr y ) 2−x Eu x SiS 4 (0 <x ≦ 0.2, 0 <y ≦ 0.6), and has an X-ray diffraction level. Is composed of a substantially single phase having the same monoclinic crystal structure as Eu 2 SiS 4 .
The variable x in this composition formula represents the Eu concentration. When Eu is not included, yellow fluorescence is not exhibited, and when x exceeds 0.2, the luminance decreases due to concentration quenching. The range of x needs to satisfy 0 <x ≦ 0.2, and a more preferable range of x is 0.001 <x ≦ 0.09. The variable y in the composition formula indicates the Sr concentration. In the present invention, it is necessary that the range is 0 <y ≦ 0.6, and more preferably 0.2 ≦ y ≦. The range is 0.6.

さらに、図1に示す本発明の黄色蛍光体のX線回折パターンからは、本発明の黄色蛍光体はX線回折レベルにおいて、ほぼ単一相であり、この黄色蛍光体が単一相の結晶構造を有し、賦活剤としてCaまたはSrの一部をEuで置換したものであることがわかる。   Furthermore, from the X-ray diffraction pattern of the yellow phosphor of the present invention shown in FIG. 1, the yellow phosphor of the present invention is almost single phase at the X-ray diffraction level, and this yellow phosphor is a single phase crystal. It can be seen that it has a structure and a part of Ca or Sr is substituted with Eu as an activator.

また、Eu濃度xが0,02の場合の組成式(Ca1−ySr2−xEuSiSにおいて、yを0.0、0.25、0.5、0.75、1.0と変化させた時のX線回折パターンを図2、その発光の様子を図3に示すが、本発明の黄色蛍光体のX線回折パターン(図2(b)、(c))は、図2(a)のCaSiS或いは図2(e)のSrSiSとは異なっているものであることがわかる。 Further, in the composition formula (Ca 1-y Sr y ) 2-x Eu x SiS 4 when the Eu concentration x is 0.02, y is set to 0.0, 0.25, 0.5, 0.75, 1 FIG. 2 shows the X-ray diffraction pattern when changed to 0.0, and FIG. 3 shows the state of light emission. The X-ray diffraction patterns (FIGS. 2B and 2C) of the yellow phosphor of the present invention are as follows. 2A is different from Ca 2 SiS 4 in FIG. 2A or Sr 2 SiS 4 in FIG.

次に、本発明の黄色蛍光体の製造方法について説明する。
本発明の組成式(Ca1−ySr2−xEuSiS(0<x≦0.2、0<y≦0.6)で表される黄色蛍光体の製造は、Euが均一に分散するEu添加(Ca1−ySr粉末、Si粉末およびS粉末を、所定のEu濃度(x)を持つ(Ca1−ySr2−x0Eux0SiSとなるように所定量を混合した後、石英アンプルに真空封入し、900℃以上1000℃以下の温度で焼成して合成する製造方法で行なわれる。なお、S粉末は高温で蒸気になるため所定量よりも過剰に添加しても良い。
Next, the manufacturing method of the yellow fluorescent substance of this invention is demonstrated.
The production of the yellow phosphor represented by the composition formula (Ca 1-y Sr y ) 2-x Eu x SiS 4 (0 <x ≦ 0.2, 0 <y ≦ 0.6) according to the present invention Uni-dispersed Eu-added (Ca 1-y Sr y ) 2 S 2 powder, Si powder and S powder have a predetermined Eu concentration (x 0 ) (Ca 1-y Sr y ) 2-x0 Eu x0 SiS A predetermined amount is mixed so as to be 4, and then sealed in a quartz ampoule and baked at a temperature of 900 ° C. or higher and 1000 ° C. or lower and synthesized. In addition, since S powder turns into vapor | steam at high temperature, you may add more than predetermined amount.

この組成式(Ca1−ySr2−xEuSiS(0<x≦0.2、0<y≦0.6)で表される粉末の合成は、不活性ガス中でも可能であるが、ガスに酸素や水分が混入すると硫酸塩や酸化物が形成されることから、得られる蛍光体の蛍光特性は、その再現性に欠けて不安定となるため、焼成に際しては、酸素や水分の混入を極力防止して焼成する必要があり、混合した粉末原料を真空封入して焼成を行うことが望ましい。
また、この真空封入して焼成する以外の方法としては、例えば真空引き後にArガス置換しホットプレスして合成する方法を用いることも可能であるが、Arガス置換時には、乾燥Arガスや高純度Arガスなどを使用して酸素や水の混入を防止すると良い。
The synthesis of the powder represented by this composition formula (Ca 1-y Sr y ) 2−x Eu x SiS 4 (0 <x ≦ 0.2, 0 <y ≦ 0.6) is possible even in an inert gas. However, when oxygen or moisture is mixed into the gas, sulfates and oxides are formed, so that the fluorescent properties of the obtained phosphor are unstable due to lack of reproducibility. It is necessary to perform the firing while preventing the mixing of moisture as much as possible, and it is desirable to perform the firing by enclosing the mixed powder raw material in a vacuum.
Moreover, as a method other than this vacuum sealing and firing, for example, it is possible to use a method of synthesizing by hot pressing after Ar gas replacement after evacuation, but when Ar gas replacement, dry Ar gas or high purity Ar gas or the like may be used to prevent oxygen and water from entering.

なお、組成式(Ca1−ySr2−xEuSiS(0<x≦0.2、0<y≦0.6)を作製する他の製造方法として、まずCa2−xEuSiSおよびSr2−xEuSiSを合成し、これらを混合し、その混合物を石英アンプルに真空封入し、900℃以上1000℃以下の温度で焼成する方法、或いは原料としてSrS、CaS、SiおよびEu源としてのEuS、EuF、Euから選ばれる少なくとも一種とを、それぞれ所定量混合し、その混合物を硫化水素フロー中で、850℃以上1000℃以下の温度で焼成する固相反応法でも合成可能である。 As another production method for producing the composition formula (Ca 1-y Sr y ) 2-x Eu x SiS 4 (0 <x ≦ 0.2, 0 <y ≦ 0.6), first, Ca 2-x Eu x SiS 4 and Sr 2-x Eu x SiS 4 are synthesized, mixed, and the mixture is vacuum-sealed in a quartz ampoule and fired at a temperature of 900 ° C. or higher and 1000 ° C. or lower, or SrS as a raw material. At least one selected from EuS, EuF 3 and Eu 2 O 3 as CaS, Si and Eu sources are mixed in a predetermined amount, and the mixture is fired at a temperature of 850 ° C. or higher and 1000 ° C. or lower in a hydrogen sulfide flow. It can also be synthesized by a solid phase reaction method.

しかしながら、前段落の方法で合成した場合には、(Ca1−ySr2−xEuSiSの単一相にはならない。また固相反応法ではEuが均一にならないという問題もあるため、本発明の高輝度な黄色発光を示す黄色蛍光体を得ることができない。 However, when synthesized by the method of the previous paragraph, it does not become a single phase of (Ca 1-y Sr y ) 2−x Eu x SiS 4 . In addition, there is a problem that Eu is not uniform in the solid phase reaction method, so that the yellow phosphor showing yellow light emission with high luminance of the present invention cannot be obtained.

さらに、Siが過剰に含まれていると、SiSは融点が1090℃で蒸気圧も高いために、高温では高温相としてSiSが生成するとみられ、このSiSはSiSより融点が低いために、SiSが生成する場合は1000℃程度で液相が出現する可能性を有し、蛍光体の作製を阻害する恐れがあり、従って組成式(Ca1−ySr2−xEuSiSを合成するにはSiSが生成しないように硫黄雰囲気で合成するなどの対応が必要である。 Furthermore, if Si is contained excessively, since SiS 2 has a melting point of 1090 ° C. and a high vapor pressure, it is considered that SiS is generated as a high-temperature phase at a high temperature, and this SiS has a lower melting point than SiS 2. When SiS is formed, a liquid phase may appear at about 1000 ° C., which may hinder the production of the phosphor. Therefore, the composition formula (Ca 1-y Sr y ) 2-x Eu x SiS In order to synthesize 4 , it is necessary to synthesize in a sulfur atmosphere so that SiS is not generated.

次に、本発明の黄色蛍光体の製造に用いるEuが均一に分散するEu添加(Ca1−ySr粉末の製造方法を説明する、が本発明の特徴とするところは、溶液法を用いてCa、Ba、Euが均一に拡散した中間生成物を経て、Eu添加CaSrSが作製されることにある。
本発明は第一の工程として、酸化Euを酸で溶解した溶解液を乾燥して得られる乾燥物を水に溶解し、グリコールとオキシカルボン酸、炭酸Srと炭酸Caを順次加えて溶解し、その溶解液を加熱してゲル化させ、そのゲルを熱分解、大気焼成することによりEuが均一に分散するEu添加(Ca1−ySr)CO(上記中間生成物)を作製し、続いて第二の工程として、第一の工程で作製したEuが均一に分散するEu添加Ca1−ySrCOを、硫化水素雰囲気下で硫化してEuが均一に分散するEu添加CaSrS粉末を作製するものである。
Then, Eu is Eu added (Ca 1-y Sr y) 2 S 2 powder production method will be described to uniformly disperse for use in the production of the yellow phosphor of the present invention, but it is an aspect of the present invention, Eu-added CaSrS 2 is produced through an intermediate product in which Ca, Ba, and Eu are uniformly diffused using a solution method.
In the present invention, as a first step, a dried product obtained by drying a solution obtained by dissolving Eu oxide with an acid is dissolved in water, and glycol and oxycarboxylic acid, Sr carbonate and Ca carbonate are sequentially added and dissolved. The dissolved solution is heated to be gelled, and the gel is thermally decomposed and fired in the air to produce Eu addition (Ca 1-y Sr y ) CO 3 (the above intermediate product) in which Eu is uniformly dispersed, Subsequently, as a second step, Eu-added Ca 1-y Sr y CO 3 in which Eu produced in the first step is uniformly dispersed is sulfided in a hydrogen sulfide atmosphere and Eu-added CaSrS in which Eu is uniformly dispersed. Two powders are produced.

より詳細な本発明の製造方法を、濃度yが0.5の場合を用いて以下に説明する。
第一の工程として、最初に原料の酸化Eu(Eu)を酸で溶解して溶解液を得るには、濃度40〜60質量%の硝酸、または酢酸に溶解するのが好ましい。なお、硫酸や塩酸は酸化Euの溶解には使用できるが、硫酸痕や塩素が残留するとSrやCaの完全溶解が困難なため好ましくない。この原料の酸化Eu(Eu)を完全に溶解させるには1時間程度の攪拌を行うと良い。
A more detailed manufacturing method of the present invention will be described below using a case where the concentration y is 0.5.
As a first step, in order to obtain a solution by first dissolving raw material Eu oxide (Eu 2 0 3 ) with an acid, it is preferably dissolved in nitric acid or acetic acid having a concentration of 40 to 60% by mass. Although sulfuric acid and hydrochloric acid can be used for dissolving Eu oxide, if sulfuric acid traces or chlorine remain, it is not preferable because it is difficult to completely dissolve Sr and Ca. In order to completely dissolve this raw material Eu oxide (Eu 2 0 3 ), stirring is preferably performed for about 1 hour.

次に酸化Euの溶解液を乾燥により、過剰の硝酸を蒸発させて乾燥物を得る。このようにして得られる乾燥物を純水に溶解し、次いでオキシカルボン酸とグリコールを加える。
加えるオキシカルボン酸としてはクエン酸、リンゴ酸、酒石酸などが使用でき、クエン酸は特に好ましい。グリコールとしてはプロピレングリコールやエチレングリコール、ポリビニルアルコールなどが使用できる。特にはプロピレングリコールが好ましい。
Next, by drying the solution of Eu oxide, excess nitric acid is evaporated to obtain a dried product. The dried product thus obtained is dissolved in pure water, and then oxycarboxylic acid and glycol are added.
As the oxycarboxylic acid to be added, citric acid, malic acid, tartaric acid and the like can be used, and citric acid is particularly preferable. As glycol, propylene glycol, ethylene glycol, polyvinyl alcohol, or the like can be used. In particular, propylene glycol is preferable.

次に、オキシカルボン酸としてクエン酸、グリコールとしてプロピレングリコールを加えた場合では、クエン酸が完全に溶解してから、液温を35〜45℃まで上昇させ同モル量の炭酸ストロンチウムと炭酸カルシウムを加えて40〜85℃に保持して完全に溶解するまで攪拌する。その際には、難溶性の炭酸塩を完全に溶解するため8時間以上攪拌するのが好ましい。クエン酸は金属元素のモル数の4〜6倍、プロピレングリコールは8〜12倍加えることが望ましい。
また、難溶性の炭酸塩や酸化物ではなく酢酸塩などのストロンチウム、バリウムやカルシウムの金属元素が溶解した水溶液を混合し、クエン酸溶液などの錯形成材を含む溶液に混合して錯化してもよい。
Next, in the case of adding citric acid as oxycarboxylic acid and propylene glycol as glycol, after the citric acid is completely dissolved, the liquid temperature is increased to 35 to 45 ° C., and the same molar amounts of strontium carbonate and calcium carbonate are added. In addition, the mixture is kept at 40 to 85 ° C. and stirred until it is completely dissolved. In that case, it is preferable to stir for 8 hours or more in order to completely dissolve the hardly soluble carbonate. It is desirable to add citric acid 4 to 6 times the number of moles of metal element and propylene glycol 8 to 12 times.
In addition, an aqueous solution in which metal elements such as strontium such as acetate and barium and calcium are dissolved, rather than poorly soluble carbonates and oxides, is mixed into a solution containing a complexing material such as a citric acid solution and complexed. Also good.

この炭酸塩を完全に溶解した後、重合させるため液温を120〜250℃、より好ましくは180〜220℃にして粘性を有するゲル状になるまで攪拌する。これによりEuを均一に含んだゲルが得られる。
続いて、得られたゲルを400〜500℃、より好ましくは440〜460℃に加熱し、ゲルを熱分解させて前駆体粉末を作製する。前駆体粉末の熱分解が不十分な場合は更に500℃〜550℃で2〜4時間の熱処理を加えても良い。その後、得られた前駆体粉末を軽く粉砕し炭酸塩化するためアニールを行なう。アニール処理条件としては、アニール温度は650〜1000℃、より好ましくは750〜900℃であり、アニール時間は1〜24時間、より好ましくは2〜10時間である。このようにして第一の工程によるEuが均一に分散するEu添加Ca0.5Sr0.5COが得られる。なお炭酸カルシウムは比較的低温で分解し、酸化カルシウムになる。酸化カルシウムは大気中の水分と反応して水酸化カルシウムを形成することがある。従って焼成条件によっては酸化カルシウムや水酸化カルシウムが混ざった炭酸塩になるがEuは均一に分散しており、酸化カルシウムや水酸カルシウムでも問題なく硫化できる。
After this carbonate is completely dissolved, the liquid temperature is set to 120 to 250 ° C., more preferably 180 to 220 ° C., for polymerization, and the mixture is stirred until a viscous gel is formed. Thereby, a gel containing Eu uniformly is obtained.
Subsequently, the obtained gel is heated to 400 to 500 ° C., more preferably 440 to 460 ° C., and the gel is thermally decomposed to produce a precursor powder. When the thermal decomposition of the precursor powder is insufficient, a heat treatment may be further performed at 500 to 550 ° C. for 2 to 4 hours. Thereafter, the obtained precursor powder is lightly pulverized and annealed for carbonation. As annealing conditions, the annealing temperature is 650 to 1000 ° C., more preferably 750 to 900 ° C., and the annealing time is 1 to 24 hours, more preferably 2 to 10 hours. Thus, Eu-added Ca 0.5 Sr 0.5 CO 3 in which Eu is uniformly dispersed by the first step is obtained. Calcium carbonate decomposes at a relatively low temperature and becomes calcium oxide. Calcium oxide may react with moisture in the atmosphere to form calcium hydroxide. Therefore, depending on the firing conditions, it becomes a carbonate mixed with calcium oxide or calcium hydroxide, but Eu is uniformly dispersed, and even calcium oxide or calcium hydroxide can be sulfided without any problem.

次の第二の工程では、第一の工程で作製したEuが均一に分散するEu添加Ca0.5Sr0.5COを硫化水素雰囲気下で硫化してEuが均一に分散するEu添加CaSrS粉末を作製する。 In the next second step, Eu Addition Eu and Eu added Ca 0.5 Sr 0.5 CO 3 which Eu was prepared in the first step is to uniformly disperse the sulfide under an atmosphere of hydrogen sulfide are uniformly dispersed CaSrS 2 powder is prepared.

具体的には、第一の工程で作製したEu添加Ca0.5Sr0.5CO粉末を、10%硫化水素を含んだ窒素、または10%硫化水素を含んだアルゴンガス中で加熱し、850〜1100℃、より好ましくは900〜1000℃の温度で7〜12時間アニール処理を施してEuが均一に分散するEu添加CaSrS粉末を得ることができる。
なお、本発明ではCaとSrの濃度比を変化させる、すなわち(Ca1−ySrとする場合のSr濃度yを0<y≦0.6の範囲で変化させることもでき、所定量の炭酸Ca、炭酸Srを使用することで、所望のCaとSrの濃度比の(Ca1−ySr粉末を得ることができる。
Specifically, the Eu-added Ca 0.5 Sr 0.5 CO 3 powder produced in the first step is heated in nitrogen containing 10% hydrogen sulfide or argon gas containing 10% hydrogen sulfide. An Eu-added CaSrS 2 powder in which Eu is uniformly dispersed can be obtained by annealing at a temperature of 850 to 1100 ° C., more preferably 900 to 1000 ° C. for 7 to 12 hours.
In the present invention, the concentration ratio of Ca and Sr can be changed, that is, the Sr concentration y in the case of (Ca 1−y Sr y ) 2 S 2 can be changed in the range of 0 <y ≦ 0.6. By using a predetermined amount of Ca carbonate and Sr carbonate, (Ca 1-y Sr y ) 2 S 2 powder having a desired concentration ratio of Ca and Sr can be obtained.

このようにして得られる粉末は、X線回折によればSrSとCaSに一致するXRDパターンを示す。なお、アニール処理中は、硫化水素を含むガスが必要であり、また反応終了後の冷却中、ガス中に硫化水素が無いと硫酸塩が生成することがあるため、冷却が完了し室温になるまで硫化水素を流入させることが好ましい。
また、硫酸塩を含む場合は粉末が黄色を示す場合がある。そのような場合は、真空中でアニール処理を行うことで硫化物に還元することができる。その条件としては真空度を0.1〜5Pa程度で、アニール温度920〜1000℃で7〜12時間行うと硫酸塩を硫化物へ還元することができる。
以下に実施例を用いて、本発明を詳細に説明する。
The powder obtained in this way exhibits an XRD pattern consistent with SrS and CaS according to X-ray diffraction. During annealing, a gas containing hydrogen sulfide is required, and during the cooling after the completion of the reaction, if there is no hydrogen sulfide in the gas, a sulfate may be generated. It is preferable to allow hydrogen sulfide to flow in.
Moreover, when sulfate is included, the powder may show a yellow color. In such a case, it can be reduced to sulfide by annealing in vacuum. As the conditions, when the degree of vacuum is about 0.1 to 5 Pa and the annealing temperature is 920 to 1000 ° C. for 7 to 12 hours, sulfate can be reduced to sulfide.
Hereinafter, the present invention will be described in detail using examples.

1.Eu添加(Ca1−ySr粉末の製造:y=0.5
[第一の工程]
まず、第一の工程で作製する炭酸塩のEu濃度xが0.02になるように、酸化ユーロピウム(フルウチ化学株式会社製 3N)0.143gを濃度60%の硝酸(関東化学株式会社製 60%)1mlに溶解し、次いで5分後に純水5mlを加え、更に完全に溶解させるため1時間攪拌した。攪拌後、この液に純水50ml、プロピレングリコール(関東化学株式会社製99%)30.75mlとクエン酸(和光純薬株式会社製 98%)31.09gを加え、クエン酸が完全に溶解した後、液温を40℃にしてさらに炭酸ストロンチウム(SrCO)2.95gと炭酸カルシウム(CaCO)2.00gを加え、8時間攪拌して炭酸塩を完全に溶解させた。続いて、溶解した混合液の液温を200℃に高めて、粘性を有するゲル状になるまで攪拌した。攪拌後、得られたゲルをマントルヒーターで450℃に加熱し、ゲルを熱分解させて前駆体粉末を作製し、この前駆体粉末をメノウ乳鉢で軽く粉砕した後アルミナの坩堝に入れて管状炉により800℃、2時間のアニールを行って炭酸塩を作製した。
1. Production of Eu-added (Ca 1-y Sr y ) 2 S 2 powder: y = 0.5
[First step]
First, 0.143 g of europium oxide (3N manufactured by Furuuchi Chemical Co., Ltd.) was added to nitric acid (60 manufactured by Kanto Chemical Co., Ltd.) 60% so that the Eu concentration x of the carbonate prepared in the first step was 0.02. %) Was dissolved in 1 ml, and 5 minutes later, 5 ml of pure water was added, and the mixture was further stirred for 1 hour for complete dissolution. After stirring, 50 ml of pure water, 30.75 ml of propylene glycol (99% manufactured by Kanto Chemical Co., Inc.) and 31.09 g of citric acid (98% manufactured by Wako Pure Chemical Industries, Ltd.) were added to this solution, and the citric acid was completely dissolved. Thereafter, the liquid temperature was set to 40 ° C., and 2.95 g of strontium carbonate (SrCO 3 ) and 2.00 g of calcium carbonate (CaCO 3 ) were further added, followed by stirring for 8 hours to completely dissolve the carbonate. Subsequently, the temperature of the dissolved mixture was increased to 200 ° C. and stirred until it became a viscous gel. After stirring, the obtained gel is heated to 450 ° C. with a mantle heater, the gel is pyrolyzed to produce a precursor powder, this precursor powder is lightly pulverized with an agate mortar, and then placed in an alumina crucible and a tubular furnace The carbonic acid salt was produced by annealing at 800 ° C. for 2 hours.

得られた粉末のX線回折を行ったところ、炭酸ストロンチウム(SrCO)と炭酸カルシウム(CaCO)に一致するXRDパターンのみが得られ、Euが均一に分散したEu添加Ca0.5Sr0.5CO粉末が得られたことを確認した。 When X-ray diffraction of the obtained powder was performed, only an XRD pattern corresponding to strontium carbonate (SrCO 3 ) and calcium carbonate (CaCO 3 ) was obtained, and Eu-added Ca 0.5 Sr 0 in which Eu was uniformly dispersed was obtained. It was confirmed that 0.5 CO 3 powder was obtained.

[第二の工程]
第二の工程は、第一の工程で作製したEuが均一に分散したEu添加Ca0.5Sr0.5CO粉末1.0gを、硫化水素濃度が10%のアルゴン−硫化水素混合ガス中で加熱して、950℃、5時間のアニールを行いEu添加CaSrS粉末を得た。その粉末のX線回折を行ったところCaSとSrSに一致するXRDパターンのみが観察された。
[Second step]
In the second step, 1.0 g of Eu-added Ca 0.5 Sr 0.5 CO 3 powder in which Eu produced in the first step is uniformly dispersed is mixed with an argon-hydrogen sulfide mixed gas having a hydrogen sulfide concentration of 10%. It was heated in, and annealed at 950 ° C. for 5 hours to obtain Eu-added CaSrS 2 powder. When X-ray diffraction of the powder was performed, only XRD patterns corresponding to CaS and SrS were observed.

2.(Ca1−ySr2−xEuSiS(x=0.02、y=0.5)の製造
次に、組成式(Ca0.5Sr0.51.98Eu0.02SiS(x=0.02、y=0.5)となるように、このEu添加CaSrS粉末0.195g、fumed Si(Wako製 98%)0.028gおよびS粉末(関東化学製99.5%)0.065gを秤量し、これらをメノウ乳鉢で20分混合し、この混合物をハンドプレスで2MPaまで加圧して作製した成型体(ペレット)を石英アンプルに真空封入し、この石英アンプルを950℃まで加熱し24時間保持した熱処理を行った。
2. Production of (Ca 1-y Sr y ) 2-x Eu x SiS 4 (x = 0.02, y = 0.5) Next, a composition formula (Ca 0.5 Sr 0.5 ) 1.98 Eu 0 .02 SiS 4 (x = 0.02, y = 0.5) and so that, the Eu added CaSrS 2 powder 0.195 g, fumed Si (Wako Ltd. 98%) 0.028 g and S powder (manufactured by Kanto Chemical Co. 99.5%) 0.065 g was weighed and mixed in an agate mortar for 20 minutes, and this mixture was pressed to 2 MPa with a hand press, and a molded body (pellet) was vacuum-sealed in a quartz ampule. The ampule was heated to 950 ° C. and heat-treated for 24 hours.

得られた試料のX線回折パターンを図4、および図5の(c)に示す。
図4、図5の(c)から明らかなように、得られた組成式(Ca0.5Sr0.51.98Eu0.02SiSで示されるEu添加CaSrSiS粉末は、CaSrSiSのほぼ単相であることがわかる。
The X-ray diffraction pattern of the obtained sample is shown in FIG. 4 and FIG.
As is apparent from FIG. 4 and FIG. 5C, the obtained Eu-added CaSrSiS 4 powder represented by the composition formula (Ca 0.5 Sr 0.5 ) 1.98 Eu 0.02 SiS 4 is CaSrSiS. It can be seen that this is almost a single phase of 4 .

組成式(Ca0.75Sr0.251.98Eu0.02SiS(x=0.02、y=0.25)になるように炭酸ストロンチウム、炭酸カルシウムと酸化ユーロピウムを秤量して加えた以外は実施例1と同様の方法で蛍光体を合成した。
得られた試料のX線回折パターンを図5の(b)に示す。
Weigh strontium carbonate, calcium carbonate and europium oxide so that the composition formula (Ca 0.75 Sr 0.25 ) 1.98 Eu 0.02 SiS 4 (x = 0.02, y = 0.25) A phosphor was synthesized in the same manner as in Example 1 except for the addition.
The X-ray diffraction pattern of the obtained sample is shown in FIG.

組成式(Ca0.5Sr0.52−xEuSiSで、xが0.01、0.02、0.04、0.06、0.10、0.20となるように炭酸ストロンチウム、炭酸カルシウムと酸化ユーロピウムを秤量して加えた以外は実施例1と同様の方法で蛍光体を合成した。x=0.06と0.10は2つの試料を作成した。その蛍光強度の測定結果を図7に示す。図7において、横軸はEu濃度(×1/100)、縦軸は蛍光強度で、YAG:Ceの蛍光強度を1とした場合の相対強度で示している。
図6よりEu濃度は、0.01の微量添加においてもYAG:Ceの30%程度の蛍光強度有し、Eu濃度が0.02から0.06近傍まで蛍光強度は50%程度のピーク値を有していることがわかる。
Composition formula (Ca 0.5 Sr 0.5 ) 2-x Eu x SiS 4 so that x is 0.01, 0.02, 0.04, 0.06, 0.10, 0.20 A phosphor was synthesized in the same manner as in Example 1 except that strontium carbonate, calcium carbonate and europium oxide were weighed and added. x = 0.06 and 0.10 produced two samples. The measurement result of the fluorescence intensity is shown in FIG. In FIG. 7, the horizontal axis represents Eu concentration (× 1/100), the vertical axis represents fluorescence intensity, and the relative intensity when the fluorescence intensity of YAG: Ce is set to 1.
FIG. 6 shows that the Eu concentration has a fluorescence intensity of about 30% of YAG: Ce even when a small amount of 0.01 is added, and the fluorescence intensity has a peak value of about 50% from the Eu concentration of 0.02 to around 0.06. You can see that it has.

(比較例1)
比較例1として、Euの含有量xが0.02である化学式(Ca1−ySr1.98Eu0.02SiSで示される化合物において、y=0、0.75、1.0となるように炭酸ストロンチウム、炭酸カルシウムと酸化ユーロピウムを秤量して加えた以外は実施例1と同様の方法で蛍光体を合成した。
その得られた試料のX線回折パターンを図5に示す。図5において、y=0は(a)、y=0.75は(d)、y=1.0は(e)で示している。
(Comparative Example 1)
As Comparative Example 1, in a compound represented by the chemical formula (Ca 1-y Sr y ) 1.98 Eu 0.02 SiS 4 in which the Eu content x is 0.02, y = 0, 0.75, 1. A phosphor was synthesized in the same manner as in Example 1 except that strontium carbonate, calcium carbonate, and europium oxide were weighed and added so as to be 0.
The X-ray diffraction pattern of the obtained sample is shown in FIG. In FIG. 5, y = 0 indicates (a), y = 0.75 indicates (d), and y = 1.0 indicates (e).

[結晶相評価]
以上の実施例1、2および比較例1の試料から得られたXRDパターンから結晶相を評価した結果をまとめて表1に示す。
[Crystal phase evaluation]
Table 1 summarizes the results of evaluating the crystal phase from the XRD patterns obtained from the samples of Examples 1 and 2 and Comparative Example 1 described above.

[蛍光輝度の評価]
次に、実施例1、2および比較例1で作製した蛍光体の蛍光測定を行い、その輝度を比較した。
蛍光測定の結果は、従来の黄色蛍光体であるYAl12:Ce3+(YAG:Ce、化成オプトニクス株式会社製)と比較している。図6に実施例1で作製した組成式(Ca0.5Sr0.51.98Eu0.02SiSで示されるEu添加CaSrSiS粉末の蛍光測定結果と発光の様子を示し、図8から図12に実施例1、2と比較例1の蛍光特性と励起特性を示す。図8から図12中の点線は比較としたYAG:Ceの結果である。
[Evaluation of fluorescence intensity]
Next, the phosphors prepared in Examples 1 and 2 and Comparative Example 1 were subjected to fluorescence measurement, and their luminance was compared.
The result of the fluorescence measurement is compared with a conventional yellow phosphor Y 3 Al 5 O 12 : Ce 3+ (YAG: Ce, manufactured by Kasei Optonics Co., Ltd.). FIG. 6 shows the fluorescence measurement results and the state of light emission of the Eu-added CaSrSiS 4 powder represented by the composition formula (Ca 0.5 Sr 0.5 ) 1.98 Eu 0.02 SiS 4 produced in Example 1. 8 to 12 show fluorescence characteristics and excitation characteristics of Examples 1 and 2 and Comparative Example 1. FIG. The dotted lines in FIGS. 8 to 12 are the results of comparison YAG: Ce.

図6からは、400nmから500nmの近紫外線領域でも励起可能であり、YAG:Ce蛍光体よりもピーク波長の強度が大きいことがわかる。また400nm付近の波長で励起するとYAG:Ce蛍光体では発光しないが、実施例1の蛍光体はピーク輝度と同程度の発光を示すことが判る。   FIG. 6 shows that excitation is possible even in the near ultraviolet region from 400 nm to 500 nm, and the intensity of the peak wavelength is larger than that of the YAG: Ce phosphor. It can also be seen that when excited at a wavelength of around 400 nm, the YAG: Ce phosphor does not emit light, but the phosphor of Example 1 emits light at the same level as the peak luminance.

また、図9(実施例2)、および図10(実施例1)からは、励起波長300nmから450nmで輝度変化が少なくYAG:Ceの輝度を上回っていることが分かる。また発光特性も590nmをピークとする黄色である。一方、比較例1に対応する図8、11、12では、近紫外で励起特性の変化は少ないがYAG:Ceの340nmの励起と比べる輝度は同程度か、小さく、さらに発光ピークは、図8(CaSiS)では660nmで、Srの比率が0.6より多くなる図10、図11では短波長側に移動して緑色となっている。 Further, from FIG. 9 (Example 2) and FIG. 10 (Example 1), it can be seen that the change in luminance is small at the excitation wavelength of 300 nm to 450 nm and exceeds the luminance of YAG: Ce. The emission characteristics are also yellow with a peak at 590 nm. On the other hand, in FIGS. 8, 11, and 12 corresponding to Comparative Example 1, the change in excitation characteristics is small in the near ultraviolet, but the luminance is comparable or small compared to the excitation of YAG: Ce at 340 nm, and the emission peak is as shown in FIG. (Ca 2 SiS 4 ) is 660 nm, and the ratio of Sr is greater than 0.6. In FIGS.

図9、図10および表1からも明らかなように本発明による黄色蛍光体は、紫外から可視領域の光励起により高輝度発光を示す黄色蛍光体であり、特に紫外光で励起するランプや近紫外や可視光を放射する発光ダイオードと組み合わせて、高輝度な燈色発光・表示素子、または他の蛍光体などと組み合わせて白色を含むさまざまな色の発光・表示素子などに利用可能である。   As is clear from FIGS. 9 and 10 and Table 1, the yellow phosphor according to the present invention is a yellow phosphor that emits high-intensity light by photoexcitation in the ultraviolet to visible region. In combination with a light emitting diode that emits visible light or in combination with a high-luminance amber light emitting / display element or in combination with other phosphors, it can be used for light emitting / display elements of various colors including white.

Claims (3)

近紫外線から可視領域の光で励起される黄色蛍光体であって、
EuSiSと同じ単斜晶系の結晶構造を有し、組成式(Ca1−ySr2−xEuSiSで表され、
Eu濃度xは、0<x≦0.2の範囲、
Sr濃度yは、0<y≦0.6の範囲であることを特徴とする黄色蛍光体。
A yellow phosphor that is excited by light from the near ultraviolet to the visible region,
Has a crystal structure of the same monoclinic system as Eu 2 SiS 4, expressed by a composition formula (Ca 1-y Sr y) 2-x Eu x SiS 4,
Eu concentration x is in the range of 0 <x ≦ 0.2,
A yellow phosphor, wherein the Sr concentration y is in the range of 0 <y ≦ 0.6.
Euが均一に分散するEu添加(Ca1−ySr粉末、Si粉末およびS粉末を、Eu濃度をxとする場合の組成式(Ca1−ySr2−xEuSiSとなるように混合した混合物を、石英アンプルに真空封入し、前記石英アンプルを900℃以上1000℃以下の温度で焼成することで組成式(Ca1−ySr2−xEuSiS(Eu濃度xは0<x≦0.2、Sr濃度yは0<y≦0.6)で表される黄色蛍光体を作製することを特徴とする黄色蛍光体の製造方法。 Composition formula (Ca 1-y Sr y ) 2−x Eu when Eu is added to uniformly disperse Eu (Ca 1−y Sr y ) 2 S 2 powder, Si powder and S powder, and Eu concentration is x x SiS 4 is mixed in a vacuum in a quartz ampule, and the quartz ampule is fired at a temperature of 900 ° C. or higher and 1000 ° C. or lower, whereby a composition formula (Ca 1-y Sr y ) 2−x Eu A method for producing a yellow phosphor, characterized by producing a yellow phosphor represented by x SiS 4 (Eu concentration x is 0 <x ≦ 0.2, Sr concentration y is 0 <y ≦ 0.6). 前記Euが均一に分散するEu添加(Ca1−ySr粉末が、第一の工程である酸化Euを酸で溶解した溶解液を乾燥して得られた乾燥物を水に溶解し、次いでグリコール、オキシカルボン酸、炭酸Sr、炭酸Caを順次加えた溶解液を作製し、前記作製した溶解液を加熱してゲル化させ、前記ゲルを熱分解、大気焼成することによりEuが均一に分散するEu添加Ca1−ySrCOを作製する工程、ついで、第二の工程である前記Euが均一に分散するEu添加Ca1−ySrCOを、硫化水素雰囲気下で硫化してEuが均一に分散するEu添加(Ca1−ySr粉末を作製する工程によって作製されることを特徴とする請求項記載の黄色蛍光体の製造方法。 The Eu addition (Ca 1-y Sr y ) 2 S 2 powder in which the Eu is uniformly dispersed is dried in a solution obtained by dissolving the oxidized Eu in the first step with an acid. Dissolve, and then prepare a solution in which glycol, oxycarboxylic acid, Sr carbonate, and Ca carbonate are sequentially added. The prepared solution is heated to gel, and the gel is pyrolyzed and baked in the atmosphere. A step of producing Eu-added Ca 1-y Sr y CO 3 in which Eu is uniformly dispersed, and then the second step, Eu-added Ca 1-y Sr y CO 3 in which Eu is uniformly dispersed, in a hydrogen sulfide atmosphere The method for producing a yellow phosphor according to claim 2 , wherein the yellow phosphor is produced by a step of producing Eu-added (Ca 1-y Sr y ) 2 S 2 powder that is sulfurized and uniformly dispersed.
JP2010020691A 2010-02-01 2010-02-01 Yellow phosphor and method for producing the same Expired - Fee Related JP5331021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010020691A JP5331021B2 (en) 2010-02-01 2010-02-01 Yellow phosphor and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010020691A JP5331021B2 (en) 2010-02-01 2010-02-01 Yellow phosphor and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011157484A JP2011157484A (en) 2011-08-18
JP5331021B2 true JP5331021B2 (en) 2013-10-30

Family

ID=44589705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010020691A Expired - Fee Related JP5331021B2 (en) 2010-02-01 2010-02-01 Yellow phosphor and method for producing the same

Country Status (1)

Country Link
JP (1) JP5331021B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5355441B2 (en) * 2010-02-01 2013-11-27 住友金属鉱山株式会社 Orange phosphor and method for producing the same
JP6099126B2 (en) * 2012-12-13 2017-03-22 国立大学法人電気通信大学 Phosphor, method for manufacturing the same, and light emitting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104413A (en) * 2004-10-08 2006-04-20 Nec Lighting Ltd Phosphor and white light emitting device using the same
JP4883527B2 (en) * 2006-09-13 2012-02-22 住友金属鉱山株式会社 Method for manufacturing phosphor for inorganic EL
JP5339976B2 (en) * 2009-03-13 2013-11-13 住友金属鉱山株式会社 Orange phosphor and method for producing the same
JP5355441B2 (en) * 2010-02-01 2013-11-27 住友金属鉱山株式会社 Orange phosphor and method for producing the same

Also Published As

Publication number Publication date
JP2011157484A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
TWI364449B (en) Aluminum-silicate based orange-red phosphors with mixed divalent and trivalent cations
JP4975269B2 (en) Phosphor and method for producing the same, and light emitting device using the phosphor
JP5848354B2 (en) Borophosphate phosphor and light source
RU2430948C2 (en) Carbide-silicon nitride luminophores
JP2012062472A (en) Green phosphor, its manufacturing method, and white light emitting device containing the same
JP5339976B2 (en) Orange phosphor and method for producing the same
TW201000605A (en) Warm white light emitting diode, film and its red phosphor powder
JP5355441B2 (en) Orange phosphor and method for producing the same
JP5331021B2 (en) Yellow phosphor and method for producing the same
JP5111181B2 (en) Phosphor and light emitting device
JP5164618B2 (en) Method for manufacturing phosphor for inorganic EL
JP5506215B2 (en) Method for manufacturing phosphor
CN113416542B (en) Red fluorescent powder capable of being excited by blue light and preparation method thereof
JP2009138070A (en) Phosphor, method for producing the same, and light-emitting device using phosphor
WO2003095588A1 (en) Method of manufacturing a luminescent material
JP2011032416A (en) Phosphor, and method for producing the same
JP2012102171A (en) Sulfide phosphor
JP2017043686A (en) Fluophor, light source containing fluophor and manufacturing method of fluophor
JP2006265501A (en) Method for producing blue phosphor
JP5420015B2 (en) Sulfide phosphor and method for producing the same
JP6256868B2 (en) Method for producing red silicon oxynitride phosphor
US11959002B2 (en) Blue-emitting phosphors and methods of use thereof
JP2014009253A (en) Method for producing sulfide phosphor, and the sulfide phosphor
JP5252988B2 (en) Yellow phosphor and method for producing the same
JP5484504B2 (en) Eu-activated alkaline earth metal thioaluminate phosphor and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130726

R150 Certificate of patent or registration of utility model

Ref document number: 5331021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees