JP5164618B2 - Method for manufacturing phosphor for inorganic EL - Google Patents

Method for manufacturing phosphor for inorganic EL Download PDF

Info

Publication number
JP5164618B2
JP5164618B2 JP2008064740A JP2008064740A JP5164618B2 JP 5164618 B2 JP5164618 B2 JP 5164618B2 JP 2008064740 A JP2008064740 A JP 2008064740A JP 2008064740 A JP2008064740 A JP 2008064740A JP 5164618 B2 JP5164618 B2 JP 5164618B2
Authority
JP
Japan
Prior art keywords
added
baal
phosphor
sulfide
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008064740A
Other languages
Japanese (ja)
Other versions
JP2009221263A (en
Inventor
ペトリキン・ヴァレリー
眞人 垣花
裕二 高塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Sumitomo Metal Mining Co Ltd
Original Assignee
Tohoku University NUC
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Sumitomo Metal Mining Co Ltd filed Critical Tohoku University NUC
Priority to JP2008064740A priority Critical patent/JP5164618B2/en
Publication of JP2009221263A publication Critical patent/JP2009221263A/en
Application granted granted Critical
Publication of JP5164618B2 publication Critical patent/JP5164618B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、各種情報や画像を表示するディスプレイ等に用いられる薄膜エレクトロルミネッセンス(EL)の発光材料である無機EL用蛍光体の製造方法に係り、より詳しくは青色発光の無機EL用バリウムチオアルミネート系蛍光体の製造方法に関するものである。
更に、本発明に係る蛍光体は、近紫外線で高輝度の蛍光を発することから、紫外線励起型の青色蛍光体としても利用することができるものである。
The present invention relates to a method for producing a phosphor for inorganic EL, which is a light-emitting material for thin film electroluminescence (EL) used for a display for displaying various information and images, and more particularly, for barium thioaluminum for inorganic EL that emits blue light. The present invention relates to a method for producing an nate-based phosphor.
Furthermore, since the phosphor according to the present invention emits high-luminance fluorescence in the near ultraviolet, it can be used as an ultraviolet-excited blue phosphor.

近年、各種情報や画像を表示するディスプレイ等に用いられる薄膜エレクトロルミネッセンス(EL)の発光材料である無機EL素子の開発が盛んに進められている。例えば、高輝度の希土類添加アルカリ土類チオアルミネート蛍光体を含有する蛍光体を用いてフルカラー表示を行なう方法(特許文献1参照)が知られている。
この方法は、例えば、Aをアルカリ土類元素、BをIII属金属元素、Cを硫黄、REを希土類元素として化学式AxByCzからなる化合物にREを添加した蛍光体において、純金属ターゲットやABやABREからなる合金ターゲットや硫化物ターゲットを用いて硫化水素をスパッタガス中に含む反応性スパッタ法(特許文献2参照)、或いはA、B、C、REを構成する各元素を一種類以上有する複数の蒸気ガスを独立に制御して基板表面に供給して薄膜を形成する製膜手法により製膜される蛍光体薄膜を数種類用いて多色表示薄膜ELパネルを製造する方法(特許文献3参照)である。
In recent years, development of inorganic EL elements, which are light-emitting materials for thin film electroluminescence (EL), used for displays for displaying various information and images, has been actively promoted. For example, a method of performing full color display using a phosphor containing a high-brightness rare earth-added alkaline earth thioaluminate phosphor is known (see Patent Document 1).
In this method, for example, in a phosphor in which A is an alkaline earth element, B is a Group III metal element, C is sulfur, RE is a rare earth element, and RE is added to a compound having the chemical formula AxByCz, a pure metal target, AB, or ABRE is used. A reactive sputtering method in which hydrogen sulfide is contained in a sputtering gas using an alloy target or a sulfide target (see Patent Document 2), or a plurality of elements each including one or more elements constituting A, B, C, and RE In a method of manufacturing a multicolor display thin-film EL panel using several kinds of phosphor thin films formed by a film forming technique in which vapor gas is independently controlled and supplied to the substrate surface to form a thin film (see Patent Document 3). is there.

また、希土類添加アルカリ土類チオアルミネート蛍光体としては、例えば高輝度で色純度の優れた青色発光を有するEL材料および該材料を発光層とする薄膜EL素子が知られている(特許文献4参照)。このEL材料は、アルカリ土類チオアルミネートを母材料とし、セリウム等のランタノイド系元素を賦活材とするものである。   Further, as rare earth-added alkaline earth thioaluminate phosphors, for example, EL materials having high luminance and blue light emission with excellent color purity and thin film EL elements using the materials as light emitting layers are known (Patent Document 4). reference). This EL material uses an alkaline earth thioaluminate as a base material and a lanthanoid element such as cerium as an activator.

このような薄膜EL材料の中で、特にEu添加バリウムチオアルミネート硫化物(BaAl)蛍光体は、輝度が高く、色純度が良いため最も期待されている材料である。
この蛍光体は、硫化アルミニウム、硫化バリウム、硫化ユーロピウム等の硫化物粉末を混合、焼成することにより得られるが、その際には原料粉末が微細であるほど均質な蛍光体が得られる。特に高輝度の蛍光体を作製するには発光元素であるEuが均一に分散し、Baの元素位置を置換していることが重要である。
特開平7−122364号公報 WO 2005/085493 特開2001−294852号公報 特開平8−134440号公報
Among such thin film EL materials, Eu-added barium thioaluminate sulfide (BaAl 2 S 4 ) phosphor is the most expected material because of its high luminance and good color purity.
This phosphor can be obtained by mixing and baking sulfide powders such as aluminum sulfide, barium sulfide, and europium sulfide. In this case, the finer the raw material powder, the more uniform the phosphor. In particular, in order to produce a high-luminance phosphor, it is important that Eu, which is a light-emitting element, is uniformly dispersed and the element position of Ba is substituted.
JP-A-7-122364 WO 2005/085493 JP 2001-294852 A JP-A-8-134440

しかるに、Eu添加バリウムチオアルミネート硫化物(BaAl)蛍光体の原料である硫化アルミニウム、硫化バリウム、硫化ユーロピウム等の硫化物を作製するには、有毒な硫化水素ガスを使用しなければならず、安全性の面から大きな問題を抱えている。更に、この硫化水素は有毒なだけではなく、悪臭物質であり、不安定な物質でもあるために、微量であっても、厳しい管理が要求され、製造コストや生産効率などの低下を招いてしまうなどの問題も生じている。 However, to produce sulfides such as aluminum sulfide, barium sulfide, and europium sulfide, which are raw materials for Eu-added barium thioaluminate sulfide (BaAl 2 S 4 ) phosphor, toxic hydrogen sulfide gas must be used. It has a big problem in terms of safety. Furthermore, since this hydrogen sulfide is not only toxic but also a malodorous substance and an unstable substance, strict management is required even in a trace amount, leading to a decrease in manufacturing cost and production efficiency. There are also problems such as.

本発明は、係る現状に鑑みてなされたもので、Eu添加BaAlを、二硫化炭素を含む不活性ガス中で熱処理して還元硫化することにより、高蛍光輝度のEu添加バリウムチオアルミネート硫化物(BaAl)蛍光体を製造する無機EL用蛍光体の製造方法を提供するものである。 The present invention has been made in view of the present situation. Eu-added BaAl 2 O 4 is heat-treated in an inert gas containing carbon disulfide and subjected to reduction sulfidation, whereby Eu-added barium thioaluminum having high fluorescence brightness. The present invention provides a method for producing a phosphor for inorganic EL, which produces a nate sulfide (BaAl 2 S 4 ) phosphor.

本発明に係る無機EL用蛍光体の製造方法は、無機EL用Eu添加バリウムチオアルミネート硫化物を製造する方法であって、Euが均一に分散したEu添加BaAlを合成する第1の工程と、第1の工程で得られたEu添加BaAlを、二硫化炭素を含む不活性ガス中で熱処理し、還元硫化する第2の工程からなることを特徴とする無機EL用蛍光体の製造方法である。 The method for producing an inorganic EL phosphor according to the present invention is a method for producing Eu-added barium thioaluminate sulfide for inorganic EL, and is a first method for synthesizing Eu-added BaAl 2 O 4 in which Eu is uniformly dispersed. And a second step in which the Eu-added BaAl 2 O 4 obtained in the first step is heat-treated in an inert gas containing carbon disulfide and subjected to reduction sulfidation. It is a manufacturing method of fluorescent substance.

この方法における第1の工程では、硝酸Euを水に溶解し、硝酸アルミニウム、オキシカルボン酸、グリコール又は水、炭酸バリウムを順次加え、更に120〜250℃に加熱して得たゲルを、400〜500℃で熱処理して炭酸塩前駆体を作製し、700〜1100℃で熱処理して、Euが均一に分散したEu添加BaAlとすることを特徴とし、第2の工程では、第1の工程で得た、Euが均一に分散したEu添加BaAlを、二硫化炭素を含んだ不活性ガス流通下で800〜1150℃で熱処理し、還元硫化することを特徴とするものである。 In the first step in this method, Eu nitrate is dissolved in water, aluminum nitrate, oxycarboxylic acid, glycol or water and barium carbonate are sequentially added, and further heated to 120 to 250 ° C. A carbonate precursor is prepared by heat treatment at 500 ° C., and heat treatment is performed at 700 to 1100 ° C. to obtain Eu-added BaAl 2 O 4 in which Eu is uniformly dispersed. In the second step, The Eu-added BaAl 2 O 4 in which Eu is uniformly dispersed obtained in the above step is heat-treated at 800 to 1150 ° C. under an inert gas flow containing carbon disulfide, and is reduced and sulfided. is there.

更に、第2の工程で得られた焼成物を粉砕し、二硫化炭素を含んだ不活性ガス流通下で、800〜1150℃で熱処理し、還元硫化する工程を2回以上繰り返すことを特徴とするものである。   Further, the fired product obtained in the second step is pulverized, heat treated at 800 to 1150 ° C. under an inert gas flow containing carbon disulfide, and the step of reducing and sulfiding is repeated twice or more. To do.

本発明は、Euが均一に分散したEu添加BaAlを合成する第1の工程と、前記の工程で得られたEu添加BaAlを、二硫化炭素を含む不活性ガス中で熱処理し、還元硫化する第2の工程からなることを特徴とする無機EL用蛍光体の製造方法であり、原料として空気中の水分と反応しやすい硫化アルミニウム、硫化バリウム、硫化ユーロピウムなどの硫化物を使用しないため高品質の結晶を得ることができ、更に有毒な硫化水素を用いることなく高輝度のEu添加バリウムチオアルミネート硫化物(BaAl)蛍光体を製造することができるものである。 The present invention, Eu is a first step of uniformly synthesize dispersed Eu added BaAl 2 O 4, and Eu added BaAl 2 O 4 obtained in the above step, in an inert gas containing carbon disulfide A method for producing a phosphor for inorganic EL characterized by comprising a second step of heat treatment and reductive sulfidation, and sulfides such as aluminum sulfide, barium sulfide, and europium sulfide that are easy to react with moisture in the air as a raw material High-quality crystals can be obtained without using toxic hydrogen, and a high-luminance Eu-added barium thioaluminate sulfide (BaAl 2 S 4 ) phosphor can be produced without using toxic hydrogen sulfide. is there.

1.Euが均一に分散したEu添加BaAlを合成する第1の工程:
先ず、添加するEu源は、原料の酸化ユーロピウム(Eu)を濃度40〜60質量%の硝酸に溶解するのが好ましい。原料のEuを完全に溶解させるためには1時間程度攪拌する。その後、このEu溶解液を乾燥させてEuの硝酸塩を得る。
1. First step of synthesizing Eu-added BaAl 2 O 4 in which Eu is uniformly dispersed:
First, the Eu source to be added is preferably prepared by dissolving europium oxide (Eu 2 O 3 ) as a raw material in nitric acid having a concentration of 40 to 60% by mass. In order to completely dissolve the raw material Eu 2 O 3 , stirring is performed for about 1 hour. Thereafter, this Eu solution is dried to obtain Eu nitrate.

次に、Euの硝酸塩を水で再溶解し、その溶解液に硝酸アルミニウムとグリコールとオキシカルボン酸を加える。なお、ここでグリコールの代わりに水を使用することもできる。加えたオキシカルボン酸が完全に溶解したら、液温を55〜65℃まで上昇させ、炭酸バリウム(BaCO)を加えて、Euを均一に分散させた炭酸塩を得る。
ここで、加える硝酸アルミニウム、オキシカルボン酸、グリコールの量は、その体積比で1:3.5:12程度に調整している。
なお、加えるグリコールとしては、エチレングリコール又はプロピレングリコールが特に好適であるが、ポリエチレングリコールも使用することができる。使用するオキシカルボ酸には、クエン酸が特に好適であるが、りんご酸や酒石酸などを用いてもよい。
Next, Eu nitrate is redissolved with water, and aluminum nitrate, glycol and oxycarboxylic acid are added to the solution. Here, water can be used instead of glycol. When the added oxycarboxylic acid is completely dissolved, the liquid temperature is increased to 55 to 65 ° C., and barium carbonate (BaCO 3 ) is added to obtain a carbonate in which Eu is uniformly dispersed.
Here, the amounts of aluminum nitrate, oxycarboxylic acid and glycol to be added are adjusted to about 1: 3.5: 12 by volume ratio.
In addition, as glycol to add, although ethylene glycol or propylene glycol is especially suitable, polyethyleneglycol can also be used. Citric acid is particularly suitable for the oxycarboxylic acid used, but malic acid, tartaric acid, and the like may be used.

次いで、炭酸塩が完全に溶解した後、重合させるため液温を、120〜250℃、より好ましくは180〜220℃にして、粘性を有するゲル状になるまで攪拌する。その攪拌時間は、4時間から16時間が好ましい。これにより、Euを均一に含んだポリマー化したゲルが得られる。
続いて、得られたゲルを、400〜500℃、より好ましくは440〜460℃に加熱し、ゲルを熱分解して酸化物前駆体粉末を作製する。
Next, after the carbonate is completely dissolved, the liquid temperature is set to 120 to 250 ° C., more preferably 180 to 220 ° C. for polymerization, and the mixture is stirred until a viscous gel is formed. The stirring time is preferably 4 to 16 hours. Thereby, a polymerized gel containing Eu uniformly is obtained.
Subsequently, the obtained gel is heated to 400 to 500 ° C., more preferably 440 to 460 ° C., and the gel is thermally decomposed to produce an oxide precursor powder.

得られた酸化物前駆体粉末を、乳鉢で軽く粉砕し、次に熱処理を行ってEuが均一に分散したEu添加BaAlを作製した。
この熱処理は、700〜1100℃の熱処理温度で行われる。なお、TG−DTAの分析からは、600℃以上で残留有機物の焼成が起こり、890℃以上でBaAlとなるが、完全に酸化物になったBaAlより、結晶性の低いBaAlの方が、還元硫化されやすいので、残留有機物が無くなる750〜890℃が、より好ましい。その熱処理時間は3〜8時間、より好ましくは4〜6時間が良い。
The obtained oxide precursor powder was lightly pulverized in a mortar and then heat treated to produce Eu-added BaAl 2 O 4 in which Eu was uniformly dispersed.
This heat treatment is performed at a heat treatment temperature of 700 to 1100 ° C. Incidentally, the analysis of TG-DTA, occur fired residual organics 600 ° C. Although the BaAl 2 O 4 at 890 ° C. or higher, than the BaAl 2 O 4 which was completely oxide, low crystallinity Since BaAl 2 O 4 is more easily reduced and sulfided, 750 to 890 ° C. at which residual organic matter is eliminated is more preferable. The heat treatment time is 3 to 8 hours, more preferably 4 to 6 hours.

2.Eu添加BaAlを、二硫化炭素を含む不活性ガス中で熱処理し、還元硫化してEu添加バリウムチオアルミネート硫化物(BaAl)蛍光体を製造する第2の工程:
この第2の工程では、第1の工程で得られたEu添加BaAl粉末を、二硫化炭素(CS)を含む不活性ガス中で加熱、800〜1150℃で5〜12時間の熱処理を施し、Eu添加バリウムチオアルミネート硫化物(BaAl)蛍光体粉末の焼成物を得る。
この熱処理の温度は、特に好ましくは950〜1100℃が良く、800℃未満では還元硫化が不充分となるため好ましくなく、硫化アルミニウムの融点である1150℃を超えると、部分的な融解が発生する可能性があり、それによって焼成物が不均一になるため好ましくない。また硫黄蒸気圧が高くなり、還元硫化したEu添加バリウムチオアルミネート硫化物(BaAl)蛍光体粉末の表面から硫黄が揮発するため好ましくない。
ここで用いる不活性ガスとしてはArガスが好ましく、Arガス中に二硫化炭素を含ませる方法としては、図1に示すような、Arガスを液体の二硫化炭素中に通す方法が利用できる。二硫化炭素やArガスの温度は、15℃以上46℃未満、特に20℃以上25℃以下が好ましい。15℃未満ではArガスに含まれる二硫化炭素の濃度が低くなり還元硫化が進まないため好ましくなく、46℃以上では二硫化炭素の沸点以上となって蒸発量の制御が難しく、均一な還元硫化が難しくなるため好ましくない。尚、不活性ガスとして窒素を用いることは、窒化アルミニウムが形成されるため好ましくない。
2. Second step of producing Eu-added barium thioaluminate sulfide (BaAl 2 S 4 ) phosphor by heat-treating Eu-added BaAl 2 O 4 in an inert gas containing carbon disulfide and reducing and sulfidizing it.
In this second step, the Eu-added BaAl 2 O 4 powder obtained in the first step is heated in an inert gas containing carbon disulfide (CS 2 ) at 800 to 1150 ° C. for 5 to 12 hours. Heat treatment is performed to obtain a fired product of Eu-added barium thioaluminate sulfide (BaAl 2 S 4 ) phosphor powder.
The temperature of this heat treatment is particularly preferably 950 to 1100 ° C., and if it is less than 800 ° C., reduction sulfidation becomes insufficient, which is not preferable. This is not preferable because it may cause unevenness of the fired product. Further, the sulfur vapor pressure is increased, and sulfur is volatilized from the surface of the reduced and sulfurized Eu-added barium thioaluminate sulfide (BaAl 2 S 4 ) phosphor powder, which is not preferable.
As the inert gas used here, Ar gas is preferable, and as a method of including carbon disulfide in the Ar gas, a method of passing Ar gas through liquid carbon disulfide as shown in FIG. 1 can be used. The temperature of carbon disulfide or Ar gas is preferably 15 ° C. or higher and lower than 46 ° C., particularly preferably 20 ° C. or higher and 25 ° C. or lower. If it is less than 15 ° C, the concentration of carbon disulfide contained in the Ar gas is low and reduction sulfidation does not proceed. Is not preferable because it becomes difficult. Note that it is not preferable to use nitrogen as the inert gas because aluminum nitride is formed.

この得られた粉末の焼成物をX線回折したところ、BaAl相と少量の異相を含むX線回折パターンが観察された。なお、熱処理中は、二硫化炭素を含むガスが必要であり、冷却が完了し室温になるまで二硫化炭素を含むガスを流し続けておくことが好ましい。
得られた粉末の焼成物の表面には炭素が付着しているために、そのままでは輝度が低く、そこで、これを粉砕し、その表面を新生面とすることで、輝度を向上させることができる。
When the fired product of the obtained powder was subjected to X-ray diffraction, an X-ray diffraction pattern including a BaAl 2 S 4 phase and a small amount of a different phase was observed. Note that a gas containing carbon disulfide is required during the heat treatment, and it is preferable to continue flowing the gas containing carbon disulfide until the cooling is completed and the temperature reaches room temperature.
Since carbon adheres to the surface of the obtained powder fired product, the luminance is low as it is. Therefore, the luminance can be improved by pulverizing this to make the surface a new surface.

更に、粉砕したEu添加バリウムチオアルミネート硫化物(BaAl)を、再度二硫化炭素を含んだ不活性ガス流通下で800〜1150℃の温度で熱処理し、還元硫化を繰り返すことで結晶性を向上させ、高輝度のEu添加バリウムチオアルミネート硫化物(BaAl)を得ることができる。その繰り返し回数は、4回以上繰り返しても、それ以上の輝度の向上が望めず、2回又は3回が好ましい。 Further, the crushed Eu-added barium thioaluminate sulfide (BaAl 2 S 4 ) is again heat-treated at a temperature of 800 to 1150 ° C. under an inert gas flow containing carbon disulfide, and crystallized by repeating reductive sulfidation. Thus, high brightness Eu-added barium thioaluminate sulfide (BaAl 2 S 4 ) can be obtained. Even if the number of repetitions is 4 or more times, no further improvement in luminance can be expected, and 2 or 3 times is preferable.

[第1工程の酸化物前駆体作製]
酸化ユーロピウム(フルウチ化学株式会社製 3N:Eu)0.2454gを、濃度15%の硝酸(関東化学株式会社製 60%)1mlに、完全に溶解させた後、乾燥した。得られた硝酸Euを水に再溶解し、100mlの硝酸アルミニウム液(0.5589M)を加え、次にクエン酸66gとプロピレングリコール65gを加え、クエン酸を完全に溶解させてから、液温を60℃まで上げ、炭酸バリウム(BaCO)を5.2409g加えて12時間攪拌して、炭酸バリウムを完全に溶解した。そのときの液温は120℃であった。
[Preparation of oxide precursor in the first step]
Europium oxide (3N: Eu 2 O 3 manufactured by Furuuchi Chemical Co., Ltd.) 0.2454 g was completely dissolved in 1 ml of nitric acid (60% manufactured by Kanto Chemical Co., Ltd.) having a concentration of 15%, and then dried. The obtained nitric acid Eu was redissolved in water, 100 ml of aluminum nitrate solution (0.5589M) was added, and then 66 g of citric acid and 65 g of propylene glycol were added to completely dissolve the citric acid. The temperature was raised to 60 ° C., and 5.2409 g of barium carbonate (BaCO 3 ) was added and stirred for 12 hours to completely dissolve the barium carbonate. The liquid temperature at that time was 120 ° C.

次に、210℃で5時間保持してポリマー化したゲルを得た。このゲルをマントルヒーターを用いて、450℃に加熱して炭酸塩を作製した。
得られた炭酸塩を、700℃、800℃、1000℃の各温度で5時間の熱処理による焼成を行って酸化物前駆体を作製した。
700℃で焼成した酸化物前駆体は、灰色で有機物が残留していたと思われるが、800℃と1000℃で焼成した酸化物前駆体のX線回折パターンは、図2に示すように、800℃で焼成した酸化物前駆体では、BaAlのピークは見えるが強度が低く、結晶性が悪いことがわかる、一方1000℃で焼成した酸化物前駆体では結晶性が良いことがわかる。
Next, it was held at 210 ° C. for 5 hours to obtain a polymerized gel. This gel was heated to 450 ° C. using a mantle heater to produce a carbonate.
The obtained carbonate was fired by heat treatment at 700 ° C., 800 ° C., and 1000 ° C. for 5 hours to prepare an oxide precursor.
The oxide precursor calcined at 700 ° C. is considered to be gray and organic matter remains, but the X-ray diffraction pattern of the oxide precursor calcined at 800 ° C. and 1000 ° C. is 800 as shown in FIG. In the oxide precursor calcined at 0 ° C., the peak of BaAl 2 O 4 can be seen but the strength is low and the crystallinity is poor, whereas the oxide precursor calcined at 1000 ° C. is good in crystallinity.

[第2工程の還元硫化]
800℃で焼成した酸化物前駆体0.3gを、アルミナ坩堝に入れ、図1に示す方法で液体の二硫化炭素中を通したAr流通下で1045℃、6時間の熱処理し、還元硫化を行い、Eu添加BaAl硫化物を作製した。Ar流量は、40ml/minで行った。
この焼成物のX線回折パターンの測定結果を図3に示す。図3中の矢印に示すピークが異相のピークである。
Eu添加BaAl硫化物の表面が灰色であったので、3分間乳鉢で粉砕して新生面とした。粉砕前後の蛍光測定結果を図4に示す。粉砕前をAs−prepared、粉砕後を3min groundで表している。粉砕することで、輝度が大きくなっていることがわかる。
[Reduction sulfurization in the second step]
0.3 g of the oxide precursor calcined at 800 ° C. is put in an alumina crucible and heat treated at 1045 ° C. for 6 hours under Ar flowing through liquid carbon disulfide by the method shown in FIG. Then, Eu-added BaAl 2 S 4 sulfide was produced. The Ar flow rate was 40 ml / min.
The measurement result of the X-ray diffraction pattern of this fired product is shown in FIG. The peak indicated by the arrow in FIG. 3 is a heterogeneous peak.
Since the surface of Eu-added BaAl 2 S 4 sulfide was gray, it was ground in a mortar for 3 minutes to obtain a new surface. The fluorescence measurement results before and after grinding are shown in FIG. Before pulverization is represented by As-prepared, and after pulverization is represented by 3 min ground. It can be seen that the brightness is increased by grinding.

[繰り返し硫化:2回]
実施例1と同じ第1の工程、第2の工程を経て、還元硫化されて焼成したEu添加BaAl硫化物0.3gを、メノウ製乳鉢で、ヘキサンを溶媒にして5分間粉砕し、アルミナボートにいれ、実施例1の第2の工程と同じ方法を用いて、1045℃、4.5時間の条件での2回目の還元硫化を行い、Eu添加BaAl硫化物を作製した。
[Repeated sulfurization: 2 times]
The same first step as in Example 1, through the second step, was calcined by reduction sulfurized Eu added BaAl 2 S 4 sulfides 0.3 g, in an agate mortar, and the hexane solvent was ground for 5 minutes Into an alumina boat, using the same method as in the second step of Example 1, a second reduction sulfidation was performed under the conditions of 1045 ° C. and 4.5 hours to produce Eu-added BaAl 2 S 4 sulfide. did.

[繰り返し硫化:3回]
実施例2と同じ方法で、還元硫化を2回繰り返し行ったEu添加BaAl硫化物0.3gを、メノウ製乳鉢で、ヘキサンを溶媒にして5分間粉砕し、アルミナボートに入れ、実施例1の第2の工程と同じ方法を用いて、1045℃、3時間の条件での3回目の還元硫化を行い、Eu添加BaAl硫化物を作製した。
この硫化物のX線回折パターンの測定結果を図5に示す。図5からは、異相のピークが殆ど現われていないことがわかる。
[Repeated sulfurization: 3 times]
In the same manner as in Example 2, was repeated reducing sulfide twice Eu added BaAl 2 S 4 sulfides 0.3 g, in an agate mortar, and the hexane solvent was ground for 5 minutes, placed in an alumina boat, carried Using the same method as in the second step of Example 1, a third reduction sulfidation was performed at 1045 ° C. for 3 hours to produce Eu-added BaAl 2 S 4 sulfide.
The measurement result of the X-ray diffraction pattern of this sulfide is shown in FIG. FIG. 5 shows that almost no heterogeneous peaks appear.

次に、この硫化物の蛍光を測定するために、この硫化物を実施例1と同様の方法で粉砕し、粉砕前後の蛍光を測定した。その結果を図6に示す。
図6において、粉砕前をas prepared、粉砕後をgroundで示している。粉砕前でも還元硫化が1回だけの実施例1の粉砕後の試料と同程度の強度が得られ、粉砕後では、実施例1の粉砕後の試料より1.5倍を超える高い強度が得られているのがわかる。
Next, in order to measure the fluorescence of this sulfide, this sulfide was pulverized in the same manner as in Example 1, and the fluorescence before and after pulverization was measured. The result is shown in FIG.
In FIG. 6, the pre-grinding is shown as prepared and the ground is shown as ground. Even after pulverization, the strength comparable to that of the sample after pulverization of Example 1 with only one reduction sulfide is obtained, and after pulverization, the strength obtained is 1.5 times higher than that of the sample after pulverization of Example 1. You can see that

実施例1で作製した1000℃で焼成した酸化物前駆体(BaAl:Eu) 0.3gを、アルミナ坩堝に入れ、図1に示す方法で液体の二硫化炭素中を通したAr流通下で1045℃、3.5時間の熱処理し、還元硫化を行い、Eu添加BaAl硫化物を作製した。Ar流量は、50ml/minで行った。 Ar flow through which 0.3 g of the oxide precursor (BaAl 2 O 4 : Eu) fired at 1000 ° C. prepared in Example 1 was put in an alumina crucible and passed through liquid carbon disulfide by the method shown in FIG. Then, heat treatment was performed at 1045 ° C. for 3.5 hours, and reduction sulfidation was performed to produce Eu-added BaAl 2 S 4 sulfide. The Ar flow rate was 50 ml / min.

[繰り返し硫化:2回]
実施例4と同じ工程を経て、還元硫化されて焼成したEu添加BaAl硫化物0.3gを、メノウ製乳鉢で、ヘキサンを溶媒にして5分間粉砕し、アルミナボートにいれ、実施例1の第2の工程と同じ方法を用いて、1045℃、3.5時間の条件での2回目の還元硫化を行い、Eu添加BaAl硫化物を作製した。
[Repeated sulfurization: 2 times]
Through the same steps as in Example 4, 0.3 g of Eu-added BaAl 2 S 4 sulfide reduced and sulfided and calcined was pulverized for 5 minutes in an agate mortar using hexane as a solvent and placed in an alumina boat. Using the same method as in the second step 1, a second reduction sulfidation was performed under the conditions of 1045 ° C. and 3.5 hours to produce Eu-added BaAl 2 S 4 sulfide.

実施例4と5で作製した焼成物(Eu添加BaAl硫化物)のX線回折パターンの測定結果を図8に示す。図の●はBaAlのピーク位置を示す。これから1000℃で焼成した酸化物前駆体でも還元硫化が出来ることがわかる。また、図5と比較すると実施例4と5で作製した焼成物は異相が残っていることがわかる。 The measurement results of the X-ray diffraction pattern of the calcined product prepared in Example 4 and 5 (Eu added BaAl 2 S 4 sulfides) shown in FIG. 8. In the figure, ● represents the peak position of BaAl 2 S 4 . It can be seen from this that reductive sulfidation can be performed even with an oxide precursor fired at 1000 ° C. Moreover, it turns out that the different phase remains in the baked product produced in Example 4 and 5 compared with FIG.

[従来例]
市販の硫化バリウム(BaS、Alfa AeSar製)10.7gと硫化ユーロピウム(EuS、フルウチ化学株式会社製)0.5gと硫化アルミニウム(Al)9.9gを秤量し、湿度0.02%以下の窒素で置換したグローブボックス中でメノウ乳鉢を用いて20分間の混合を行った以外は、実施例1と同じ方法でEu添加BaAl硫化物を作製した。
作製した試料のX線回折パターンを図7に示す。図7から明らかなように、BaAl以外にAlが検出されている。
[Conventional example]
10.7 g of commercially available barium sulfide (BaS, manufactured by Alfa AeSar), 0.5 g of europium sulfide (EuS, manufactured by Furuuchi Chemical Co., Ltd.) and 9.9 g of aluminum sulfide (Al 2 S 3 ) were weighed, and the humidity was 0.02%. Eu-added BaAl 2 S 4 sulfide was prepared in the same manner as in Example 1 except that mixing was performed for 20 minutes using an agate mortar in the following glove box substituted with nitrogen.
The X-ray diffraction pattern of the prepared sample is shown in FIG. As is apparent from FIG. 7, Al 2 O 3 is detected in addition to BaAl 2 S 4 .

[輝度の評価]
輝度を比較するため、PDP用の青色蛍光体として良く知られているBaMgAl1017:Eu(BAM蛍光体:化成オプト製)と、実施例1、実施例2、実施例3及び従来例で作製したEu添加BaAl蛍光体との比較を行った。
BAM蛍光体を波長305nmの励起光で励起し、得られた蛍光スペクトルの輝度を400nmから600nmまで積分して蛍光の積分強度を求めた。同様にEu添加BaAl蛍光体も355nm波長の励起光で励起し、蛍光スペクトルの輝度を400nmから600nmまで積分して蛍光の積分強度を求め、その求めた積分強度をBAM蛍光体の積分強度で除した値を強度比とし、比較した。その結果を表1に示す。
ここで、励起スペクトルの結果から、励起光305nmはBAM蛍光体が最もよく蛍光する励起波長であり、355nmの波長は、Eu添加BaAl蛍光体が最もよく蛍光する励起波長である。
[Brightness evaluation]
In order to compare the luminance, BaMgAl 10 O 17 : Eu (BAM phosphor: manufactured by Kasei Opto), which is well known as a blue phosphor for PDP, and the first, second, third, and conventional examples are used. Comparison was made with the produced Eu-added BaAl 2 S 4 phosphor.
The BAM phosphor was excited with excitation light having a wavelength of 305 nm, and the luminance of the obtained fluorescence spectrum was integrated from 400 nm to 600 nm to obtain the integrated intensity of fluorescence. Similarly, the Eu-added BaAl 2 S 4 phosphor is also excited with excitation light having a wavelength of 355 nm, the luminance of the fluorescence spectrum is integrated from 400 nm to 600 nm to obtain the integrated intensity of the fluorescence, and the obtained integrated intensity is integrated with the BAM phosphor. The value divided by the intensity was used as the intensity ratio for comparison. The results are shown in Table 1.
Here, from the result of the excitation spectrum, the excitation light 305 nm is the excitation wavelength at which the BAM phosphor is most fluorescent, and the wavelength of 355 nm is the excitation wavelength at which the Eu-added BaAl 2 S 4 phosphor is most fluorescent.

本発明の方法によれば、硫化水素を用いることなく高輝度の無機EL用バリウムチオアルミネート硫化物(BaAl)蛍光体が作製でき、波長305nmの励起光において、BAMの積分強度の16%から28%の強度を有し、特に繰り返し還元硫化した蛍光体では、従来法による蛍光体と比較して、2倍近くのはるかに大きな強度が得られる。更に、励起光が400nm程度の波長まで、実用的な輝度を持ち、したがって、波長400nm近傍の近紫外LEDで青色発光する蛍光体として利用可能である。 According to the method of the present invention, it is possible to produce a high-intensity barium thioaluminate sulfide (BaAl 2 S 4 ) phosphor for inorganic EL without using hydrogen sulfide. A phosphor having an intensity of 16% to 28%, and particularly a reductively reduced and sulfurized phosphor, can obtain a much larger intensity, nearly twice as much as that of a phosphor by a conventional method. Further, the excitation light has a practical luminance up to a wavelength of about 400 nm, and thus can be used as a phosphor emitting blue light with a near-ultraviolet LED in the vicinity of a wavelength of 400 nm.

本発明の実施例1におけるArガスに二硫化炭素(CS)を含ませる方法を示す図である。The Ar gas in Embodiment 1 of the present invention is a diagram showing a method to include carbon disulfide (CS 2). 本発明の方法で、800℃と1000℃で焼成したBaAl粉末のX線回折測定結果を示す図である。In the method of the present invention, showing the X-ray diffraction measurement results of BaAl 2 O 4 powder calcined at 800 ° C. and 1000 ° C.. 本発明の実施例1におけるEu添加BaAl粉末のX線回折測定結果を示す図である。Is a diagram showing an X-ray diffraction measurement results of Eu added BaAl 2 S 4 powder in Example 1 of the present invention. 本発明の実施例1におけるEu添加BaAl粉末の粉砕前後の蛍光スペクトルを示す図である。It shows the fluorescence spectra before and after grinding of Eu added BaAl 2 S 4 powder in Example 1 of the present invention. 本発明の実施例3におけるEu添加BaAl粉末のX線回折測定結果を示す図である。Is a diagram showing an X-ray diffraction measurement results of Eu added BaAl 2 S 4 powder in Example 3 of the present invention. 本発明の実施例3におけるEu添加BaAl粉末の粉砕前後の蛍光スペクトルを示す図である。It shows the fluorescence spectra before and after grinding of Eu added BaAl 2 S 4 powder in Example 3 of the present invention. 本発明の従来例におけるX線回折測定結果を示す図である。It is a figure which shows the X-ray-diffraction measurement result in the prior art example of this invention. 本発明の実施例4と実施例5におけるX線回折測定結果を示す図である。It is a figure which shows the X-ray-diffraction measurement result in Example 4 and Example 5 of this invention.

Claims (3)

無機EL用Eu添加バリウムチオアルミネート硫化物を製造する方法であって、
硝酸Euを水に溶解し、硝酸アルミニウム、オキシカルボン酸、グリコール又は水、炭酸バリウムを順次加え、更に120〜250℃に加熱してゲルを得た後に、前記ゲルを400〜500℃で熱処理して炭酸塩前駆体を作製し、得られた炭酸塩前駆体を700〜1100℃で熱処理してEuが均一に分散したEu添加BaAl とすることでEuが均一に分散したEu添加BaAlを合成する第1の工程と、
前記第1の工程で得られたEu添加BaAlを、二硫化炭素を含む不活性ガス中で熱処理し、還元硫化する第2の工程からなる
ことを特徴とする無機EL用蛍光体の製造方法。
A method for producing Eu-added barium thioaluminate sulfide for inorganic EL,
Eu nitrate is dissolved in water, aluminum nitrate, oxycarboxylic acid, glycol or water and barium carbonate are sequentially added, and further heated to 120 to 250 ° C. to obtain a gel, and then the gel is heat-treated at 400 to 500 ° C. Then, a carbonate precursor is prepared, and the obtained carbonate precursor is heat-treated at 700 to 1100 ° C. to obtain Eu-added BaAl 2 O 4 in which Eu is uniformly dispersed, whereby Eu added BaAl in which Eu is uniformly dispersed. A first step of synthesizing 2 O 4 ;
An inorganic EL phosphor comprising a second step of heat-treating and reducing and sulfiding the Eu-added BaAl 2 O 4 obtained in the first step in an inert gas containing carbon disulfide. Production method.
前記第2の工程では、前記第1の工程で得られるEuが均一に分散したEu添加BaAlを、二硫化炭素を含んだ不活性ガス流通下で、800〜1150℃で熱処理して還元硫化された焼成物とすることを特徴とする請求項1に記載の無機EL用蛍光体の製造方法。 In the second step, Eu-added BaAl 2 O 4 in which Eu obtained in the first step is uniformly dispersed is heat-treated at 800 to 1150 ° C. under an inert gas flow containing carbon disulfide. The method for producing a phosphor for inorganic EL according to claim 1, wherein the fired product is reduced and sulfided. 前記第2の工程で得られた焼成物を粉砕し、二硫化炭素を含んだ不活性ガス流通下で、800〜1150℃で熱処理し、還元硫化することを2回以上繰り返すことを特徴とする請求項に記載の無機EL用蛍光体の製造方法。 The fired product obtained in the second step is pulverized, subjected to heat treatment at 800 to 1150 ° C. under an inert gas flow containing carbon disulfide, and reduced and sulfided twice or more. The manufacturing method of the fluorescent substance for inorganic EL of Claim 2 .
JP2008064740A 2008-03-13 2008-03-13 Method for manufacturing phosphor for inorganic EL Expired - Fee Related JP5164618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008064740A JP5164618B2 (en) 2008-03-13 2008-03-13 Method for manufacturing phosphor for inorganic EL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008064740A JP5164618B2 (en) 2008-03-13 2008-03-13 Method for manufacturing phosphor for inorganic EL

Publications (2)

Publication Number Publication Date
JP2009221263A JP2009221263A (en) 2009-10-01
JP5164618B2 true JP5164618B2 (en) 2013-03-21

Family

ID=41238388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008064740A Expired - Fee Related JP5164618B2 (en) 2008-03-13 2008-03-13 Method for manufacturing phosphor for inorganic EL

Country Status (1)

Country Link
JP (1) JP5164618B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5506215B2 (en) * 2009-03-13 2014-05-28 住友金属鉱山株式会社 Method for manufacturing phosphor
JP5718580B2 (en) * 2010-03-18 2015-05-13 株式会社東芝 Red phosphor, method for producing the same, and light emitting device
CN102618265B (en) * 2012-03-06 2015-03-25 合肥工业大学 Green fluorescent material for alternating current - light-emitting diode (AC-LED) and preparation method thereof
CN102746845B (en) * 2012-07-20 2014-07-09 中国地质大学(武汉) Rare earth long-persistence luminescent powder, preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10028266A1 (en) * 2000-06-09 2001-12-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Luminescent material used for emitting green light is of the thiogallate class
DE20108873U1 (en) * 2001-05-29 2001-12-06 Osram Opto Semiconductors Gmbh Highly efficient fluorescent

Also Published As

Publication number Publication date
JP2009221263A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP5586499B2 (en) Method for manufacturing phosphor
TWI390011B (en) Green phosphor
JP6512070B2 (en) Red phosphor
JP5164618B2 (en) Method for manufacturing phosphor for inorganic EL
CN1957060B (en) Aluminate phosphor and process for producing the same
JP2007063366A (en) Red fluorophor for near-ultraviolet and green-color excitation and method for producing the same, and red light-emitting device
JP2003027056A (en) Pink color developing device
JP5339976B2 (en) Orange phosphor and method for producing the same
KR101414948B1 (en) PROCESS FOR PRODUCTION OF Eu-ACTIVATED ALKALINE EARTH METAL SILICATE PHOSPHOR
JP5506215B2 (en) Method for manufacturing phosphor
JP5767145B2 (en) Visible light responsive phosphor, method for producing the same, and temperature indicating material including the same
JP5355441B2 (en) Orange phosphor and method for producing the same
JP6350123B2 (en) Method for producing sulfide phosphor
JP5331021B2 (en) Yellow phosphor and method for producing the same
JP2012102171A (en) Sulfide phosphor
JP6361416B2 (en) Method for producing red phosphor
JP5171326B2 (en) Method for manufacturing phosphor for inorganic EL
JP5484504B2 (en) Eu-activated alkaline earth metal thioaluminate phosphor and method for producing the same
JP2014009253A (en) Method for producing sulfide phosphor, and the sulfide phosphor
JP5145490B2 (en) Method for manufacturing phosphor for inorganic EL
JP5420015B2 (en) Sulfide phosphor and method for producing the same
CN110003910B (en) Eu (Eu)3+Activated bismuth fluorotellurate red fluorescent powder and preparation method and application thereof
JP5066104B2 (en) Blue phosphor
JP2012188619A (en) Method of manufacturing rare earth addition sulfide fluorescent substance
JP5252988B2 (en) Yellow phosphor and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5164618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees