JP5145490B2 - Method for manufacturing phosphor for inorganic EL - Google Patents

Method for manufacturing phosphor for inorganic EL Download PDF

Info

Publication number
JP5145490B2
JP5145490B2 JP2007113429A JP2007113429A JP5145490B2 JP 5145490 B2 JP5145490 B2 JP 5145490B2 JP 2007113429 A JP2007113429 A JP 2007113429A JP 2007113429 A JP2007113429 A JP 2007113429A JP 5145490 B2 JP5145490 B2 JP 5145490B2
Authority
JP
Japan
Prior art keywords
sulfur
added
phosphor
powder
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007113429A
Other languages
Japanese (ja)
Other versions
JP2008266499A (en
Inventor
ペトリキン・ヴァレリー
眞人 垣花
裕二 高塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Sumitomo Metal Mining Co Ltd
Original Assignee
Tohoku University NUC
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Sumitomo Metal Mining Co Ltd filed Critical Tohoku University NUC
Priority to JP2007113429A priority Critical patent/JP5145490B2/en
Publication of JP2008266499A publication Critical patent/JP2008266499A/en
Application granted granted Critical
Publication of JP5145490B2 publication Critical patent/JP5145490B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

本発明は、各種情報や画像を表示するディスプレイ等に用いられる薄膜エレクトロルミネッセンス(EL)の発光材料である無機EL用蛍光体の製造方法に係り、より詳しくは青色発光の無機EL用バリウムチオアルミネート系蛍光体の製造方法に関するものである。   The present invention relates to a method for manufacturing a phosphor for inorganic EL, which is a light-emitting material for thin film electroluminescence (EL) used for a display for displaying various information and images, and more specifically, blue light-emitting barium thioaluminum for inorganic EL. The present invention relates to a method for producing an nate-based phosphor.

近年、各種情報や画像を表示するディスプレイ等に用いられる薄膜エレクトロルミネッセンス(EL)の発光材料である無機EL素子の開発が盛んに進められている。その技術としては、例えば、高輝度の希土類添加アルカリ土類チオアルミネート蛍光体(構造式AB:Re)を含有する蛍光体を用いてフルカラー表示を行う方法が知られている(特許文献1参照)。
この方法は、例えば、Cを構成する元素を有する水素化物のガスをスパッタガス中に含む反応性スパッタ法、あるいはA、B、C、Reを構成する各元素を一種類以上有する複数の蒸気ガスを独立に制御して基板表面に供給して薄膜を形成する製膜手法により製膜される蛍光体薄膜を数種類用いて多色表示薄膜ELパネルを製造する方法である。
In recent years, development of inorganic EL elements, which are light-emitting materials for thin film electroluminescence (EL), used for displays for displaying various information and images, has been actively promoted. As the technology, for example, a method of performing full color display using a phosphor containing a high-brightness rare earth-added alkaline earth thioaluminate phosphor (structural formula AB 2 C 4 : Re) is known (patent). Reference 1).
This method is, for example, a reactive sputtering method in which a hydride gas having an element constituting C is contained in a sputtering gas, or a plurality of vapor gases having one or more kinds of elements constituting A, B, C, and Re. Is a method of manufacturing a multi-color display thin-film EL panel using several kinds of phosphor thin films formed by a film-forming method in which a thin film is formed by independently controlling the above.

また、希土類添加アルカリ土類チオアルミネート蛍光体としては、例えば高輝度で色純度の優れた青色発光を有するEL材料および該材料を発光層とする薄膜EL素子が知られている(特許文献2参照)。このEL材料は、アルカリ土類チオアルミネートを母材料とし、セリウム等のランタノイド系元素を付活材とするものである。
このような薄膜EL材料の中で、特にEu添加BaAl硫化物蛍光体は、輝度が高く、色純度が良いため最も期待されている材料である。これらの蛍光体は、硫化アルミニウム等の硫化物粉末を混合、焼成することにより得られるが、その際には原料粉末が微細であるほど均質な蛍光体が得られる。特に高輝度の蛍光体を作製するには発光元素であるEuが均一に分散し、Baの元素位置を置換することが重要である。
As rare earth-added alkaline earth thioaluminate phosphors, for example, EL materials having high luminance and blue light emission with excellent color purity and thin film EL elements using such materials as light emitting layers are known (Patent Document 2). reference). This EL material uses an alkaline earth thioaluminate as a base material and a lanthanoid element such as cerium as an activator.
Among such thin film EL materials, the Eu-added BaAl 2 S 4 sulfide phosphor is the most expected material because of its high luminance and good color purity. These phosphors can be obtained by mixing and baking sulfide powders such as aluminum sulfide. In this case, the finer the raw material powder, the more uniform the phosphor. In particular, in order to produce a high-luminance phosphor, it is important that Eu, which is a light-emitting element, is uniformly dispersed and the element position of Ba is replaced.

かかるEu添加BaAl硫化物蛍光体作成法としては、例えば、アルカリ土類元素化合物、アルミニウム原料、希土類元素化合物を用い、700℃以上の温度にて硫化水素などの含硫黄ガス雰囲気中で合成する方法も提案されている(特許文献3参照)。 Such Eu-added BaAl 2 S 4 sulfide phosphors can be prepared by using, for example, an alkaline earth element compound, an aluminum raw material, and a rare earth element compound in a sulfur-containing gas atmosphere such as hydrogen sulfide at a temperature of 700 ° C. or higher. A synthesis method has also been proposed (see Patent Document 3).

しかしながら、前記したEu添加BaAl硫化物蛍光体の出発原料である硫化アルミニウム等の硫化物は、空気中の水分と反応して品質が劣化し易い上、粉砕・混合時に有毒な硫化水素ガスを発生するという問題がある。また、品質が劣化した硫化物を用いると硫化物蛍光体の結晶性が悪くなり、蛍光強度が低下するという欠点を有し、特に粉末が微細化すると硫化物の品質劣化が著しくなる。さらに、BaSやEuSは98〜99%と純度が低く、不純物の管理も容易でないという難点がある。
またアルカリ土類元素化合物、アルミニウム原料、希土類元素化合物を用い、700℃以上の温度にて硫化水素などの含硫黄ガス雰囲気中で合成する方法では、硫化バリウム、硫化ユーロピウム等の硫化物を均一に分散させることが難しいことから、硫化水素等のガス雰囲気で合成するため有毒なガスの処理が必要である。
更に前述した従来の合成法ではAlを完全に硫化させることが難しく、輝度が不十分であるという問題点もあった。
特開平7−122364号公報 特開平8−134440号公報 特開2005−344094号公報
However, sulfides such as aluminum sulfide, which are starting materials for the above-described Eu-added BaAl 2 S 4 sulfide phosphor, easily react with moisture in the air and deteriorate in quality, and are toxic hydrogen sulfide during pulverization and mixing. There is a problem of generating gas. In addition, the use of sulfides with deteriorated quality has the disadvantage that the crystallinity of the sulfide phosphor is deteriorated and the fluorescence intensity is lowered. In particular, when the powder is refined, the quality of the sulfide is significantly deteriorated. Furthermore, BaS and EuS have a low purity of 98 to 99%, and there is a problem that impurities are not easily managed.
In addition, a method of synthesizing sulfides such as barium sulfide and europium sulfide uniformly by using an alkaline earth element compound, an aluminum raw material, and a rare earth element compound in a sulfur-containing gas atmosphere such as hydrogen sulfide at a temperature of 700 ° C. or higher. Since it is difficult to disperse, it is necessary to treat toxic gas in order to synthesize in a gas atmosphere such as hydrogen sulfide.
Further, the above-described conventional synthesis method has a problem that it is difficult to completely sulfidize Al and luminance is insufficient.
JP-A-7-122364 JP-A-8-134440 JP 2005-344094 A

本発明は、かかる現状に鑑みてなされたもので、特に硫化アルミニウム等の硫化物の粉砕・混合時の有毒ガスの発生を抑制し、合成時にも硫化水素等の有毒ガスを使用しない高輝度のEu添加BaAl硫化物蛍光体を製造し得る新規な無機EL用蛍光体の製造方法を提案しようとするものである。 The present invention has been made in view of the present situation, and particularly suppresses the generation of toxic gas during pulverization / mixing of sulfides such as aluminum sulfide, and does not use toxic gas such as hydrogen sulfide during synthesis. is intended to propose a novel process for producing inorganic EL phosphor capable of producing a Eu added BaAl 2 S 4 sulfide phosphor.

本発明に係る第一の無機EL用蛍光体の製造方法は、Eu添加バリウムチオアルミネートを合成して無機EL用蛍光体を製造する方法であって、前記Eu添加バリウムチオアルミネートは、Euが均一に分散したEu添加BaSにアルミニウムの粉末と硫黄の粉末を混合し、1気圧以上の硫黄蒸気圧中で750℃以上1100℃以下の温度での加熱により、前記硫黄の粉末が溶融して液相の硫黄を形成し、前記液相の硫黄と前記アルミニウムの粉末との接触により外周に硫化したアルミニウムを有するアルミニウムの粉末を形成した後、硫黄蒸気下で前記Euが均一に分散したEu添加BaSとの接触によって得られたものであることを特徴とする無機EL用蛍光体の製造方法である。
また、本発明の第二の無機EL用蛍光体の製造方法は、Eu添加バリウムチオアルミネートを合成して無機EL用蛍光体を製造する方法であって、前記Eu添加バリウムチオアルミネートは、Euが均一に分散したEu添加BaSにアルミニウムの粉末と硫黄の粉末を混合し、1気圧以上10気圧の硫黄蒸気圧中で850℃以上1100℃以下の温度での30分から12時間熱処理により、前記硫黄の粉末が溶融して液相の硫黄を形成し、前記液相の硫黄と前記アルミニウムの粉末との接触により外周に硫化したアルミニウムを有するアルミニウムの粉末を形成した後、硫黄蒸気下で前記Euが均一に分散したEu添加BaSとの接触によって得られたものであることを特徴とするものである。
更に、本発明の第一の無機EL用蛍光体は、第一及び第二の製造方法により得られた粒径1μm以上100μm以下のEu添加バリウムチオアルミネートからなることを特徴とし、本発明の第二の無機EL用蛍光体は、第一及び第二の製造方法により得られたEuの濃度がBaに対して3%以上10%以下であることを特徴とするものである。
The first method for producing an inorganic EL phosphor according to the present invention is a method for producing an inorganic EL phosphor by synthesizing Eu-added barium thioaluminate, wherein the Eu-added barium thioaluminate comprises Eu. Is mixed with Eu-added BaS uniformly dispersed, and the sulfur powder is melted by heating at a temperature of 750 ° C. to 1100 ° C. in a sulfur vapor pressure of 1 atm or higher. Addition of Eu in which liquid phase sulfur is formed, and after the formation of aluminum powder having aluminum sulfided on the outer periphery by contact between the liquid phase sulfur and the aluminum powder, the Eu is uniformly dispersed under sulfur vapor It is a method for producing a phosphor for inorganic EL, which is obtained by contact with BaS .
The second method for producing a phosphor for inorganic EL according to the present invention is a method for producing a phosphor for inorganic EL by synthesizing Eu-added barium thioaluminate , wherein the Eu-added barium thioaluminate is Aluminum powder and sulfur powder are mixed with Eu-added BaS in which Eu is uniformly dispersed, and heat treatment is performed at a temperature of 850 ° C. to 1100 ° C. for 30 minutes to 12 hours in a sulfur vapor pressure of 1 to 10 atm. After the sulfur powder is melted to form liquid-phase sulfur, an aluminum powder having aluminum sulfided on the outer periphery by contact between the liquid-phase sulfur and the aluminum powder is formed, and then the Eu is applied under sulfur vapor. Is obtained by contact with uniformly added Eu-added BaS .
Furthermore, the first phosphor for inorganic EL of the present invention comprises Eu-added barium thioaluminate having a particle diameter of 1 μm or more and 100 μm or less obtained by the first and second production methods. The second inorganic EL phosphor is characterized in that the Eu concentration obtained by the first and second manufacturing methods is 3% or more and 10% or less with respect to Ba.

本発明は、Euが均一に分散したEu添加BaSにアルミニウムと硫黄を混合し、1気圧以上の硫黄蒸気圧中で750℃以上1100℃以下の温度で加熱してEu添加バリウムチオアルミネートを得、これを合成して無機EL用蛍光体を製造する方法であるから、硫化アルミニウム等の硫化物の粉砕・混合時に有毒ガスを発生させることなく、合成時にも硫化水素等の有毒ガス雰囲気を使用する必要は無い。
更に、該無機EL蛍光体のEuの濃度が3%以上10%以下とし該無機EL用蛍光体の製造方法で作成することで高輝度のEu添加BaAl硫化物蛍光体を製造することができる。
また、この方法によれば、Eu添加BaAl硫化物蛍光体中に原料化合物や副生物等の残留物がなくなることから、結晶性の良好な高輝度に発光するEu添加BaAl硫化物蛍光体薄膜を得ることができる。
In the present invention, Eu-added BaS in which Eu is uniformly dispersed is mixed with aluminum and sulfur, and heated at a temperature of 750 ° C. or higher and 1100 ° C. or lower in a sulfur vapor pressure of 1 atm or higher to obtain Eu-added barium thioaluminate. Since this is a method of synthesizing this and producing a phosphor for inorganic EL, a toxic gas atmosphere such as hydrogen sulfide is used even during synthesis without generating a toxic gas when pulverizing and mixing sulfides such as aluminum sulfide. There is no need to do.
Furthermore, a high-luminance Eu-added BaAl 2 S 4 sulfide phosphor is produced by making the Eu concentration of the inorganic EL phosphor not less than 3% and not more than 10% by the method for producing the phosphor for inorganic EL. Can do.
Further, according to this method, since the Eu-added BaAl 2 S 4 sulfide phosphor is free from residues such as raw material compounds and by-products, Eu-added BaAl 2 S 4 that emits light with high crystallinity and high brightness. A sulfide phosphor thin film can be obtained.

本発明の無機EL用蛍光体の製造方法について、以下に説明する。
本発明に係る無機EL用蛍光体の製造方法は、1)Euが均一に分散したEu添加BaSを合成する工程と、2)1)で得たEu添加BaSにアルミニウムと硫黄を混合し、熱処理することによりバリウムチオアルミネートを合成する工程、とからなる製造方法であることを特徴とする。
The manufacturing method of the phosphor for inorganic EL of the present invention will be described below.
The manufacturing method of the phosphor for inorganic EL according to the present invention includes 1) a step of synthesizing Eu-added BaS in which Eu is uniformly dispersed, 2) mixing aluminum and sulfur with Eu-added BaS obtained in 1), and heat treatment. And a step of synthesizing barium thioaluminate.

1)Euが均一に分散したEu添加BaSを合成する工程
Eu添加BaSは、炭酸バリウムと酸化ユーロピウムを用いて錯体重合法で作成したものが分散性が良く好ましいが、その他にも硫化バリウムと硫化ユーロピウムを混合熱処理したものを用いても良い。
より具体的には、A.酸化Euを酸に溶解してアルコール、オキシカルボン酸、炭酸バリウムを順次加え、更に120〜250℃でゲルを得た後、該ゲルを400〜500℃で熱処理して得られた前駆体を再度650〜1000℃で熱処理する工程と、B.該工程により得られたEuが均一に分散したEu添加BaSを10%以上のHS−Nガス流通下で850〜1100℃で熱処理する工程などにより、Euが均一に分散したEu添加BaSを合成することが可能である。
ここで、高輝度の蛍光体を得るためには、Euの濃度はBaに対して3%以上10%以下が好ましい。3%未満ではEuの発光中心が少なくて輝度が出ない。10%を超えると、Eu原子同士が隣り合う確率が増加し、結晶性が悪くなり輝度低下を引き起こすため好ましくない。
反応性から考えるとEu添加BaSの粒径は100μm以下が好ましいが、1μm未満では浮遊しやすくなるため好ましくない。
1) Step of synthesizing Eu-added BaS in which Eu is uniformly dispersed Eu-added BaS is preferably prepared by a complex polymerization method using barium carbonate and europium oxide, but has good dispersibility. You may use what heat-mixed europium.
More specifically, A.I. Eu oxide is dissolved in acid, alcohol, oxycarboxylic acid, and barium carbonate are sequentially added. After further obtaining a gel at 120 to 250 ° C., the precursor obtained by heat-treating the gel at 400 to 500 ° C. is again used. A step of heat treatment at 650 to 1000 ° C .; Eu-added BaS in which Eu is uniformly dispersed by, for example, a step of heat-treating Eu-added BaS obtained by this process at 850 to 1100 ° C. under a flow of H 2 S—N 2 gas of 10% or more. Can be synthesized.
Here, in order to obtain a high-luminance phosphor, the Eu concentration is preferably 3% or more and 10% or less with respect to Ba. If it is less than 3%, the Eu emission center is small and luminance does not appear. If it exceeds 10%, the probability that Eu atoms are adjacent to each other increases, and the crystallinity is deteriorated to cause a decrease in luminance.
From the viewpoint of reactivity, the particle size of Eu-added BaS is preferably 100 μm or less, but less than 1 μm is not preferable because it tends to float.

2)Eu添加BaSにアルミニウムと硫黄を混合し、熱処理することによりバリウムチオアルミネートを合成する工程
硫黄とアルミニウムは熱処理で熔解するため、粒径を限定しないが、Eu添加BaSと均一に混ぜるため、硫黄とアルミニウム粉末を混合してペレット化しておくことが好ましい。
ここで、硫黄、アルミニウム、Eu添加BaSのうち、特にアルミニウムとEu添加BaSとを密着させると、バリウムチオアルミネートの合成が均一に進むため好ましい。またアルミニウム粉末の表面が硫黄の融液に覆われると硫化しやすくなるので、硫黄とアルミニウム粉末を混合することが望ましい。
硫黄の沸点は447℃であるためそれ以上の温度では1気圧以上の蒸気圧を持つ、アルミニウムの硫化反応は急激に進行するため、反応容器が破損しないように注意することが必要である。そのため反応容器中に低温部と高温部を設け低温部に十分な硫黄を置いて硫黄蒸気を反応部へ輸送し、蒸気圧を制御する方法をとることも可能である。
硫黄蒸気中でAlがSと反応してAlとなり、更に750℃以上でAlがEu添加BaSと反応してバリウムチオアルミネート(組成式Eu:BaAl)が合成される。
ここで、上記工程により製造されたEu添加バリウムチオアルミネートが、何故、後述するような優れた高輝度性を奏するのかというのは、硫黄蒸気中でAlが完全に硫化するため、本願のAlには、市販のAlには必ず存在するAlが全く存在しなくなるからである。また、Eu添加バリウムチオアルミネートの合成ではSの蒸発が抑制されてSの欠陥が減少することも、優れた高輝度性の一因であるものと考えられる。
更に高輝度のバリウムチオアルミネート蛍光体を得るためには以下の処理を施してもよい。バリウムチオアルミネートの合成後、850℃から1100℃で硫黄の蒸気圧1気圧から10気圧で30分から12時間熱処理を行うと、得られるバリウムチオアルミネート蛍光体の輝度が上昇する。これはEuがBaの原子位置に置換し2価として活性化するためと考えられる。
Eu濃度が3%以上10%以下で高輝度化させるには熱処理温度を800℃以上1100℃以下にすることが好ましく、より好ましくは850℃以上1100℃以下にするのが好ましい。800℃より低い温度では、バリウムチオアルミネート硫化物の合成温度として不十分で、結晶性が悪いという欠点を有する。また、Baに対して3%以上10%以下のEuをBaサイトに置換して発光に寄与させるには850℃以上とすることが好ましい。
一方、1100℃より高温になると、硫化アルミニウムが熔解、蒸発するため組成が変化してしまうため好ましくない。また、1100℃までは、表面から硫黄が抜けにくいため好ましい。
Eu添加BaAl粉末の合成は、酸素や水分が混入すると硫酸塩や酸化物が形成され再現性に欠けて不安定となるため、真空封入が好ましい。
真空封入後、均一な熱処理炉に入れるか、2つ以上の独立に温度制御が可能熱処理炉を用いて熱処理を行う。
なお、前記真空封入で合成する以外の方法としては、例えばAAS等の化合物半導体を合成する高圧容器を用いることも可能である。
2) Step of synthesizing barium thioaluminate by mixing aluminum and sulfur in Eu-added BaS and heat-treating Sulfur and aluminum are melted by heat-treatment, so the particle size is not limited, but to mix uniformly with Eu-added BaS Preferably, sulfur and aluminum powder are mixed and pelletized.
Here, among sulfur, aluminum, and Eu-added BaS, it is preferable that aluminum and Eu-added BaS are brought into close contact with each other because synthesis of barium thioaluminate proceeds uniformly. In addition, since the surface of the aluminum powder is easily sulfided when covered with a sulfur melt, it is desirable to mix sulfur and aluminum powder.
Since the boiling point of sulfur is 447 ° C., a temperature higher than that has a vapor pressure of 1 atm or higher. Since the sulfidation reaction of aluminum proceeds rapidly, care must be taken not to damage the reaction vessel. Therefore, it is possible to take a method of controlling the vapor pressure by providing a low temperature part and a high temperature part in the reaction vessel, placing sufficient sulfur in the low temperature part and transporting sulfur vapor to the reaction part.
Al reacts with S in sulfur vapor to become Al 2 S 3 , and further Al 2 S 3 reacts with Eu-added BaS at 750 ° C. or higher to synthesize barium thioaluminate (compositional formula Eu: BaAl 2 S 4 ). Is done.
Here, the reason why the Eu-added barium thioaluminate produced by the above process exhibits excellent high brightness as described later is that Al is completely sulfided in sulfur vapor, so This is because 2 S 3 always has no Al present in the commercially available Al 2 S 3 . In addition, in the synthesis of Eu-added barium thioaluminate, S evaporation is suppressed and S defects are reduced, which is considered to contribute to excellent high luminance.
Furthermore, in order to obtain a barium thioaluminate phosphor with high brightness, the following treatment may be performed. After the synthesis of barium thioaluminate, if the heat treatment is performed at 850 ° C. to 1100 ° C. and a sulfur vapor pressure of 1 to 10 atm for 30 minutes to 12 hours, the luminance of the resulting barium thioaluminate phosphor increases. This is thought to be because Eu is substituted at the atomic position of Ba and activated as divalent.
In order to increase the luminance when the Eu concentration is 3% or more and 10% or less, the heat treatment temperature is preferably 800 ° C. or more and 1100 ° C. or less, more preferably 850 ° C. or more and 1100 ° C. or less. When the temperature is lower than 800 ° C., the synthesis temperature of the barium thioaluminate sulfide is insufficient and the crystallinity is poor. Further, in order to replace Eu with 3% or more and 10% or less with respect to Ba to contribute to light emission, the temperature is preferably set to 850 ° C. or more.
On the other hand, when the temperature is higher than 1100 ° C., the aluminum sulfide is melted and evaporated, so that the composition changes. Moreover, since it is hard to remove | eliminate sulfur from the surface up to 1100 degreeC, it is preferable.
The synthesis of the Eu-added BaAl 2 S 4 powder is preferably vacuum-encapsulated, because when oxygen or moisture is mixed, sulfate or oxide is formed and becomes unstable due to lack of reproducibility.
After vacuum sealing, the heat treatment is performed in a uniform heat treatment furnace or using two or more heat treatment furnaces capable of independently controlling the temperature.
Beside synthesized in the vacuum-sealed is possible for example to use a high pressure vessel to synthesize the compound semiconductor such as G AAS.

以下本発明を、実施例を用いて更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

(1)Eu添加BaSの合成
酸化ユーロピウム(フルウチ化学株式会社製 3N)0.26gを濃度15%の硝酸(関東化学株式会社製 60%)に溶解し、次いで5分後に0.01リットルの水を加え、更に完全に溶解させるため1時間攪拌した。攪拌後、この液にエチレングリコール(関東化学株式会社製 99.5%)21gとクエン酸(和光純薬株式会社製 98%)20gを加え、このクエン酸が完全に溶解した後、液温を40℃にしてさらに炭酸バリウム(BaCO)5.5gを加え、8時間攪拌して炭酸塩を完全に溶解させた。続いて、炭酸塩が完全に溶解した混合液の液温を200℃に高めて、粘性を有するゲル状になるまで攪拌した。攪拌後、得られたゲルをマントルヒーターで450℃に加熱し、ゲルを熱分解させて前駆体粉末を作製し、該前駆体粉末をメノウ乳鉢で軽く粉砕した後アルミナの坩堝に入れて管状炉により850℃、10時間のアニールを行って炭酸塩を作成した。
このEu添加BaCO粉末2.0gをHS濃度が10.5%の窒素―硫化水素混合ガス中で加熱し、950℃で24時間アニールしてEu添加BaS粉末1.7gを得た。
得られたEu添加BaSのEu濃度はBaに対して5.1%であった。
(2)バリウムチオアルミネートの合成
前記Eu添加BaS粉末0.5gと市販のAl粉末(高純度化学製4N)0.1585gと硫黄(関東化学製99.5%)0.2825gをメノウ乳鉢で20分混合し、この混合物をハンドプレスで200MPAまで加圧して成型体(ペレット)を作成した。この成型体を石英アンプルに真空封入し、この石英アンプルを1000℃まで加熱し1時間保温して熱処理を行った。得られた粉末のX線回折パターンを図1に示す。
(1) Synthesis of Eu-added BaS 0.26 g of europium oxide (3N manufactured by Furuuchi Chemical Co., Ltd.) was dissolved in nitric acid having a concentration of 15% (60% manufactured by Kanto Chemical Co., Ltd.), and after 5 minutes 0.01 liter of water And stirred for 1 hour for complete dissolution. After stirring, 21 g of ethylene glycol (99.5%, manufactured by Kanto Chemical Co., Ltd.) and 20 g of citric acid (98%, manufactured by Wako Pure Chemical Industries, Ltd.) were added to this solution. Further, 5.5 g of barium carbonate (BaCO 3 ) was added to 40 ° C., and the mixture was stirred for 8 hours to completely dissolve the carbonate. Subsequently, the liquid temperature of the mixed solution in which the carbonate was completely dissolved was increased to 200 ° C. and stirred until a viscous gel was formed. After stirring, the obtained gel was heated to 450 ° C. with a mantle heater, the gel was pyrolyzed to prepare a precursor powder, the precursor powder was lightly pulverized with an agate mortar, and then placed in an alumina crucible and a tubular furnace The carbonic acid salt was prepared by annealing at 850 ° C. for 10 hours.
2.0 g of this Eu-added BaCO 3 powder was heated in a nitrogen-hydrogen sulfide mixed gas having an H 2 S concentration of 10.5%, and annealed at 950 ° C. for 24 hours to obtain 1.7 g of Eu-added BaS powder.
The Eu concentration of the obtained Eu-added BaS was 5.1% with respect to Ba.
(2) Synthesis of barium thioaluminate 0.5 g of the Eu-added BaS powder, 0.1585 g of commercially available Al powder (4N made by high purity chemical) and 0.2825 g of sulfur (99.5% made by Kanto Chemical Co., Ltd.) were used in an agate mortar. The mixture was mixed for 20 minutes, and this mixture was pressurized to 200 MPa with a hand press to prepare a molded body (pellet). The molded body was vacuum-sealed in a quartz ampule, and the quartz ampule was heated to 1000 ° C. and kept for 1 hour for heat treatment. The X-ray diffraction pattern of the obtained powder is shown in FIG.

石英アンプルの温度を900℃にした以外は実施例1と同様の方法でバリウムチオアルミネート粉末を作成し、XRD測定を行った。結果を図1に示す。   A barium thioaluminate powder was prepared in the same manner as in Example 1 except that the temperature of the quartz ampule was 900 ° C., and XRD measurement was performed. The results are shown in FIG.

内容積5.45mlの石英アンプルを用いて硫黄0.058gと実施例1の粉末を真空封入し1000℃12時間熱処理を行った。1000℃では計算上1.74気圧の硫黄蒸気圧中で熱処理したことになる。得られた粉末のXRDパターンを図2に示す。図1と同様のパターンが得られた。   Using a quartz ampule with an internal volume of 5.45 ml, 0.058 g of sulfur and the powder of Example 1 were vacuum-sealed and heat-treated at 1000 ° C. for 12 hours. At 1000 ° C., the heat treatment was performed in a sulfur vapor pressure of 1.74 atm. The XRD pattern of the obtained powder is shown in FIG. A pattern similar to that of FIG. 1 was obtained.

内容積3.80mlの石英アンプルを用いて硫黄を0.095gした以外は実施例3と同様の方法で粉末を作成した。1000℃では計算上4.08気圧の硫黄蒸気圧中で熱処理したことになる。得られた粉末のXRDパターンは実施例3と同じであった。   A powder was prepared in the same manner as in Example 3 except that 0.095 g of sulfur was used using a quartz ampule with an internal volume of 3.80 ml. At 1000 ° C., heat treatment was performed in a sulfur vapor pressure of 4.08 atm. The XRD pattern of the obtained powder was the same as in Example 3.

(比較例1)
実施例1と同様にペレットを作成し、650℃で熱処理した以外は、実施例1と同じ方法で作成した。XRDの測定ではバリウムチオアルミネートは観察できなかった。
(Comparative Example 1)
Pellets were prepared in the same manner as in Example 1, and were prepared in the same manner as in Example 1 except that heat treatment was performed at 650 ° C. Barium thioaluminate could not be observed by XRD measurement.

(比較例2)
実施例1と同様の方法で粉末を作成し、650℃で熱処理した以外は、実施例1と同じ方法で作成した。XRDの測定ではバリウムチオアルミネートは観察できなかった。
(Comparative Example 2)
A powder was prepared in the same manner as in Example 1, and was prepared in the same manner as in Example 1 except that it was heat-treated at 650 ° C. Barium thioaluminate could not be observed by XRD measurement.

(従来例)
市販のBaS(Alfa AeSar製)10.7gとEuS(フルウチ化学株式会社製)0.5gとAl9.9gを秤量し、湿度が0.02%以下の窒素置換したグローブボックス中メノウ乳鉢で20分混合し、実施例1と同じ方法で粉末を作成した。得られた粉末のX線回折パターンを図3に示す。図3から明らかなごとく、得られた粉末にはBaAl以外にAlが検出された。
(Conventional example)
10.7 g of commercially available BaS (manufactured by Alfa AeSar), 0.5 g of EuS (manufactured by Furuuchi Chemical Co., Ltd.) and 9.9 g of Al 2 S 3 were weighed, and the agate in the nitrogen-substituted glove box with a humidity of 0.02% or less The mixture was mixed in a mortar for 20 minutes, and a powder was prepared in the same manner as in Example 1. The X-ray diffraction pattern of the obtained powder is shown in FIG. As apparent from FIG. 3, Al 2 O 3 was detected in addition to BaAl 2 S 4 in the obtained powder.

また、前記した実施例1、2,3,4と比較例2、従来例で作成したそれぞれのペレット表面の黒ずみを研磨紙で取り除き、それぞれのペレットに254nmの光を照射して励起し蛍光強度を測定した。強度測定結果を図4に示す。また実施例3と比較例2の蛍光スペクトルを図5に示す。
図4から明らかなごとく、本発明法により得られた粉末は従来例に比べて1.7〜2倍、比較例に比べて1.4〜1.8倍の蛍光強度を示した。また図5から明らかなように476nmにピークを持つ強い蛍光を発することが確認された。
Further, the dark spots on the pellet surfaces prepared in Examples 1, 2, 3, 4 and Comparative Example 2 and the conventional example were removed with abrasive paper, and each pellet was excited by irradiation with light of 254 nm to obtain fluorescence intensity. Was measured. The strength measurement results are shown in FIG. The fluorescence spectra of Example 3 and Comparative Example 2 are shown in FIG.
As apparent from FIG. 4, the powder obtained by the method of the present invention showed a fluorescence intensity 1.7 to 2 times that of the conventional example and 1.4 to 1.8 times that of the comparative example. Further, as is clear from FIG. 5, it was confirmed that strong fluorescence having a peak at 476 nm was emitted.

[本願発明に係る蛍光体]
以上のように本発明で得られた蛍光体は、BaAl:Eu単相であり、蛍光強度も従来例より強いことが分かった。
尚、テレビ用の蛍光体膜用のスパッタターゲットなどは1〜3kg程度のAlを使うため、硫化水素発生を発生させないため真空後ローブボックスの使用が必須であり、粉砕などには完全フッ素液体を用いるなどの工夫が必要であった。今回の方法はAlを用いないため、硫化水素発生の恐れが無く、真空グローブボックスを必要としないため作業性が著しく向上する極めて有用な方法である。
[Phosphor according to the present invention]
As described above, it has been found that the phosphor obtained in the present invention is a BaAl 2 S 4 : Eu single phase, and the fluorescence intensity is stronger than that of the conventional example.
Since sputter targets for phosphor films for television use about 1 to 3 kg of Al 2 S 3 , it is essential to use a lobe box after vacuum in order not to generate hydrogen sulfide. It was necessary to devise such as using a fluorinated liquid. Since this method does not use Al 2 S 3 , there is no fear of generation of hydrogen sulfide, and since a vacuum glove box is not required, it is an extremely useful method in which workability is remarkably improved.

本発明方法によれば、硫化アルミニウム等の硫化物の粉砕・混合時に有毒ガスを発生させることなく、Euが均一に分散した高品質のEu添加BaAl硫化物蛍光体を製造することができ、またEu添加BaAl硫化物蛍光体中に原料化合物や副生物等の残留物がなくなることから、結晶性の良好な高輝度に発光するEu添加BaAl硫化物蛍光体薄膜を得ることができるので、その工業的価値は極めて大である。 According to the method of the present invention, it is possible to produce a high-quality Eu-added BaAl 2 S 4 sulfide phosphor in which Eu is uniformly dispersed without generating a toxic gas during the pulverization and mixing of sulfides such as aluminum sulfide. can also Eu added BaAl 2 S 4 from the sulfide material compound phosphor and residue byproducts like is eliminated, Eu added BaAl 2 S 4 sulfide phosphor thin film for emitting the crystallinity of good high intensity Therefore, the industrial value is extremely large.

実施例1と実施例2の粉末のXRDパターンを示す図である。It is a figure which shows the XRD pattern of the powder of Example 1 and Example 2. FIG. 実施例3のXRDパターンを示す図である。FIG. 6 is a diagram showing an XRD pattern of Example 3. 従来例のXRDパターンを示す図である。It is a figure which shows the XRD pattern of a prior art example. 各実施例、比較例2、従来例の蛍光強度の比較結果を示す図である。It is a figure which shows the comparison result of the fluorescence intensity of each Example, the comparative example 2, and a prior art example. 実施例3と比較例2の蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum of Example 3 and Comparative Example 2.

Claims (4)

Eu添加バリウムチオアルミネートを合成して無機EL用蛍光体を製造する方法であって、
前記Eu添加バリウムチオアルミネートは、Euが均一に分散したEu添加BaSにアルミニウムの粉末と硫黄の粉末を混合し、1気圧以上の硫黄蒸気圧中で750℃以上1100℃以下の温度での加熱により、前記硫黄の粉末が溶融して液相の硫黄を形成し、前記液相の硫黄と前記アルミニウムの粉末との接触により外周に硫化したアルミニウムを有するアルミニウムの粉末を形成した後、硫黄蒸気下で前記Euが均一に分散したEu添加BaSとの接触によって得られたものであることを特徴とする無機EL用蛍光体の製造方法。
A method for producing a phosphor for inorganic EL by synthesizing Eu-added barium thioaluminate,
The Eu-added barium thioaluminate is mixed with Eu-added BaS in which Eu is uniformly dispersed, mixed with aluminum powder and sulfur powder, and heated at a temperature of 750 ° C. to 1100 ° C. in a sulfur vapor pressure of 1 atm or higher. The sulfur powder melts to form liquid phase sulfur, and after forming the aluminum powder having aluminum sulfided on the outer periphery by contact between the liquid phase sulfur and the aluminum powder, A method for producing a phosphor for inorganic EL, which is obtained by contact with Eu-added BaS in which Eu is uniformly dispersed .
Eu添加バリウムチオアルミネートを合成して無機EL用蛍光体を製造する方法であって、
前記Eu添加バリウムチオアルミネートは、Euが均一に分散したEu添加BaSにアルミニウムの粉末と硫黄の粉末を混合し、1気圧以上10気圧の硫黄蒸気圧中で850℃以上1100℃以下の温度での30分から12時間熱処理により、前記硫黄の粉末が溶融して液相の硫黄を形成し、前記液相の硫黄と前記アルミニウムの粉末との接触により外周に硫化したアルミニウムを有するアルミニウムの粉末を形成した後、硫黄蒸気下で前記Euが均一に分散したEu添加BaSとの接触によって得られたものであることを特徴とする無機EL用蛍光体の製造方法。
A method for producing a phosphor for inorganic EL by synthesizing Eu-added barium thioaluminate,
The Eu-added barium thioaluminate is mixed with Eu-added BaS in which Eu is uniformly dispersed and mixed with aluminum powder and sulfur powder at a temperature of 850 ° C. to 1100 ° C. in a sulfur vapor pressure of 1 to 10 atm. The sulfur powder melts to form liquid phase sulfur by heat treatment for 30 minutes to 12 hours, and aluminum powder having aluminum sulfided on the outer periphery is formed by contact between the liquid phase sulfur and the aluminum powder. Then, a method for producing a phosphor for inorganic EL, which is obtained by contact with Eu-added BaS in which Eu is uniformly dispersed under sulfur vapor .
請求項1又は2に記載の製造方法により得られた粒径1μm以上100μm以下のEu添加バリウムチオアルミネートからなることを特徴とする無機EL用蛍光体。   An inorganic EL phosphor comprising an Eu-added barium thioaluminate having a particle diameter of 1 μm or more and 100 μm or less obtained by the production method according to claim 1. 請求項1又は2に記載の製造方法により得られたEuの濃度がBaに対して3%以上10%以下であることを特徴とする無機EL用蛍光体。   A phosphor for inorganic EL, wherein the Eu concentration obtained by the production method according to claim 1 or 2 is 3% or more and 10% or less with respect to Ba.
JP2007113429A 2007-04-23 2007-04-23 Method for manufacturing phosphor for inorganic EL Expired - Fee Related JP5145490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007113429A JP5145490B2 (en) 2007-04-23 2007-04-23 Method for manufacturing phosphor for inorganic EL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007113429A JP5145490B2 (en) 2007-04-23 2007-04-23 Method for manufacturing phosphor for inorganic EL

Publications (2)

Publication Number Publication Date
JP2008266499A JP2008266499A (en) 2008-11-06
JP5145490B2 true JP5145490B2 (en) 2013-02-20

Family

ID=40046433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007113429A Expired - Fee Related JP5145490B2 (en) 2007-04-23 2007-04-23 Method for manufacturing phosphor for inorganic EL

Country Status (1)

Country Link
JP (1) JP5145490B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5515143B2 (en) * 2009-03-19 2014-06-11 Necライティング株式会社 Phosphor, phosphor manufacturing method, and light emitting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048820B2 (en) * 1977-07-08 1985-10-29 日本電気株式会社 floating head slider
JPH02258664A (en) * 1989-03-31 1990-10-19 Mitsubishi Metal Corp Production of sputtering target of zinc sulfide
JP2005344094A (en) * 2004-05-31 2005-12-15 Kojundo Chem Lab Co Ltd Method for producing alkaline earth thioaluminate-based fluorophor
JP2006312695A (en) * 2005-05-09 2006-11-16 Toshiba Corp Blue light-emitting phosphor for display device, and field emission type display device

Also Published As

Publication number Publication date
JP2008266499A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP4568867B2 (en) Method for producing composite nitride phosphor
JP4883527B2 (en) Method for manufacturing phosphor for inorganic EL
TW200914581A (en) Oxide light emission body
JP5339976B2 (en) Orange phosphor and method for producing the same
JP5483898B2 (en) Method for producing oxide phosphor
JP5145490B2 (en) Method for manufacturing phosphor for inorganic EL
KR101414948B1 (en) PROCESS FOR PRODUCTION OF Eu-ACTIVATED ALKALINE EARTH METAL SILICATE PHOSPHOR
JP5164618B2 (en) Method for manufacturing phosphor for inorganic EL
JP2010126413A (en) Magnesium oxide solid solution particle and method for producing the same
JP5767145B2 (en) Visible light responsive phosphor, method for producing the same, and temperature indicating material including the same
JP5105353B2 (en) Composite nitride phosphor
JP4500054B2 (en) Oxygen-substituted thioaluminate barium phosphor material
JP2005344094A (en) Method for producing alkaline earth thioaluminate-based fluorophor
JP4457972B2 (en) Sulfide sintered body target and manufacturing method thereof
JP5388132B2 (en) Composite nitride phosphor
JP2007153996A (en) Method for producing fluorescent substance and fluorescent substance produced thereby
JP2007146034A (en) Thin film of fluorescent substance and method for forming film thereof
Petrykin et al. Synthesis of BaAl2S4: Eu phosphor using BaS: Eu precursor prepared by the polymerizable complex method
JP2006265449A (en) Sulfide sintered compact target and its production method
JP5171326B2 (en) Method for manufacturing phosphor for inorganic EL
JP2014009253A (en) Method for producing sulfide phosphor, and the sulfide phosphor
JP2007046004A (en) Method for producing nitride phosphor
JPH0959617A (en) Production of aluminate phosphor
JP2011157484A (en) Yellow fluorescent substance and method for manufacturing the same
JP2005220299A (en) Phosphor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120619

R150 Certificate of patent or registration of utility model

Ref document number: 5145490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees