TW200914581A - Oxide light emission body - Google Patents

Oxide light emission body Download PDF

Info

Publication number
TW200914581A
TW200914581A TW097112929A TW97112929A TW200914581A TW 200914581 A TW200914581 A TW 200914581A TW 097112929 A TW097112929 A TW 097112929A TW 97112929 A TW97112929 A TW 97112929A TW 200914581 A TW200914581 A TW 200914581A
Authority
TW
Taiwan
Prior art keywords
oxide
illuminant
metal element
magnesium
group
Prior art date
Application number
TW097112929A
Other languages
Chinese (zh)
Other versions
TWI421326B (en
Inventor
Hirofumi Kurisu
Yoshihisa Ohsaki
Masaaki Kunishige
Original Assignee
Tateho Kagaku Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateho Kagaku Kogyo Kk filed Critical Tateho Kagaku Kogyo Kk
Publication of TW200914581A publication Critical patent/TW200914581A/en
Application granted granted Critical
Publication of TWI421326B publication Critical patent/TWI421326B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/55Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing beryllium, magnesium, alkali metals or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • C09K11/641Chalcogenides
    • C09K11/643Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/69Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing vanadium
    • C09K11/691Chalcogenides
    • C09K11/695Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/7731Chalcogenides with alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/42Fluorescent layers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Luminescent Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

To provide an oxide light emission body performing light emission with high level at a UV ray area of 200-300 nm by exciting it by an electron ray or a UV ray. The light emission body comprises an oxide of an element in Group 2A of the Periodic table including a different kind of metal element or a semimetal element and has a light emission peak at a UV ray area of 200-300 nm based on excitation by an electron ray or a UV ray. Preferably, a ratio of the different kind of metal element or the semimetal element relative to the element in Group 2A of the Periodic table is 0.0001-1 mol%, the element in Group 2A of the Periodic table is Mg, and the different kind of metal element is Al.

Description

200914581 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種藉由雷名A > ki_ , 1 裡稽田冤子束或紫外線之激發而在紫 外線區域200〜3〇〇nm呈古说· & I # 具有發先尖峰的氧化物發光體。 【先前技術】 目前,在電漿顯示器面板(PDP)中,作為發光材料使用 之螢光體’係受到在真空狀態下氙氣内之放電所放射之波 / 長147nm的真空紫外線或電子束等之激發而發光。然而, 由於實用化之PDP用營光體,藉由波長M7nm之真空紫 外線或電子束所得到的發光強度低,目此—直期望能改善 PDP之發光效率。 又PDP中攸存在於發光單元之空間的放電氣體所放 射之i外線或電子束等雖然射向所有方向,但朝向除了該 螢光體以外之圍繞該放雷&j , 固%茨敌電空間之構成材料所放射的大部分 紫外線或電子束,皆未被利用於螢光體之激發而變成一種 損失。 可有效利用此種放射紫外線或電子束且能改善PDP之 發光效率的技術’專利文獻丨揭示有—财法,其係在以 往以來設置於介電體層上作為保護層之薄膜氧化鎮層之 上,進一步設置包含粒狀氧化鎂結晶體之結晶氧化鎂層。 該氧傾結晶體,係藉由電子束激發以進行在波長區域彻 〜3〇0·内具有尖峰的陰極發光(Cathode Lumin⑽_), 具體而言,其記載有使用平均粒徑在2_〜彻从⑽〜〇 4 5 200914581 Μ之氡化鎂單結晶體’該氧化鎂單結晶體係使對鎂加熱 所產生之鎂蒸氣氣相氧化而製得。 藉此’雖不僅可改善PDP之發光效率,且亦能達成放 電延遲等放電特性之改善,但專利讀1所揭示之氣相法 氧化鎂單結晶體,在波長區域200〜300nm内之發光強度 尚未達到充分之水準,而期待能再加以改良。 另一方面,專利文獻2中雖記載若將波長2〇如爪以下 之紫外線,照射於使氧化鎮含有少量亂所成之保護膜時, 則可進行在波長315nm具有尖峰之紫外線的發光,但到目 前為止並不知有此種藉由包含異類金屬元素或類金屬元素 而能在波長2GG〜3GGnm具有發光尖峰的氧化物發光體。 專利文獻1 :日本特許第3842276號說明書 專利文獻2 :日本特開2〇〇1 - 2341 64號公報 【發明内容】 本發明有鑑於上述現狀,其課題在於提供一種藉由電 子束或紫外線之激發,而在紫外線區域2〇〇〜3〇〇nm進行 高度發光的氧化物發光體。 本發明人等為解決上述課題反覆進行各種研究之結 果’發現藉由使鎂等周期表2A Μ素之氧化物含有銘等 異類金屬it素或類金屬元素,可藉電子束或紫外線之激發 而在紫外線《 200〜3G()nm進行高度之發光,而完成本 發明。 亦即’本發明係關於-種藉由電子束或紫外線之激發 6 200914581 7在糸外線區域200〜3〇〇nm具有發光尖峰的發光體,其 f徵在於·係由包含異類金屬元素或類金屬元素之周期表 2A族元素的氧化物所構成。 >車乂佳4 6亥氧化物中該異類金屬元素或類金屬元素對 邊周期表2A族元素之比例係、G.00G1〜1莫耳%。 較佳為’該周期表2A族元素係Mg、Ca、Sr或Ba。 更佳為,該周期表2A族元素係Mg。 較佳為°亥異類金屬元素或類金屬元素係選自由u、200914581 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a method in which an ultraviolet light region is 200 to 3 〇〇 nm by excitation of a scorpion beam or ultraviolet light by Ray name A > ki_ , 1 Say & I # has an oxide illuminant that emits a spike. [Prior Art] At present, in a plasma display panel (PDP), a phosphor used as a light-emitting material is subjected to a wave emitted by a discharge in a helium gas in a vacuum state, a vacuum ultraviolet light having an electron length of 147 nm, an electron beam, or the like. Excitation and glow. However, since the practical use of the campsite for PDP is low in luminous intensity by a vacuum ultraviolet beam or an electron beam having a wavelength of M7 nm, it is expected that the luminous efficiency of the PDP can be improved. In addition, in the PDP, the i-outer line or the electron beam emitted by the discharge gas existing in the space of the light-emitting unit is directed in all directions, but is directed toward the mine and the other than the phosphor. Most of the ultraviolet rays or electron beams emitted by the constituent materials of the space are not utilized for the excitation of the phosphor to become a loss. A technique for effectively utilizing such a radiation ultraviolet ray or electron beam and improving the luminous efficiency of a PDP is disclosed in the patent document, which is a film oxidized town layer which has been conventionally provided as a protective layer on a dielectric layer. Further, a crystalline magnesium oxide layer containing granular magnesium oxide crystals is further provided. The oxygen-declining crystal is excited by an electron beam to perform cathodoluminescence (Cathode Lumin (10)_) having a peak in the wavelength region. Specifically, it is described that the average particle diameter is 2_~from (10). ~〇4 5 200914581 氡 氡 氡 单 单 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该 该Therefore, although not only the luminous efficiency of the PDP can be improved, but also the discharge characteristics such as discharge delay can be improved, the vapor phase magnesia single crystal disclosed in Patent Reading 1 has not yet been emitted in the wavelength region of 200 to 300 nm. Achieving a sufficient level and expecting to be improved. On the other hand, in Patent Document 2, when ultraviolet rays having a wavelength of 2 or less, for example, are irradiated to a protective film containing a small amount of disorder in the oxidized town, it is possible to emit ultraviolet rays having a peak at a wavelength of 315 nm, but It has not been known so far that such an oxide illuminant capable of having a light-emitting peak at a wavelength of 2GG to 3GGnm by containing a heterogeneous metal element or a metalloid element. [Patent Document 1] Japanese Patent No. 3842276 Patent Document 2: JP-A-2002-2344-64 SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is to provide an excitation by an electron beam or ultraviolet rays. An oxide illuminant that emits a high degree of light in an ultraviolet region of 2 〇〇 to 3 〇〇 nm. In order to solve the above problems, the present inventors have repeatedly conducted various studies and found that by causing an oxide such as magnesium or the like to contain an isometallic metal or a metalloid element, it can be excited by electron beam or ultraviolet light. The present invention has been completed by performing light emission at a high wavelength of "200 to 3 G () nm. That is, the present invention relates to an illuminant having an illuminating peak in the outer region of 200 to 3 〇〇 nm by excitation of an electron beam or ultraviolet ray 6 200914581 7 , which is characterized by containing a heterogeneous metal element or class. The metal element is composed of an oxide of the Group 2A element of the periodic table. >The ratio of the heterogeneous metal element or metalloid element to the element of the 2A group of the periodic table in the Che Kung Jia 4 6 hai oxide is G.00G1~1 mol%. Preferably, the Group 2A element of the periodic table is Mg, Ca, Sr or Ba. More preferably, the Group 2A element of the periodic table is Mg. Preferably, the heterogeneous metal element or metalloid element is selected from the group consisting of u,

Na A卜 Si ' K、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Na A Bu Si ' K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni,

Cu、Zn、Ga、As、Rb、γ、勵、M〇、Tc、Ru、^、^、 h、以、ΐΓ、AU、丁卜Bi、及At所構成之群的至少!種。 更佳為’該異類金屬元素係A1。 、較佳為,該氧化物在以該異類金屬元素及該類金屬元 素以外之含有元素為雜質之情況下的純度,係在99.9質量 %以上。 ' 較佳為,該氧化物為粒狀,以掃描型電子顯微鏡所觀 察之形狀為由iL方體之初級粒子所構成之粉末。更佳為, 該氧化物粉末係以雷射繞射散射式粒度分布測得之累積5〇 =粒徑(〇50)在O.Um以上者。又,更佳為,該氧化物粉 末之微晶直徑在500 A以上。 較佳為,該氧化物係藉由液相法所製造。 又’本發明亦關於-種裝載上述發光體所構成之光學 元件。 200914581 根據本發明 而在紫外線區域 發光體。 ,可提供一種藉由電子束或紫外線之激發 200〜30〇nm進行極高度之發光的氧化物 【實施方式】 本务明之發光體,係以電子束或紫外線來進行激發, 藉此進行在紫外線區域之波長2〇〇〜3〇〇nm(尤其是在; 〜260nm,其中特別是在24〇〜245nm)具有尖峰之發光者。 本發明之發光體,係由周期表2A族元素之氧化物所 構成,其特徵在於:該氧化物包含微量之異類金屬元素或 類金屬元素。本發明中,氧化物係意指所謂單純氧化物, 該氧化物之主要元素為周誠2A族元素中之i種、與氧 該周期表2A族元素,可列舉Mg、Ca、Sr或Ba,其 中以Mg較佳。亦gp,本發明中之周期表2A族元素之氧 化物係以氧化鎮為最佳。 ” §亥異類金屬元素或翻今麗4 σ ® 承4類金屬兀素,只要是與作為氧化物 之主要金屬使用之周期矣 门期衣2 A族兀素不同之金屬元素 OLE LINK1 或類今厘-主 at η 、 - 4頰食屬兀素0LE_LINK1,則無特別限制, 具體而言,可列舉]·;、·ρ \T . . 0. + 、B、Na、Al、Si、K、Sc、ή、v、At least the group consisting of Cu, Zn, Ga, As, Rb, γ, excitation, M〇, Tc, Ru, ^, ^, h, ΐΓ, AU, 丁, Bi, and At! Kind. More preferably, the heterogeneous metal element is A1. Preferably, the oxide has a purity of 99.9% by mass or more when the heterogeneous metal element and the element other than the metal element are impurities. Preferably, the oxide is in the form of particles, and the shape observed by the scanning electron microscope is a powder composed of primary particles of the iL cube. More preferably, the oxide powder is obtained by a laser diffraction scattering particle size distribution and has a cumulative 5 〇 = particle diameter (〇50) of more than O.Um. Further, more preferably, the oxide powder has a crystallite diameter of 500 A or more. Preferably, the oxide is produced by a liquid phase process. Further, the present invention relates to an optical element comprising the above-described illuminant. 200914581 According to the invention, the illuminator is in the ultraviolet region. It is possible to provide an oxide which emits light at a very high level by excitation of an electron beam or an ultraviolet ray of 200 to 30 〇 nm. [Embodiment] The illuminant of the present invention is excited by an electron beam or ultraviolet rays, thereby performing ultraviolet ray irradiation. The wavelength of the region is 2 〇〇 ~ 3 〇〇 nm (especially; ~ 260 nm, especially at 24 〇 ~ 245 nm) with a peak of illuminator. The illuminant of the present invention is composed of an oxide of a Group 2A element of the periodic table, and is characterized in that the oxide contains a trace amount of a heterogeneous metal element or a metalloid element. In the present invention, the term "oxide" means a so-called simple oxide, and the main element of the oxide is i of the Group 2A element of the group, and oxygen, the element of the group 2A of the periodic table, and examples thereof include Mg, Ca, Sr or Ba. Among them, Mg is preferred. Also, in the present invention, the oxide of the Group 2A element of the periodic table is preferably oxidized. § 异 异 异 金属 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 There is no particular limitation on the PCT-main at η and -4 buccal glutinin 0LE_LINK1. Specifically, it can be enumerated as follows: ····ρ \ . . . . . , B, Na, Al, Si, K, Sc, ή, v,

Cr ' Mn ' Fe ' Co ' \r: n ACr ' Mn ' Fe ' Co ' \r: n A

Ni、Cu、Zn、Ga、As、Rb、γ、Nb、 Mo、Tc、Ru、Rh、Ασ、τ π τ nNi, Cu, Zn, Ga, As, Rb, γ, Nb, Mo, Tc, Ru, Rh, Ασ, τ π τ n

Ag、In、Sb、Cs、La、Pr、pm、Eu、 Gd、Tb、Ho、Tm、Lu、Ta、以、ir、Au、丁卜則、及 μ 等。異類金屬元素或類金屬元素可僅使用1種,亦可將2 200914581 種以上予以組合使用。其中,較佳為鋁。 本發明之發光體所以能在波長200〜300nm具有高度 之魯光尖峰’推測係因該異類金屬元素或類金屬元素混入 该氧化物之結晶構造,而使該氧化物之結晶性產生變化所 致並5忍為該發光尖峰之強度,係受到該氧化物所含之該 異類金屬元素或類金屬元素之基態的電子組態、或離子化 狀態下之離子價數及離子半徑等很大影響。因此,最好考 量電子組態、離子價數或離子半徑,以決定所要摻雜之異 類金屬元素或類金屬元素之種類。 為了進一步提升發光強度,該氧化物中該異類金屬元 素或類金屬元素在離子狀態下,與該周期表2A族元素之2 價離子(亦即Mg2十、Ca2+、Sr2+或Ba2+)比較,較佳為其 價數不同、或離子半徑大幅不同者、或該元素在基態之電 子組態中,在S軌道、p執道或d軌道具有奇數個電子的 元素。 最佳之異類金屬元素之離子係Al3+。 該氧化物中異類金屬元素或類金屬元素的含量,只要 是相對於周期表2A族元素屬微量之範圍,則無特別限制, 但具體而言,異類金屬元素或類金屬元素對周期表2人族 元素之比例,係在⑴⑽⑴〜丄莫耳%之範圍’較佳在〇 〇〇ι 〜1莫耳%之範圍。最佳在〇·〇ΐ莫耳%左右。該含量可藉 由通常之元素分析法決定。 本發明之氧化物發光體’為了藉由以電子束或紫外線 來激發’以產生在波長200〜30〇nm(尤其是在23〇〜 200914581 #中特別疋在240〜245_)具有尖峰之發光 =:粉末狀者較佳。再者,以該氧化物之二I 开少狀為立方體狀更佳。 々 確認。此外,「立方Μ 型電子顯微鏡來 r _ 體狀」並非指幾何學意義之嚴格立方 心1所示’係指藉由以目視觀察顯微鏡照片而可辨 =;為:方體之形狀。又,該氧化物係以立方體狀: ::粒子不會凝集而各自分離,具有分散性良好之性質者 :者’垓氧化物之粒子係以平均粒徑較大者較佳,且 徑心=射繞射散射式粒度分布測得之W 較1=·:…上者較佳。該〜以在0.3…上 ,t ^ M上更佳。此外,該D5〇係中位直徑,意 二立/又累積曲線中相當於5〇體積%之粒徑(心),當以某 徑相將粒體分成2組時’係較大側與較小側呈等量之粒 ”又二使用X光繞射法測得之微晶直徑以在500 A以上 較佳,在1000 A以上更佳。 佳,之初級粒子,以整體較大且不含微粉末者較 &積二^該氧化物之粉末係以藉由贿法測得之比 〜以下較佳。更佳在仏、以 在2.5m2/g以下,4丈从sw θ丄 灯又’ 特么則疋在l.〇m2/g以下。 之粒==氧化物發光體’較佳為粒狀者,且初級粒子 著微致為立方體狀’於立方體狀結晶表面未附 …、面乾淨且平滑者。因此’該氧化物以粒徑皆 200914581 -致,亦即以粒度分布狹窄者較佳’具體而言,以雷射繞 射散射式粒度分布測得之累積10%粒徑(Di〇)與累積9〇% 粒徑(Dm)之比D,。/ D1G滿足10.〇以下者較佳。更佳在6 〇 以下,再更佳則在4.5以下。 本發明之氧化物發光體雖包含異類金屬元素或類金屬 兀素,但在以異類金屬元素或類金屬元素以外之含有元素 為雜質的情況下’周期表2A族元素之氧化物之純度係高 純度。具體而言,以在99.9質量%以上較佳。該純度之數 值,係為了在紫外線區域200〜3〇〇nm進行高度之發光,Ag, In, Sb, Cs, La, Pr, pm, Eu, Gd, Tb, Ho, Tm, Lu, Ta, E, ir, Au, Dibu, and μ. Only one type of heterogeneous metal element or metalloid element may be used, and two or more types of 200914,581 may be used in combination. Among them, aluminum is preferred. The illuminant of the present invention can have a high luma spike at a wavelength of 200 to 300 nm. It is presumed that the crystal structure of the oxide is changed due to the heterogeneous metal element or metalloid element mixed in the crystal structure of the oxide. And 5 is the intensity of the illuminating peak, which is greatly affected by the electronic configuration of the ground state of the heterogeneous metal element or metalloid element contained in the oxide, or the ion valence and ionic radius in the ionized state. Therefore, it is best to consider the electronic configuration, ion valence or ionic radius to determine the type of heterogeneous or metalloid element to be doped. In order to further increase the luminescence intensity, the heterogeneous metal element or metalloid element in the oxide is preferably compared with the valence ion of the Group 2A element of the periodic table (ie, Mg2, Ca2+, Sr2+ or Ba2+) in an ionic state. For an electronic configuration in which the valence is different, or the ionic radius is significantly different, or the element is in the ground state, an element having an odd number of electrons is present in the S-orbital, p-executing, or d-orbital. The best heterogeneous metal element is the ion system Al3+. The content of the heterogeneous metal element or the metalloid element in the oxide is not particularly limited as long as it is in a range of a trace amount relative to the Group 2A element of the periodic table, but specifically, a heterogeneous metal element or a metalloid element is attached to the periodic table 2 The ratio of the elements is in the range of (1) (10) (1) ~ 丄 耳 % %, preferably in the range of 〇〇〇 ι 〜 1 摩尔 %. The best is around 〇·〇ΐ莫耳%. This content can be determined by usual elemental analysis. The oxide illuminant of the present invention 'in order to be excited by electron beam or ultraviolet ray to produce luminescence with a peak at a wavelength of 200 to 30 〇 nm (especially in 23 〇 to 2009 14581 # especially 240 240 to 245 _) : Powder is preferred. Further, it is more preferable that the oxide I is opened in a small shape. 々 Confirm. In addition, the "cubic 电子-type electron microscope to r _ body shape" does not mean that the geometrical meaning of the cube 3 is indicated by the visual observation of the microscope photograph; it is: the shape of the square body. Further, the oxide is in the form of a cube: :: the particles are not aggregated and are separated from each other, and have a property of good dispersibility: those whose particles are larger in average particle diameter, and the radial diameter = The diffraction diffraction particle size distribution measured by W is better than 1=·:. The ~ is better at 0.3..., t ^ M. In addition, the median diameter of the D5 lanthanum, the particle size (heart) corresponding to 5 vol% in the Yilili/accumulation curve, when the granules are divided into two groups by a radial phase, the larger side and the larger The small side is in the same amount of particles. The diameter of the crystallite measured by the X-ray diffraction method is preferably 500 A or more, more preferably 1000 A or more. Preferably, the primary particles are larger and not included as a whole. The powder of the micro-powder is better than the powder of the oxide by the ratio of the bribe method to the following. More preferably, the crucible is below 2.5 m2/g, and the lamp is swept from the sw θ. 'Specially, it is below l.〇m2/g. The grain == oxide illuminant' is preferably granular, and the primary particles are slightly cubic-shaped on the surface of the cubic crystal. Clean and smooth. Therefore, the oxide has a particle size of 200914581, which means that the particle size distribution is narrower. Specifically, the cumulative 10% particle size measured by the laser diffraction scattering particle size distribution ( Di〇) and the cumulative ratio of D ) 〇 粒径 , , , / / / / 满足 满足 满足 满足 满足 满足 满足 满足 满足 D D D D 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本The oxide illuminant contains a heterogeneous metal element or a metalloid, but when the element other than the heterogeneous metal element or the metalloid element is an impurity, the purity of the oxide of the Group 2A element of the periodic table is high purity. The value is preferably 99.9% by mass or more. The value of the purity is to emit light at a height of 200 to 3 〇〇 nm in the ultraviolet region.

而以氧化物發光體所含有之哕I “ 3有之。亥異類金屬元素或類金屬元素 外之3有元素為雜質,僅考量該雜質之含量的數值。 其次,說明製造本發明之氧化物發光體的方法。 已知有音製造周期表2A •元素之氧化物的方法, 有將該π素之金屬單體之 將水溶液反應所製得之氣氧化物或碳酸化二f :藉* 燒成的液相法,但製造本發明之氧化 :加^ 二:制不同種…換雜及其含量,因此以使用液 具體之製造方法,可應用已知 , 種方法,只要是以藉由在其過程i 之製法的各 本發明之氧化物發光體的方式即可:二,元素來製得 表以族元素之氧化物為氧化鎖時之液相法V細說明周期 —;夜相法所使用之氧化鎂前驅物,可 珂驅物,並無特別限制, <所使用之 列舉例如氫氧化鎂、鹼性碳酸 200914581 由於所製得之氧化物發 鹼性碳酸鎂、及該等之 鎂、碳酸鎂、及草酸鎂等。其中 光體的特性優異,而以氫氧化鎮 混合物較佳。 - 于又丨五两碉製成#氫 化鎂則驅物包含微量之異類金 成使虱 二丄 辑凡京或類金屬元素。麸 而,由於若該前驅物包含過多雜 ”…、 體之純度會變低,因此異類金屬元素= 雜質以較少為佳。 勒几f以外之 可藉由在i化物離子之存在 ,,. 适仃氧化鎮則驅物之捧 來使所製得之氧化物發光體之形狀成為立方體狀 :純度與結晶性。齒化物離子,彳列舉氯化物離子、氣化 物離子、溴化物離子、挑化 “匕物離子’卩氯化物離子較佳。 包含i化物離子之化合物的且挪。 于之化口物的具體例,可列舉鹽酸、氯化銨、 虱化鈉、氯化鉀、氯化鎂等。 鹵化物離子之存在詈,知, #對於氧化鎂前驅物整體量, 旱父佳在〇·5〜30質詈%夕益阁 . %之乾圍。右幽化物離子之存在量過 =結晶不易成長為立方體狀,反之若過多,則氧化物 2體之結晶不易成長。較佳在^〜25質量%之範圍, 更仏在10〜25質量%之範圍。 包含幽化物離子之化合物,可以是氧化鎂前驅物本身, '、可以疋源自氧化鎂前驅物所含之雜質,或亦可以是藉由 溶液合成法調製氧化鎂前驅物時所產生之副產@,或亦:可 =是對氧化鎂前驅物另外添加者,或者亦可以是在封閉式 °式爐申之氣體裱境氣氛’例如以氣體之氯化氫或分 12 200914581 子狀氯等之形態所添加者。又,亦 氧化鎂前驅物 胃由洗淨專充分除去 物,再另::雜質或調製氧化鎂時所產生之副產 卜添加於氧化鎮前驅物或氣體環境氣氛。 乳化鎮前驅物為驗性碳酸鎂與氫氧化鎮 液合成法調製該前驅物時,例如⑴將氯化鎮水In the case of the oxide illuminant, 哕I "3" is present. The element other than the metal element or the metalloid element is an impurity, and only the value of the content of the impurity is considered. Next, the production of the oxide of the present invention will be described. Method for producing an illuminant. A method for producing an oxide of an element is described in Table 2A of the present invention. The gas oxide or carbonation obtained by reacting the metal monomer of the π element with an aqueous solution is used. The liquid phase method, but the oxidation of the present invention is made: the addition of two kinds: the different kinds of ... the substitution and the content thereof, so that the specific method of the use of the liquid can be applied, as long as it is based on The method of the process i of the process of the invention of the oxide illuminant can be: Second, the element is obtained by using the oxide of the group element as the oxidative lock, the liquid phase method V is a detailed description period; The magnesium oxide precursor to be used is not particularly limited, and the examples used are, for example, magnesium hydroxide, basic carbonic acid 200914581, the resulting alkaline magnesium carbonate, and the magnesium. , magnesium carbonate, and magnesium oxalate, etc. The characteristics of the light body are excellent, and the mixture of the hydroxide is preferred. - It is made of yttrium and yttrium. The magnesium hydride is contained in a trace amount of a heterogeneous gold to make a bismuth or a metal element. Since the precursor contains too much impurities, the purity of the body becomes low, so that the heterogeneous metal element = impurity is preferably less. In addition to the presence of i, the shape of the oxide emitter can be made into a cube shape by purity and crystallinity. The dentate ion, 氯化 exemplified chloride ion, vapor ion, bromide ion, and pickled "pigment ion" 卩 chloride ion. The compound containing the i ion ion is also a specific example of the chemical substance. Examples include hydrochloric acid, ammonium chloride, sodium hydride, potassium chloride, magnesium chloride, etc. The presence of halide ions 詈, know, # for the overall amount of magnesium oxide precursor, 旱 佳佳 in 〇·5~30 詈%夕益阁. The dry circumference of the right. The amount of the right secluded ion is too large = the crystal does not easily grow into a cube shape, and if too much, the crystal of the oxide 2 body does not easily grow. Preferably, it is in the range of 2 to 25 mass%. Further, it is in the range of 10 to 25% by mass. The compound containing the sulphur ion may be the magnesium oxide precursor itself, ', may be derived from impurities contained in the magnesium oxide precursor, or may be synthesized by solution By-products produced by the preparation of the magnesia precursors, or also: may be added to the magnesia precursor, or may be in a gas atmosphere of a closed type furnace, such as hydrogen chloride Or minutes 12 200914581 The form of chlorine or the like is added. Also, the magnesium oxide precursor is completely removed by washing, and another: impurities or a by-product produced by modulating magnesium oxide is added to the oxidized precursor or gaseous atmosphere. The emulsified town precursor is prepared by the method of synthesizing magnesium carbonate and oxidizing water to synthesize the precursor, for example, (1) chlorination water

辛之氣:水溶液、及微量異類金屬元素或類金屬元 素之虱化物或氧化物等水溶液加以混A 異類金屬元素或類金屬元辛之氫:传^微量 中之气b。, 冑兀京之虱乳化鎂漿液,(2)使該漿液 气锃美之一部分碳酸化,而得到包含鹼性碳酸鎮、 及異類金屬元素或類金屬元素離子的製 液,以製得驗性碳酸鎮與氯氧化鎖之混合物。於 微量異類金屬元素或類金屬元素離子,且為 之乳化㈣副產物之氯化鈉包含氯化物離子。 該步驟⑴,具體而言,可以下述方式來進行,亦即可 氣化鎮水溶液及氣氧化納水溶液並使之反應時,添 類金屬it素或類金屬元素之氯化物或氧化物等 2當量之氯氧化鈉水溶液且溶解後之物,此方法在產生 :焱之情況下’亦可藉由將異類金屬元素或類金屬元素之 乳化物或氧化物等添加於氯化鎂水溶液且溶解後之物,添 加於氫氧化鈉水溶液並使之反應來進行。 該步驟⑴中,得到氫氧化鎂焚液後,藉由以水稀釋 可將該漿液之濃度調整在較佳為50〜100g/L之範圍,更佳 為在60〜90g/L之笳圍。益丄μ , # 心耗圍藉由降低漿液之濃度,可降低襞 液之黏度,係為了使下—步驟⑺之碳酸化反應可均勻進 13 200914581 行0 該步驟(2)申’藉由將二氧化碳氣體吹進該漿液,使漿 液中的一部分氫氧化鎂碳酸化。該碳化反應之溫度,以40 〜80°C較佳。在該溫度範圍,可將氫氧化鎂迅速轉換成鹼 性碳酸鎮’反應效率較佳。此外,在該溫度範圍内,可得 到具有過濾效率優異之粒徑的鹼性碳酸鎂與氫氧化鎂之混 合物。 該碳酸化反應所使用之二氧化碳氣體的使用量,係以 能將氫氧化鎂漿液中之一部分氫氧化鎂轉化成鹼性碳酸 鎂,為可賦予驗性碳酸鎂與氫氧化鎂之混合物的量。具體 之二氧化碳氣體的使用量,係相對於氫氧化鎂丨莫耳,以 0·2〜2_0冑耳為較佳。在該範圍内’能以高效率製得 過濾效率優異之鹼性碳酸鎂與氫氧化鎂的混合物。 琢梦驟(3)中,將該 欢於 衣竹〇 π峨性啜駸鎂與 =2之聚液加以過濾、’而得到固體之驗性碳酸鎮與氫 鎮的混合物°由於該11體混合物含有氯化物離子,因 洗淨而直接將其乾燥後進行後述之燒成,或藉由 來Γ該混合物,以將遽餅中之氣化物離子 =適:ί程度後,再進行乾燥及燒成。由於若充分進 / “化物離子之含量會過低,因此可藉由 水之使用4、洗淨時間等來控制洗淨之 2 ο 力奋八、杜 > 牙度。然而,亦可 在充刀進行洗淨,完全除去氯化物離子 ττ 含有_化物離子之化合物。 曼,再另外添加 在氧化鎂前驅物為氫氧化鎂 、h况下,以溶液合成法 14 200914581 調製該前驅物時,例 、、容液、 )可將氯化鎂水溶液、氫氧化鈉水 命液、及微量之異類令凰_ 化物等水溶液加以混人或類金屬元素之氣化物或氧 或類金屬元素離子之到包含之微量異類金屬元素 f # S I* ^ 氧化鎂漿液,(5)過濾該漿液,以 袈仟固體之虱氧化鎂。 離子,且起於材料^ 體3有微量之異類金屬元素 化物離子材科之乳化錢或副產物之氯化納,皆包含氯 該步驟⑷,係與該步驟⑴相同。 該::⑺中,將該步驟⑴所製得之氫氧化鎮浆液加以 =’::到固體之氯氧化鎮。由於該固體物含有氯化物 離子,因此以上述方法對其進行處理即可。 在製造本發明之氧化物發光體時,在函化物離子之存 ’雖在封㈣統或開放系統皆可進行氧關前驅物之 ;二但以在封閉系統進行更佳。此處,㈣系統係指存 在於進行燒成之空間的氣體,實質上不流出至外部,且氣 體貫負上亦不從外部流入之幾乎封閉的系統,與開放在大 乳4^境氣氛下,或使該等氣體-邊流動一邊進行之 通常燒成方法不同。藉由在封閉系統進行燒成,歯化物離 子便不,分散至外部,僅停留在進行燒成之容器中,並充 分介入乳化物粉末之結晶成長的過程’藉此即可製得結晶 極優良之立方體狀結晶粉末。 此在封閉系統之燒成,例如可使用實質上無環境氣氛 氣體流入流出之密閉式電爐,或置入可密閉之坩堝來二 行。燒成時之溫度,在〜咖。以右即可,而以⑽ 15 200914581 右為最佳。若燒成時之溫度過 時會產生凝集導致分散性不佳 、斤製仔之”曰曰有 但通常在卜丨 成夺間雖依溫度而異, 以5小時左右列如,在溫度為12啊左右時, 特別限制,以5〜1(rc/min左右即可。⑽寺之速度並無 藉由在該條件下進行燒成,結晶性佳之 物粉末雖即可成長,但由 體狀乳化 無法充分除去上计八“仕在閉下進仃燒成’因此並 除去上迷含有齒化物離子之化 : = 粉末。為了降低此含有-化物離子之二 之一:轰提升氧化物粉末之純度’較佳在該封閉系統 ①成後,進-步在開放系統進行第2次之燒成。 此第2次燒成’以在通常之開放系統所進行之燒成即 ’列如以可將前驅物所含之雜質以氧化氣體之形態除去 二式:以大氣或氧環境氣氛較佳,可在大氣_氛下 、=境氣氛氣體流動之燃氣爐、或在氧氣流下之電爐等來 進行。二次燒成時之溫度、時間、及爐内之氣體,只要能 除去含有齒化物離子之化合物等雜質即可,並無特別限 制,但由於結晶成長在一次燒成已完成,因此可將二次燒 成之時間設成較短。 由於本發明之氧化物發光體,可在紫外線區域之波長 〜300nm強力進行發光,因此可應用於電漿顯示器面板 寻各種光學元件。 特別是本發明之氧化物發光體,可利用作為構成設置 在PDP之保護膜上之結晶氧化鎂層(Crystai Emissive Layer) 16 200914581 的氧化鎮結# 法或靜電二 形成該結晶氧化_,可藉由喷塗 護膜,^ 直接使本發明之氧化物發光體附著於該保 '亦可製作含有發光體之膠毁,將該 保護臈並使之乾燥。 肘忒膠水塗布於該 實施例 2 ’雖揭示實施㈣—步詳細說明本發明,但本發 月亚非局限於此等實施例。 等。以下之實施例中,係依以下所示之程序測量各種物性 (1) 陰極發光之測量法 吏用將光才双測益及分光器組裝於掃描型電子顯微鏡之 農置(陰極發光測量裝置、HORIBA製),藉由將來自該掃 描型電子顯微鏡之電子搶之電子束照射於試料,測量試料 所放射之發光的發光光譜。 (2) 掃描型電子顯微鏡(SEM)觀察法Xin Qi: An aqueous solution, and a trace amount of a heterogeneous metal element or a metal element such as a telluride or an oxide such as an oxide mixed with a heterogeneous metal element or a metal-like element of hydrogen: a gas in the trace amount. , 胄兀 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱 虱a mixture of carbonic acid towns and chlorine oxidation locks. A trace amount of a heterogeneous metal element or a metalloid ion, and the sodium chloride which is an emulsified (iv) by-product contains a chloride ion. The step (1), specifically, can be carried out in the following manner, that is, when the aqueous solution and the gas-oxidized nano-aqueous solution are gasified and reacted, a metal-like metal or a metal-like element such as a chloride or an oxide is added. An equivalent of an aqueous solution of sodium oxychloride and dissolved, in the case of producing: 焱, by adding an emulsion or oxide of a heterogeneous metal element or a metalloid element to an aqueous solution of magnesium chloride and dissolving it It is added to an aqueous sodium hydroxide solution and reacted. In the step (1), after the magnesium hydroxide incineration is obtained, the concentration of the slurry is adjusted to preferably in the range of 50 to 100 g/L, more preferably in the range of 60 to 90 g/L, by dilution with water.益丄μ, #心耗围 By reducing the concentration of the slurry, the viscosity of the sputum can be lowered, in order to make the carbonation reaction of the next step (7) uniform. 13 200914581 Line 0 This step (2) 申' will Carbon dioxide gas is blown into the slurry to carbonate a portion of the magnesium hydroxide in the slurry. The temperature of the carbonization reaction is preferably 40 to 80 °C. In this temperature range, the magnesium hydroxide can be rapidly converted into a basic carbonic acid. Further, in this temperature range, a mixture of basic magnesium carbonate and magnesium hydroxide having a particle diameter excellent in filtration efficiency can be obtained. The carbon dioxide gas used in the carbonation reaction is used in an amount to convert a part of magnesium hydroxide in the magnesium hydroxide slurry into basic magnesium carbonate, which is an amount which can impart a mixture of magnesium carbonate and magnesium hydroxide. The amount of carbon dioxide gas used is preferably 0. 2 to 2_0 Torr relative to magnesium hydroxide. Within this range, a mixture of basic magnesium carbonate and magnesium hydroxide excellent in filtration efficiency can be obtained with high efficiency. In the nightmare (3), the liquid of the 衣 峨 啜骎 啜骎 啜骎 与 与 与 与 与 = = = = 过滤 过滤 过滤 过滤 过滤 过滤 过滤 过滤 过滤 过滤 过滤 过滤 过滤 过滤 过滤 过滤 过滤 过滤 过滤 过滤 过滤 过滤 过滤 过滤 过滤 过滤 过滤 过滤The chloride ion is directly dried by washing, and then calcined as described later, or the mixture is kneaded to dry the salt and then calcined in the mash. If the content of the chemical ion is too low, the amount of the chemical ion can be too low, so that the cleaning can be controlled by the use of water 4, the washing time, etc. ο force 八,杜 gt; tooth. However, it can also be charged The knives are washed to completely remove the chloride ion ττ compound containing _ cation ions. Mann, and additionally added in the case where the magnesium oxide precursor is magnesium hydroxide, and the precursor is prepared by solution synthesis method 14 200914581 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Heterogeneous metal element f # SI* ^ Magnesium oxide slurry, (5) Filtration of the slurry to bismuth solid magnesium oxide. Ions, and from the material ^ Body 3 has a trace amount of heterogeneous metal element ionic materials Or the sodium chloride of the by-product, which comprises chlorine, the step (4), which is the same as the step (1). In the following: (7), the oxidized aqueous slurry obtained in the step (1) is subjected to =':: chlorine oxidation to the solid Town. Because The solid matter contains chloride ions, so it can be treated by the above method. In the manufacture of the oxide illuminant of the present invention, the storage of the complex ions can be carried out in the sealed (four) system or the open system. Secondly, it is better to use it in a closed system. Here, (4) the system refers to the gas existing in the space where the firing is performed, and does not substantially flow out to the outside, and the gas does not flow from the outside and is almost closed. The system is different from the normal firing method in which the gas is opened in a large atmosphere, and the sintering is performed in a closed system, and the halide ions are not dispersed to the outside. It only stays in the container for firing and fully participates in the process of crystal growth of the emulsion powder. Thus, a cubic crystal powder excellent in crystallinity can be obtained. This can be used, for example, in the firing of a closed system. There is no ambient atmosphere in which the gas flows into and out of the closed electric furnace, or it can be placed in a closed circuit. The temperature at the time of firing is in the coffee. Right, and (10) 15 200914581 is the most right. If the temperature at the time of firing is too high, the agglomeration will result in poor dispersibility, and the squad will be smashed. However, although it varies depending on the temperature, it will be listed in about 5 hours, at a temperature of about 12 ah. In particular, it is limited to 5 to 1 (about rc/min. (10) The speed of the temple is not burned under these conditions, and the powder of the crystallized material can grow, but the bulk emulsification is not sufficient. Remove the above-mentioned eight "small in the closed simmering" and therefore remove the above-mentioned chemistry containing the toothing: = powder. In order to reduce one of the two containing - cation ions: the purity of the blasting oxide powder Preferably, after the closed system is completed, the second firing is performed in the open system. The second firing is performed by firing in a normal open system, that is, the precursor can be used. The impurities contained in the form are removed in the form of an oxidizing gas: the atmosphere is preferably in the atmosphere or in an oxygen atmosphere, and may be carried out in a gas furnace in which the atmosphere is atmospheric, the atmosphere gas flows, or an electric furnace under a stream of oxygen. The temperature, the time, and the gas in the furnace at the time of secondary firing are not particularly limited as long as impurities such as a compound containing a tooth ion are removed, but since the crystal growth is completed once, the second gas can be used. The time of secondary firing is set to be shorter. Since the oxide illuminant of the present invention can strongly emit light at a wavelength of from 300 nm in the ultraviolet region, it can be applied to a plasma display panel to find various optical elements. In particular, the oxide light-emitting body of the present invention can be formed by using the oxidized town-bonding method or the static electricity constituting the crystalline magnesium oxide layer (Crystai Emissive Layer) 16 200914581 provided on the protective film of the PDP. By directly spraying the oxide illuminant of the present invention on the protective film, it is also possible to produce a gel containing the illuminant, and to protect the enamel and dry it. The elbow glue is applied to this embodiment. Although the invention is described in detail in the fourth embodiment, the present invention is described in detail, but the present invention is not limited to the embodiments. Wait. In the following examples, various physical properties are measured according to the procedure shown below. (1) Measurement method of cathodoluminescence, and the assembly of a light double benefit and a spectroscope on a scanning electron microscope (cathode luminescence measuring device, In the HORIBA system, an electron beam from an electron of the scanning electron microscope is irradiated onto a sample, and an emission spectrum of the emission of the sample is measured. (2) Scanning electron microscope (SEM) observation

j使用掃描型電子顯微鏡(產品名:JSM— 541〇、JE(U 製)’拍攝SEM組成像,以觀察粒子形狀並測量立方體狀 氧化鎂一邊之長度。 (3) 氧化鎂雜質量測量法 氧化物之雜質量,係使用ICP發光分析裝置(產品名: SPS—17〇〇、SEIK〇 INSTRUMENTSl 製)’將試料溶解於 酸後,進行測量。 (4) 氧化物純度測量法 氧化物之純度,係除去所添加之異類金屬元素或類金 17 200914581 屬元素(實施例1中為鋁、實施例2中為釔、實施例3中為 鈒),算出從100質量%減去所測得之雜質量之合計的值。 (5)微晶直徑測量方法 本發明之發光體的微晶直徑,係使用粉末χ光繞射法 來測量,再以Scherrer式算出。 實施例1 使氫氧化鈉(NaOH)水溶液與氯化鎂(MgCl2)水溶液反 應,而得到氫氧化鎂(Mg(OH)2)漿液。以相對於鎂包含〇〇1 莫耳%左右之鋁的方式,在該反應時,將適量之氯化鋁 (A1CW六水鹽(關東化學公司製)溶解於氫氧化鈉……印 水溶液之物,添加於為最後產物之氧化鎂粉末。 以離子交換水將該氫氧化鎂漿液稀釋成漿液濃度為 7 5g/L,並以1〇〇〜i50rpm之速度一邊攪拌經稀釋後之氫 氧化鎂漿液30L,一邊吹入水蒸氣,以將液溫調整至6(rc。 其-人,邊將液溫保持在6 0 C,一邊從槽之下部將c 〇 2濃 度100容量%之二氧化碳氣體吹入3/4當量,以將一部分 轉換成鹼性碳酸鎂。 接著,過濾此漿液,並將所製得之濾餅以離子交換水 加以水洗。之後,在12(rc以乾燥機將該濾餅乾燥10小時, 而製得前驅物。 其次,將該氫氧化鎂與鹼性碳酸鎂之混合物的前驅物, 在大氣環境氣氛下以無環境氣氛氣體流出流入之封閉式電 爐’以升溫速度6。(: /min加熱至1200°C,並在同溫度保持 5小時,藉此進行燒成以形成氧化鎂粉末。進—步在大氣 200914581 環丨兄氣氛下以有環境氣氛氣體流入之燃氣爐在丨2〇〇t進行 再燒成1小時,而製得氧化鎂粉末。 對所製得之氧化鎂粉末測量陰極發光的結果示於圖 1。從圖i可知,實施例i所製得之氧化鎂粉末在波長2〇〇 〜3〇〇nm(尤其是在230〜260nm,其中特別是在24〇〜 245nm) 具有發光強度極高之發光尖峰。 又,以掃描型電子顯微鏡(15,〇〇〇倍)觀察所製得之氧 化鎂粉末的結果示於圖2。所觀察之結晶形狀幾乎全部為 立方體狀,粒子形狀極為一致,微晶直徑在ι〇〇〇Α以上。 又,立方體狀結晶之一邊大致在〇 左右,可知粒 度分布極為狹窄。與後述圖3不同,結晶表面未附著微粒, 結晶表面平滑且乾淨。再者,各個立方體狀結晶粒清楚分 離。 實施例2 於取後產物之氧化鎂粉末,以相對於鎮包含莫耳 %左右之㈣方式’除了使用適量之氯化記(YCl3)六水鹽 (關東化學公司製)來敢并备乂u 戈乳化紹(AICI3)六水鹽之外,係以 與實施例1相同方式,夾拟 、 求形成氧化鎂發光體。 所製得之氧化鎂粉東的 下刀禾的谜晶直徑在1000A以上。又, 將所測得之陰極發光的結果示於圖卫。 實施例3 於最後產物之氧化4里办、 飞化鎂叔末,以相對於鎂包含0.01莫耳 %左右之飢的方式,t ^ 牙、了以鹽酸溶解適量之氧化釩(v3〇d (關東化學公司製)來取伐 5) 犬亂化銘(A1C〗3)六水鹽’接著添加 19 200914581 溶解於氯化鎮(MgCW水溶液之物以外,係以與實施例丄相 同方式,形成氡化鎂發光體。 所製付之乳化鎖粉末的微晶直徑在⑼入 乂上。又, 將所測得之陰極發光的結果示於圖1。 比較例1 在製造氫氧化鎂漿液時, 溶解於氫氧化鈉水溶液之物外 製得氧化鎂粉末。 中所氣得之氧化鎂粉末 1。從圖1可知,在比較例 氧化鎂粉末,雖在波長200 -峰,但發光強度低於實施例】 比較例2 除了不添加使氯化鋁六水鹽 ,係以與實施例1相同方式 未摻雜不同種元素所製得之 3〇〇nm可確認到若干發光尖 的結果市I藉由氣相法所製得之氧化鎮粉末測得陰極發光 粉末,:二圖1σ從圖1可知’由氣相法所製得之氧化鎂 笋光強声低波I 200〜300nm可確認到若干發光尖峰,但 ^先強度低於實施例i。 所型電子顯微鏡(15,剛倍)觀察由該氣相法 狀:Γ 化鎂粉末的結果示於圖3。可知雖含有立方體 旦同時亦大量附著有微細之微粒狀結晶,表面並 1〜3及比較例1〜2之氧化物純 3之氧化物中添加元素對鎂之比 此外’將測量實施例 度之結果、及實施例卜 例(莫耳%)示於表i。 20 200914581 [表l] 實施例1 實施例2 實施例3 比較例1 比較例2 氧化物純度 MgO MgO MgO MgO MgO (質量%) 99.9以上 99.9以上 99.9以上 99.9以上 99.9以上 添加元素 (mol%) A1 0.0153 Y 0.0097 V 0.0182 - — 產業利用性 本發明之氧化物發光體,由於係藉由電子束或紫外線 之激發而在紫外線區域200〜300ηπι具有高度之發光尖峰, 因此可廣泛應用於利用該發光波長區域之光學元件。特別 疋可藉由利用作為構成設置在pDP之保護膜上之結晶氧化 錢層的氧化鎂結晶體’來改善PDP之發光效率或放電延 遲。 【圖式簡單說明】 圖1 ’係表示實施例及各比較例所測得之陰極發光之 光谱的曲線圖。 圖2 ’係以實施例丨所製得之氧化鎂粉末的電子顯微 鏡照片。 圖3 ’係比較例2之氧化鎂粉末的電子顯微鏡照片。 【主要元件符號說明】 (無) 21jThe SEM image was taken using a scanning electron microscope (product name: JSM-541〇, JE (U system)' to observe the particle shape and measure the length of the cubic magnesium oxide side. (3) Magnesium oxide impurity mass measurement oxidation The impurity quality of the material is measured by dissolving the sample in an acid using an ICP luminescence analyzer (product name: SPS-17, manufactured by SEIK® INSTRUMENTS1). (4) Oxide purity measurement method, purity of oxide, The addition of the heterogeneous metal element or the gold-like element 17 200914581 element element (aluminum in the first embodiment, 钇 in the second embodiment, and 鈒 in the third embodiment) was calculated, and the measured impurity was calculated by subtracting 100% by mass. (5) Method for measuring crystallite diameter The crystallite diameter of the illuminant of the present invention is measured by a powder calender diffraction method and then calculated by Scherrer's formula. Example 1 Sodium hydroxide (NaOH) The aqueous solution is reacted with an aqueous solution of magnesium chloride (MgCl 2 ) to obtain a slurry of magnesium hydroxide (Mg(OH) 2 ). In the manner of containing aluminum of about 1 mol% relative to magnesium, an appropriate amount of chlorine is used in the reaction. Aluminum (A1CW hexahydrate) The product is dissolved in sodium hydroxide...printed aqueous solution, added to the magnesium oxide powder as the final product. The magnesium hydroxide slurry is diluted to a slurry concentration of 75 g/L with ion exchange water, and is 1 30~i50 rpm while stirring the diluted magnesium hydroxide slurry 30L, while blowing water vapor to adjust the liquid temperature to 6 (rc. - People, while maintaining the liquid temperature at 60 ° C, while from the tank The lower part blows carbon dioxide gas of 100 vol% of c 〇2 concentration into 3/4 equivalent to convert a part into basic magnesium carbonate. Next, the slurry is filtered, and the prepared cake is washed with ion-exchanged water. Thereafter, the filter cake was dried in a dryer at 12 (r) for 10 hours to obtain a precursor. Second, the precursor of the mixture of magnesium hydroxide and basic magnesium carbonate was left in an atmosphere at ambient atmosphere. The atmosphere gas flows out of the enclosed electric furnace to a temperature increase rate of 6. (: /min is heated to 1200 ° C, and is maintained at the same temperature for 5 hours, thereby being fired to form magnesium oxide powder. Step by step in the atmosphere 200914581 ring In the atmosphere of my brother The gas furnace in which the ambient atmosphere gas flows in was calcined at 〇〇2〇〇t for 1 hour to obtain a magnesium oxide powder. The results of measuring the cathodoluminescence of the obtained magnesium oxide powder are shown in Fig. 1. The magnesium oxide powder obtained in the embodiment i has a luminescence spike with extremely high luminescence intensity at a wavelength of 2 〇〇 to 3 〇〇 nm (especially at 230 to 260 nm, particularly 24 〇 to 245 nm). The results of observing the prepared magnesium oxide powder by a scanning electron microscope (15, 〇〇〇倍) are shown in Fig. 2. The crystal shapes observed were almost all cube-shaped, the particle shape was extremely uniform, and the crystallite diameter was in ι〇〇. 〇Α Above. Further, one side of the cubic crystal is approximately 〇, and the particle size distribution is extremely narrow. Unlike FIG. 3 described later, fine particles are not adhered to the crystal surface, and the crystal surface is smooth and clean. Further, each of the cubic crystal grains is clearly separated. Example 2 The magnesium oxide powder of the post-product was obtained by using the appropriate amount of chlorinated (YCl3) hexahydrate (manufactured by Kanto Chemical Co., Ltd.) in addition to the amount of the molar containing about 5% of the molars (manufactured by Kanto Chemical Co., Ltd.) In the same manner as in Example 1, except that the AICI3 hexahydrate salt was used, a magnesium oxide illuminant was formed and formed. The mycelium of the obtained magnesium oxide powder has a mystery crystal diameter of 1000 A or more. Further, the results of the measured cathode luminescence are shown in Fig. Example 3 In the oxidation of the last product, the magnesium halide was stopped, and the amount of vanadium oxide (v3〇d (v3〇d) was dissolved in hydrochloric acid in a manner of about 0.01 mol% relative to magnesium. Kanto Chemical Co., Ltd.) to take the harvest 5) Dog Chaohua Ming (A1C〗 3) Liushui salt 'Additional 19 200914581 Dissolved in the chlorinated town (the MgCW aqueous solution, in the same way as the Example ,, the formation of 氡Magnesium illuminant. The crystallite diameter of the prepared emulsified lock powder was on (9) enthalpy. Further, the results of the measured cathodoluminescence are shown in Fig. 1. Comparative Example 1 In the production of magnesium hydroxide slurry, dissolution Magnesium oxide powder was prepared in the presence of an aqueous solution of sodium hydroxide. Magnesium oxide powder obtained in the gas was obtained. As can be seen from Fig. 1, in the comparative example, the magnesium oxide powder had a wavelength of 200 - peak, but the luminous intensity was lower than that of the examples. Comparative Example 2 In addition to the addition of the aluminum chloride hexahydrate salt, the results obtained by undoping different elements in the same manner as in Example 1 confirmed that several light-emitting tips were obtained by the gas. Cathodoluminescence powder was obtained from the oxidized powder prepared by the phase method: 2 Figure 1σ It can be seen from Fig. 1 'The magnesium oxide bamboo shoots produced by the gas phase method have a strong light-wavelength I 200~300 nm, and some light-emitting peaks can be confirmed, but the intensity is lower than that of the example i. The results of the vapor phase method: magnesium hydride powder are shown in Fig. 3. It is understood that although the cubic denier is contained, a large amount of fine particulate crystals are adhered to the surface, and the surface is 1-3 and Comparative Example 1~ The ratio of the added element to the magnesium in the oxide of pure oxide 3 of 2 is shown in Table i. The results of the measurement of the examples and the examples (% by mole) are shown in Table i. 20 200914581 [Table 1] Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Oxide purity MgO MgO MgO MgO MgO (% by mass) 99.9 or more 99.9 or more 99.9 or more 99.9 or more 99.9 or more Adding element (mol%) A1 0.0153 Y 0.0097 V 0.0182 - - Industrial utilization Since the oxide light-emitting body of the present invention has a high-luminous light-emitting peak in the ultraviolet region 200 to 300 ηπ by excitation by an electron beam or ultraviolet rays, it can be widely applied to an optical element using the light-emitting wavelength region. by The luminous efficiency or discharge delay of the PDP is improved by using the magnesium oxide crystal constituting the crystalline oxidized money layer provided on the protective film of the pDP. [Simplified Schematic] FIG. 1 ' shows the measurement of the examples and the comparative examples. Fig. 2 is an electron micrograph of the magnesium oxide powder obtained in the example. Fig. 3 ' is an electron micrograph of the magnesium oxide powder of Comparative Example 2. [Main component symbol description 】 (none) 21

Claims (1)

200914581 十、申請專利範園: 外線1 區域—2=,係藉由電子束或紫外線之激發而在紫 ,〇〇 3〇〇_具有發光尖峰,其特徵在於·· -音二由匕3異類金屬元素或類金屬元素之周期表2A族 兀素的氧化物所構成。 如申請專利範圍第i項之發光體,其中,該氧化物 、亥異類金屬元素或類金屬元素對該周期表2A族元素 之比例係〇 · 0 0 〇 1〜1莫耳%。 如申叫專利範圍第1或2項之發光體,其中,該周 期表2A族元素係Mg、Ca、&或Ba。 、 4、如申請專利範圍第1 4 2項之發光體,其中,該周 期表2A族元素係Mg。 、 5如申叫專利範圍第1或2項之發光體,其中,該異 類金屬元素或類金屬元素係選自由u、B、Na、Ai si、K^ SC、Tl、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、As、Rb、 Y Nb、M。、Tc、Ru、Rh、Ag、In、sb、Cs、La、、 Eu、Gd、Tb、Ho、Tm、Lu、Ta、Re、Ir、Au、耵、出、 及At所構成之群的至少i種。 6、如申請專利範圍第1或2項之發光體,其中,該異 類金屬元素係A1。 7、 如申睛專利範圍第1或2項之發光體,其中,該氧 化物在以該異類金屬元素及該類金屬元素以外之含有元素 為雜質之情況下的純度,係在99.9質量%以上。 8、 如申請專利範圍第1或2項之發光體,其中,該氧 22 200914581 化物為粒狀,以掃描型電子顯微鏡所觀察之形狀為由立方 體之初級粒子所構成之粉末。 9、 如申請專利範圍第1或2項之發光體’其中,該氧 化物粉末係以雷射繞射散射式粒度分布測得之累積50%粒 位(D5〇)在0.1 # m以上者。 10、 如申請專利範圍第1或2項之發光體,其中,該 氧化物粉末之微晶直徑係5 〇 〇 a以上。 11、 如申請專利範圍第1或2項之發光體,其中,該 氧化物係藉由液相法所製造。 12、 一種光學元件’係裝載申請專利範圍第1或2項 之發光體而成。 十一、圖式: 如次頁。 23200914581 X. Patent application garden: The outer line 1 area - 2 = is excited by electron beam or ultraviolet light in purple, 〇〇 3 〇〇 _ has a light spike, which is characterized by · · - sound two by 匕 3 heterogeneous It is composed of an oxide of a metal element or a metalloid element of the periodic table 2A. The illuminant of claim i, wherein the ratio of the oxide, the metal element or the metalloid element to the element of the Group 2A of the periodic table is 〇·0 0 〇 1 to 1 mol%. The illuminant of claim 1 or 2, wherein the Group 2A element of the periodic table is Mg, Ca, & or Ba. 4. The illuminant of claim 134, wherein the element of Group 2A of the periodic table is Mg. 5. The illuminant according to claim 1 or 2, wherein the heterogeneous metal element or metalloid element is selected from the group consisting of u, B, Na, Ai si, K^SC, Tl, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Y Nb, M. At least one of the groups consisting of Tc, Ru, Rh, Ag, In, sb, Cs, La, Eu, Gd, Tb, Ho, Tm, Lu, Ta, Re, Ir, Au, 耵, 、, and At i kind. 6. The illuminant of claim 1 or 2, wherein the heterogeneous metal element is A1. 7. The illuminant according to claim 1 or 2, wherein the oxide has a purity of 99.9% by mass or more when the heterogeneous metal element and the element other than the metal element are impurities. . 8. The illuminant according to claim 1 or 2, wherein the oxygen 22 200914581 compound is granular, and the shape observed by a scanning electron microscope is a powder composed of primary particles of a cubic body. 9. The illuminant of claim 1 or 2 wherein the oxide powder has a cumulative 50% particle size (D5 〇) measured by a laser diffraction scattering particle size distribution of 0.1 Å or more. 10. The illuminant of claim 1 or 2, wherein the oxide powder has a crystallite diameter of 5 〇 以上 or more. 11. The illuminant of claim 1 or 2, wherein the oxide is produced by a liquid phase method. 12. An optical component is formed by loading an illuminant of claim 1 or 2. XI. Schema: As the next page. twenty three
TW097112929A 2007-04-25 2008-04-10 Oxide emitters TWI421326B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007115938A JP5236893B2 (en) 2007-04-25 2007-04-25 Oxide emitter

Publications (2)

Publication Number Publication Date
TW200914581A true TW200914581A (en) 2009-04-01
TWI421326B TWI421326B (en) 2014-01-01

Family

ID=39925249

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097112929A TWI421326B (en) 2007-04-25 2008-04-10 Oxide emitters

Country Status (5)

Country Link
JP (1) JP5236893B2 (en)
KR (1) KR101148301B1 (en)
CN (1) CN101679860B (en)
TW (1) TWI421326B (en)
WO (1) WO2008132776A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5690468B2 (en) * 2007-06-27 2015-03-25 タテホ化学工業株式会社 Luminescent body and manufacturing method thereof
JP5174634B2 (en) * 2008-11-28 2013-04-03 タテホ化学工業株式会社 Magnesium oxide solid solution particles and production method thereof
JP2011089004A (en) * 2009-10-22 2011-05-06 Nippon Chem Ind Co Ltd Phosphor material and method for producing the same
JP5745821B2 (en) * 2010-11-12 2015-07-08 タテホ化学工業株式会社 Fluorine-containing magnesium oxide phosphor and method for producing the same
JP5844185B2 (en) * 2012-03-19 2016-01-13 宇部マテリアルズ株式会社 Magnesium oxide powder
JP5569987B2 (en) * 2012-05-25 2014-08-13 双葉電子工業株式会社 Ultraviolet light emitting material and ultraviolet light source
WO2017200627A1 (en) 2016-05-19 2017-11-23 Cimcon Lighting, Inc. Configurable streetlight sensor platform
US10238001B2 (en) 2016-05-19 2019-03-19 Cimcon Lighting, Inc. Configurable data center platform

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220762A (en) * 1975-08-11 1977-02-16 Fujitsu Ltd Gas discharge display panel
JP3918879B2 (en) * 1995-02-27 2007-05-23 株式会社日立プラズマパテントライセンシング Secondary electron emission material for plasma display and plasma display panel
JP3425063B2 (en) * 1997-06-09 2003-07-07 松下電器産業株式会社 Plasma display panel and method of manufacturing the same
JPH11339665A (en) * 1998-05-27 1999-12-10 Mitsubishi Electric Corp Ac plasma display panel, substrate for it and protective film material for it
JP2000103614A (en) * 1998-09-28 2000-04-11 Daiichi Kigensokagaku Kogyo Co Ltd Mgo material for plasma display, its production and plasma display
JP4248721B2 (en) * 2000-02-22 2009-04-02 三菱電機株式会社 Ultraviolet conversion material and display device using the ultraviolet conversion material
JP4369725B2 (en) * 2002-11-18 2009-11-25 パナソニック株式会社 Plasma display panel and manufacturing method thereof
JP4543852B2 (en) * 2003-09-24 2010-09-15 パナソニック株式会社 Plasma display panel
EP1587126A4 (en) * 2003-09-24 2007-10-10 Matsushita Electric Ind Co Ltd Plasma display panel
JP3842276B2 (en) * 2004-02-26 2006-11-08 パイオニア株式会社 Plasma display panel and manufacturing method thereof
US7626336B2 (en) * 2003-09-26 2009-12-01 Panasonic Corporation Plasma display panel and method for producing same
WO2005043578A1 (en) * 2003-10-30 2005-05-12 Matsushita Electric Industrial Co.,Ltd. Plasma display panel
JP4873909B2 (en) * 2005-09-14 2012-02-08 株式会社アルバック Phosphor for electron beam excited light emitting device, method for producing the same, and electron beam excited light emitting device
JP4562742B2 (en) * 2006-02-21 2010-10-13 宇部マテリアルズ株式会社 Fluorine-containing magnesium oxide powder

Also Published As

Publication number Publication date
KR101148301B1 (en) 2012-07-23
CN101679860B (en) 2013-03-27
JP2008274020A (en) 2008-11-13
JP5236893B2 (en) 2013-07-17
CN101679860A (en) 2010-03-24
WO2008132776A1 (en) 2008-11-06
TWI421326B (en) 2014-01-01
KR20100009556A (en) 2010-01-27

Similar Documents

Publication Publication Date Title
TW200914581A (en) Oxide light emission body
US8865305B2 (en) Core shell phosphor and method of making the same
US6712993B2 (en) Phosphor and its production process
JP2023166643A (en) Phosphor and luminescence device
JP2007217202A (en) Method for producing complex metal oxide
KR20010040381A (en) Method of Preparing High Brightness, Small Particle Red Emitting Phosphor
JP5483898B2 (en) Method for producing oxide phosphor
Madej et al. Controlled synthesis of the monoclinic and orthorhombic polymorphs of Sr 2 SiO 4 activated with Ce 3+ or Eu 2+
JP5016935B2 (en) Cubic magnesium oxide powder and process for producing the same
JP4923242B2 (en) Manufacturing method of willemite crystal and manufacturing method of fluorescent substance using willemite crystal as mother crystal
TW201238929A (en) Process for producing sintered magnesium oxide material
Kumar et al. Synthesis and characterization of bismuth doped calcium sulfide nanocrystallites
US7001537B2 (en) Phosphor and its production process
JPWO2005087894A1 (en) Silicate-based phosphor, silicate-based phosphor precursor, manufacturing method thereof, and manufacturing apparatus for silicate-based phosphor precursor
CN101707913A (en) magnesium oxide powder
US6663843B2 (en) Method of producing barium-containing composite metal oxide
US20130082207A1 (en) Core-shell phosphor and method of making the same
WO2011148910A1 (en) PROCESS FOR PRODUCTION OF Eu-ACTIVATED ALKALINE EARTH METAL SILICATE PHOSPHOR
JP2001172620A (en) Method for producing red light emitting fluorescent microparticle
JP2022046128A (en) METHOD FOR PRODUCING EUROPIUM-ACTIVATED β TYPE SIALON PHOSPHOR
JP5110499B2 (en) Method for manufacturing phosphor
JP5690468B2 (en) Luminescent body and manufacturing method thereof
KR101388189B1 (en) Chlorosilicate phosphor and preparing method of the same
JP2004277543A (en) Method for producing phosphor particle
TW202212537A (en) Method for manufacturing phosphor powder, phosphor powder, and light emitting device