JP4923242B2 - Manufacturing method of willemite crystal and manufacturing method of fluorescent substance using willemite crystal as mother crystal - Google Patents

Manufacturing method of willemite crystal and manufacturing method of fluorescent substance using willemite crystal as mother crystal Download PDF

Info

Publication number
JP4923242B2
JP4923242B2 JP2006054930A JP2006054930A JP4923242B2 JP 4923242 B2 JP4923242 B2 JP 4923242B2 JP 2006054930 A JP2006054930 A JP 2006054930A JP 2006054930 A JP2006054930 A JP 2006054930A JP 4923242 B2 JP4923242 B2 JP 4923242B2
Authority
JP
Japan
Prior art keywords
willemite
solution
crystal
sio
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006054930A
Other languages
Japanese (ja)
Other versions
JP2007230826A (en
Inventor
攻 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Original Assignee
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY filed Critical NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority to JP2006054930A priority Critical patent/JP4923242B2/en
Publication of JP2007230826A publication Critical patent/JP2007230826A/en
Application granted granted Critical
Publication of JP4923242B2 publication Critical patent/JP4923242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ウィレマイト結晶の製造方法及びウィレマイト結晶を母結晶とした蛍光物質の製造方法に関する。   The present invention relates to a method for producing a willemite crystal and a method for producing a fluorescent material using the willemite crystal as a mother crystal.

ウィレマイト(Willemite,ZnSiO)は蛍光物質の母結晶として古くから用いられている。ブラウン管などの陰極線発光(CL)、コピー機や現金支払機などの電子照明(EL)、薄型テレビなどのプラズマ発光(PL)等に蛍光物質として用いるには、ウィレマイトにMn2+(緑)、Eu3+(赤)、Tb3+(緑)等を微量ドープする。従来は、ジンカイト(ZnO)と石英(SiO)粉末を機械的に混合し、1500℃以上の高温で焼成して合成されていたが、微粉砕混合が必要である上に、長時間の焼成が必要であり、そのためZnOの蒸発等が原因で純相を得ることが困難であった。 Willemite (Willemite, Zn 2 SiO 4 ) has long been used as a mother crystal of a fluorescent material. For use as a fluorescent material in cathode ray emission (CL) such as a cathode ray tube, electronic illumination (EL) such as a copy machine or a cash payment machine, plasma emission (PL) such as a flat-screen television, etc., Willemite may contain Mn 2+ (green), Eu. A small amount of 3+ (red), Tb 3+ (green), etc. is doped. Conventionally, it was synthesized by mechanically mixing zincite (ZnO) and quartz (SiO 2 ) powder and firing at a high temperature of 1500 ° C. or higher. Therefore, it was difficult to obtain a pure phase due to evaporation of ZnO and the like.

その後、噴霧熱変性法(スプレーパイロリシス法)が発達し、ビーカー内であらかじめ準備した溶液を炭酸処理すること等によりエマルジョン化し、それを熱間で噴霧乾燥することによりゲル状の顆粒を得、更にそれを高温で熱処理し、結晶質のウィレマイトを得る方法が開発された。   Then, spray heat denaturation method (spray pyrolysis method) developed, emulsified by carbonizing the solution prepared in advance in a beaker, to obtain gel-like granules by hot spray drying, Furthermore, a method has been developed in which it is heat-treated at a high temperature to obtain crystalline willemite.

また、TEOS(Siのアルコキシドでテトラエチルオルソシリケートまたはテトラエトキシシラン、<(CO)Si>の略号)をSiO源に用いる方法もあり、それによればビーカー内の溶液を熱間に噴霧し、同様にゲル状の顆粒を得、それを更に焼成することにより1000℃でβ型ウィレマイト、1200℃でα型ウィレマイトが得られている(非特許文献1参照)。因みに、蛍光物質母結晶としては通常α型ウィレマイトが使われる。
Y. C. Kang and S. B. Park, Zn2SiO4:Mn phosphor particles prepared by spray pyrolysis using a filter expansion aerosol generator, Materials Research Bulletin, 35, 1143-1151, 2000.
There is also a method of using TEOS (Si alkoxide, tetraethylorthosilicate or tetraethoxysilane, <(C 2 H 5 O) 4 Si>) as a SiO 2 source, whereby the solution in the beaker is heated In the same manner, a gel-like granule is obtained, and is further fired to obtain β-type willemite at 1000 ° C. and α-type willemite at 1200 ° C. (see Non-Patent Document 1). Incidentally, α-type willemite is usually used as the fluorescent substance mother crystal.
YC Kang and SB Park, Zn2SiO4: Mn phosphor particles prepared by spray pyrolysis using a filter expansion aerosol generator, Materials Research Bulletin, 35, 1143-1151, 2000.

しかし、前記非特許文献1の方法は、SiO源として高価なTEOSを用いるためコストが高い難点がある。 However, the method of Non-Patent Document 1 has a high cost because it uses expensive TEOS as the SiO 2 source.

そこで、本発明は、簡便で安価なウィレマイト結晶の製造方法及びウィレマイト結晶を母結晶とした蛍光物質の製造方法を提供するものである。   Accordingly, the present invention provides a simple and inexpensive method for producing a willemite crystal and a method for producing a fluorescent material using the willemite crystal as a mother crystal.

本発明のウィレマイト結晶の製造方法は、SiO源溶液、pH調節剤溶液及びZnO源溶液をZnO/SiOのモル比が1.5以上、好ましくは1.7以上、特に1.7〜2.2となるように混合し、生成した沈殿物を乾燥して得られた前駆体ゲルを加熱して結晶化することを特徴とする。 In the method for producing the willemite crystal of the present invention, the SiO 2 source solution, the pH adjuster solution and the ZnO source solution have a ZnO / SiO 2 molar ratio of 1.5 or more, preferably 1.7 or more, particularly 1.7-2. The mixture is mixed so as to be 2 and the precursor gel obtained by drying the produced precipitate is heated to crystallize.

前記構成において、SiO源溶液として水ガラス、pH調節溶液としてアルカリ或いはアンモニア等の塩基、好ましくは苛性ソーダ、ZnO源溶液として塩化亜鉛、硫酸亜鉛等の亜鉛の可溶性塩、好ましくは硝酸亜鉛を使用し、前駆体ゲルを800℃〜1400℃に加熱して結晶化する。 In the above configuration, water glass is used as the SiO 2 source solution, a base such as alkali or ammonia is used as the pH adjusting solution, preferably caustic soda, and a zinc soluble salt such as zinc chloride or zinc sulfate is used as the ZnO source solution, preferably zinc nitrate. The precursor gel is heated to 800 ° C. to 1400 ° C. for crystallization.

また、本発明の蛍光物質の製造方法は、前記方法で製造したウィレマイト結晶にMn2+、Eu3+又はTb3+の発光金属をドープすることを特徴とする。 Moreover, the manufacturing method of the fluorescent substance of the present invention is characterized in that the willemite crystal manufactured by the above method is doped with a light emitting metal of Mn 2+ , Eu 3+ or Tb 3+ .

本発明は、水ガラス、硝酸亜鉛、苛性ソーダなどの容易に入手することができる物質を簡便な工程で処理することによって安価にウィレマイト結晶を製造することができる。   In the present invention, a willemite crystal can be produced at low cost by treating easily available substances such as water glass, zinc nitrate, and caustic soda in a simple process.

また、ナノサイズの結晶を容易に製造することができる。SiO源溶液、pH調節剤溶液及びZnO源溶液に発光金属源溶液を混合して、ゲルを生成させることにより、容易に蛍光物質を製造することができる。 In addition, nano-sized crystals can be easily manufactured. By mixing the luminescent metal source solution with the SiO 2 source solution, the pH adjusting agent solution and the ZnO source solution to form a gel, the fluorescent material can be easily produced.

本発明は、SiO源として珪酸アルカリなどの水溶性珪酸塩を用いることを特徴の一つとする。珪酸アルカリ、特に珪酸ナトリウムは、所謂カレットを苛性ソーダで溶解して得られるもので、一般に水ガラスと言われ、シリカゲル、接着剤、土壌硬化剤などとして大量に消費される安価な原料である。 One feature of the present invention is that a water-soluble silicate such as an alkali silicate is used as the SiO 2 source. An alkali silicate, particularly sodium silicate, is obtained by dissolving so-called cullet with caustic soda, and is generally called water glass, and is an inexpensive raw material that is consumed in large quantities as silica gel, an adhesive, a soil hardening agent, and the like.

水ガラスは、酸又は金属塩を加えることにより脱水縮合してゲル化することが知られている。これを乾燥すると非晶質の酸化珪素となるが、添加する金属塩の金属イオンを任意の割合で酸化珪酸結合の間に取り込んだ非晶質の珪酸塩を得ることもできる。   It is known that water glass is dehydrated and condensed to gel by adding an acid or a metal salt. When this is dried, it becomes amorphous silicon oxide, but it is also possible to obtain an amorphous silicate in which metal ions of the metal salt to be added are incorporated in an arbitrary ratio between the silicate oxide bonds.

本発明は、水ガラス等のSiO源溶液(一般に水溶液)に亜鉛の可溶性塩をZnO/SiOのモル比が1.5以上となるように添加し、しかも両者を混合し終わった時の上澄液のpHが7以下、好ましくは5.5〜6.5となるようpH調節剤として、塩基、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、重炭酸ナトリウム、アンモニウム等を加えて調節し、前駆体ゲルを得る。 In the present invention, a soluble salt of zinc is added to a SiO 2 source solution (generally an aqueous solution) such as water glass so that the molar ratio of ZnO / SiO 2 is 1.5 or more, and when both are mixed. The pH of the supernatant is adjusted to 7 or less, preferably 5.5 to 6.5 by adding a base such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium bicarbonate, ammonium, etc. And a precursor gel is obtained.

混合方法は特に限定されないが、一般にSiO源溶液に攪拌しつつZnO源となる亜鉛の可溶性塩溶液(一般に水溶液)を徐々に添加するのが好ましい。亜鉛の可溶性塩としては、一般に水に可溶な塩、例えば塩化亜鉛、硫酸亜鉛、蓚酸亜鉛、酢酸亜鉛など可溶性塩であればよいが、特に硝酸亜鉛が好適である。 The mixing method is not particularly limited, but it is generally preferable to gradually add a soluble salt solution (generally an aqueous solution) of zinc as a ZnO source while stirring to the SiO 2 source solution. The zinc soluble salt is generally a water-soluble salt such as zinc chloride, zinc sulfate, zinc oxalate, and zinc acetate, but zinc nitrate is particularly preferred.

pH調節剤は、塩基が用いられる。例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニア水などが用いられるが、SiO源に水ガラスを用いる場合、通常水酸化ナトリウム(苛性ソーダ)が好ましい。これらのpH調節剤は、亜鉛の可溶性塩の添加と同時に、徐々に加えてもよいが、あらかじめ所定量のpH調節剤を水ガラス等のSiO源溶液中に混合しておいてもよい。要は、SiO源とZnO源とを混合し終えたときの上澄液中のpHが7以下、好ましくは5.5〜6.5となればよいのである。 A base is used as the pH adjusting agent. For example, sodium hydroxide, potassium hydroxide, sodium carbonate, aqueous ammonia and the like are used. When water glass is used as the SiO 2 source, sodium hydroxide (caustic soda) is usually preferable. These pH adjusters may be gradually added simultaneously with the addition of the zinc soluble salt, but a predetermined amount of pH adjuster may be mixed in advance in a SiO 2 source solution such as water glass. The point is that the pH in the supernatant after mixing the SiO 2 source and the ZnO source is 7 or less, preferably 5.5 to 6.5.

SiO源溶液にZnO源を添加するとまもなくゲルの生成が始まり、ゆっくりとゲル化が進行するため、ZnO源を添加し終わっても数時間は攪拌下に熟成させるのが好ましい。 When a ZnO source is added to the SiO 2 source solution, gel formation starts soon and gelation proceeds slowly. Therefore, it is preferable to ripen with stirring for several hours even after the addition of the ZnO source.

本発明のポイントの一つは、ZnO源をSiO源の1.5モル倍乃至それ以上加えることにある。本発明の目的物であるオルト珪酸塩を得るためには、理論量としてZnO源/SiO源のモル比は2であるが、本発明においては、1.5モル倍以上、好ましくは1.7モル倍以上、更には1.7〜2.2モル倍でウィレマイト結晶を得ることができる。ここで1.5モル倍より少ないと、非晶質シリカの生成が多くなり、また2.2モル倍以上ではジンカイトが多くなる傾向を示す。 One of the points of the present invention is to add the ZnO source 1.5 mol times or more of the SiO 2 source. In order to obtain orthosilicate which is the object of the present invention, the molar ratio of ZnO source / SiO 2 source is 2 as a theoretical amount, but in the present invention, 1.5 molar times or more, preferably 1. Willemite crystals can be obtained at 7 mol times or more, and further at 1.7 to 2.2 mol times. Here, when the amount is less than 1.5 mol times, the generation of amorphous silica increases, and when the amount is 2.2 mol times or more, the zincite tends to increase.

更にウィレマイトを母結晶とする蛍光物質を得る場合、該ウィレマイト結晶に、他の金属イオンをドープする必要がある。一般に前記珪酸塩のゲル化反応時に所定の金属イオンを共存させておけばよい。すなわちZnO源溶液中に該金属の可溶性塩、例えばマンガン塩(この場合緑色の蛍光)、ユーロビウム塩(この場合赤色の蛍光)又はテルビウム塩(この場合青色の蛍光)などの金属塩をZnSiO1モルに対して、金属として0.1〜5質量%、好ましくは0.2〜2質量%加えておけばよい。 Further, when obtaining a fluorescent substance having willemite as a mother crystal, it is necessary to dope the willemite crystal with other metal ions. In general, a predetermined metal ion may be allowed to coexist during the gelation reaction of the silicate. That is, a soluble salt of the metal, such as a manganese salt (in this case, green fluorescence), a europium salt (in this case, red fluorescence), or a terbium salt (in this case, blue fluorescence), a metal salt such as Zn 2 SiO 4 0.1-5 mass% as a metal with respect to 1 mol, Preferably 0.2-2 mass% should just be added.

蛍光物質とするための金属イオンを加えた場合であっても、加えない場合であっても、SiO源とZnO源との反応生成物であるゲル状の沈殿は、ろ過又はデカンテーション等により回収し、水洗することにより、ナトリウム分や、未反応のZnO源等の不純物を除去し、乾燥する。かかる水洗乾燥工程によりナトリウム分は、実質的に完全に除去することができる。 Whether or not a metal ion for making a fluorescent substance is added, the gel-like precipitate that is a reaction product of the SiO 2 source and the ZnO source is filtered or decanted. By collecting and washing with water, impurities such as sodium and unreacted ZnO source are removed and dried. The sodium content can be substantially completely removed by this washing and drying step.

次いで、ゲルを800℃〜1400℃、好ましくは1000℃〜1300℃に加熱処理することによりウィレマイトの結晶、特に粒径数拾ナノメートルの微細結晶が得られる。   Next, the gel is heat-treated at 800 ° C. to 1400 ° C., preferably 1000 ° C. to 1300 ° C., to obtain willemite crystals, particularly fine crystals having a particle size of several nanometers.

なお、加熱温度が800℃〜900℃程度の比較的低い場合、β型のウィレマイトが多くなる傾向にあり、1000℃〜1300℃では、α型のウィレマイトが主として得られる。この際、少量のジンカイトが副生する場合がある。更に、1400℃を超えるとクリストバライトが副生する場合があり、一般に好ましくない。   In addition, when the heating temperature is relatively low, such as about 800 ° C. to 900 ° C., β-type willemite tends to increase, and at 1000 ° C. to 1300 ° C., α-type willemite is mainly obtained. At this time, a small amount of zincite may be by-produced. Furthermore, if it exceeds 1400 ° C., cristobalite may be produced as a by-product, which is generally not preferred.

以下に実施例を示す。   Examples are shown below.

SiO源には水ガラスを使用し、本例ではNaSiO・9HOを用い、イオン交換水に溶解し0.74MのSiO源溶液とした。ZnO源として硝酸亜鉛Zn(NO・6HOを同様にイオン交換水に溶解し1.48MのZnO源溶液とした。pH調節剤として1Mの苛性ソーダ溶液をpH調節溶液とした。 Water glass was used as the SiO 2 source. In this example, Na 2 SiO 3 .9H 2 O was used and dissolved in ion-exchanged water to obtain a 0.74 M SiO 2 source solution. As a ZnO source, zinc nitrate Zn (NO 3 ) 2 .6H 2 O was similarly dissolved in ion-exchanged water to obtain a 1.48M ZnO source solution. A 1 M caustic soda solution was used as a pH adjusting solution.

先ず、SiO源溶液とpH調節溶液をビーカー内で混合し、磁気撹拌子で撹拌しながらビュレットを用いてZnO源溶液を2時間かけて滴下した。混合割合はSiO源溶液50mLに対してZnO源溶液は50mLで1:1と一定とし、pH調節溶液は0−100mLの範囲で変化させてpH調節する。こうして得られた上澄み液のpHを測定し、沈殿物はろ過洗浄し、3日間常温空気中で乾燥することによって前駆体のゲルを準備した。 First, the SiO 2 source solution and the pH adjusting solution were mixed in a beaker, and the ZnO source solution was added dropwise over 2 hours using a burette while stirring with a magnetic stir bar. The mixing ratio is fixed to 1: 1 with 50 mL of the ZnO source solution with respect to 50 mL of the SiO 2 source solution, and the pH is adjusted by changing the pH adjusting solution in the range of 0 to 100 mL. The pH of the supernatant thus obtained was measured, the precipitate was filtered and washed, and dried in room temperature air for 3 days to prepare a precursor gel.

次に、得られたゲルを白金ルツボに取り、電気炉で1時間、所定の温度で加熱してゲルを焼成した。   Next, the obtained gel was taken in a platinum crucible and heated at a predetermined temperature in an electric furnace for 1 hour to sinter the gel.

焼成物は粉末X線回折(XRD)で同定し、シラー式により粒子径を測定し、また走査型電子顕微鏡(SEM)で形態を観察した。ゲルの化学組成はあらかじめ1000℃で1時間熱処理し、絶乾状態にしたものをICP分析により決定した。   The fired product was identified by powder X-ray diffraction (XRD), the particle size was measured by the Schiller formula, and the form was observed by a scanning electron microscope (SEM). The chemical composition of the gel was determined by ICP analysis after heat-treating at 1000 ° C. for 1 hour in an absolutely dry state.

ゲルの化学組成、ノルム鉱物の組成は表1のとおりであった。なお、表1中の容量比は、SiO源溶液、ZnO源溶液、pH調節剤溶液の混合容量比、例えば1:1:1を1−1−1と表したものである。
Table 1 shows the chemical composition of the gel and the composition of the norm mineral. In addition, the volume ratio in Table 1 represents the mixing volume ratio of the SiO 2 source solution, the ZnO source solution, and the pH adjuster solution, for example, 1: 1: 1 as 1-1-1.

以上の試験から、ゲルの化学組成とpH依存性について検討した。   From the above test, the chemical composition and pH dependence of the gel were examined.

図1はゲルのモル比(Molar ratio)及び収率(Yield)とpHの関係を示すグラフである。   FIG. 1 is a graph showing the relationship between the molar ratio (Molar ratio) and yield (Yield) of gel and pH.

図1から、低pH領域ではZnO/SiOモル比が2よりも低く、加えた硝酸亜鉛は有効に沈殿することなく、洗浄によりかなりの部分が系外に出ていることが判明した。しかし、pHが上がるにつれてZnO/SiOモル比が急激に2に近づき、pH6.3で初期の目的であるモル比2が得られ、更にpHが上がるとモル比の伸びは鈍化し、pH10.3でもモル比は2.3に留まった。なお、ナトリウムの混入は少なく、特に酸性領域では1%以下である。 From FIG. 1, it was found that in the low pH region, the ZnO / SiO 2 molar ratio was lower than 2, and the added zinc nitrate did not precipitate effectively, and a considerable portion was out of the system by washing. However, as the pH increases, the ZnO / SiO 2 molar ratio rapidly approaches 2, and the initial molar ratio of 2 is obtained at pH 6.3. As the pH further increases, the molar ratio elongation slows down to a pH of 10. Even at 3, the molar ratio remained at 2.3. In addition, there is little mixing of sodium, and it is 1% or less especially in an acidic region.

以上から、ZnO/SiOのモル比が2以上のゲルを得るには、試料4及び試料5に示されるように、pH6.3以上となるようにpH調節溶液で調製する必要がある。 From the above, in order to obtain a gel having a ZnO / SiO 2 molar ratio of 2 or more, as shown in Sample 4 and Sample 5, it is necessary to prepare a pH control solution so that the pH is 6.3 or more.

次に、ゲルをα型ウィレマイトにするための温度について検討した。   Next, the temperature for making the gel into α-type willemite was examined.

表2は各試料の加熱温度と生成する結晶相の結果を示す表である。図2〜図4はゲルの加熱変化を示すXRDチャートである。
Table 2 is a table showing the heating temperature of each sample and the result of the generated crystal phase. 2 to 4 are XRD charts showing changes in gel heating.

図2に示すように、pH5.5(1−1−0.5)に調製した試料2のゲルを加熱すると、先ず最初にジンカイト(ZnO)(図中Zで表す)が微量生成し、その後、微量のジンカイトと共にβ型ウィレマイト(図中βで表す)が生成する。最終的に1000℃以上の加熱でジンカイトを伴なわない純相のα型ウィレマイト(図中ラベルしないピーク)が生成する。しかし、量論組成よりややシリカが多いので、1400℃の加熱で微量のクリストバライト(図中Cで表す)が析出した。   As shown in FIG. 2, when the gel of Sample 2 prepared to pH 5.5 (1-1-0.5) is heated, first, a small amount of zincite (ZnO) (indicated by Z in the figure) is formed, and then Then, β-type willemite (represented by β in the figure) is produced together with a small amount of zincite. Finally, pure phase α-type willemite (not labeled in the figure) that does not involve zincite is formed by heating at 1000 ° C. or higher. However, since there was a little more silica than the stoichiometric composition, a slight amount of cristobalite (denoted by C in the figure) was precipitated by heating at 1400 ° C.

図3に示すように、pH5.7(1−1−1)に調製した試料3のゲルを加熱すると、先ず最初にジンカイト(ZnO)が微量生成し、その後、微量のジンカイトと共にβ型ウィレマイトが生成する。しかし、高温加熱では微量のジンカイトが残留し、最終的に1100℃以上の加熱でジンカイトを伴わない純相のα型ウィレマイトが生成する。   As shown in FIG. 3, when the gel of Sample 3 prepared to pH 5.7 (1-1-1) is heated, first, a very small amount of zincite (ZnO) is generated, and then β-type willemite is added together with a small amount of zincite. Generate. However, a trace amount of zincite remains at high temperature heating, and finally, pure phase α-type willemite without zincite is generated by heating at 1100 ° C. or higher.

図4に示すようにZnO/SiOモル比が2以上のpH6.5(1−1−1.5)に調製した試料4のゲルを加熱すると、最初にジンカイト(ZnO)が微量生成し、その後、800℃〜1400℃でα型ウィレマイトが生成する。量論組成より亜鉛がやや多いので高温加熱でも微量のジンカイトが常に残留し、純相のα型ウィレマイトが得られないが、ジンカイトの共生は極微量である。 As shown in FIG. 4, when the gel of Sample 4 prepared to pH 6.5 (1-1-1.5) having a ZnO / SiO 2 molar ratio of 2 or more is heated, a small amount of zincite (ZnO) is first produced, Thereafter, α-type willemite is produced at 800 ° C. to 1400 ° C. Since there is a little more zinc than the stoichiometric composition, a trace amount of zincite always remains even when heated at high temperature, and a pure-phase α-type willemite cannot be obtained, but the symbiosis of zincite is extremely small.

したがって、ZnO/SiOのモル比が2以上となるように調整したゲルを800℃〜1400℃で結晶化する必要がある。 Therefore, it is necessary to crystallize the gel adjusted so that the molar ratio of ZnO / SiO 2 is 2 or more at 800 ° C to 1400 ° C.

各試料についてシラー式から求めた結晶子径を表3に示す。[113]面方向のサイズは高温焼成を除き、大略50nm程度であった。
Table 3 shows the crystallite diameter obtained from the Schiller equation for each sample. [113] The size in the plane direction was about 50 nm except for high-temperature firing.

図5は走査型電子顕微鏡写真である。走査型電子顕微鏡観察ではランダムな粒子として観察される。900℃の焼成では一般に100nm以下のナノサイズのものが得られた。ただし、焼成温度の上昇と共に粒子径は大きくなり、1300℃焼成では1μm前後まで粒成長が認められた。   FIG. 5 is a scanning electron micrograph. In the scanning electron microscope observation, the particles are observed as random particles. In the baking at 900 ° C., generally nano-sized ones of 100 nm or less were obtained. However, the particle diameter increased as the firing temperature increased, and grain growth up to about 1 μm was observed at 1300 ° C. firing.

ウィレマイトに発光金属Mn2+をドープして蛍光物質を製造した。マンガン源として硝酸マンガン、Mn(NO・6HO、0.15M溶液を用いた。それをあらかじめ亜鉛源溶液と共にビーカー内に所定量混合した。溶液の混合比とpHは表4のとおりであった。
A phosphor was produced by doping willemite with the light-emitting metal Mn 2+ . As a manganese source, manganese nitrate, Mn (NO 3 ) 2 .6H 2 O, 0.15M solution was used. A predetermined amount of it was mixed with a zinc source solution in a beaker in advance. The mixing ratio and pH of the solution were as shown in Table 4.

次に混合液をビュレットに分取しシリカ源の入ったビーカー内に亜鉛源と共に2時間かけて滴下した。上澄液のpHを測定後、ろ過洗浄し沈殿物を回収した。室温で3日間乾燥しMn2+を含むケイ酸塩ゲルを得た。ケイ酸塩ゲルの分析結果は表5のとおりである。
Next, the mixed solution was separated into a burette and dropped into the beaker containing the silica source over 2 hours together with the zinc source. After measuring the pH of the supernatant, it was washed by filtration and the precipitate was collected. A silicate gel containing Mn 2+ was obtained by drying at room temperature for 3 days. The analysis results of the silicate gel are shown in Table 5.

ゲルを白金箔で包み、アルミナボートの上に乗せアルゴンを流した横型管状炉の中に挿入し900℃で加熱した。   The gel was wrapped in platinum foil, placed on an alumina boat, inserted into a horizontal tubular furnace in which argon was flowed, and heated at 900 ° C.

ケイ酸塩ゲルの化学組成はナトリウム分以外は蛍光X線分析、ナトリウム分は原子吸光分析により行った。試料は1000℃であらかじめ加熱処理した脱水物を用い、蛍光X線分析はガラスビード法、原子吸光分析はテフロン(登録商標)容器内でフッ酸塩酸混液処理法により行った。   The chemical composition of the silicate gel was determined by fluorescent X-ray analysis except for the sodium content, and by atomic absorption analysis for the sodium content. The sample used was a dehydrated material preheated at 1000 ° C., the fluorescent X-ray analysis was performed by the glass bead method, and the atomic absorption analysis was performed in a Teflon (registered trademark) container by the hydrofluoric acid mixed liquid processing method.

図6はMn2+のドープにより得られたケイ酸塩ゲルのXRDチャート(−900℃,1時間加熱)である。 FIG. 6 is an XRD chart (-900 ° C., heated for 1 hour) of a silicate gel obtained by doping with Mn 2+ .

マンガンをドープした場合、ナトリウムの混入が極めて少なく、未検出である。また、マンガンをドープするとジンカイト、ZnOの副生も少なくなり、皆無に等しい。   When manganese is doped, sodium contamination is very small and undetected. Further, when manganese is doped, the amount of by-products of zincite and ZnO is reduced, which is almost none.

Mn2+をドープしたウレマイトは254nmのブラックライト照射により緑色発光が確認できた。 The uremite doped with Mn 2+ was confirmed to emit green light when irradiated with 254 nm black light.

実施例2と同様にしてMn2+、Eu3+及びTb3+をドープした試料をpH6.3で準備した。ドープする原溶液はそれぞれの硝酸塩をイオン交換水に溶かして準備し、亜鉛溶液に混合し滴下した。粉末X線回折によれば、マンガンをドープした場合は、ウレマイトだけが同定されたが、ユーロピウムまたはテルビウムをドープした場合は、若干量のジンカイトが認められた。 In the same manner as in Example 2, a sample doped with Mn 2+ , Eu 3+ and Tb 3+ was prepared at pH 6.3. The original solution to be doped was prepared by dissolving each nitrate in ion-exchanged water, mixed in a zinc solution and dropped. According to powder X-ray diffraction, only uremite was identified when doped with manganese, but a small amount of zincite was observed when doped with europium or terbium.

蛍光スペクトルは254nmの紫外光(水銀ランプ)で励起し測定した。発光色は、Mn:ZnSiOは緑[図7(a)]、Eu:ZnSiOは赤[図7(b)]、Tb:ZnSiOは青[図7(c)]であり、それぞれスペクトルは図7のようである。なお、緑色蛍光体の発光強度は極めて強いが、赤色蛍光体は中程度であり、青色蛍光体は弱かった。 The fluorescence spectrum was measured by excitation with ultraviolet light (mercury lamp) of 254 nm. The emission colors are green for Mn: Zn 2 SiO 4 [FIG. 7 (a)], red for Eu: Zn 2 SiO 4 [FIG. 7 (b)], and blue for Tb: Zn 2 SiO 4 [FIG. 7 (c)]. And the spectra are as shown in FIG. The emission intensity of the green phosphor was extremely strong, but the red phosphor was moderate and the blue phosphor was weak.

ゲルのモル比及び収率とpHの関係を示すグラフである。It is a graph which shows the relationship between the molar ratio and yield of a gel, and pH. 試料2のゲルの加熱変化を示すXRDチャートである(ラベルなしはα)。It is an XRD chart which shows the heating change of the gel of the sample 2 (alpha without a label). 試料3のゲルの加熱変化を示すXRDチャートである(ラベルなしはα)。It is an XRD chart which shows the heating change of the gel of the sample 3 (alpha without a label). 試料4のゲルの加熱変化を示すXRDチャートである(ラベルなしはα)。It is an XRD chart which shows the heating change of the gel of the sample 4 (alpha without a label). 走査型電子顕微鏡写真である。It is a scanning electron micrograph. Mn2+のドープにより得られたケイ酸塩ゲルのXRDチャートである(ラベルなしはα)。It is an XRD chart of the silicate gel obtained by doping with Mn 2+ (α without label). Mn2+、Eu3+及びTb3+の発光色のスペクトル図である。It is a spectrum figure of the luminescent color of Mn2 + , Eu3 +, and Tb3 + .

Claims (7)

SiO源溶液、pH調節剤溶液及びZnO源溶液をZnO/SiOのモル比が1.5以上となるように混合し、生成した沈殿物を乾燥して得られた前駆体ゲルを加熱して結晶化することを特徴とするウィレマイト結晶の製造方法。 The precursor gel obtained by mixing the SiO 2 source solution, the pH adjuster solution and the ZnO source solution so that the molar ratio of ZnO / SiO 2 is 1.5 or more and drying the resulting precipitate is heated. And a method for producing a willemite crystal. SiOとして水ガラスをZnO源として亜鉛の可溶性塩をそれぞれ用い、pH調節剤として塩基を用い、ゲル化反応終了時のpHが7以下となるように調節してゲルを生成せしめ、得られたゲルを乾燥後、800℃〜1400℃に加熱して結晶化させることを特徴とする請求項1記載のウィレマイト結晶の製造方法。 Using water glass as SiO 2 and a soluble salt of zinc as a ZnO source, using a base as a pH adjuster, adjusting the pH at the end of the gelation reaction to 7 or less to produce a gel was obtained. The method for producing a willemite crystal according to claim 1, wherein the gel is crystallized by heating to 800 ° C to 1400 ° C after drying. 水ガラス水溶液中にpH調節剤を加え、攪拌下に亜鉛の可溶性塩水溶液を添加し、ゲルを生成させることを特徴とする請求項2記載のウィレマイト結晶の製造方法。 The method for producing a willemite crystal according to claim 2, wherein a gel is formed by adding a pH adjusting agent to an aqueous water glass solution and adding an aqueous zinc soluble salt solution with stirring. SiO源溶液として水ガラス、pH調節溶液として苛性ソーダ、ZnO源溶液として硝酸亜鉛を使用し、前駆体ゲルを800℃〜1400℃に加熱して結晶化することを特徴とする請求項1乃至3のいずれかの項に記載のウィレマイト結晶の製造方法。 4. Water glass as the SiO 2 source solution, caustic soda as the pH adjusting solution, zinc nitrate as the ZnO source solution, and the precursor gel is heated to 800 ° C. to 1400 ° C. for crystallization. The manufacturing method of the willemite crystal as described in any one of the above. 請求項1乃至4のいずれかの項に記載のウィレマイト結晶の製造方法で製造されたウィレマイト結晶に発光金属をドープすることを特徴とするウィレマイト結晶を母結晶とした蛍光物質の製造方法。   5. A method for producing a fluorescent material using a willemite crystal as a mother crystal, wherein the willemite crystal produced by the method for producing a willemite crystal according to claim 1 is doped with a luminescent metal. 発光金属がMn2+、Eu3+又はTb3+のいずれかであることを特徴とする請求項5記載のウィレマイト結晶を母結晶とした蛍光物質の製造方法。 6. The method for producing a fluorescent material using a willemite crystal as a mother crystal according to claim 5, wherein the luminescent metal is any one of Mn 2+ , Eu 3+ and Tb 3+ . 亜鉛の可溶性塩水溶液にMn2+、Eu3+又はTb3+のいずれかの発光金属イオンを混合して水ガラス水溶液に添加することを特徴とする請求項5又は6記載の蛍光物質の製造方法。 The method for producing a fluorescent material according to claim 5 or 6, wherein a light-emitting metal ion of Mn 2+ , Eu 3+ or Tb 3+ is mixed with an aqueous solution of zinc soluble salt and added to a water glass aqueous solution.
JP2006054930A 2006-03-01 2006-03-01 Manufacturing method of willemite crystal and manufacturing method of fluorescent substance using willemite crystal as mother crystal Active JP4923242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006054930A JP4923242B2 (en) 2006-03-01 2006-03-01 Manufacturing method of willemite crystal and manufacturing method of fluorescent substance using willemite crystal as mother crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006054930A JP4923242B2 (en) 2006-03-01 2006-03-01 Manufacturing method of willemite crystal and manufacturing method of fluorescent substance using willemite crystal as mother crystal

Publications (2)

Publication Number Publication Date
JP2007230826A JP2007230826A (en) 2007-09-13
JP4923242B2 true JP4923242B2 (en) 2012-04-25

Family

ID=38551800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006054930A Active JP4923242B2 (en) 2006-03-01 2006-03-01 Manufacturing method of willemite crystal and manufacturing method of fluorescent substance using willemite crystal as mother crystal

Country Status (1)

Country Link
JP (1) JP4923242B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4428428B2 (en) 2007-09-05 2010-03-10 ソニー株式会社 Imaging device and auxiliary recording medium unit
JP2010059260A (en) * 2008-09-02 2010-03-18 Dainichiseika Color & Chem Mfg Co Ltd Method for producing material for light-emitting element
KR101025567B1 (en) 2008-12-30 2011-03-28 김영도 Method for manufacturing willemite using geopolymer
JP5483898B2 (en) * 2009-02-19 2014-05-07 住友金属鉱山株式会社 Method for producing oxide phosphor
JP2011032416A (en) * 2009-08-04 2011-02-17 Sumitomo Metal Mining Co Ltd Phosphor, and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985176A (en) * 1997-12-04 1999-11-16 Matsushita Electric Industrial Co., Ltd. Method of preparing high brightness, shorter persistence zinc orthosilicate phosphor
JP2006321692A (en) * 2005-05-20 2006-11-30 Konica Minolta Medical & Graphic Inc Method for producing precursor of manganese zinc silicate and pdp panel using the same

Also Published As

Publication number Publication date
JP2007230826A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP5415608B2 (en) Core / shell lanthanum cerium terbium phosphate, phosphor containing said phosphate and preparation method
Yoshizawa et al. Synthesis of Zn 2 SiO 4: Mn 2+ by homogeneous precipitation using propylene glycol-modified silane
Yang et al. Hydrothermal synthesis and luminescent properties of LuBO3: Tb3+ microflowers
JP4923242B2 (en) Manufacturing method of willemite crystal and manufacturing method of fluorescent substance using willemite crystal as mother crystal
JP5236893B2 (en) Oxide emitter
KR100547522B1 (en) Method for producing high brightness small particle red emitting phosphor
JP5512958B2 (en) Method for producing nanophosphor particles
JP2013527274A (en) Method for producing zinc manganese silicate
Zhou et al. Photoluminescence properties of BaMgAl10O17: Eu2+ phosphor prepared by the flux method
WO2000001784A9 (en) Small particle blue emitting lanthanum phosphate based phosphors for display and lamp applications and method of making
JP5409906B2 (en) Method for producing Eu-activated alkaline earth metal silicate phosphor
JP2001521055A (en) Use of thulium-containing lanthanum phosphate as a phosphor in a plasma or X-ray system
US20130099161A1 (en) Core/shell lanthanum cerium terbium phosphate, and phosphor having improved thermal stability and including said phosphate
JP5248008B2 (en) Alkaline earth metal hydrogen phosphate, method for producing the same, and phosphor using the alkaline earth metal hydrogen phosphate
JP2003213254A (en) Method for producing silicate phosphor
JP5444271B2 (en) Method for producing alkaline earth metal silicate phosphor
KR100447936B1 (en) Green emitting phosphor by VUV excitiation and its preparation method
US8119029B2 (en) Phosphate nano phosphor and method of preparing the same
KR100424861B1 (en) Preparing process for spherical red phosphor based on borates using hydrolysis
JP2006257398A (en) METHOD FOR REMOVING IMPURITIES FROM SrB4O7:Eu FLUORESCENT SUBSTANCE
KR100992949B1 (en) Synthesizing process of phosphor
JP2002187717A (en) Rare earth element compound, rare earth element oxide, phosphor and method for manufacturing them
KR100687131B1 (en) Blue Phosphor for Plasma Display and Lamp Applications and Method of Making
KR100534043B1 (en) Preparation Method of Aluminate Phosphor Powders
JP2002080846A (en) Zinc gallate powder, phosphor comprising the same, and their production methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150