TWI278505B - Phosphor and method for producing the same - Google Patents

Phosphor and method for producing the same Download PDF

Info

Publication number
TWI278505B
TWI278505B TW94141610A TW94141610A TWI278505B TW I278505 B TWI278505 B TW I278505B TW 94141610 A TW94141610 A TW 94141610A TW 94141610 A TW94141610 A TW 94141610A TW I278505 B TWI278505 B TW I278505B
Authority
TW
Taiwan
Prior art keywords
phosphor powder
powder
phosphor
red
nitrate
Prior art date
Application number
TW94141610A
Other languages
Chinese (zh)
Other versions
TW200720405A (en
Inventor
Chii-Shyang Hwang
Chih-Chin Yao
Kuo-Chang Yu
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW94141610A priority Critical patent/TWI278505B/en
Application granted granted Critical
Publication of TWI278505B publication Critical patent/TWI278505B/en
Publication of TW200720405A publication Critical patent/TW200720405A/en

Links

Abstract

The invention relates to a phosphor, comprising a phosphor of formula [MSiO3:Eu3+]; wherein M is selected form the group consisting of M1 and M2; M1 is Mg; M2 is selected from the group consisting of Ca, Sr and Ba; and when M is M1, the phosphor is amorphous. The invention also relates to a method for producing the phosphor and a light emitting diode comprising the phosphor.

Description

1278505 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種螢光粉體,詳言之,係關於一種紅色 螢光粉體。 【先前技術】1278505 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a phosphor powder, and more particularly to a red phosphor powder. [Prior Art]

以近紫外光(Near ultra-violet,NUV),尤其是更短波長 之紫外光,搭配螢光粉是目前白光發光二極體(White-light LED,WLED)的主要發展方向之一,期以紫外光發光二極 體配合R(紅色)、G(綠色)及B(藍色)三原色螢光粉之白光發 光二極體,作為新照明光源。 目前之白光發光二極體發展趨勢,在其激發光源為非可 見光之紫外光’及由螢光粉提供白光,此發光二極體之光 色較穩定’不隨電流改變而偏移,演色性較高。使用紫外 光晶片之白光發光二極體,亦具備單晶片發光二極體之優 點。惟於習用之白光發光二極體中,螢光粉體之混合、分 散及效率仍未令人滿意。 傳統硫化物系狀螢絲,會因吸收料光而脫硫,且 螢光粉易因水氣及氧氣,造成水解或氧化分解,此等缺點 大幅降低紫外光晶片型白光發光二極體之工作壽命,並增 加製造的成本與難度。因此,業界開發出較為安定之氧: 物系列螢光粉^紫外光激發發光之紅色、、綠色、藍色三 原色螢光粉中,以紅色螢光粉之發光 曰 知尤效率最差且最難提 升二剛許多紅色榮光粉皆使用助、為活化齊卜其發射 圖谱為尖銳之峰形,所涵蓋面積比 償比+緩之坡形圖譜來的 106588.doc 1278505 小,跨越之波長範圍亦窄,故發光效率難以提昇。欲提升 UV-LED用紅色螢光粉之發光效率,除了針對原有螢光粉之 改質外,亦朝向開發新穎之主體材料或活化劑進行。目前 已報導之紅色螢光粉體有:Y2O2S : Eu、La202S : Eu、 Gd202S : Eu、Y(PV)04 : Eu+,Y203 : Eu3+、La203 : Eu3+、 Gd203 : Eu3+、SnO : Eu3+、ZnO : Eu3+。然上述紅色螢光粉 體,當以近紫外光為激發波長時,其發射強度相較於綠色 及藍色螢光粉相對較弱。Near-ultra-violet (NUV), especially shorter-wavelength ultraviolet light, combined with fluorescent powder is one of the main development directions of white-light LED (WLED). The light-emitting diode is combined with R (red), G (green) and B (blue) white primary light-emitting phosphor white light emitting diodes as a new illumination source. At present, the development trend of white light-emitting diodes is that the excitation light source is non-visible ultraviolet light and the white light is provided by the phosphor powder. The light color of the light-emitting diode is relatively stable, and does not shift with current change, color rendering. Higher. The white light-emitting diode using an ultraviolet wafer also has the advantage of a single-wafer light-emitting diode. However, in the conventional white light-emitting diodes, the mixing, dispersion and efficiency of the phosphor powder are still unsatisfactory. The traditional sulfide-based filaments are desulfurized by absorption of light, and the phosphors are easily hydrolyzed or oxidatively decomposed by moisture and oxygen. These disadvantages greatly reduce the work of the ultraviolet wafer type white light emitting diode. Life and increase the cost and difficulty of manufacturing. Therefore, the industry has developed a relatively stable oxygen: the series of fluorescent powder ^ ultraviolet light to stimulate the red, green, blue three primary color fluorescent powder, the red fluorescent powder, the most efficient and most difficult A lot of red glory powders are used to enhance the two glory powders, and the emission spectrum is sharp and sharp. The area covered by the compensation ratio + the gentle slope map is 106588.doc 1278505, and the wavelength range is also crossed. Narrow, so the luminous efficiency is difficult to improve. In order to improve the luminous efficiency of the red fluorescent powder for UV-LED, in addition to the modification of the original fluorescent powder, it is also directed to the development of novel host materials or activators. The red phosphor powders that have been reported so far are: Y2O2S: Eu, La202S: Eu, Gd202S: Eu, Y(PV)04: Eu+, Y203: Eu3+, La203: Eu3+, Gd203: Eu3+, SnO: Eu3+, ZnO: Eu3+ . However, the red phosphor powder has a relatively weak emission intensity when compared with the green and blue phosphor powder when the near-ultraviolet light is used as the excitation wavelength.

目前有包含矽酸鎂之紅色螢光粉體揭露於文獻中(X· J· Wang,D. Jia及W. M. Yen,”Mn2+ Activated Green,Yellow,andAt present, red fluorescent powder containing magnesium citrate is disclosed in the literature (X·J· Wang, D. Jia and W. M. Yen, “Mn2+ Activated Green, Yellow, and

Red Long Persistent Phosphors,’’ Journal of Luminescence, 102-103,34-37(2003); X. Fan,M. Wang,Y· Yu 及 Q· Wu, ’’Crystallization Process of MgSi〇3 Gel and Influence of Crystallization on Luminescence of Eu3+ Ions,’’ Journal of Physics and Chemistry of Solids, 57, 1259-1262 (1996); X. Fan, M. Wang 及Z. Wang,"Spectroscopic Studies of Rare Earth Ions in MgSi03Red Long Persistent Phosphors, '' Journal of Luminescence, 102-103, 34-37 (2003); X. Fan, M. Wang, Y·Y and Q· Wu, ''Crystallization Process of MgSi〇3 Gel and Influence of Crystallization on Luminescence of Eu3+ Ions,'' Journal of Physics and Chemistry of Solids, 57, 1259-1262 (1996); X. Fan, M. Wang and Z. Wang, "Spectroscopic Studies of Rare Earth Ions in MgSi03

Gel-Derived Crystals,’’ Materials Science and Engineering: B,47, 252-256 (1997)),上述文獻所述之矽酸鎂螢光粉體皆為結晶 體,亦即其係於高於矽酸鎂之結晶溫度(900°C)烺燒製得, 如1200°C。此高溫製造方法耗能許多,亦操作不易,而所 製得之螢光粉體當以254 nm為激發光源時,雖於613 nm具 有較高之發射強度,但是目前業界對於以紫外光為激發光 源的發光二極體發展,並未到達短波長(254 nm)的範圍,應 用上還是以360 nm至42 Onm之近紫外光範圍為主。除矽酸 106588.doc 1278505 鎂外並無其他矽酸鹽類螢光粉體之報導。 基於上述理由,有需要發展一種合成方法容易、不耗能、 不易吸水、演色性佳、發射強度高、發光效率高之榮光於 體。 β 【發明内容】 發明概述Gel-Derived Crystals, '' Materials Science and Engineering: B, 47, 252-256 (1997)), the magnesium silicate powders described in the above documents are all crystalline, that is, they are higher than magnesium citrate The crystallization temperature (900 ° C) is calcined, such as 1200 ° C. The high-temperature manufacturing method consumes a lot of energy and is not easy to operate, and the obtained phosphor powder has a high emission intensity at 613 nm when the excitation light source is 254 nm, but the current industry is excited by ultraviolet light. The development of the light-emitting diode of the light source does not reach the short-wavelength (254 nm) range, and the application is mainly in the near-ultraviolet range of 360 nm to 42 Onm. There are no reports of other phthalate phosphors other than citric acid 106588.doc 1278505 magnesium. For the above reasons, there is a need to develop a glory which is easy to synthesize, does not consume energy, is not easy to absorb water, has good color rendering properties, has high emission intensity, and has high luminous efficiency. β [Summary of the Invention] Summary of the Invention

本發明旨在研發出可適用於UV-LED中,且具有高品質之 螢光粉體。 本發明之一目的在於提供一種螢光粉體,其包含具有 [MSi〇3:Eu3+]通式之紅色螢光粉體,其中…[係選自由吣及 Μ:所組成之群,其中撾1為撾§ ; Μ:係選自由Ca、SΓ及Ba所 組成之群,且當Μ為馗!時,其係為未結晶之紅色螢光粉體。 本發明之再一目的在於提供一種製造上述螢光粉體之方 法,其包含下列步驟: (a) 提供含Μ之金屬鹽類、氧化銪及氧化矽或其前驅物; (b) 膠體化步驟(a)中之組份,形成一膠體; (c) 乾燥並研磨步驟(b)+之膠體,形成一粉體,·及 (句當製造乂為从之螢光粉體時,於6〇〇t:s9〇(rc煅燒 步驟(C)之粉體;當製造Μ為M2之螢光粉體時,於600 C至1200 C煅燒步驟(c)之粉體,以製得該螢光粉 體。 本t月之又目的在於提供一種發光二極體,其包含上 述之螢光粉體。 發明詳細說明 106588.doc 1278505 本發明係提供一種新穎之矽酸鹽類螢光粉體,其合成溫 度較低’主體材料是以矽酸鹽取代傳統螢光粉體中之稀土 元素’因而有利於降低成本。根據本發明之螢光粉體以近 - 备、外光(360 11111至395 nm)激發皆可發射紅光,且於紅光區 . 有相對較廣之發射光譜,可適用於現今之近紫外光晶片, ΛΓ 且有助於提高發光元件之演色性及效率。 本發明係關於一種螢光粉體,其包含具有[MSi〇3:Eu3+] _ 通式之紅色螢光粉體,其中Μ係選自由%及]\42所組成之 • 群,其中Μι為Mg;撾2係選自由Ca、Sr及Ba所組成之群,且 - 當撾為%1時,其係為未結晶之紅色螢光粉體;當IV[為M2時, 其係為結晶或未結晶之紅色螢光粉體。 較佳地,根據本發明之螢光粉體另包含鈉離子;較佳地, 其中該納離子係由氧化鈉或硝酸鈉提供。於本發明之一較 佳具體實施例中,根據本發明之紅色螢光粉體具有 [MgO-SiOHO.Oi〜〇.2i)eU2〇3-(〇.〇i〜〇.06)Na〇]通式,該紅色 % 螢光粉體於613 nm之紅光為發射波長時,其激發光譜於362 • nm、380 rnn及394 nm具有三個發射峰,該等發射峰皆位於 - 近紫外光區間,且以394 nm激發波長具有最強之發射強 度,以380 nm激發波長次之;更佳地,該紅色螢光粉體為 [MgO-Si02_0.21Eu2〇3-〇.〇6Na〇]或[MgaSi02_0.12Eu2〇3_〇 〇6Na〇]; 最佳係為[MgO_SiO2-0.21Eu2O3-0.06NaO]。 根據本發明之螢光粉體,其激發光譜範圍為自35〇 nm至 42〇nm;較佳係為自350 nn^4〇〇nm;更佳係為自谓咖 至400 nm。與習用之螢光粉體相較,根據本發明之激發光 106588.doc 1278505 譜係位於近紫外光區,符合業界對uv發光二極體之期待。 根據本發明之螢光粉體,其發射光譜範圍為自58〇 111^至 640 nm ;較佳係為自⑽⑽至㈣腿;更佳係為自6〇〇nm 至620 nm。以一般市售之近紫外光發光二極體之383 為激發光源時,根據本發明之螢光粉體於582 11111至6〇〇 nm 及6〇6nm至630 nm具有發射光譜之發射峰,其極大值(;Lpeak) 分別為593 nm及613 nm,具有較寬之發射帶,其光色為桃 紅色。同時亦因根據本發明之螢光粉體具有較寬之發射 帶,相較於習用以紅色、綠色及藍色三粉末混成白光而言, 具有演色性較佳之優點。 根據本發明之螢光粉體具有極佳之發光強度及發光效 率。如下述實例,同時以383 nm之激發光源激發根據本發 明之螢光粉體與習用之螢光粉體(例如:Y2〇3:Eu3+17m〇1%) ’ 1ι用螢光粉體之最強發射峰位於612 nm處,其發射強度 雖高於根據本發明螢光粉體於613 nm處之發射強度,但根 據本發明螢光粉體於582 11111至600 nm處及於613 nm至629 nm處之發射強度皆高於習用之螢光粉體。其發射光譜之積 分強度值比(習知螢光粉體··根據本發明螢光粉體)約為3 ·· 5 ’故根據本發明之螢光粉體發光效率高於習知之螢光粉 根據本發明之螢光粉體可包含其他螢光粉體。於本發明 之一較佳具體實施例中,其包含具有[MgSi03:Eu3+]通式之 結晶紅色螢光粉體。另一方面,為應用於發光二極體中, 該螢光粉體另包含綠色或藍色螢光粉體。 106588.doc 1278505 根據本發明之螢光粉體非為硫化物,故不易吸水,具有 較強之發光強度及壽命。 本發明亦提供一種製造上述螢光粉體之方法,其包含下 列步驟: (a) 提供含Μ之金屬鹽類、氧化銪及氧化矽或其前驅 物; (b) 膠體化步驟(a)中之組份,形成一膠體·,The present invention aims to develop a phosphor powder which is applicable to a UV-LED and which has high quality. An object of the present invention is to provide a phosphor powder comprising a red phosphor powder having the formula [MSi〇3:Eu3+], wherein... [selected from the group consisting of lanthanum and cerium: wherein 1 is For § § in Laos; Μ: is selected from the group consisting of Ca, SΓ and Ba, and when it is 馗! In the meantime, it is an uncrystallized red fluorescent powder. It is still another object of the present invention to provide a method for producing the above phosphor powder comprising the steps of: (a) providing a metal salt containing cerium, cerium oxide and cerium oxide or a precursor thereof; (b) colloidal step (a) a component formed in a colloid; (c) drying and grinding the colloid of step (b) + to form a powder, and (when the 乂 is made from a fluorescent powder, at 6 〇) 〇t: s9〇 (the powder of the rc calcination step (C); when the fluorene powder of the M2 is produced, the powder of the step (c) is calcined at 600 C to 1200 C to prepare the phosphor powder. A further object of the present invention is to provide a light-emitting diode comprising the above-mentioned phosphor powder. Detailed Description of the Invention 106588.doc 1278505 The present invention provides a novel tellurite-based phosphor powder, which is synthesized. The lower temperature 'host material replaces the rare earth element in the conventional phosphor powder with phthalate', thus contributing to cost reduction. The phosphor powder according to the present invention is excited by near- and external light (360 11111 to 395 nm). Both can emit red light and are in the red light area. There is a relatively wide emission spectrum, which can be applied to today's near The invention relates to a phosphor powder comprising a red phosphor powder having the formula [MSi〇3:Eu3+], wherein the ultraviolet light is used to improve the color rendering properties and efficiency of the light-emitting element. It is selected from the group consisting of % and ]\42, where Μι is Mg; the 2nd line is selected from the group consisting of Ca, Sr and Ba, and - when the country is %1, it is uncrystallized red a phosphor powder; when IV is M2, it is a crystalline or uncrystallized red phosphor powder. Preferably, the phosphor powder according to the present invention further comprises sodium ions; preferably, wherein the nanoparticle The ion system is provided by sodium oxide or sodium nitrate. In a preferred embodiment of the invention, the red phosphor powder according to the invention has [MgO-SiOHO.Oi~〇.2i)eU2〇3-(〇. 〇i~〇.06)Na〇] general formula, the red % phosphor powder has three emission peaks at 362 • nm, 380 rnn and 394 nm when the red light at 613 nm is the emission wavelength. The emission peaks are all located in the near-ultraviolet range and have the strongest emission intensity at the excitation wavelength of 394 nm, followed by the excitation wavelength of 380 nm; more preferably, The color fluorescent powder is [MgO-Si02_0.21Eu2〇3-〇.〇6Na〇] or [MgaSi02_0.12Eu2〇3_〇〇6Na〇]; the optimum system is [MgO_SiO2-0.21Eu2O3-0.06NaO]. The phosphor powder of the present invention has an excitation spectrum ranging from 35 〇 nm to 42 〇 nm; preferably from 350 nn ^ 4 〇〇 nm; more preferably from self-derivative to 400 nm. Compared with the light powder, the excitation light 106588.doc 1278505 according to the present invention is located in the near-ultraviolet region, in line with the industry's expectation for the uv light-emitting diode. The phosphor powder according to the present invention has an emission spectrum ranging from 58 〇 111 ^ to 640 nm; preferably from (10) (10) to (four) legs; more preferably from 6 〇〇 nm to 620 nm. The phosphor powder according to the present invention has an emission peak of an emission spectrum at 582 11111 to 6 〇〇 nm and 6 〇 6 nm to 630 nm, when 383 of a commercially available near-ultraviolet light-emitting diode is used as an excitation light source. The maximum value (;Lpeak) is 593 nm and 613 nm, respectively, with a wide emission band, and its light color is pink. At the same time, since the phosphor powder according to the present invention has a wider emission band, it has the advantage of better color rendering than the conventional white, red, green and blue powder mixed white light. The phosphor powder according to the present invention has excellent luminous intensity and luminous efficiency. As shown in the following example, the phosphor powder according to the present invention and the conventional phosphor powder (for example, Y2〇3:Eu3+17m〇1%) are excited by the excitation light source of 383 nm at the same time. The emission peak is located at 612 nm, and its emission intensity is higher than the emission intensity of the phosphor powder according to the present invention at 613 nm, but the phosphor powder according to the present invention is at 582 11111 to 600 nm and at 613 nm to 629 nm. The emission intensity is higher than the conventional phosphor powder. The integrated intensity value ratio of the emission spectrum (the conventional fluorescent powder·the fluorescent powder according to the present invention) is about 3 ·· 5 ', so that the luminous powder according to the present invention has higher luminous efficiency than the conventional fluorescent powder. The phosphor powder according to the present invention may contain other phosphor powders. In a preferred embodiment of the invention, it comprises a crystalline red fluorescent powder having the formula [MgSi03:Eu3+]. On the other hand, in order to be applied to a light-emitting diode, the phosphor powder further contains a green or blue phosphor powder. 106588.doc 1278505 The phosphor powder according to the present invention is not a sulfide, so it is not easy to absorb water, and has strong luminous intensity and longevity. The invention also provides a method for producing the above phosphor powder, comprising the steps of: (a) providing a metal salt containing cerium, cerium oxide and cerium oxide or a precursor thereof; (b) colloidalizing step (a) a component that forms a colloid,

(c) 乾燥並研磨步驟(b)中之膠體,形成一粉體;及 (d) Μ製造Μ為Μ!之發光粉體時’於600 至900 °C锻燒 步驟(c)之粉體;當製造Μ為M2之螢光粉體時,於6〇〇 °0:至1200°(:緞燒步驟(c)之粉體,以製得該螢光粉 較佳地,根據本發明之方法,其中步驟(a)中含Μ之金屬 鹽類係為硝酸根或醋酸根鹽類。於本發明之一具體實施例 中,所使用之金屬鹽類為硝酸鎮(Magnesium nitme hexahydrate,Mg(N〇3)2 · 6h2〇)或氧化鎂、硝酸鈣 nhme tetrahydrate ’ Ca(N〇3)2 · 4H2〇)、項酸锶(st_ium nitrate,Sr(N〇3)2)或醋酸鋇(Bariumacetate,Ba(cH3C〇〇)2)。 較佳地,根據本發明之方法步驟⑷中t化箱係為W〜 較佳地’根據本發明之方法步驟⑷中氧化石夕之前驅物係 為正石夕酸乙g旨(tetrathoxysilan,TPnQ、·兰 仍),氧化矽較佳為二氧 較佳地,根據本發明之方法步驟⑷另包含提供納離子; 更佳地,該鈉離子係由硝酸鈉或氧化鈉所提供。 106588.doc I278505 根據本發明之方法,甘a μ &其中步驟(b)係採溶膠-凝膠法膠體化 步驟(a)中之組份,琴贩 、 4膠體化之方法係為本發明所屬技術領 域中具通常知識去辦 飞者所_知,並例示於下述實例中。 較隹地,根摅太藤 〇 象丰I明之方法步驟(C)係於100°c至110°c乾 燥。於本發明之一呈辦香4 具體實施例中,其係使用105°c之烘箱乾 燥24小時。(c) drying and grinding the colloid in the step (b) to form a powder; and (d) preparing the powder of the calcining step (c) at 600 to 900 ° C when the luminescent powder is made of Μ! When the phosphor powder of the M2 is produced, the powder of the step (c) is prepared at 6 ° ° 0: to 1200 ° (satin), preferably, according to the present invention. The method, wherein the metal salt containing cerium in the step (a) is a nitrate or acetate salt. In one embodiment of the invention, the metal salt used is Magnesium nitme hexahydrate (Mg) N〇3)2 · 6h2〇) or magnesium oxide, calcium nitrate nhme tetrahydrate 'Ca(N〇3)2 · 4H2〇), strontium sulphate (st_ium nitrate, Sr(N〇3)2) or barium acetate (Bariumacetate) , Ba(cH3C〇〇) 2). Preferably, in the step (4) of the method according to the present invention, the t-box is W~ preferably 'in the step (4) of the method according to the present invention, the precursor of the oxidized stone is the tetrathoxysilan (TPnQ) Preferably, the cerium oxide is preferably dioxygen. Preferably, step (4) of the method according to the invention comprises providing a nanoparticle; more preferably, the sodium ion is provided by sodium nitrate or sodium oxide. 106588.doc I278505 According to the method of the present invention, step a (b) is a component of the colloidal gelation step (a), and the method of colloidalization and 4 colloidization is the invention. It is known in the art to have the general knowledge of the fly, and is exemplified in the following examples. In a relatively mild manner, the method step (C) of the root 摅 摅 象 象 I I 明 明 系 is dried at 100 ° c to 110 ° c. In a specific embodiment of the present invention, it was dried in an oven at 105 ° C for 24 hours.

根據本I明之方法’步驟⑷中之研磨方法係為本發明所 屬技術領域中具通常知識者所熟知。 、根據本發明之方法,步驟⑷係於結晶溫度下般燒具有Μ 為地之螢光粉體或於6〇〇。〇至12〇〇它煅燒具有乂為吣之螢 光粉體,較佳地,步驟(d)係於6〇〇〇c至1〇〇〇〇c煅燒;更佳地, 步驟(d)係於7〇〇t至9〇〇t煅燒。較佳地,步驟(d)係以3〇c /min至8 C /min之升溫速率加熱至煅燒溫度。另一方面,步 驟(d)係較佳於锻燒溫度下持温1小時至$小時,更佳於緞燒 溫度下持溫1小時至5小時。 於本發明之一較佳具體實施例中,步驟(d)係以/min 之升溫速率至800°C,並持溫2小時。 除上述之方法外,製造根據本發明之螢光粉體之方法另 包含固相法、溶液法、化學氣相法或物理蒸鍍法。上述該 等方法之操作方式係為本發明所屬技術領域中具通常知識 者所熟知。舉例言之,以諸氧化物為起始原料,以固相法 將諸原料混合煅燒後而成;以硝酸鹽或氯化鹽類為起始原 料’經溶液法混合均勻後緞燒而成;或以化學氣相法(CVD) 或物理蒸鍍法(PVD),鍍成含Mg-Si-Eb〇或M-Si-Eu-Ο之薄 106588.doc 12 1278505 膜。 本發明亦提供一種發光二極體,其包含上述之螢光粉體。 茲以下列實例予以詳細說明本發明,唯並不意味本發明 僅侷限於此等實例所揭示之内容。 【實施方式】 實例一:螢光粉體之製造 合成用起始原料:The method of polishing in step (4) according to the method of the present invention is well known to those of ordinary skill in the art to which the invention pertains. According to the method of the present invention, the step (4) is to burn the phosphor powder having a ruthenium or ruthenium at a crystallization temperature. 〇to 12〇〇, it calcines the phosphor powder having a ruthenium, preferably, step (d) is calcined at 6〇〇〇c to 1〇〇〇〇c; more preferably, step (d) Calcined at 7〇〇t to 9〇〇t. Preferably, step (d) is heated to a calcination temperature at a temperature increase rate of from 3 〇c /min to 8 C /min. On the other hand, the step (d) is preferably carried out at a calcining temperature for 1 hour to $ hours, more preferably at a satin temperature for 1 hour to 5 hours. In a preferred embodiment of the invention, step (d) is carried out at a temperature increase rate of /min to 800 ° C and held for 2 hours. In addition to the above methods, the method of producing the phosphor powder according to the present invention further comprises a solid phase method, a solution method, a chemical vapor method or a physical vapor deposition method. The manner in which the above methods operate is well known to those of ordinary skill in the art to which the invention pertains. For example, using the oxide as a starting material, the raw materials are mixed and calcined by a solid phase method; and the nitrate or the chlorinated salt is used as a starting material to be uniformly mixed by a solution method and then satin-fired; Or a thin film 106588.doc 12 1278505 film containing Mg-Si-Eb〇 or M-Si-Eu-Ο by chemical vapor deposition (CVD) or physical vapor deposition (PVD). The invention also provides a light-emitting diode comprising the above-mentioned phosphor powder. The invention is illustrated by the following examples, which are not intended to be construed as limiting the invention. [Examples] Example 1: Production of fluorescent powders Starting materials for synthesis:

1·硝酸鎂(Mg(N03)2 · 6H20) 2·硝酸鈣(Ca(N03)2 · 4H20 ) 3. 硝酸勰(Sr(N03)2) 4. 醋酸鋇(Ba(CH3COO)2) 5·正石夕酸乙 ϊ旨(Tetrathoxysilan,TEOS) 6. 氧化銷(EU2O3) 7. 硝酸鈉 8·硝酸(HN〇3) 9·酒精 起始原料配比: 合成之石夕酸鹽類營光粉體(Ειΐ2〇31〜21 mole%,NaO 1〜6 mole%) ’其起始原料之詳細配比如下表ϊ所示。 106588.doc -13- 12785051. Magnesium nitrate (Mg(N03)2 · 6H20) 2. Calcium nitrate (Ca(N03)2 · 4H20) 3. Strontium nitrate (Sr(N03)2) 4. Barium acetate (Ba(CH3COO)2) 5· Tetrathoxysilan (TEOS) 6. Oxidation pin (EU2O3) 7. Sodium nitrate 8. Nitric acid (HN〇3) 9. Alcohol starting material ratio: Synthetic stone silicate powder Body (Ειΐ2〇31~21 mole%, NaO 1~6 mole%) 'The details of the starting materials are shown in the table below. 106588.doc -13- 1278505

Eu3+(M=Mg、Ca、Sr、Ba )]以市售之近紫外光 LED(383 nm) 為激發光源之發射光譜圖。 圖9為於600°C至1200°C合成之矽酸鎂螢光粉體以市售之 近紫外LED(383 nm)為激發光源時之發射光譜圖。 圖10為於600°C至1200°C合成之矽酸鈣螢光粉體以市售 之近紫外LED(383 nm)為激發光源時之發射光譜圖。Eu3+ (M=Mg, Ca, Sr, Ba)] is an emission spectrum of a commercially available near-ultraviolet LED (383 nm) as an excitation source. Fig. 9 is an emission spectrum of a magnesium citrate phosphor powder synthesized at 600 ° C to 1200 ° C using a commercially available near-ultraviolet LED (383 nm) as an excitation light source. Fig. 10 is an emission spectrum of a calcium citrate phosphor powder synthesized at 600 ° C to 1200 ° C using a commercially available near-ultraviolet LED (383 nm) as an excitation light source.

圖11為於600°C至1200°C合成之矽酸锶瑩光粉體以市售 之近紫外LED(383 nm)為激發光源時之發射光譜圖。 圖12為於600°C至1200 °C合成之矽酸鋇螢光粉體以市售 之近紫外LED(383 nm)為激發光源時之發射光譜圖。 圖13為Y2O3· Eu3 17 mole%螢光粉體與碎酸鎮螢光粉 體,以市售之近紫外光LED(383 nm)為激發光源時之發射光 譜圖。 圖14為於800°C合成之石夕酸鎮螢光粉體以市售之近紫外 光LED(3 83 nm)為激發光源時,其發射光之ciE色度座標位 置圖。 106588.doc -19-Fig. 11 is an emission spectrum of a bismuth citrate phosphor powder synthesized at 600 ° C to 1200 ° C using a commercially available near-ultraviolet LED (383 nm) as an excitation light source. Fig. 12 is an emission spectrum of a bismuth ruthenate fluorite powder synthesized at 600 ° C to 1200 ° C using a commercially available near-ultraviolet LED (383 nm) as an excitation light source. Fig. 13 is an emission spectrum of a Y2O3·Eu3 17 mole% phosphor powder and a crushed acid phosphor powder, which are commercially available near-ultraviolet LEDs (383 nm) as an excitation light source. Figure 14 is a ciE chromaticity coordinate position of the emitted light when the commercially available near-ultraviolet LED (3 83 nm) is used as an excitation source for the phosphor powder synthesized at 800 °C. 106588.doc -19-

Claims (1)

510號專利申請案 藐圍替換本(95年12月) 十、申請專利範圍 敗年丨>月叫日修(遷)正本 一種螢光粉體,其包含具有[MSi〇3:Eu3+]通式之紅色螢光 粉體’其中]VI係選自由Mi及M2所組成之群,其中%為 Mg ; M2係選自由ca、Sr及Ba所組成之群,且當M為Μι時, 其係為未結晶之紅色螢光粉體。 2.根據請求項丨之螢光粉體,其另包含鈉離子。510 Patent Application Substitute Replacement (December 95) X. The scope of the patent application is 败 丨 月 月 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日The red fluorescent powder 'in which VI is selected from the group consisting of Mi and M2, wherein % is Mg; M2 is selected from the group consisting of ca, Sr and Ba, and when M is Μι, its system It is an uncrystallized red fluorescent powder. 2. According to the request item, the phosphor powder further contains sodium ions. 3 ·根據請求項丨之螢光粉體,其中該鈉離子係由氧化鈉或硝 酸鈉提供。 4. 根據請求項丨之螢光粉體,其中該紅色螢光粉體具有 [MgO-SiCV(0.01 〜0·21)Ειΐ2〇3-(0·01〜〇 〇6)Na〇]通式。 5. 根據請求項4之螢光粉體,其中該紅色螢光粉體為 [MgO-Si〇2.〇.21Eu2〇3-〇.〇6NaO] 成 [MgO_Si02-〇.i2Eu203-0.06NaO]。3. A phosphor powder according to the claim, wherein the sodium ion is supplied by sodium oxide or sodium nitrate. 4. The phosphor powder according to the claim, wherein the red phosphor powder has a formula of [MgO-SiCV (0.01 ~0·21) Ειΐ2〇3-(0·01~〇 )6)Na〇]. 5. The phosphor powder according to claim 4, wherein the red phosphor powder is [MgO-Si〇2.〇.21Eu2〇3-〇.〇6NaO] into [MgO_Si02-〇.i2Eu203-0.06NaO]. 6. 根據請求項5之螢光粉體,其中該未結晶之紅色螢光粉體 為[MgO-Si〇2-〇.21Eu203-0.06NaO]。 根據請求項1之螢光粉體,其激發光譜範圍為自35〇 至 420 nm 〇 8·根據請求項7之螢光粉體,其激發光譜範圍為自35〇11瓜至 400 nm 〇 9·根據請求項8之螢光粉體,其激發光譜範圍為自38〇 至 400 nm 〇 ίο.根據請求項1之螢光粉體,其發射光譜範圍為自58〇 至 106588-951219.doc 1278505 640 nm 〇 11.根據請求項10之螢光粉體,其發射光譜範圍為自58〇 nm 至 620 nm 0 _ 12.根據請求項11之螢光粉體,其發射光譜範圍為自6〇〇 至 620 nm 0 13 ·根據明求項1之榮光粉體’以3 8 3 nm作為激發光源時,於 582 nm至600 nm及606 nm至630 nm具有發射光譜之發射 峰。 14. 根據請求項13之螢光粉體,以383 nm作為激發光源時, 發射光譜之發射峰極大值(久peak)分別為593 nm及613 nm ° 15. 根據請求項1之螢光粉體,其包含具有[MgSi〇3:]Eu3+]通式 之結晶紅色螢光粉體。 16·根據請求項1之螢光粉體,其包含綠色或藍色螢光粉體。 Φ 17· 一種製造根據請求項1至16任何一項之螢光粉體之方法, 其包含下列步驟: (a) 提供含Μ之金屬鹽類、氧化銪及氧化矽或其前驅物; (b) 膠體化步驟(a)中之組份,形成一膠體; (c) 乾燥並研磨步驟(b)中之膠體,形成一粉體;及 (d) 當製造]^1為之螢光粉體時,於600°C至900°C煅燒步 驟(c)之粉體;當製造Μ為M2之螢光粉體時,於600°C 106588-951219.doc •1278505 至1200°C煅燒步驟(C)之粉體,以製得該螢光粉體。 18.根據請求項17之方法,其中步驟(a)中含Μ之金屬鹽類係為 硝酸根或醋酸根鹽類。 19·根據請求項18之方法,其中步驟(a)中含Μ之金屬鹽類為確 酸鎮(Magnesium nitrate hexahydrate,Mg(N03)2 · 6Η2〇)或氧 化鎮、硝酸妈(Calcium nitrate tetrahydrate,Ca(N03)2 · 4H20)、石肖酸鹤(str〇ntiuin nitrate,Sr(N03)2)或醋酸鎖 (Barium acetate,Ba(CH3COO)2)。 2〇·根據請求項17之方法,其中步驟(a)中氧化銪係為。 21.根據請求項17之方法,其中步驟(a)中氧化矽之前驅物係 為正石夕酸乙醋(tetrathoxysilan,TEOS)。 22·根據請求項17之方法,其中步驟⑷中氧化石夕為二氧化石夕。 根據π求項17之方法,其中步驟⑷另包含提供納離子。 月求項23之方法,其中該鈉離子係由硝酸鈉或氧化鈉 所提供。 2 5 ·根據請求項 、 去,八中步驟(b)係採溶膠-凝膠法膠體 化步驟(a)中之組份。 2 6 ·根據請求項 、 法’,、中v驟(0係於1〇〇。(:至ll〇°C乾 燥。 2 7 ·根據請求項 、 ’ ’〆、中v驟(4)係於600°C至lOOOt:緞 106588-951219.doc '1278505 2 8 ·根據請求項2 7之燒。 方法 其中步驟(d)係於700°C至900°c烺 2 9 ·根據譜走, 、7之方法,其中步驟(d)係以3°C/min至8°C/min 之升溫速率加熱至锻燒溫度。 3 〇 ·根據請求項17 、“之方法,其中步驟(d)係於煅燒溫度下持溫1 小時至8小時。 1·根據明求項3〇之方法,其中步驟w)係於煅燒溫度下持溫1 小時至5小時。 根據明求項17之方法,步驟(d)係以6°C /min之升溫速率加 熱至800它,並持溫2小時。 33· —種發光二極體,其包含根據請求項1至16項任何一項之 螢光粉體。6. The phosphor powder according to claim 5, wherein the uncrystallized red phosphor powder is [MgO-Si〇2-〇.21Eu203-0.06NaO]. According to the phosphor powder of claim 1, the excitation spectrum ranges from 35 〇 to 420 nm 〇8. According to the phosphor powder of claim 7, the excitation spectrum ranges from 35 〇 11 melon to 400 nm 〇 9· According to the phosphor powder of claim 8, the excitation spectrum ranges from 38 〇 to 400 nm. 萤ίο. The phosphor powder according to claim 1 has an emission spectrum ranging from 58〇 to 106588-951219.doc 1278505 640 Nm 〇11. The phosphor powder according to claim 10, which has an emission spectrum ranging from 58 〇 nm to 620 nm 0 _ 12. According to the fluorescent powder of claim 11, the emission spectrum ranges from 6 〇〇 to 620 nm 0 13 ·According to the glory powder of Ming 1 , with an excitation source of 3 8 3 nm, it has emission peaks at 582 nm to 600 nm and 606 nm to 630 nm. 14. According to the phosphor powder of claim 13, when the excitation light source is 383 nm, the emission peak maximum value (long-term peak) of the emission spectrum is 593 nm and 613 nm ° respectively. 15. The phosphor powder according to claim 1 It contains a crystalline red fluorescent powder having the formula [MgSi〇3:]Eu3+]. 16. The phosphor powder according to claim 1, which comprises a green or blue phosphor powder. Φ 17. A method of producing the phosphor powder according to any one of claims 1 to 16, comprising the steps of: (a) providing a metal salt containing cerium, cerium oxide and cerium oxide or a precursor thereof; a component of the colloidal step (a) to form a colloid; (c) drying and grinding the colloid in the step (b) to form a powder; and (d) when manufacturing the phosphor powder When calcining the powder of the step (c) at 600 ° C to 900 ° C; when preparing the phosphor powder of M 2 , calcination step at 600 ° C 106588-951219.doc • 127485 to 1200 ° C (C The powder is prepared to obtain the phosphor powder. 18. The method according to claim 17, wherein the metal salt containing cerium in the step (a) is a nitrate or acetate salt. The method according to claim 18, wherein the metal salt of the cerium in the step (a) is Magnesium nitrate hexahydrate (Mg(N03)2 · 6Η2〇) or Calcium nitrate tetrahydrate (Calcium nitrate tetrahydrate, Ca(N03)2 · 4H20), str〇ntiuin nitrate (Sr(N03)2) or barium acetate (Ba(CH3COO)2). 2. The method according to claim 17, wherein the lanthanum oxide in the step (a) is. 21. The method according to claim 17, wherein the precursor of the cerium oxide in the step (a) is tetrathoxysilan (TEOS). 22. The method according to claim 17, wherein in the step (4), the oxidized stone is a day of sulphur dioxide. According to the method of π, wherein the step (4) further comprises providing a nano-ion. The method of claim 23, wherein the sodium ion is provided by sodium nitrate or sodium oxide. 2 5 · According to the request, go, the eighth step (b) is the sol-gel method colloidal component of step (a). 2 6 · According to the request item, the law ', ', and v (0 is in 1〇〇. (: to ll〇 °C dry. 2 7 · According to the request item, ' '〆, 中v骤(4) 600 ° C to lOOOOt: satin 106588-951219.doc '1278505 2 8 · according to the requirements of item 27. The method (d) is at 700 ° C to 900 ° c 烺 2 9 · according to the spectrum, 7, The method wherein the step (d) is heated to a calcination temperature at a temperature increase rate of from 3 ° C/min to 8 ° C / min. 3 〇 According to the method of claim 17, wherein the step (d) is calcined The temperature is maintained for 1 hour to 8 hours at a temperature. 1) According to the method of claim 3, wherein step w) is maintained at a calcination temperature for 1 hour to 5 hours. According to the method of claim 17, step (d) It is heated to 800 at a temperature increase rate of 6 ° C / min and held for 2 hours. 33. A light-emitting diode comprising the phosphor powder according to any one of claims 1 to 16. 106588-951219.doc106588-951219.doc
TW94141610A 2005-11-25 2005-11-25 Phosphor and method for producing the same TWI278505B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94141610A TWI278505B (en) 2005-11-25 2005-11-25 Phosphor and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94141610A TWI278505B (en) 2005-11-25 2005-11-25 Phosphor and method for producing the same

Publications (2)

Publication Number Publication Date
TWI278505B true TWI278505B (en) 2007-04-11
TW200720405A TW200720405A (en) 2007-06-01

Family

ID=38645162

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94141610A TWI278505B (en) 2005-11-25 2005-11-25 Phosphor and method for producing the same

Country Status (1)

Country Link
TW (1) TWI278505B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI466984B (en) * 2012-07-31 2015-01-01 Of Energy Ministry Of Economic Affairs Bureau Tungstate phosphor, method for producing the same and uses thereof

Also Published As

Publication number Publication date
TW200720405A (en) 2007-06-01

Similar Documents

Publication Publication Date Title
JP5355613B2 (en) Yellow phosphor having oxyapatite structure, production method and white light emitting diode device thereof
Park et al. Synthesis and luminescent characteristics of yellow emitting GdSr2AlO5: Ce3+ phosphor for blue light based white LED
JP2007284657A (en) Yellow color light-emitting ce3+ activated silicate-based yellow fluorescent material having new composition, method for producing the same and white color light-emitting diode containing the fluorescent material
JP5583670B2 (en) RED PHOSPHOR FOR SOLID LIGHTING AND METHOD FOR PRODUCING THE SAME {REDPHOSPHORANDITOSING
Wang et al. Synthesis, crystal structure, and photoluminescence of a novel blue-green emitting phosphor: BaHfSi 3 O 9: Eu 2+
JP6732796B2 (en) Phosphor and phosphor conversion LED
TWI545179B (en) Fluorescent material for white light emitting diode and preparation method thereof
CN106833636B (en) It can be by near ultraviolet and blue light activated red fluorescence powder, preparation method and application
JP2016524630A (en) Phosphor
Khan et al. Development of narrow band emitting phosphors for backlighting displays and solid state lighting using a clean and green energy technology
CN106433624A (en) Uniform-appearance and high-color-purity Mn4+ activated red fluoride luminescent material prepared by using micro-emulsion method
CN107057695A (en) A kind of fluostannic acid potassium sodium mixes Mn4+Red light material and preparation method thereof
Chung et al. Spray pyrolysis synthesis of MAl2O4: Eu2+ (M= Ba, Sr) phosphor for UV LED excitation
CN102337123B (en) Silicate luminescent material and preparation method thereof
CN109722092B (en) Super-sensitization light-emitting of red fluorescent powder for blue light excited LED and preparation method thereof
CN105062472B (en) A kind of preparation method and application of the blue colour fluorescent powder for warm white LED
CN111187622A (en) Single-matrix phosphate fluorescent powder for white light LED and preparation method thereof
CN107099291B (en) It is a kind of can be by the red fluorescence material of near ultraviolet excitation, preparation method and application
CN102786929A (en) Red phosphor
WO2016065725A1 (en) Fluorescent material and manufacturing method thereof and composition containing the same
TWI278505B (en) Phosphor and method for producing the same
CN115873595A (en) Adjustable red light and near-infrared rare earth luminescent material, preparation method thereof and infrared LED device
CN113416542B (en) Red fluorescent powder capable of being excited by blue light and preparation method thereof
WO2006041249A1 (en) White light emitting device
TWI326704B (en) A phosphor and method for making the same