JP2011016670A - Method for synthesizing vanadate - Google Patents

Method for synthesizing vanadate Download PDF

Info

Publication number
JP2011016670A
JP2011016670A JP2009160521A JP2009160521A JP2011016670A JP 2011016670 A JP2011016670 A JP 2011016670A JP 2009160521 A JP2009160521 A JP 2009160521A JP 2009160521 A JP2009160521 A JP 2009160521A JP 2011016670 A JP2011016670 A JP 2011016670A
Authority
JP
Japan
Prior art keywords
powder
room temperature
air
vanadate
rbvo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009160521A
Other languages
Japanese (ja)
Inventor
Kenji Toda
健司 戸田
Mineo Sato
峰夫 佐藤
Kazuyoshi Uematsu
和義 上松
Masa Ishigaki
雅 石垣
Ayano Toda
彩乃 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata University NUC
Original Assignee
Niigata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata University NUC filed Critical Niigata University NUC
Priority to JP2009160521A priority Critical patent/JP2011016670A/en
Publication of JP2011016670A publication Critical patent/JP2011016670A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new method for synthesizing vanadate which has high mass-productivity.SOLUTION: RbCOpowder is only brought into contact with VOpowder at room temperature in the air to subject RbCOand VOto a solid-phase reaction and obtain crystalline RbVO. CsCOpowder is only brought into contact with VOpowder at room temperature in the air to subject CsCOand VOto the solid-phase reaction and obtain crystalline CsVO.

Description

本発明は、バナジン酸塩の合成法に関する。   The present invention relates to a method for synthesizing vanadate.

バナジン酸塩であるCsVOとRbVOは、母体発光を示す高効率な蛍光体材料であることが知られている(非特許文献1)。そして、最近、この蛍光体材料が希土類を含まない蛍光材料としては異常に高い蛍光量子効率(CsVO:87%、RbVO:79%)を示すことと、連続的な真空紫外線照射を行うことによりこの材料を有機基板上で室温製膜できることが明らかになった(非特許文献2)。 CsVO 3 and RbVO 3 that are vanadates are known to be highly efficient phosphor materials that exhibit host emission (Non-Patent Document 1). And recently, this phosphor material exhibits unusually high fluorescence quantum efficiency (CsVO 3 : 87%, RbVO 3 : 79%) as a fluorescent material that does not contain a rare earth, and performs continuous vacuum ultraviolet irradiation. It became clear that this material can be formed into a film at room temperature on an organic substrate (nonpatent literature 2).

Zeitscrift fuer Physik, 147, 350-360 (1957)Zeitscrift fuer Physik, 147, 350-360 (1957) Direct Fabrication of Metavanadate Phosphor Films on Organic Substrates for White Light Emitting Devices, T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda and T. Kumagai; Nature Materials 7 (2008) 735Direct Fabrication of Metavanadate Phosphor Films on Organic Substrates for White Light Emitting Devices, T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda and T. Kumagai; Nature Materials 7 (2008) 735

しかしながら、真空紫外線照射装置は、特殊かつ高価な装置であり量産性は全くない。   However, the vacuum ultraviolet irradiation device is a special and expensive device and has no mass productivity.

そこで、本発明は上記問題点に鑑み、量産性の高い新規のバナジン酸塩の合成法を提供することをその目的とする。   In view of the above problems, an object of the present invention is to provide a novel method for synthesizing a vanadate having high mass productivity.

上記課題を達成するため種々検討した結果、室温、空気中においてRbCO粉末とV粉末とを接触させるだけで固相反応が進行し、結晶性のバナジン酸塩が得られることを見出し、本発明を完成させた。 As a result of various investigations to achieve the above-mentioned problems, a solid-state reaction proceeds by simply bringing Rb 2 CO 3 powder and V 2 O 5 powder into contact at room temperature and in air, and crystalline vanadate can be obtained. The present invention was completed.

すなわち、本発明のバナジン酸塩の合成法は、室温、空気中においてRbCO粉末とV粉末とを接触させることのみによりRbCOとVとを固相反応させて結晶性のRbVOを得ることを特徴とする。 That is, in the method for synthesizing the vanadate of the present invention, a solid-phase reaction of Rb 2 CO 3 and V 2 O 5 is achieved only by bringing Rb 2 CO 3 powder and V 2 O 5 powder into contact at room temperature in the air. Thus, crystalline RbVO 3 is obtained.

また、室温、空気中においてCsCO粉末とV粉末とを接触させることのみによりCsCOとVとを固相反応させて結晶性のCsVOを得ることを特徴とする。 In addition, by bringing Cs 2 CO 3 and V 2 O 5 powder into contact with each other only at room temperature and in air, Cs 2 CO 3 and V 2 O 5 are allowed to undergo a solid phase reaction to obtain crystalline CsVO 3. Features.

本発明によれば、量産性の高い新規のバナジン酸塩の合成法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the synthesis | combining method of the novel vanadate with high mass productivity is provided.

RbCO粉末とV粉末を接触させたときの写真である。Is a photograph of contacting the rb 2 CO 3 powder and V 2 O 5 powder. 室温、空気中においてRbCO粉末とV粉末を接触させてから5分、15分、45分、60分、6時間経過したときに波長365nmの紫外線を照射して撮影した写真である。Photo taken by irradiating UV light with a wavelength of 365 nm after 5 minutes, 15 minutes, 45 minutes, 60 minutes, 6 hours have passed since the Rb 2 CO 3 powder and V 2 O 5 powder were contacted in air at room temperature It is. 室温、アルゴン雰囲気下でRbCO粉末とV粉末を接触させてから5分、15分、45分、60分経過したときに波長365nmの紫外線を照射して撮影した写真である。It is a photograph taken by irradiating ultraviolet rays with a wavelength of 365 nm when 5 minutes, 15 minutes, 45 minutes, and 60 minutes have passed since the Rb 2 CO 3 powder and the V 2 O 5 powder were brought into contact with each other at room temperature under an argon atmosphere. . 室温、空気中においてRbCO粉末とV粉末を混合した後のX線回析パターンである。Room temperature, an X-ray diffraction patterns after mixing the Rb 2 CO 3 powder and V 2 O 5 powder in air. 室温、空気中においてRbCO粉末とV粉末を混合した後のSEM画像である。Room temperature, is a SEM image after mixing the Rb 2 CO 3 powder and V 2 O 5 powder in air. 室温、空気中においてRbCO粉末とV粉末を混合することにより得られたRbVOの励起スペクトルと発光スペクトルである。Room temperature, the emission spectrum and the excitation spectrum of RbVO 3 obtained by mixing Rb 2 CO 3 powder and V 2 O 5 powder in air. 室温、空気中においてRbCO粉末とV粉末を混合することにより得られたRbVOの蛍光発光の色度図である。It is a chromaticity diagram of fluorescence emission of RbVO 3 obtained by mixing Rb 2 CO 3 powder and V 2 O 5 powder in air at room temperature. RbCO粉末とV粉末を水で混合して作成したスラリーをプラスチック基板に塗布し、室温、空気中で乾燥させることによって得られたRbVOの薄膜の写真である。The rb 2 CO 3 powder and V 2 O 5 powder slurry prepared by mixing with water was applied to a plastic substrate, at room temperature, a thin film photograph of RbVO 3 obtained by drying in air. 室温、空気中においてCsCO粉末とV粉末を混合した後のX線回析パターンである。Room temperature, an X-ray diffraction patterns after mixing the Cs 2 CO 3 powder and V 2 O 5 powder in air. 室温、空気中においてCsCO粉末とV粉末を混合することにより得られたCsVOの励起スペクトルと発光スペクトルであり、図6のRbVOの励起スペクトルと発光スペクトルに重ねて示したものである。6 is an excitation spectrum and emission spectrum of CsVO 3 obtained by mixing Cs 2 CO 3 powder and V 2 O 5 powder in air at room temperature, and is shown superimposed on the excitation spectrum and emission spectrum of RbVO 3 in FIG. It is a thing.

本発明のバナジン酸塩の合成法は、室温、空気中においてRbCO粉末とV粉末とを接触させることのみによりRbCOとVとを固相反応させて結晶性のRbVOを得るものである。 The method for synthesizing the vanadate according to the present invention comprises a solid phase reaction of Rb 2 CO 3 and V 2 O 5 only by bringing Rb 2 CO 3 powder and V 2 O 5 powder into contact at room temperature and in air. Crystalline RbVO 3 is obtained.

また、室温、空気中においてCsCO粉末とV粉末とを接触させることのみによりCsCOとVとを固相反応させて結晶性のCsVOを得るものである。 In addition, Cs 2 CO 3 and V 2 O 5 powder are brought into contact with each other only in the air at room temperature in the air to obtain a crystalline CsVO 3 by causing a solid phase reaction between Cs 2 CO 3 and V 2 O 5. is there.

この固相反応は、室温、空気中において、RbCO粉末とV粉末、或いはCsCO粉末とV粉末を接触させることのみにより開始、進行し、その他の操作を必要としない。 This solid-phase reaction starts and proceeds only by bringing Rb 2 CO 3 powder and V 2 O 5 powder or Cs 2 CO 3 powder and V 2 O 5 powder into contact at room temperature and in air. Do not need.

なお、RbCO粉末とV粉末とを接触させるときに、或いは、CsCO粉末とV粉末とを接触させるときに、若干量の水を添加することにより、RbCOとVとの固相反応、或いは、CsCOとVとの固相反応を促進させることができる。 In addition, when bringing the Rb 2 CO 3 powder and the V 2 O 5 powder into contact with each other or when bringing the Cs 2 CO 3 powder and the V 2 O 5 powder into contact with each other, by adding a slight amount of water, The solid-phase reaction between Rb 2 CO 3 and V 2 O 5 or the solid-phase reaction between Cs 2 CO 3 and V 2 O 5 can be promoted.

このように、本発明によれば、従来の合成法とは異なり焼成を要せず、容易にバナジン酸塩を合成することができる。本発明は、蛍光体材料のほか、例えば、触媒、顔料、電極材料など、ほかの材料分野への展開も期待される。   Thus, according to the present invention, unlike the conventional synthesis method, the vanadate can be easily synthesized without requiring firing. In addition to the phosphor material, the present invention is also expected to develop into other material fields such as a catalyst, a pigment, and an electrode material.

また、RbCO粉末とV粉末、或いは、CsCO粉末とV粉末を水で混合して作成したスラリーを基板に塗布し、室温で乾燥させることで、結晶性のRbVO、或いは、結晶性のCsVOの薄膜を得ることができる。すなわち、真空紫外線照射装置などの真空系装置を用いなくとも、通常の塗布法により蛍光体材料の薄膜を得ることができる。このようにして得られた薄膜は、フレキシブル照明、太陽電池用波長変換膜などへの応用が可能であると考えられる。 In addition, a slurry prepared by mixing Rb 2 CO 3 powder and V 2 O 5 powder, or Cs 2 CO 3 powder and V 2 O 5 powder with water is applied to a substrate and dried at room temperature, thereby producing crystals. A thin film of crystalline RbVO 3 or crystalline CsVO 3 can be obtained. That is, a phosphor material thin film can be obtained by an ordinary coating method without using a vacuum system such as a vacuum ultraviolet irradiation device. The thin film thus obtained is considered to be applicable to flexible lighting, wavelength conversion films for solar cells, and the like.

一般的に、無機蛍光体の合成には、通常のセラミックス材料と同様に熱処理が必要であり、室温において結晶性の蛍光体材料を特別なプロセスなしに結晶化させた例は知られていない。   In general, the synthesis of inorganic phosphors requires heat treatment as in the case of ordinary ceramic materials, and no examples have been known in which a crystalline phosphor material is crystallized without a special process at room temperature.

以下、具体的な実施例に基づいて説明する。   Hereinafter, description will be made based on specific examples.

図1に示すように、室温、空気中においてRbCO粉末とV粉末とを接触させた。波長365nmの紫外線を照射しながら観察したところ、図2に示すように、RbCO粉末とV粉末の接触界面から蛍光が観察され、RbCOとVとの固相反応が進行していることが確認された。なお、室温、アルゴン雰囲気下でRbCO粉末とV粉末とを接触させた場合には、図3に示すように、RbCO粉末とV粉末の接触界面から蛍光は観察されなかった。 As shown in FIG. 1, the Rb 2 CO 3 powder and the V 2 O 5 powder were brought into contact with each other at room temperature in the air. When observed while irradiating ultraviolet rays having a wavelength of 365 nm, as shown in FIG. 2, fluorescence was observed from the contact interface between the Rb 2 CO 3 powder and the V 2 O 5 powder, and the Rb 2 CO 3 and V 2 O 5 It was confirmed that the solid phase reaction was progressing. When the Rb 2 CO 3 powder and the V 2 O 5 powder are brought into contact with each other in an argon atmosphere at room temperature, as shown in FIG. 3, the contact interface between the Rb 2 CO 3 powder and the V 2 O 5 powder is used. Fluorescence was not observed.

室温、空気中においてRbCO粉末とV粉末を混合した後のX線回析パターンを図4に示す。シミュレーションしたパターンと比較すると、それぞれのピークが合致しており、結晶性のRbVOが単一相で生成したことが確認された。 FIG. 4 shows an X-ray diffraction pattern after mixing Rb 2 CO 3 powder and V 2 O 5 powder at room temperature and in air. When compared with the simulated pattern, the respective peaks matched, and it was confirmed that crystalline RbVO 3 was formed in a single phase.

室温、空気中においてRbCO粉末とV粉末を混合した後のSEM画像を図5に示す。平均粒径1μm以下の微粒子が得られたことが確認された。 FIG. 5 shows an SEM image after mixing the Rb 2 CO 3 powder and the V 2 O 5 powder in the air at room temperature. It was confirmed that fine particles having an average particle diameter of 1 μm or less were obtained.

室温、空気中においてRbCO粉末とV粉末を混合することにより得られたRbVOの励起スペクトルと発光スペクトルを図6に示す。近紫外線により励起されて視感度の高い緑色領域に中心を持つブロードな発光波長の白色発光を示した。 FIG. 6 shows an excitation spectrum and an emission spectrum of RbVO 3 obtained by mixing Rb 2 CO 3 powder and V 2 O 5 powder in air at room temperature. White light emission with a broad emission wavelength centered in the green region, which is excited by near ultraviolet rays and has high visibility.

室温、空気中においてRbCO粉末とV粉末を混合することにより得られたRbVOの蛍光発光の色度図を図7に示す。やや黄緑色領域であるが、白色領域に値を示した。 FIG. 7 shows a chromaticity diagram of fluorescence emission of RbVO 3 obtained by mixing Rb 2 CO 3 powder and V 2 O 5 powder in air at room temperature. Although it was slightly yellowish green, the value was shown in the white area.

RbCO粉末とV粉末を水で混合して作成したスラリーをプラスチック基板に塗布し、室温、空気中で乾燥させた。 A slurry prepared by mixing Rb 2 CO 3 powder and V 2 O 5 powder with water was applied to a plastic substrate and dried in air at room temperature.

得られたRbVOの薄膜の写真を図8に示す。基板を折り曲げても薄膜が剥離することがなかった。 A photograph of the resulting thin film of RbVO 3 is shown in FIG. Even when the substrate was bent, the thin film did not peel off.

室温、空気中においてCsCO粉末とV粉末とを接触させた。実施例1と同様に、結晶性のCsVOが得られた。 Cs 2 CO 3 powder and V 2 O 5 powder were brought into contact with each other in air at room temperature. Similar to Example 1, crystalline CsVO 3 was obtained.

室温、空気中においてCsCO粉末とV粉末を混合した後のX線回析パターンを図9に示す。RbVOの場合と比較して反応がやや遅く原料が少し残っているため原料のピークも観察されたが、シミュレーションしたパターンと比較したところ、結晶性のCsVOが主相で生成したことが確認された。 FIG. 9 shows an X-ray diffraction pattern after mixing Cs 2 CO 3 powder and V 2 O 5 powder in air at room temperature. Compared with the case of RbVO 3 , the reaction was a little slower and a little of the raw material remained, so the peak of the raw material was also observed, but when compared with the simulated pattern, it was confirmed that crystalline CsVO 3 was formed in the main phase It was done.

室温、空気中においてCsCO粉末とV粉末を混合することにより得られたCsVOの励起スペクトルと発光スペクトルを図10に示す。近紫外線により励起されて視感度の高い緑色領域に中心を持つブロードな発光波長の白色発光を示した。 FIG. 10 shows the excitation spectrum and emission spectrum of CsVO 3 obtained by mixing Cs 2 CO 3 powder and V 2 O 5 powder in air at room temperature. White light emission with a broad emission wavelength centered in the green region, which is excited by near ultraviolet rays and has high visibility.

Claims (2)

室温、空気中においてRbCO粉末とV粉末とを接触させることのみによりRbCOとVとを固相反応させて結晶性のRbVOを得ることを特徴とするバナジン酸塩の合成法。 Rb 2 CO 3 and V 2 O 5 powder are contacted with each other at room temperature in the air to cause a solid phase reaction between Rb 2 CO 3 and V 2 O 5 to obtain crystalline RbVO 3 Method of synthesizing vanadate. 室温、空気中においてCsCO粉末とV粉末とを接触させることのみによりCsCOとVとを固相反応させて結晶性のCsVOを得ることを特徴とするバナジン酸塩の合成法。 Room temperature, and characterized by obtaining a Cs 2 CO 3 powder and V 2 O 5 powder Cs 2 CO 3 only by contacting a and V 2 O 5 and the by solid-phase reaction crystalline CSVO 3 in the air Method of synthesizing vanadate.
JP2009160521A 2009-07-07 2009-07-07 Method for synthesizing vanadate Pending JP2011016670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009160521A JP2011016670A (en) 2009-07-07 2009-07-07 Method for synthesizing vanadate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009160521A JP2011016670A (en) 2009-07-07 2009-07-07 Method for synthesizing vanadate

Publications (1)

Publication Number Publication Date
JP2011016670A true JP2011016670A (en) 2011-01-27

Family

ID=43594771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009160521A Pending JP2011016670A (en) 2009-07-07 2009-07-07 Method for synthesizing vanadate

Country Status (1)

Country Link
JP (1) JP2011016670A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013107947A (en) * 2011-11-18 2013-06-06 National Institute Of Advanced Industrial Science & Technology Vanadium oxide phosphor
CN105110371A (en) * 2015-08-19 2015-12-02 中国科学院上海硅酸盐研究所 Multi-morphology metavanadate powder and preparation method therefor
JP2017014349A (en) * 2015-06-29 2017-01-19 国立研究開発法人産業技術総合研究所 Vanadium oxide fluorescent powder and manufacturing method
JP2019167277A (en) * 2018-03-24 2019-10-03 国立大学法人 新潟大学 Production method of red fluoride phosphor
JP2020090594A (en) * 2018-12-04 2020-06-11 リンテック株式会社 Luminescent film and manufacturing method therefor, and ultraviolet irradiation type luminescent sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300234A (en) * 2007-05-31 2008-12-11 Fuji Heavy Ind Ltd Manufacturing method of electrode material, electrode material, and nonaqueous electrolyte secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300234A (en) * 2007-05-31 2008-12-11 Fuji Heavy Ind Ltd Manufacturing method of electrode material, electrode material, and nonaqueous electrolyte secondary battery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013038373; 戸田彩乃 外: '希土類を賦活したバナジン酸リン酸塩蛍光体の蛍光特性' 希土類 第54号, 20090521, 152頁〜153頁 *
JPN6013038374; 上松和義: '家庭用電子レンジを用いた機能性無機材料の合成' 日本化学会講演予稿集 第81巻1号, 20020311, 242頁 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013107947A (en) * 2011-11-18 2013-06-06 National Institute Of Advanced Industrial Science & Technology Vanadium oxide phosphor
JP2017014349A (en) * 2015-06-29 2017-01-19 国立研究開発法人産業技術総合研究所 Vanadium oxide fluorescent powder and manufacturing method
CN105110371A (en) * 2015-08-19 2015-12-02 中国科学院上海硅酸盐研究所 Multi-morphology metavanadate powder and preparation method therefor
JP2019167277A (en) * 2018-03-24 2019-10-03 国立大学法人 新潟大学 Production method of red fluoride phosphor
JP7057918B2 (en) 2018-03-24 2022-04-21 国立大学法人 新潟大学 Method for producing red fluoride phosphor
JP2020090594A (en) * 2018-12-04 2020-06-11 リンテック株式会社 Luminescent film and manufacturing method therefor, and ultraviolet irradiation type luminescent sheet
JP7185823B2 (en) 2018-12-04 2022-12-08 リンテック株式会社 Luminescent film, manufacturing method thereof, and UV irradiation type luminescent sheet

Similar Documents

Publication Publication Date Title
Wei et al. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs
JP6501030B2 (en) Phosphor, method for producing the same, phosphor-containing composition and light emitting device using the phosphor, and image display device and lighting device using the light emitting device
Zhang et al. Fluorescent nanomaterial-derived white light-emitting diodes: what's going on
Ren et al. Air-stable and water-resistant all-inorganic perovskite quantum dot films for white-light-emitting applications
TWI407474B (en) A ceramic luminescence converter and illumination system comprising said converter
RU2455731C2 (en) Illumination system having monolithic ceramic luminescence converter
Park et al. Synthesis and luminescent characteristics of yellow emitting GdSr2AlO5: Ce3+ phosphor for blue light based white LED
JP5835469B2 (en) Oxynitride phosphor powder
JP5252621B2 (en) Flexible fluorescent film based on clay
Pavitra et al. (BaSr) 2SiO4: Eu2+ nanorods with enhanced luminescence properties as green-emitting phosphors for white LED applications
TWI449769B (en) Phosphor and method of manufacturing the same
JP2011016670A (en) Method for synthesizing vanadate
Song et al. The novel design of a remote phosphor ceramic plate for white light generation in high power LEDs
JPWO2011108740A1 (en) Li-containing α-sialon-based phosphor particles, method for producing the same, lighting apparatus, and image display device
Pradal et al. Spectroscopic study and enhanced thermostability of combustion-derived BaMgAl10O17: Eu2+ blue phosphors for solid-state lighting
Song et al. Luminescence properties of Eu2+ activated Ba2Si5N8 red phosphors with various Eu2+ contents
Feng et al. Synthesis and luminescence of Sr2SiO4: Eu3+ micro-spherical phosphors by a spray-drying process
Yang et al. Magic sol–gel silica films encapsulating hydrophobic and hydrophilic quantum dots for white-light-emission
Song et al. Wet-chemical preparation of barium magnesium orthophosphate, Ba 2 Mg (PO 4) 2: Eu 2+, nanorod phosphor with enhanced optical and photoluminescence properties
JP5464404B2 (en) Rare earth oxide phosphor manufacturing method and thin film manufacturing method using rare earth oxide phosphor
Wang et al. Ultraviolet Emission from Cerium‐Based Organic‐Inorganic Hybrid Halides and Their Abnormal Anti‐Thermal Quenching Behavior
EP2913377B1 (en) Target for ultraviolet light generation, electron beam-excited ultraviolet light source, and production method for target for ultraviolet light generation
Zhang et al. High luminescent aqueous CdZnTe QDs incorporated in CaCO3 for excellent color-rendering WLEDs
JP5004616B2 (en) Phosphor, method for manufacturing the same, wavelength converter and light emitting device
JP2008231313A (en) Oxide nanosheet phosphor and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120626

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131205