JP6396225B2 - 量子鍵配送装置、量子鍵配送システムおよびプログラム - Google Patents

量子鍵配送装置、量子鍵配送システムおよびプログラム Download PDF

Info

Publication number
JP6396225B2
JP6396225B2 JP2015011275A JP2015011275A JP6396225B2 JP 6396225 B2 JP6396225 B2 JP 6396225B2 JP 2015011275 A JP2015011275 A JP 2015011275A JP 2015011275 A JP2015011275 A JP 2015011275A JP 6396225 B2 JP6396225 B2 JP 6396225B2
Authority
JP
Japan
Prior art keywords
bit string
key distribution
information
quantum key
photon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015011275A
Other languages
English (en)
Other versions
JP2016136673A (ja
Inventor
莉里香 高橋
莉里香 高橋
佳道 谷澤
佳道 谷澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015011275A priority Critical patent/JP6396225B2/ja
Priority to US14/859,507 priority patent/US9768954B2/en
Publication of JP2016136673A publication Critical patent/JP2016136673A/ja
Application granted granted Critical
Publication of JP6396225B2 publication Critical patent/JP6396225B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • H04L9/0858Details about key distillation or coding, e.g. reconciliation, error correction, privacy amplification, polarisation coding or phase coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0838Key agreement, i.e. key establishment technique in which a shared key is derived by parties as a function of information contributed by, or associated with, each of these
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography

Description

本発明の実施形態は、量子鍵配送装置、量子鍵配送システムおよびプログラムに関する。
量子鍵配送システムは、送信機、受信機と、それを接続する光ファイバリンクとを含んで構成される。送信機は、光ファイバの通信路である光ファイバリンク(量子通信路)を介して、光子を受信機に送信する。その後、送信機と受信機が相互に制御情報を交換することによって、送信機と受信機との間で暗号鍵を共有する。この技術は一般に量子鍵配送(QKD:Quantum Key Distribution)と呼ばれる技術により実現される。
量子鍵配送により送信機と受信機との間で暗号鍵を共有するためには、送信機および受信機それぞれにおいて鍵蒸留処理を実行する必要がある。鍵蒸留処理は、シフティング処理、誤り訂正処理、および秘匿性増強処理によって構成される。この鍵蒸留処理によって、送信機および受信機は暗号鍵を共有する。共有された暗号鍵は、送信機と受信機との間、または、それぞれの装置に接続されたアプリケーション間で暗号データ通信を行う際に利用される。単位時間あたりに共有される暗号鍵の生成量をセキュアキーレートという。多くの暗号鍵を利用できる方が、より高速かつ安全な暗号データ通信が可能となるため、セキュアキーレートが高いほど高性能な量子鍵配送システムであると言える。
また、量子鍵配送では、暗号鍵を共有するために利用される光子は、観測されることで物理的な状態が変化するという量子力学の基本原理の一つである不確定性原理を有する。この原理により、送信機が送信した暗号鍵の情報を含む光子を量子通信路上で盗聴者が観測すると、光子の物理的な状態が変化し、光子を受け取った受信機は、盗聴者に光子を観測されたことを知ることができる。その際、光子の物理的な状態の変化は送信機と受信機との間のリンクの量子ビット誤り率(Quantum Bit Error Rate、QBER)として現れる。盗聴者が光子を盗聴しようとすると、光子の物理的な状態が変化し、QBERが大きくなるため、受信機および送信機は盗聴者の存在を知ることができる。
このような量子鍵配送システムとして、デコイ方式のプロトコルと、光子の偏光を観測する基底の選択確率に偏りを持たせたプロトコルと、を利用して、盗聴者に漏れた情報量を取り除いた安全性の高い暗号鍵を、効率的に生成するシステムが提案されている。デコイ方式のプロトコルでは、光子を発生させるためのレーザのパルスとして、暗号鍵を生成するためのパルス(以下、信号パルスという)と、信号パルスよりも強度の小さいレーザのパルス(以下、デコイパルスという)とを利用して光子列を生成するプロトコルである。これは、出力される光子はポアソン分布に従うため、信号パルスのみで光子を発生させると、1つの信号パルスに2個以上の光子が含まれる可能性があり、盗聴者に1つの光子を盗み取られてしまう攻撃(Photon Number Splitting Attack:光子数分割攻撃)を許すことになる。この攻撃に対応するために、デコイ方式のプロトコルでは、上述のように、信号パルスとは別のパルスであるデコイパルスを利用するものである。さらに、デコイパルスよりも強度の小さいレーザのパルス(以下、真空パルスという)を利用する方法もある。デコイパルスおよび真空パルスに含まれる光子は、暗号鍵の生成のためには利用されず、また、盗聴者は、盗聴した光子が、信号パルス、デコイパルスおよび真空パルスのうち、いずれのパルスに含まれていた光子かを区別することができない。また、基底の選択確率に偏り持たせたプロトコルでは、送信機および受信機が、光子の偏光を観測する2つの基底(例えば、直線基底および対角基底)のうちいずれかをランダムに選択するのではなく、選択確率に偏りを持たせることによって、シフティング処理によるビットの損失を低減し、最終的に得られる暗号鍵の長さを大きくするプロトコルである。以下、2つの基底のうちいずれか一方を「+基底」(例えば、直線基底)と称し、他方を「×基底」(例えば、対角基底)と称するものとする。
このような量子鍵配送システムにおいて、最終的な暗号鍵の長さを求めるためには、盗聴者に漏洩した情報量を見積もるために、QBER等を利用することが一般的である。デコイ方式のプロトコルと、光子の偏光を観測するときの基底の選択確率に偏りを持たせるプロトコルとを利用するときには、パルスと基底との組み合わせごとのビットデータのQBERを算出する必要がある。すなわち、3種類のパルス(信号パルス、デコイパルス、真空パルス)と、2種類の基底(+基底、×基底)との各組み合わせに対応するビットデータのQBERを算出する必要がある。そのためには、パルスと基底との組み合わせごとのビットデータに分類し、分類したビットデータごとに誤り訂正処理を行い、QBERを算出する方法が考えられる。
しかし、パルスと基底との組み合わせごとのビットデータに分類してから、誤り訂正処理を行うと、デコイパルスおよび真空パルスはレーザの強度が低いため、QBERがデコイパルスでは約20[%]、真空パルスでは約50[%]と高くなり、ビットデータの誤りを訂正できず、または、誤り訂正処理に多くの時間を費やし、暗号鍵の生成効率が低下する可能性がある。
Efficient decoy-state quantum key distribution with quantified security, M. Lucamarini et al., Optics Express, Vol. 21, Issue 21, pp. 24550-24565 (2013).
本発明は、上記に鑑みてなされたものであって、暗号鍵の生成効率の低下を抑制する量子鍵配送装置、量子鍵配送システムおよびプログラムを提供することを目的とする。
実施形態の量子鍵配送装置は、他の量子鍵配送装置と、量子通信路および古典通信路で接続され、同一の暗号鍵を生成して共有する量子鍵配送装置であって、量子鍵配送手段と、シフティング手段と、訂正手段と、特定手段と、分類手段と、算出手段と、秘匿性増強手段と、を備える。量子鍵配送手段は、2種類以上の光パルスに含まれる光子に対する量子通信路を介した量子鍵配送によって光子列を取得し、生成した基底情報に基づいて光子列に対応した光子ビット列を取得する。シフティング手段は、光子ビット列から、量子鍵配送手段および他の量子鍵配送装置の基底情報に基づいたシフティング処理によって共有ビット列を生成し、共有ビット列の各ビットがいずれの光パルスに対応するかを示すパルス情報を取得する。訂正手段は、共有ビット列に含まれる誤りを誤り訂正処理により訂正し、訂正後ビット列を生成する。特定手段は、訂正手段による誤り訂正処理で、訂正後ビット列のうちいずれのビットの誤りが訂正されたかを特定する誤り位置情報を生成する。分類手段は、パルス情報および基底情報により、訂正後ビット列の各ビットがいずれの光パルス、かつ、いずれの基底に対応するのかを分類する。算出手段は、誤り位置情報を用いて、分類手段により分類された光パルスごと、かつ、基底ごとのエラーレートを算出する。秘匿性増強手段は、各エラーレートに基づいて、訂正後ビット列に関するビット列を圧縮する秘匿性増強処理によって暗号鍵を生成する。
図1は、量子鍵配送システムの構成の一例を示す図である。 図2は、QKD装置のハードウェア構成の一例を示す図である。 図3は、QKD装置の機能ブロックの構成の一例を示す図である。 図4は、パルスの種類および光子について説明するための模式図である。 図5は、暗号鍵の長さを算出するためのデータの種類を示す図である。 図6は、基底の種類とビットデータの誤りとの関係を説明する図である。 図7は、基底の選択確率を説明するための図である。 図8は、QKD装置の暗号鍵の生成動作の一例を示すシーケンス図である。 図9は、暗号鍵の生成動作におけるデータの流れの詳細を示す図である。 図10は、各種データに基づくQBERの算出方法を説明する図である。
以下に、図面を参照しながら、本発明の実施形態に係る量子鍵配送装置、量子鍵配送システムおよびプログラムを詳細に説明する。また、以下の図面において、同一の部分には同一の符号が付してある。ただし、図面は模式的なものであるため、具体的な構成は以下の説明を参酌して判断すべきものである。
(実施形態)
図1は、量子鍵配送システムの構成の一例を示す図である。図1を参照しながら、量子鍵配送システム100の構成について説明する。
図1に示すように、量子鍵配送システム100は、送信機1と、受信機2と、光ファイバリンク3と、を含んで構成されている。なお、以下においては、図1に示すように、送信機1と受信機2とがそれぞれ1つで構成された量子鍵配送システム100について説明するが、受信機2が1台で、光学機器を介して複数の送信機1が接続された、いわゆる量子アクセスネットワーク(QAN:Quantum Access Network)が量子鍵配送システムに統合された構成であってもよい。また、受信機2が複数の光ファイバ通信のインターフェースを有し、それらのインターフェースを介して、複数の送信機1が接続された量子鍵配送システムであってもよい。また、これらのシステムにおいて、送信機1と受信機2とが逆となっている構成でもよい。
送信機1は、レーザにより発生させた、暗号鍵を生成する基となる単一光子から構成される光子列を、光ファイバリンク3を介して、受信機2へ送信する装置である。送信機1は、送信した光子列を基に、後述する鍵蒸留処理(シフティング処理、誤り訂正処理および秘匿性増強処理)等を実行して、暗号鍵を生成する。また、送信機1は、光ファイバリンク3により実現される量子通信路以外の、Ethernet(登録商標)ケーブル等の通信ケーブルで実現される古典通信路を介して、受信機2との間でデータ通信を行う。古典通信路を介して通信されるデータとしては、上述の鍵蒸留処理で必要な制御データであってもよく、これ以外の一般的なデータであってもよい。
受信機2は、暗号鍵を生成する基となる単一光子から構成される光子列を、光ファイバリンク3を介して、送信機1から受信する装置である。受信機2は、受信した光子列を基に、後述する鍵蒸留処理(シフティング処理、誤り訂正処理および秘匿性増強処理)等を実行して、送信機1が生成した暗号鍵と同一の暗号鍵を生成する。すなわち、送信機1および受信機2は、同一の暗号鍵を生成して共有することになる。また、受信機2は、光ファイバリンク3により実現される量子通信路以外の、Ethernetケーブル等の通信ケーブルで実現される古典通信路を介して、送信機1との間でデータ通信を行う。
光ファイバリンク3は、送信機1が出力した単一光子の送信路となる量子通信路として機能する光ファイバケーブルである。なお、図示していないが、送信機1と受信機2とは、光ファイバリンク3の量子通信路以外に、通常の「0」および「1」のデジタルデータを通信する通信ケーブル(古典通信路)で接続されている。古典通信路は、有線である必要はなく無線であってもよい。
なお、光ファイバリンク3が量子通信路として機能し、図示しないEthernetケーブル等の通信ケーブルが古典通信路として機能するものとしたが、これに限定されるものではない。例えば、光ファイバリンク3は、WDM(Wavelength Division Multiplex:光波長多重化)技術により、光子の送受信をするための光子通信チャネルと、光データ通信を行うための光データ通信チャネルとが形成されるものとしてもよい。すなわち、この場合、光ファイバリンク3の光子通信チャネルが量子通信路として機能し、光データ通信チャネルが古典通信路として機能する。
このような送信機1と受信機2とを含む量子鍵配送システム100によって、送信機1が送信した光子列を光ファイバリンク3上で盗聴者が観測すると、光子の物理的状態が変化し、光子を受信した受信機2は、盗聴者に光子を観測されたことを認識することができる。
なお、送信機1および受信機2を総称する場合、「QKD装置」というものとする。
図2は、QKD装置のハードウェア構成の一例を示す図である。図2を参照しながら、QKD装置(送信機1、受信機2)のハードウェア構成について説明する。
図2に示すように、QKD装置は、CPU(Central Processing Unit)80と、ROM(Read Only Memory)81と、RAM(Random Access Memory)82と、通信I/F83と、補助記憶装置84と、光学処理装置85と、各部を接続するバス86と、を備えている。
CPU80は、QKD装置全体の動作を制御する演算装置である。ROM81は、CPU80が各機能を制御するために実行するプログラムを記憶する不揮発性記憶装置である。RAM82は、CPU80のワークメモリ等として機能する揮発性記憶装置である。
通信I/F83は、LAN(Local Area Network)等のネットワークまたは無線ネットワーク等の古典通信路を介してデータ通信を行うためのインターフェースである。通信I/F83は、例えば、10Base−T、100Base−TXもしくは1000Base−T等のEthernetに対応したインターフェースである。
補助記憶装置84は、CPU80で実行される各種プログラム、および鍵蒸留処理の過程で生成したデータ等を記憶して蓄積する不揮発性記憶装置である。補助記憶装置84は、HDD(Hard Disk Drive)、SSD(Solid State Drive)、フラッシュメモリまたは光ディスク等の電気的、磁気的または光学的に記憶可能な記憶装置である。
光学処理装置85は、量子通信路を介して、光子列を送信または受信する光学装置である。送信機1の光学処理装置85は、例えば、乱数によって発生させたビット列(光子ビット列)に対して、後述するように、基底の選択確率に偏りを持つように生成した基底情報に基づく偏光状態となるように生成した単一光子から構成される光子列を、量子通信路(図1に示す光ファイバリンク3)を介して、受信機2の光学処理装置85に送信する。すなわち、送信機1の光学処理装置85により発生された光子列の各光子は、「0」から「1」かの1ビットの情報を有する。受信機2の光学処理装置85は、量子通信路を介して、送信機1の光学処理装置85から光子列を受信し、受信した光子列を、後述するように、基底の選択確率に偏りを持つように生成した基底情報に基づいて読み取ることによって光子ビット列を得る。
図3は、QKD装置の機能ブロックの構成の一例を示す図である。図4は、パルスの種類およびパルスに含まれる光子について説明するための模式図である。図5は、暗号鍵の長さを算出するために必要なデータの種類を示す図である。図3を参照しながら、送信機1および受信機2の機能ブロックの構成について説明し、併せて、図4を参照しながら、送信機1が発生するレーザのパルスの種類およびパルスに含まれる光子について説明する。さらに、図5を参照しながら、後述する算出部14により算出され或るデータの種類について説明する。
図3に示すように、送信機1は、光子送信部10(量子鍵配送手段)と、シフティング処理部11(シフティング手段)と、誤り訂正処理部12(訂正手段)と、誤り位置特定部13(特定手段)と、算出部14(算出手段)と、抽出部15(抽出手段)と、秘匿性増強処理部16(秘匿性増強手段)と、蓄積部17と、を有する。
光子送信部10は、例えば、乱数によって発生させた光子ビット列に対して、後述するように、基底の選択確率に偏りを持つように生成した基底情報に基づく偏光状態となるように生成した単一光子から構成される光子列を、量子通信路を介して、受信機2の光子受信部20に送信する機能部である。光子送信部10は、図2に示す光学処理装置85によって実現される。
光子送信部10は、図4に示すように、レーザの強度の異なる3種類のパルス(信号パルス200、デコイパルス201および真空パルス202)(光パルス)を発生することにより光子を生成する。具体的には、光子送信部10は、レーザの強度Xにより信号パルス200を発生させ、強度Yによりデコイパルス201を発生させ、強度Zにより真空パルス202を発生させ、これらの3種類のパルスを所定の確率でランダムに発生させる。レーザの強度は、強度X>強度Y>強度Zの関係となる。これらのレーザのパルスに含まれる光子210の数はポアソン分布に従うため、1つのパルスに、光子210が含まれないこともあれば、2個以上の光子210が含まれることもある。
また、各パルスの強度は、上述の関係があるため、信号パルス200に平均x個の光子が含まれ、デコイパルス201に平均y個の光子が含まれ、真空パルス202に平均z個の光子が含まれるものとすると、平均光子数の関係は、x>y>zの関係となる。また、信号パルス200に含まれる光子は、暗号鍵を形成するビット情報を送信する役割を有するのに対し、デコイパルス201および真空パルス202に含まれる光子は、暗号鍵を形成するビット情報としては利用されない。上述のように、各パルスに含まれる光子の数はポアソン分布に従い、かつ、各パルスに含まれる平均光子数は、x>y>zの関係があり、盗聴者は、盗み取った光子がいずれのパルスに含まれているものかを区別することができない。また、光子が盗聴者に盗み取られた場合、光子ビット列のうち、パルスごとのビット列のエラーレートはそれぞれ異なる。また、光子送信部10は、発生したパルスが、信号パルス200、デコイパルス201および真空パルス202のうちいずれのパルスであるのかを認識し、かつ、生成した光子列のうち、どの光子がどのパルスに含まれているのかも認識する。
なお、光子送信部10は、レーザの強度の異なる3種類のパルス(信号パルス200、デコイパルス201および真空パルス202)を発生するものとしたが、これに限定されるものではない。例えば、光子送信部10は、レーザの強度の異なる2種類のパルス(一方のパルスは信号パルス200に相当)を発生するものとしてもよく、4種類以上のパルス(少なくともいずれか1種類のパルスは信号パルス200に相当)を発生するものとしてもよい。
シフティング処理部11は、受信機2の光子受信部20が基底の選択確率に偏りを持つように生成した基底情報を、受信機2のシフティング処理部21から古典通信路を介して受信し、受信した基底情報と、光子送信部10が生成した基底情報とを比較して、一致する部分に対応するビットを光子ビット列から抽出して、共有ビット列を生成するシフティング処理を実行する機能部である。なお、シフティング処理部11およびシフティング処理部21の機能は、必ずしも送信機1および受信機2の両方に備えている必要はなく、シフティング処理部21からシフティング処理部11へ基底情報を送信した後に、シフティング処理部11が基底情報を比較し、一致する部分を示す一致情報をシフティング処理部21へ送信することにより、シフティングの機能を実現することもできる。また、ここで説明したシフティング処理は一例であり、これ以外の方法であってもよい。
また、シフティング処理部11は、光子送信部10による光子ビット列の各ビットがどのパルスに対応するのかについての認識結果から、共有ビット列の各ビットがどのパルスに対応するかを示す情報を生成する。具体的には、シフティング処理部11は、共有ビット列において、信号パルスに対応するビットの位置を示す信号パルス情報、デコイパルスに対応するビットの位置を示すデコイパルス情報、および、真空パルスに対応するビットの位置を示す真空パルス情報を生成する。シフティング処理部11は、生成した信号パルス情報、デコイパルス情報および真空パルス情報を、古典通信路を介して、受信機2のシフティング処理部21に送信すると共に、蓄積部17に記憶させる。以下、信号パルス、デコイパルスおよび真空パルスを区別なく呼称する場合、または総称する場合、単に「パルス」という場合があるものとする。また、信号パルス情報、デコイパルス情報および真空パルス情報を区別なく呼称する場合、または総称する場合、単に「パルス情報」という場合があるものとする。なお、シフティング処理部11は、信号パルス情報、デコイパルス情報および真空パルス情報のすべてを生成する必要はなく、少なくとも、これらの3種類のパルス情報のうち、少なくとも2種類のパルス情報を生成するものとしてもよい。これは、3種類のパルス情報のうち、少なくとも2種類のパルス情報がわかれば、残りの1種類のパルス情報も自明に導出できるからである。
また、シフティング処理部11は、受信機2のシフティング処理部21から古典通信路を介して受信した基底情報と、光子送信部10が生成した基底情報とを比較して一致する部分を抽出し、抽出した基底情報を蓄積部17に記憶させる。この抽出した基底情報は、共有ビット列の各ビットが+基底または×基底のいずれに対応するものかを示す情報となる。
誤り訂正処理部12は、古典通信路を介して、受信機2の誤り訂正処理部22と制御データ(EC(Error Correction)情報)を交換することにより、共有ビット列のビット誤りを訂正して訂正後ビット列を生成する誤り訂正処理を実行する機能部である。誤り訂正処理部12は、生成した訂正後ビット列を蓄積部17に記憶させる。誤り訂正処理に成功した場合、この誤り訂正処理部12が生成した訂正後ビット列は、後述する受信機2の誤り訂正処理部22が、共有ビット列を訂正して生成した訂正後ビット列と一致する。また、訂正後ビット列は、共有ビット列のビット誤りを訂正したビット列なので、共有ビット列および訂正後ビット列の長さは同一である。
また、誤り訂正処理部12は、上述のように、共有ビット列のビット誤りを訂正して訂正後ビット列を生成するために、誤り訂正処理部22と交換したEC情報の情報量に基づいて、漏洩ビット数を算出する。この漏洩ビット数が大きいほど、盗聴の可能性が高くなり、また、盗聴された情報量も大きい可能性があることを示す。誤り訂正処理部12は、算出した漏洩ビット数を蓄積部17に記憶させる。
誤り位置特定部13は、誤り訂正処理部12による誤り訂正処理の過程で、共有ビット列においてどのビットに誤りがあるかを示す情報、すなわち、訂正後ビット列においてどのビットの誤りを訂正したかを示す情報を誤り位置情報として生成する機能部である。
算出部14は、誤り訂正処理部12により生成された訂正後ビット列から、パルスごと、かつ、基底ごとのビット列のQBER(エラーレート)を算出する機能部である。算出部14は、データ分類部14a(分類手段)を有する。具体的には、まず、算出部14は、蓄積部17に記憶された訂正後ビット列、パルス情報および基底情報を読み出す。次に、データ分類部14aは、読み出されたパルス情報および基底情報を用いて、訂正後ビット列において各ビットがどのパルス、かつ、どちらの基底に対応するものかを分類する。そして、算出部14は、誤り位置特定部13により生成された誤り位置情報を用いて、データ分類部14aにより分類されたパルスごと、かつ、基底ごとのビット列のカウント数(すなわち、ビット数)およびQBER(=ビット誤りの数/カウント数)を算出する。すなわち、算出部14は、図5に示すように、×基底および信号パルスに対応するビット列のカウント数およびQBER、×基底およびデコイパルスに対応するビット列のカウント数およびQBER、×基底および真空パルスに対応するビット列のカウント数およびQBER、+基底および信号パルスに対応するビット列のカウント数およびQBER、+基底およびデコイパルスに対応するビット列のカウント数およびQBER、ならびに、+基底および真空パルスに対応するビット列のカウント数およびQBERの12種類のデータを算出する。これらのデータは、秘匿性増強処理部16による秘匿性増強処理での暗号鍵の長さの算出のために使用される。算出部14は、算出した12種類のデータを、古典通信路を介して、受信機2の秘匿性増強処理部26に送信する。
共有ビット列におけるパルスごと、かつ、基底ごとのビット列のカウント数およびQBERを算出する方法としては、一般には、共有ビット列を、パルスごと、かつ、基底ごとのビット列に予め分けておき、各ビット列に対して誤り訂正処理を行い、そして、各ビット列のカウント数およびQBERを算出する方法が考えられる。しかし、デコイパルスおよび真空パルスに対応するビット列のQBERは、一般的に、信号パルスに対応するビット列のQBERよりも高い値となる。光子送信部10の設定等にもよるが、一例として、信号パルスのQBERが4[%]程度であっても、デコイパルスのQBERは約20[%]であり、真空パルスのQBERは約50[%]にも及ぶことがある。そのため、デコイパルスおよび真空パルスに対応するビット列のみではQBERが高いため、誤り訂正処理を行っても訂正できなかったり、訂正できたとしても処理に多くの時間がかかるので効率的ではない。
一方、本実施形態においては、共有ビット列を、パルスごと、かつ、基底ごとのビット列に予め分けるのではなく、上述のように、誤り訂正処理部12により、共有ビット列全体に対して、誤り訂正処理を行うものとしている。この誤り訂正処理部12による誤り訂正処理の過程で、誤り位置特定部13は、共有ビット列においてどのビットに誤りがあるかを示す情報を誤り位置情報として生成するものとしている。そして、算出部14は、誤り位置特定部13により生成された誤り位置情報を用いて分類したパルスごと、かつ、基底ごとのビット列のカウント数およびQBER(上述の12種類のデータ)を算出するものとしている。これによって、共有ビット列について誤りを訂正できず、または、誤り訂正処理に多くの時間を費やすことを抑制することができ、最終的な暗号鍵の生成効率の低下を抑制することができる。
抽出部15は、蓄積部17から、誤り訂正処理部12により生成された訂正後ビット列、および、シフティング処理部11により生成されたパルス情報を読み出し、訂正後ビット列から、パルス情報が示す信号パルスに対応するビット列を抽出して、抽出ビット列を生成する機能部である。訂正後ビット列のうち信号パルスに対応する抽出ビット列が、暗号鍵を生成するためのビット列として用いられる。なお、抽出部15が読み出すパルス情報は、信号パルス情報、デコイパルス情報および真空パルス情報のすべてである必要はなく、少なくとも信号パルス情報を読み出せば、この信号パルス情報によって、訂正後ビット列のうち信号パルスに対応するビットの位置がわかるので抽出ビット列を生成することができる。
秘匿性増強処理部16は、蓄積部17から誤り訂正処理部12により生成された漏洩ビット数を読み出し、この漏洩ビット数、および算出部14により算出された上述の12種類のデータに基づいて、最終的な暗号鍵の長さを算出し、抽出部15により生成された抽出ビット列を圧縮して、算出した長さとなる暗号鍵を生成する秘匿性増強処理を実行する機能部である。秘匿性増強処理に成功した場合、秘匿性増強処理部16により生成された暗号鍵は、後述する受信機2の秘匿性増強処理部26により生成された暗号鍵と一致するものであり、同一の暗号鍵を共有することになる。これらの共有された暗号鍵は、送信機1と受信機2との間、または、それぞれの装置に接続されたアプリケーション間で暗号データ通信を行う際に利用される。
蓄積部17は、シフティング処理部11により生成されたパルス情報および基底情報、ならびに、誤り訂正処理部12により生成された訂正後ビット列および漏洩ビット数等を記憶する機能部である。蓄積部17は、図2に示す補助記憶装置84によって実現される。
上述のシフティング処理部11、誤り訂正処理部12、誤り位置特定部13、算出部14、抽出部15、および秘匿性増強処理部16は、図2に示すCPU80が補助記憶装置84等に記憶されたプログラムをRAM82に読み出して実行することにより実現される。なお、シフティング処理部11、誤り訂正処理部12、誤り位置特定部13、算出部14、抽出部15、および秘匿性増強処理部16のすべてがプログラムの実行により実現されることに限定されるものではなく、少なくともいずれかがハードウェア回路によって実現されるものとしてもよい。
図3に示すように、受信機2は、光子受信部20と、シフティング処理部21と、誤り訂正処理部22と、抽出部25と、秘匿性増強処理部26と、蓄積部27と、を有する。
光子受信部20は、量子通信路を介して、送信機1の光子送信部10から光子列を受信し、受信した光子列を、後述するように、基底の選択確率に偏りを持つように生成した基底情報に基づいて読み取ることによって光子ビット列を得る機能部である。光子受信部20は、図2に示す光学処理装置85によって実現される。
シフティング処理部21は、送信機1の光子送信部10が基底の選択確率に偏りを持つように生成した基底情報を、送信機1のシフティング処理部11から古典通信路を介して受信し、受信した基底情報と、光子受信部20が生成した基底情報とを比較して、一致する部分に対応するビットを光子ビット列から抽出して、共有ビット列を生成するシフティング処理を実行する機能部である。なお、シフティング処理部11およびシフティング処理部21の機能は、必ずしも送信機1および受信機2の両方に備えている必要はなく、シフティング処理部11からシフティング処理部21へ基底情報を送信した後に、シフティング処理部21が基底情報を比較し、一致する部分を示す一致情報をシフティング処理部11へ送信することにより、シフティングの機能を実現することもできる。また、ここで説明したシフティング処理は一例であり、これ以外の方法であってもよい。
また、シフティング処理部21は、シフティング処理部11により生成された信号パルス情報、デコイパルス情報および真空パルス情報を、古典通信路を介して受信すると共に、蓄積部27に蓄積させる。なお、シフティング処理部21は、信号パルス情報、デコイパルス情報および真空パルスのすべてを受信する必要はなく、少なくとも、これらの3種類のパルス情報のうち、少なくとも2種類のパルス情報を受信するものとしてもよい。これは、3種類のパルス情報のうち、少なくとも2種類のパルス情報がわかれば、残りの1種類のパルス情報も自明に導出できるからである。
誤り訂正処理部22は、古典通信路を介して、送信機1の誤り訂正処理部12と制御データ(EC情報)を交換することにより、共有ビット列のビット誤りを訂正して訂正後ビット列を生成する誤り訂正処理を実行する機能部である。誤り訂正処理部22は、生成した訂正後ビット列を蓄積部27に記憶させる。誤り訂正処理に成功した場合、この誤り訂正処理部22が生成した訂正後ビット列は、送信機1の誤り訂正処理部12が、共有ビット列を訂正して生成した訂正後ビット列と一致する。また、訂正後ビット列は、共有ビット列のビット誤りを訂正したビット列なので、共有ビット列および訂正後ビット列の長さは同一である。
また、誤り訂正処理部22は、上述のように、共有ビット列のビット誤りを訂正して訂正後ビット列を生成するために、誤り訂正処理部12と交換したEC情報の情報量に基づいて、漏洩ビット数を算出する。誤り訂正処理部22は、算出した漏洩ビット数を蓄積部27に記憶させる。
抽出部25は、蓄積部27から、誤り訂正処理部22により生成された訂正後ビット列、および、シフティング処理部21により受信されたパルス情報を読み出し、訂正後ビット列から、パルス情報が示す信号パルスに対応するビット列を抽出して、抽出ビット列を生成する機能部である。なお、抽出部25が読み出すパルス情報は、信号パルス情報、デコイパルス情報および真空パルス情報のすべてである必要はなく、少なくとも信号パルス情報を読み出せば、この信号パルス情報によって、訂正後ビット列のうち信号パルスに対応するビットの位置がわかるので抽出ビット列を生成することができる。
秘匿性増強処理部26は、蓄積部27から誤り訂正処理部22により生成された漏洩ビット数を読み出し、この漏洩ビット数、および算出部14から古典通信路を介して受信した上述の12種類のデータに基づいて、最終的な暗号鍵の長さを算出し、抽出部25により生成された抽出ビット列を圧縮して、算出した長さとなる暗号鍵を生成する秘匿性増強処理を実行する機能部である。
蓄積部27は、シフティング処理部21により受信されたパルス情報、ならびに、誤り訂正処理部22により生成された訂正後ビット列および漏洩ビット数等を記憶する機能部である。蓄積部27は、図2に示す補助記憶装置84によって実現される。
上述のシフティング処理部21、誤り訂正処理部22、抽出部25、および秘匿性増強処理部26は、図2に示すCPU80が補助記憶装置84等に記憶されたプログラムをRAM82に読み出して実行することにより実現される。なお、シフティング処理部21、誤り訂正処理部22、抽出部25、および秘匿性増強処理部26のすべてがプログラムの実行により実現されることに限定されるものではなく、少なくともいずれかがハードウェア回路によって実現されるものとしてもよい。
また、図3に示す送信機1および受信機2の機能ブロックの構成は、機能を概念的に示したものであって、このような構成に限定されるものではない。例えば、図3で独立した機能部として図示した複数の機能部を、1つの機能部として構成してもよい。一方、図3の1つの機能部が有する機能を複数に分割し、複数の機能部として構成するものとしてもよい。
図6は、基底の種類とビットデータの誤りとの関係を説明するための図である。図6を参照しながら、基底の種類とビットデータの誤りとの関係を説明する。
上述のように、光子送信部10により基底の選択確率に偏りを持つように生成した基底情報と、光子受信部20により基底の選択確率に偏りを持つように生成した基底情報と、を比較した場合、基底が一致する場合と不一致となる場合がある。基底が一致する場合、光子送信部10により生成された単一光子が、量子通信路を介して、正常に光子受信部20に送信された場合、光子受信部20は、同一の基底に基づいて光子の偏光状態を正しく読み取ることができ、得られたビット情報は、光子送信部10が送信した光子列のビット情報と一致する。
一方、基底が一致しない場合、光子送信部10により生成された単一光子が、量子通信路を介して、光子受信部20に送信された場合、光子受信部20は、光子の偏光状態を正しく読み取ることができない。この場合、光子受信部20が、光子送信部10から送信された光子列から得られたビット情報は、量子力学の原理から、結果的に、光子送信部10が送信した光子列のビット情報と一致することもあれば、不一致となることもある。ただし、上述のシフティング処理によって、一致しない基底に対応するビット情報は除去される。
また、基底一致する場合においても、光子送信部10から送信された光子列が、量子通信路に含まれるノイズの影響を受けたり、または、量子通信路上で盗聴者により盗聴されると、不確定性原理により光子の物理的な状態が変化し、光子受信部20は、自身の基底に基づいて光子列を読み取って得られたビット情報が、光子送信部10が送信した光子列のビット情報と不一致となる場合がある。これによって、シフティング処理後に得られた共有ビット列においてもビット誤りとして現れることになる。
図7は、基底の選択確率を説明するための図である。図7を参照しながら、基底の選択確率の偏りについて説明する。
光子送信部10および光子受信部20が、一方の基底を選択する確率をδとすると、もう一方の基底を選択する確率は(1−δ)となるので、基底が一致する確率は、下記の式(1)で表される。
δ・δ+(1−δ)・(1−δ)=2δ−2δ+1 (1)
例えば、図7(a)に示すように、送信機1の光子送信部10および受信機2の光子受信部20が、2つの基底それぞれの選択確率をランダム、すなわち、1/2にしたとすると、光子送信部10が生成する基底と、光子受信部20が生成する基底とが一致する確率も1/2となる。すなわち、シフティング処理部11およびシフティング処理部21により生成される共有ビット列の長さは、統計的に、光子ビット列の長さの1/2となる。すなわち、統計的に、共有ビット列の長さを、光子ビット列の長さの1/2より大きくすることはできないことになる。
このとき、上述のように、2つの基底それぞれの選択確率を1/2、すなわち、δ=1/2とすると、光子送信部10および光子受信部20がそれぞれ生成する基底が一致する確率は、下記の式(2)で示されるように1/2(50[%])となり、上述した通りである。
2δ−2δ+1=2・(1/2)−2・(1/2)+1=1/2 (2)
ここで例えば、図7(b)に示すように、+基底を選択する確率をδ=7/8とし、×基底を選択する確率を(1−δ)=1/8とすると、光子送信部10および光子受信部20がそれぞれ生成する基底が一致する確率は、下記の式(3)で示されるように、25/32(87.5[%])となる。
2δ−2δ+1=2・(7/8)−2・(7/8)+1=25/32 (3)
これによって、シフティング処理部11およびシフティング処理部21により生成される共有ビット列の長さは、統計的に、光子ビット列の長さの25/32となり、上述の式(2)の場合よりも大きくなる。このように、基底の選択確率に偏りを持たせることによって、光子ビット列からシフティング処理において除去されるビット数が少なくなり、最終的に得られる暗号鍵の長さを大きくすることができる。
図8は、QKD装置の暗号鍵の生成動作の一例を示すシーケンス図である。図9は、暗号鍵の生成動作におけるデータの流れの詳細を示す図である。図10は、各種データに基づくQBERの算出方法を説明する図である。図8〜図10を参照しながら、暗号鍵の生成動作の流れを説明する。
<ステップS11>
光子送信部10は、例えば、乱数によって発生させた光子ビット列に対して、基底の選択確率に偏りを持つように生成した基底情報に基づく偏光状態となるように生成した単一光子から構成される光子列を、量子通信路を介して、受信機2の光子受信部20に送信する。この際、光子送信部10は、上述の図4に示すように、レーザの強度の異なる3種類のパルス(信号パルス200、デコイパルス201および真空パルス202)を発生することにより光子を生成する。
<ステップS12>
光子受信部20は、量子通信路を介して、送信機1の光子送信部10から光子列を受信し、受信した光子列を、基底の選択確率に偏りを持つように生成した基底情報に基づいて読み取ることによって光子ビット列を得る。
<ステップS13>
シフティング処理部11は、受信機2の光子受信部20が基底の選択確率に偏りを持つように生成した基底情報を、受信機2のシフティング処理部21から古典通信路を介して受信し、受信した基底情報と、光子送信部10が生成した基底情報とを比較して、一致する部分に対応するビットを光子ビット列から抽出して、図9に示すように、共有ビット列を生成するシフティング処理を実行する。
また、シフティング処理部11は、光子送信部10による光子ビット列の各ビットがどのパルスに対応するのかについての認識結果から、共有ビット列の各ビットがどのパルスに対応するかを示す情報を生成する。具体的には、シフティング処理部11は、図9に示すように、共有ビット列において、信号パルスに対応するビットの位置を示す信号パルス情報、デコイパルスに対応するビットの位置を示すデコイパルス情報、および、真空パルスに対応するビットの位置を示す真空パルス情報を生成する。シフティング処理部11は、生成した信号パルス情報、デコイパルス情報および真空パルス情報を、古典通信路を介して、受信機2のシフティング処理部21に送信すると共に、蓄積部17に記憶させる。
また、シフティング処理部11は、図9に示すように、受信機2のシフティング処理部21から古典通信路を介して受信した基底情報と、光子送信部10が生成した基底情報とを比較して一致する部分を抽出し、抽出した基底情報を蓄積部17に記憶させる。
<ステップS14>
シフティング処理部21は、送信機1の光子送信部10が基底の選択確率に偏りを持つように生成した基底情報を、送信機1のシフティング処理部11から古典通信路を介して受信し、受信した基底情報と、光子受信部20が生成した基底情報とを比較して、一致する部分に対応するビットを光子ビット列から抽出して、共有ビット列を生成するシフティング処理を実行する。
また、シフティング処理部21は、シフティング処理部11により生成された信号パルス情報、デコイパルス情報および真空パルス情報を、古典通信路を介して受信すると共に、蓄積部27に蓄積させる。
<ステップS15>
誤り訂正処理部12は、古典通信路を介して、受信機2の誤り訂正処理部22と制御データ(EC情報)を交換することにより、シフティング処理部11により生成された共有ビット列のビット誤りを訂正して、図9に示すように、訂正後ビット列を生成する誤り訂正処理を実行する。誤り訂正処理部12は、生成した訂正後ビット列を蓄積部17に記憶させる。
また、誤り訂正処理部12は、共有ビット列のビット誤りを訂正して訂正後ビット列を生成するために、図9に示すように、誤り訂正処理部22と交換したEC情報の情報量に基づいて、漏洩ビット数を算出する。誤り訂正処理部12は、算出した漏洩ビット数を蓄積部17に記憶させる。
誤り位置特定部13は、誤り訂正処理部12による誤り訂正処理の過程で、共有ビット列においてどのビットに誤りがあるかを示す情報、すなわち、訂正後ビット列においてどのビットの誤りを訂正したかを示す情報を、図9に示すように、誤り位置情報として生成する。
<ステップS16>
誤り訂正処理部22は、古典通信路を介して、送信機1の誤り訂正処理部12と制御データ(EC情報)を交換することにより、シフティング処理部21により生成された共有ビット列のビット誤りを訂正して訂正後ビット列を生成する誤り訂正処理を実行する。誤り訂正処理部22は、生成した訂正後ビット列を蓄積部27に記憶させる。
また、誤り訂正処理部22は、共有ビット列のビット誤りを訂正して訂正後ビット列を生成するために、誤り訂正処理部12と交換したEC情報の情報量に基づいて、漏洩ビット数を算出する。誤り訂正処理部22は、算出した漏洩ビット数を蓄積部27に記憶させる。
<ステップS17>
算出部14は、誤り訂正処理部12により生成された訂正後ビット列から、パルスごと、かつ、基底ごとのビット列のQBERを算出する。具体的には、まず、算出部14は、蓄積部17に記憶された訂正後ビット列、パルス情報および基底情報を読み出す。次に、データ分類部14aは、読み出されたパルス情報および基底情報を用いて、訂正後ビット列において各ビットがどのパルス、かつ、どちらの基底に対応するものかを分類する。そして、算出部14は、誤り位置特定部13により生成された誤り位置情報を用いて、データ分類部14aにより分類されたパルスごと、かつ、基底ごとのビット列のカウント数(すなわち、ビット数)およびQBER(=ビット誤りの数/カウント数)を算出する。すなわち、算出部14は、上述の図5に示すように、×基底および信号パルスに対応するビット列のカウント数およびQBER、×基底およびデコイパルスに対応するビット列のカウント数およびQBER、×基底および真空パルスに対応するビット列のカウント数およびQBER、+基底および信号パルスに対応するビット列のカウント数およびQBER、+基底およびデコイパルスに対応するビット列のカウント数およびQBER、ならびに、+基底および真空パルスに対応するビット列のカウント数およびQBERの12種類のデータを算出する。算出部14は、算出した12種類のデータを、古典通信路を介して、受信機2の秘匿性増強処理部26に送信する。
なお、算出部14によるパルスごと、かつ、基底ごとのビット列のカウント数およびQBERの算出の方法の具体的な方法としては、例えば、以下のような方法がある。図10に示すように、訂正後ビット列について、どの位置のビットがどのパルスに対応するものかはパルス情報(信号パルス情報、デコイパルス情報、および真空パルス情報)によって区別できる。また、訂正後ビット列について、どの位置のビットがどちらの基底に対応するものかは基底情報によって区別できる。例えば、図10においては、基底情報において、「1」は+基底を示し、「0」は×基底を示すものとする。このように、訂正後ビット列について、パルス情報および基底情報に基づいて、どの位置のビットが、どのパルスかつどちらの基底に対応するものかを区別することが、上述のデータ分類部14aの分類動作に相当する。また、訂正後ビット列について、どの位置のビットが誤り訂正されたものかは誤り位置情報によって区別できる。例えば、図10においては、誤り位置情報において、「1」は誤り訂正されたビットであることを示し、「0」は誤り訂正されていないビットであることを示す。
以上のような様式で訂正後ビット列における各ビットについて区別すると、例えば、誤り訂正ビット列のうちビット位置が4番目のビットは、信号パルス、かつ、+基底に対応するビットであることが区別でき、さらに、誤り訂正されたビットであることが区別できる。例えば、図10に示すように、訂正後ビット列のうちビット位置が1〜12番目のビット列に注目すると、×基底および信号パルスに対応するビット列のカウント数は「2」、QBERは「1/2」(50[%])と算出され、×基底およびデコイパルスに対応するビット列のカウント数は「2」、QBERは「1/2」(50[%])と算出され、×基底およびデコイパルスに対応するビット列のカウント数は「2」、QBERは「1/2」(50[%])と算出される。さらに、+基底および信号パルスに対応するビット列のカウント数は「2」、QBERは「1/2」(50[%])と算出され、+基底およびデコイパルスに対応するビット列のカウント数は「2」、QBERは「1/2」(50[%])と算出され、+基底およびデコイパルスに対応するビット列のカウント数は「2」、QBERは「1/2」(50[%])と算出される。
<ステップS18>
抽出部15は、蓄積部17から、誤り訂正処理部12により生成された訂正後ビット列、および、シフティング処理部11により生成されたパルス情報を読み出し、訂正後ビット列から、パルス情報が示す信号パルスに対応するビット列を抽出して、抽出ビット列を生成する。
<ステップS19>
抽出部25は、蓄積部27から、誤り訂正処理部22により生成された訂正後ビット列、および、シフティング処理部21により受信されたパルス情報を読み出し、訂正後ビット列から、パルス情報が示す信号パルスに対応するビット列を抽出して、抽出ビット列を生成する。
<ステップS20>
秘匿性増強処理部16は、蓄積部17から誤り訂正処理部12により生成された漏洩ビット数を読み出し、この漏洩ビット数、および算出部14により算出された上述の12種類のデータに基づいて、最終的な暗号鍵の長さを算出し、抽出部15により生成された抽出ビット列を圧縮して、算出した長さとなる暗号鍵を生成する秘匿性増強処理を実行する。
<ステップS21>
秘匿性増強処理部26は、蓄積部27から誤り訂正処理部22により生成された漏洩ビット数を読み出し、この漏洩ビット数、および算出部14から古典通信路を介して受信した上述の12種類のデータに基づいて、最終的な暗号鍵の長さを算出し、抽出部25により生成された抽出ビット列を圧縮して、算出した長さとなる暗号鍵を生成する秘匿性増強処理を実行する。
以上のような動作によって、送信機1および受信機2において、同一の暗号鍵が生成される。上述の動作によって生成された暗号鍵は、一度しか使用しないいわゆるワンタイムパッドの鍵であるので、上述の動作によって、異なる暗号鍵が繰り返し生成される。なお、上述のステップは、それぞれ並行に実行可能であり、例えば、ステップS15およびS16のEC処理が実行されるのと並行して、ステップS13およびS14のシフティング処理が、別のビット列に対して実行されるものとしてもよい。
また、図3の各機能部が生成したデータのうち、蓄積部17および蓄積部27に記憶させているデータがあるが、必ずしも記憶させる必要はなく、次工程に係る機能部に直接送るものとしてもよい。例えば、誤り訂正処理部12は、上述では、生成した訂正後ビット列を蓄積部17に記憶させ、算出部14および抽出部15は、蓄積部17から訂正後ビット列を読み出すものとしているが、訂正後ビット列を、蓄積部17を経由せずに、算出部14および抽出部15に直接送るものとしてもよい。逆に、図3の各機能部が生成したデータを、蓄積部17および蓄積部27に記憶させずに、次工程に係る機能部に直接送っているデータがあるが、蓄積部17および蓄積部27を経由させるものとしてもよい。例えば、シフティング処理部11は、上述では、生成した共有ビット列を、直接誤り訂正処理部12に送るものとしているが、一旦、蓄積部17に記憶させるものとしてもよい。この場合、誤り訂正処理部12は、蓄積部17から共有ビット列を読み出して、誤り訂正処理を実行するものとすればよい。
以上のように、本実施形態においては、共有ビット列を、パルスごと、かつ、基底ごとのビット列に予め分けるのではなく、誤り訂正処理部12により、共有ビット列全体に対して、誤り訂正処理を行うものとしている。この誤り訂正処理部12による誤り訂正処理の過程で、誤り位置特定部13は、共有ビット列においてどのビットに誤りがあるかを示す情報を誤り位置情報として生成するものとしている。そして、算出部14は、誤り位置特定部13により生成された誤り位置情報、ならびにパルス情報および基底情報を用いて分類したパルスごと、かつ、基底ごとのビット列に対して、カウント数およびQBER(上述の12種類のデータ)を算出するものとしている。これによって、共有ビット列について誤りを訂正できず、または、誤り訂正処理に多くの時間を費やすことを抑制することができ、最終的な暗号鍵の生成効率の低下を抑制することができる。また、送信機1と受信機2との間で、暗号鍵を生成する過程のビット列をつき合わせて比較するための通信を行うことなく、QBER等を計算することができる。
なお、図3においては、送信機1が、誤り位置特定部13および算出部14を備え、受信機2は、これらの機能部を備えないものとしているが、この構成に限定されるものではない。例えば、受信機2が、誤り位置特定部13および算出部14に相当する機能部を備えるものとしてもよい。この場合、受信機2が備える算出部14は、送信機1において生成されたパルス情報を利用して、パルスごと、かつ、基底ごとのビット列のカウント数およびQBERを算出するものとすればよい。また、送信機1および受信機2双方が、誤り位置特定部13および算出部14に相当する機能部を備えるものとしてもよい。この場合、受信機2の算出部14は、独自に上述の12種類のデータを算出するので、上述のように、送信機1の算出部14は、算出した12種類のデータを、受信機2の秘匿性増強処理部26に送信する必要はない。
また、上述においては、送信機1の秘匿性増強処理部16、および受信機2の秘匿性増強処理部26が、それぞれ漏洩ビット数、および12種類のデータに基づいて、暗号鍵の長さを算出するものとしているが、これに限定されるものではない。すなわち、秘匿性増強処理部16または秘匿性増強処理部26のいずれか一方が、暗号鍵の長さを算出し、算出した暗号鍵の長さを、古典通信路を介して他方に送信し、他方は、受信した暗号鍵の長さを利用して秘匿性増強処理を実行するものとしてもよい。
また、本実施形態に係るQKD装置で実行されるプログラムは、例えば、ROM81等に予め組み込まれて提供される。
なお、本実施形態に係るQKD装置で実行されるプログラムは、インストール可能な形式または実行可能な形式のファイルでCD−ROM(Compact Disk Read Only Memory)、フレキシブルディスク(FD)、CD−R(Compact Disk Recordable)、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録してコンピュータプログラムプロダクトとして提供されるように構成してもよい。
さらに、本実施形態に係るQKD装置で実行されるプログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成してもよい。また、本実施形態に係るQKD装置で実行されるプログラムをインターネット等のネットワーク経由で提供または配布するように構成してもよい。
また、本実施形態に係るQKD装置で実行されるプログラムは、コンピュータを上述したQKD装置の各機能部(シフティング処理部11、誤り訂正処理部12、誤り位置特定部13、算出部14、抽出部15および秘匿性増強処理部16、または、シフティング処理部21、誤り訂正処理部22、抽出部25および秘匿性増強処理部26)として機能させ得る。このコンピュータは、CPU80がコンピュータ読取可能な記憶媒体からプログラムを主記憶装置上に読み出して実行することができる。
本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、および変更を行うことができる。この実施形態は、発明の範囲および要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 送信機
2 受信機
3 光ファイバリンク
10 光子送信部
11 シフティング処理部
12 誤り訂正処理部
13 誤り位置特定部
14 算出部
14a データ分類部
15 抽出部
16 秘匿性増強処理部
17 蓄積部
20 光子受信部
21 シフティング処理部
22 誤り訂正処理部
25 抽出部
26 秘匿性増強処理部
27 蓄積部
80 CPU
81 ROM
82 RAM
83 通信I/F
84 補助記憶装置
85 光学処理装置
86 バス
100 量子鍵配送システム
200 信号パルス
201 デコイパルス
202 真空パルス
210 光子

Claims (8)

  1. 他の量子鍵配送装置と、量子通信路および古典通信路で接続され、同一の暗号鍵を生成して共有する量子鍵配送装置であって、
    2種類以上の光パルスに含まれる光子に対する前記量子通信路を介した量子鍵配送によって光子列を取得し、生成した基底情報に基づいて前記光子列に対応した光子ビット列を取得する量子鍵配送手段と、
    前記光子ビット列から、前記量子鍵配送手段および前記他の量子鍵配送装置の基底情報に基づいたシフティング処理によって共有ビット列を生成し、前記共有ビット列の各ビットがいずれの前記光パルスに対応するかを示すパルス情報を取得するシフティング手段と、
    前記共有ビット列に含まれる誤りを誤り訂正処理により訂正し、訂正後ビット列を生成する訂正手段と、
    前記訂正手段による前記誤り訂正処理で、前記訂正後ビット列のうちいずれのビットの誤りが訂正されたかを特定する誤り位置情報を生成する特定手段と、
    前記パルス情報および前記基底情報により、前記訂正後ビット列の各ビットがいずれの前記光パルス、かつ、いずれの基底に対応するのかを分類する分類手段と、
    前記誤り位置情報を用いて、前記分類手段により分類された前記光パルスごと、かつ、前記基底ごとのエラーレートを算出する算出手段と、
    前記各エラーレートに基づいて、前記訂正後ビット列に関するビット列を圧縮する秘匿性増強処理によって前記暗号鍵を生成する秘匿性増強手段と、
    を備えた量子鍵配送装置。
  2. 前記量子鍵配送手段は、前記各光パルスを発生させ、該各光パルスに含まれる光子により前記光子列を生成し、前記量子通信路を介して、前記他の量子鍵配送装置に送信し、
    前記シフティング手段は、前記量子鍵配送手段により発生された前記光パルスの種類に応じて前記パルス情報を生成する請求項1に記載の量子鍵配送装置。
  3. 前記量子鍵配送手段は、前記他の量子鍵配送装置から、前記量子通信路を介して前記光子列を受信し、該光子列が含む情報を、生成した基底情報に基づいて読み取ることにより前記光子ビット列を生成し、
    前記シフティング手段は、前記他の量子鍵配送装置から、前記古典通信路を介して前記パルス情報を受信することにより取得する請求項1に記載の量子鍵配送装置。
  4. 前記訂正後ビット列から、前記パルス情報により示される前記暗号鍵を形成するためのビット列を抽出ビット列として抽出する抽出手段を、さらに備え、
    前記秘匿性増強手段は、前記抽出ビット列に対して前記秘匿性増強処理を行うことにより前記暗号鍵を生成する請求項1に記載の量子鍵配送装置。
  5. 前記訂正手段は、前記誤り訂正処理で前記古典通信路を介して交換した前記他の量子鍵配送装置との制御情報に基づいて、漏洩ビット数を算出し、
    前記秘匿性増強手段は、前記漏洩ビット数をさらに用いて、前記秘匿性増強処理を行う請求項1に記載の量子鍵配送装置。
  6. 前記算出手段は、前記誤り位置情報を用いて、前記分類手段により分類された前記光パルスごと、かつ、前記基底ごとの前記訂正後ビット列におけるカウント数を、さらに算出し、
    前記秘匿性増強手段は、前記エラーレートおよび前記カウント数に基づいて、前記秘匿性増強処理により前記暗号鍵を生成する請求項1に記載の量子鍵配送装置。
  7. 複数の量子鍵配送装置が、量子通信路および古典通信路で接続され、同一の暗号鍵を生成して共有する量子鍵配送システムであって、
    前記複数の量子鍵配送装置のうち少なくともいずれか1つの量子鍵配送装置は、
    2種類以上の光パルスに含まれる光子に対する前記量子通信路を介した量子鍵配送によって光子列を取得し、生成した基底情報に基づいて前記光子列に対応した光子ビット列を取得する量子鍵配送手段と、
    前記光子ビット列から、前記量子鍵配送手段および他の量子鍵配送装置の基底情報に基づいたシフティング処理によって共有ビット列を生成し、前記共有ビット列の各ビットがいずれの前記光パルスに対応するかを示すパルス情報を取得するシフティング手段と、
    前記共有ビット列に含まれる誤りを誤り訂正処理により訂正し、訂正後ビット列を生成する訂正手段と、
    前記訂正手段による前記誤り訂正処理で、前記訂正後ビット列のうちいずれのビットの誤りが訂正されたかを特定する誤り位置情報を生成する特定手段と、
    前記パルス情報および前記基底情報により、前記訂正後ビット列の各ビットがいずれの前記光パルス、かつ、いずれの基底に対応するのかを分類する分類手段と、
    前記誤り位置情報を用いて、前記分類手段により分類された前記光パルスごと、かつ、前記基底ごとのエラーレートを算出する算出手段と、
    前記各エラーレートに基づいて、前記訂正後ビット列に関するビット列を圧縮する秘匿性増強処理によって前記暗号鍵を生成する秘匿性増強手段と、
    を備えた量子鍵配送システム。
  8. 他の量子鍵配送装置と、量子通信路および古典通信路で接続され、同一の暗号鍵を生成して共有するコンピュータであって、2種類以上の光パルスに含まれる光子に対する前記量子通信路を介した量子鍵配送によって光子列を取得し、生成した基底情報に基づいて前記光子列に対応した光子ビット列を取得する量子鍵配送手段を備えたコンピュータを、
    前記光子ビット列から、前記量子鍵配送手段および前記他の量子鍵配送装置の基底情報に基づいたシフティング処理によって共有ビット列を生成し、前記共有ビット列の各ビットがいずれの前記光パルスに対応するかを示すパルス情報を取得するシフティング手段と、
    前記共有ビット列に含まれる誤りを誤り訂正処理により訂正し、訂正後ビット列を生成する訂正手段と、
    前記訂正手段による前記誤り訂正処理で、前記訂正後ビット列のうちいずれのビットの誤りが訂正されたかを特定する誤り位置情報を生成する特定手段と、
    前記パルス情報および前記基底情報により、前記訂正後ビット列の各ビットがいずれの前記光パルス、かつ、いずれの基底に対応するのかを分類する分類手段と、
    前記誤り位置情報を用いて、前記分類手段により分類された前記光パルスごと、かつ、前記基底ごとのエラーレートを算出する算出手段と、
    前記各エラーレートに基づいて、前記訂正後ビット列に関するビット列を圧縮する秘匿性増強処理によって前記暗号鍵を生成する秘匿性増強手段と、
    として機能させるためのプログラム。
JP2015011275A 2015-01-23 2015-01-23 量子鍵配送装置、量子鍵配送システムおよびプログラム Active JP6396225B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015011275A JP6396225B2 (ja) 2015-01-23 2015-01-23 量子鍵配送装置、量子鍵配送システムおよびプログラム
US14/859,507 US9768954B2 (en) 2015-01-23 2015-09-21 Quantum key distribution device, quantum key distribution system, and computer program product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015011275A JP6396225B2 (ja) 2015-01-23 2015-01-23 量子鍵配送装置、量子鍵配送システムおよびプログラム

Publications (2)

Publication Number Publication Date
JP2016136673A JP2016136673A (ja) 2016-07-28
JP6396225B2 true JP6396225B2 (ja) 2018-09-26

Family

ID=56434312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015011275A Active JP6396225B2 (ja) 2015-01-23 2015-01-23 量子鍵配送装置、量子鍵配送システムおよびプログラム

Country Status (2)

Country Link
US (1) US9768954B2 (ja)
JP (1) JP6396225B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3399670B1 (en) * 2017-05-03 2021-09-29 Université de Genève Apparatus and method for decoy-state three-state quantum key distribution
KR102028098B1 (ko) * 2018-01-29 2019-10-02 한국전자통신연구원 양자암호통신 인증 장치 및 방법
KR20210088916A (ko) * 2020-01-07 2021-07-15 에스케이하이닉스 주식회사 이전에 발생한 에러 분석을 통해 에러대응동작을 선택하기 위한 메모리 시스템 및 메모리 시스템을 포함하는 데이터 처리 시스템

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002338042A1 (en) * 2002-09-26 2004-04-19 Mitsubishi Denki Kabushiki Kaisha Cryptographic communication apparatus
US7227955B2 (en) * 2003-02-07 2007-06-05 Magiq Technologies, Inc. Single-photon watch dog detector for folded quantum key distribution system
JP4521318B2 (ja) * 2005-06-09 2010-08-11 株式会社東芝 量子回路、量子誤り訂正装置および量子誤り訂正方法
GB201020424D0 (en) * 2010-12-02 2011-01-19 Qinetiq Ltd Quantum key distribution
WO2012137513A1 (ja) * 2011-04-08 2012-10-11 日本電気株式会社 暗号鍵共有システムにおける通信装置および暗号鍵生成方法
US8693691B2 (en) * 2012-05-25 2014-04-08 The Johns Hopkins University Embedded authentication protocol for quantum key distribution systems
GB201210494D0 (en) 2012-06-13 2012-07-25 Toshiba Res Europ Ltd A quantum communication method and system

Also Published As

Publication number Publication date
US9768954B2 (en) 2017-09-19
US20160218868A1 (en) 2016-07-28
JP2016136673A (ja) 2016-07-28

Similar Documents

Publication Publication Date Title
JP6490613B2 (ja) 通信装置、量子鍵配送システム、量子鍵配送方法およびプログラム
JP6359285B2 (ja) 量子鍵配送装置、量子鍵配送システムおよび量子鍵配送方法
JP6478749B2 (ja) 量子鍵配送装置、量子鍵配送システムおよび量子鍵配送方法
JP5424008B2 (ja) 共有情報の管理方法およびシステム
JP6165646B2 (ja) 量子鍵配送装置、量子鍵配送システムおよび量子鍵配送方法
JP6400513B2 (ja) 量子鍵配送装置、量子鍵配送方法およびプログラム
JP4888630B2 (ja) 通信システムおよびその監視制御方法
US10291400B2 (en) Quantum key distribution device, quantum key distribution system, and quantum key distribution method
US10623180B2 (en) Communication device, communication method, and communication system
US20170222803A1 (en) Communication device, cryptographic communication system, cryptographic communication method, and computer program product
JP6426477B2 (ja) 通信装置、通信システムおよびプログラム
JP2017175320A (ja) 通信装置、量子鍵配送システム、量子鍵配送方法およびプログラム
JP2015130628A (ja) 量子通信装置、量子通信方法及びプログラム
JP6169028B2 (ja) 通信装置、通信システムおよび通信方法
US20070255679A1 (en) Method and system for encrypted communications using multi-valued modulation
JP6396225B2 (ja) 量子鍵配送装置、量子鍵配送システムおよびプログラム
JP6400441B2 (ja) 量子鍵配送装置、量子鍵配送システムおよび量子鍵配送方法
JP4187105B2 (ja) 共有データ精製装置及び共有データ精製方法
WO2016068847A1 (en) Key splitting
RU2697696C1 (ru) Способ передачи сообщения через вычислительную сеть с применением аппаратуры квантового распределения ключей
US11595200B2 (en) Quantum key distribution system and method for securely distributing quantum keys in a network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180829

R151 Written notification of patent or utility model registration

Ref document number: 6396225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151