JP6387242B2 - マイクロ波プラズマ生成装置 - Google Patents

マイクロ波プラズマ生成装置 Download PDF

Info

Publication number
JP6387242B2
JP6387242B2 JP2014079911A JP2014079911A JP6387242B2 JP 6387242 B2 JP6387242 B2 JP 6387242B2 JP 2014079911 A JP2014079911 A JP 2014079911A JP 2014079911 A JP2014079911 A JP 2014079911A JP 6387242 B2 JP6387242 B2 JP 6387242B2
Authority
JP
Japan
Prior art keywords
microwave
waveguide
sealing portion
plasma
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014079911A
Other languages
English (en)
Other versions
JP2015201364A (ja
Inventor
泰二 酒井
泰二 酒井
正一 原
正一 原
上松 和夫
和夫 上松
春雄 進藤
春雄 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Tokai University Educational Systems
Original Assignee
IHI Corp
Tokai University Educational Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Tokai University Educational Systems filed Critical IHI Corp
Priority to JP2014079911A priority Critical patent/JP6387242B2/ja
Publication of JP2015201364A publication Critical patent/JP2015201364A/ja
Application granted granted Critical
Publication of JP6387242B2 publication Critical patent/JP6387242B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、マイクロ波により反応ガスをプラズマ化するマイクロ波プラズマ生成装置に関する。
マイクロ波により反応ガスをプラズマ化し、それを被加工物に接触させて、親水化処理、エッチング処理、クリーニング処理、プラズマイオン注入処理、CVD処理等のプラズマ加工処理を実行するマイクロ波プラズマ生成装置が知られている。
かかるマイクロ波プラズマ生成装置は、マイクロ波を伝播させる導波管を含んで構成され、導波管には、マイクロ波の進行方向に延在するスロットが形成される。また、そのスロットを導波管の内側から封止する誘電体も設けられる。そして、導波管外側のスロット近傍において、導波管から放射されるマイクロ波により反応ガスがプラズマ化される(例えば、特許文献1)。
特開2010−219003号公報
上述したマイクロ波プラズマ生成装置では、導波管内に配置されている誘電体がマイクロ波によって加熱される。また、誘電体は、プラズマが生成されるスロット近傍にも位置しているため、プラズマ化の影響を受けて温度が上昇する。したがって、熱膨張によって誘電体に亀裂が生じたり、溶解したりするおそれがあった。
そこで、誘電体やその周囲部位の温度上昇を抑制すべく、誘電体に蓄積された熱を逃がす機構をマイクロ波プラズマ生成装置に設けることが考えられる。しかし、加工が容易な誘電体のスリット側(露出側)に熱を逃がす機構を設けると、それによってスリットが遮蔽され、プラズマ化に影響を及ぼしてしまう。また、誘電体中に冷却媒体を通流する貫通孔を設けることも考えられるが、貫通孔を有する特別な誘導体を作成し、かつ、導波管内で貫通孔に冷却媒体を通流させる複雑な機構を構成しなくてはならなくなり、コスト高となってしまう。さらに、安易に導波管内を改変すると、マイクロ波の伝搬構造が変化してしまいマイクロ波の形状が意図したものにならない等の弊害が生じうる。
そこで本発明は、このような課題に鑑み、簡易な構成で、プラズマを生じさせる機能を損なうことなく、温度上昇を抑制することが可能なマイクロ波プラズマ生成装置を提供することを目的としている。
上記課題を解決するために、本発明のマイクロ波プラズマ生成装置は、管状に形成され、内部にマイクロ波を伝播し、内面と外面とを貫通させつつマイクロ波の進行方向に延在するスロットが形成された導波管と、誘電体で構成され、導波管の内側からスロットを封止する第1封止部と、誘電体で構成され、導波管の外側からスロットを封止する第2封止部と、第2封止部より導波管の外側方向において、第2封止部と部分的に重なる金属部と、導波管の外側から金属部および第2封止部が臨む空隙に反応ガスを導入するガス導入路と、を備え、スロットに冷却媒体を通流することを特徴とする。
金属部と第2封止部との当接面には、空隙から進行方向と直交する方向に延在する切り欠きが設けられてもよい。
ガス導入路は、空隙の切り欠きに反応ガスを直接誘導してもよい。
第1封止部のスロットから離れる方向の厚みは、プラズマ化に必要な電界強度に応じて設定されてもよい。
本発明によれば、既存の構成を最大限利用し、簡易な構成で、プラズマを生じさせる機能を損なうことなく、温度上昇を抑制することが可能となる。
プラズマ加工システムの概略的な構成を示した機能ブロック図である。 マイクロ波プラズマ生成装置の概略的な構成を説明するための縦断面図である。 マイクロ波プラズマ生成装置の空隙の形状を説明するための説明図である。 空隙の切り欠きのバリエーションを示した説明図である。 第1封止部の厚みを説明するための説明図である。
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。
(プラズマ加工システム100)
図1は、プラズマ加工システム100の概略的な構成を示した機能ブロック図である。本実施形態の図1や以下の図では、垂直に交わるX軸、Y軸、Z軸を図示の通り定義している。プラズマ加工システム100は、マイクロ波生成源110と、中継管112と、マイクロ波プラズマ生成装置114と、プランジャ116と、整合器118と、ダミーロード120と、電力計122と、表示部124と、反応領域126と、ガス供給源128とを含んで構成される。
マイクロ波生成源110は、マグネトロン等で構成され、例えば、2.45GHzの直流パルス方式のマイクロ波を生成し、導波管(中空の金属管)からなる中継管112を通じて、生成したマイクロ波をマイクロ波プラズマ生成装置114に伝達する。マイクロ波プラズマ生成装置114は、導波管を含み、中継管112を通じて伝達されたマイクロ波をプランジャ116に伝達する。
プランジャ116は、マイクロ波プラズマ生成装置114から入力されたマイクロ波を反射し、マイクロ波プラズマ生成装置114に戻す。したがって、マイクロ波プラズマ生成装置114では、中継管112を通じて入力されたマイクロ波とプランジャ116で反射したマイクロ波とが重畳される。
整合器118は、プランジャ116で反射されたマイクロ波とマイクロ波生成源110で生成されたマイクロ波との整合をとり、マイクロ波生成源110で生成されたマイクロ波を効率よくマイクロ波プラズマ生成装置114に伝達する。ダミーロード120は、プランジャ116で反射されたマイクロ波を吸収し、反射されたマイクロ波がマイクロ波生成源110に伝達するのを防止する。
電力計122は、中継管112を通過するマイクロ波の電力を測定し、表示部124に表示する。反応領域126は、チャンバー等で閉鎖された空間であり、内部にマイクロ波プラズマ生成装置114が配置されている。ガス供給源128は、反応領域126においてマイクロ波プラズマ生成装置114に反応ガスを供給する。
プラズマ加工システム100では、マイクロ波プラズマ生成装置114が、マイクロ波プラズマ生成装置114自体を伝播するマイクロ波に基づき、マイクロ波プラズマ生成装置114外部において反応ガスをプラズマ化する。そして、プラズマ化された反応ガスを用いて、例えば、被加工物に、親水化処理、エッチング処理、クリーニング処理、プラズマイオン注入処理、CVD処理等のプラズマ加工処理を実行する。以下、マイクロ波プラズマ生成装置114の構成を詳細に説明する。
(マイクロ波プラズマ生成装置114)
図2は、マイクロ波プラズマ生成装置114の概略的な構成を説明するための縦断面図である。マイクロ波プラズマ生成装置114は、導波管130と、第1封止部132と、第2封止部134と、金属部136と、ガス供給治具138と、ガス導入路140とを含んで構成される。
導波管130は、断面が扁平な矩形となる管であり、マイクロ波生成源110で生成されたマイクロ波を伝播する。また、その一面には、導波管130の内面と外面とを貫通させた状態でマイクロ波の進行方向(長手方向)に延在するスロット130aが形成されている。
第1封止部132は、誘電性の高い誘電体で構成され、導波管130内側からスロット130aによって形成された導波管130の開口を封止し、導波管130を密封する。ここで、内側とは、導波管130によって囲まれた空間を言う。かかる第1封止部132の、スロット130aから離れる方向(Z軸に沿った方向)の厚みは任意に設定することができ、導波管130におけるスロット130aの対向面に亘って存在してもよい。当該第1封止部132の厚みについては後述する。
第2封止部134は、誘電性の高い誘電体で構成され、導波管130外側からスロット130aによって形成された導波管130の開口を封止する。したがって、スロット130aは、導波管130と、第1封止部132と、第2封止部134によって縦断面方向に密閉空間が形成される。本実施形態では、かかるスロット130aを冷却媒体の媒体流路130bとして利用する。媒体流路130bについては後述する。
金属部136は、第2封止部134より導波管130の外側方向において、第2封止部134と部分的に重なるように配置される。すなわち、第2封止部134の導波管130の外側方向では、金属部136と重なる部位と重ならない部位が存在する。また、本実施形態では、金属部136は、2つの金属板で構成され、金属板の側面と第2封止部134とによってマイクロ波の進行方向(長手方向)に延在する空隙136aが形成される。かかる空隙136aの幅は、当該マイクロ波プラズマ生成装置114が生成すべきプラズマの幅に基づいて設定される。本実施形態では、金属部136が第2封止部134から導波管130の側面まで延在しているが、かかる構成に限らず、金属部136の一部と第2封止部134とが重なれば足りる。
ガス供給治具138は、ガス供給源128から反応ガスとしてのヘリウム(He)やアルゴン(Ar)等を受け、ガス導入路140に供給する。ガス導入路140は、ガス供給治具138から受けた反応ガスを、金属部136および第2封止部134が臨む空隙136aに向かって導入する。
マイクロ波プラズマ生成装置114では、導波管130内で伝播されるマイクロ波の電磁エネルギーが、誘電体である第1封止部132および第2封止部134を通過し、導波管130外の第2封止部134近傍の空隙136aにマイクロ波による電界を集中させて高電界を形成する。そして、かかる高電界領域に反応ガスを導入すると、供給された反応ガスが励起されてプラズマが生じる。
このようなプラズマを生成するため、反応ガスが存在する導波管130外の空間は、真空等、気圧が極めて低い雰囲気であることが望ましい。しかし、真空雰囲気を形成するための減圧にはコストを要するので、気圧の高い、例えば、大気圧でプラズマを生成させる技術が希求される。
この場合、例えば、3kV/mといった、真空雰囲気下でプラズマを生成する場合と比べて大きな電界強度を要する。かかる電界強度を生じさせるためには、従来の装置で200〜300kWといった大容量のマイクロ波生成源110が必要となる。
また、導入する反応ガスとしては、プラズマが生じ易いという理由からヘリウムが用いられることが多いが、本実施形態では、表面処理に有効とされる酸素(O)と比較的安価なアルゴンとの混合気を用いる。一般にプラズマを生成するための電界強度は、その反応ガスの種類に依存し、かかる混合気のプラズマ化には、ヘリウムと比べ5倍程度の電界強度を要する。
本実施形態では、マイクロ波プラズマ生成装置114の空隙136aに切り欠きを設ける等、様々な工夫を施すことで、マイクロ波生成源110を、例えば、1kWといった現実性のある容量に抑えつつ、大気圧など高い気圧雰囲気下で上記混合気を用いてプラズマを生成する。
ところで、マイクロ波プラズマ生成装置114では、上述したプラズマ化の過程で、導波管130内に配置されている第1封止部132が、マイクロ波によって加熱されたり、プラズマ化の影響を受けてその近傍の温度が上昇したりする。しかし、導波管130の中において、安易に第1封止部132中やその周囲に熱を逃がす機構を構築すると、マイクロ波の伝搬構造が変化してしまいマイクロ波の形状が意図したものにならない等の弊害が生じる。
本実施形態では、例えば、既存のプラズマ化の構成である、スロット130aと第1封止部132とを敢えてプラズマ化に利用せず、第2封止部134を用いて、スロット130aを、冷却媒体が通流する媒体流路130bとして利用する。そして、新たに金属部136による空隙136aと第2封止部134によってプラズマ化が可能となるように構成している。
こうして、既存の構成を最大限利用し、簡易な構成で、プラズマを生じさせる機能を損なうことなく、温度上昇を抑制することが可能となる。以下、空隙136a、媒体流路130b、ガス導入路140、第1封止部132の順に本実施形態の特徴的な構成を詳述する。
(空隙136a)
図3は、マイクロ波プラズマ生成装置114の空隙136aの形状を説明するための説明図である。図3(a)に示した比較例である、切り欠きを設けていないマイクロ波プラズマ生成装置では、マイクロ波による電界が、誘電体である第2封止部134から空隙136aを通じて金属部136に向かって生じうる。ここで、第2封止部134と金属部136とが当接する領域Aでは、電界の方向がZ軸に沿った方向となり電界強度は高くなるものの、その間には反応ガスが進入する余地がないのでプラズマが生じない。反応ガスが存在しうる領域Bでは、第2封止部134の外面と空隙136aの外面とが垂直な位置関係となるので、電界の軌跡は、図3(a)中矢印で示すように湾曲する。すると、空隙136a内で生じる電気力線の軌跡が長くなり、電界強度は高くならない。
第2封止部134は、金属部136に当接させて配置しているが、本実施形態においては、図3(b)に示すように、第2封止部134と金属部136との当接面の一部に、空隙136aの内面からY軸に沿った方向に延在する切り欠き150を設けている。こうして、空隙136aは、第2封止部134に近い側における開口面積が第2封止部134から遠い側における開口面積よりも大きくなる。また、切り欠き150を介して第2封止部134と金属部136とが対面し、電気力線の湾曲度合いが緩和される。空隙136aをこのように形成することで、図3(b)に示すように、空隙136aを経由して放出されたマイクロ波によって切り欠き150で生じる電気力線の軌跡は、図3(a)の電気力線と比較して短く、かつ、直線に近くなり、また、その密度がかかる切り欠き150に集中し、切り欠き150近傍の電界強度が高まる。
こうして、空隙136aおよび空隙136a近傍に存在する反応ガス(酸素とアルゴンの混合気)をプラズマ化することができる。
図4は、空隙136aの切り欠き150のバリエーションを示した説明図である。例えば、図4(a)では、その切り欠き面がテーパーを形成するようにYZ断面が三角となる切り欠き150が設けられ、図4(b)では、YZ断面が扇形(円の一部)となる切り欠き150が設けられている。このような切り欠き150においても、図4中に電気力線で示したように、その軌跡が短くなり、電界強度を高め、反応ガスを容易にプラズマ化することが可能となる。
(媒体流路130b)
図2に戻って説明すると、このように反応ガスがプラズマ化すると、それに伴って第2封止部134やその近傍の温度が上昇する。また、マイクロ波プラズマ生成装置114では、導波管130内に配置されている第1封止部132がマイクロ波によって加熱される。ここでは、上述したように、導波管130に形成されたスロット130aを、Z軸方向から第1封止部132と、第2封止部134とで挟持し、縦断面方向に密閉して、媒体流路130bを形成している。そして、その媒体流路130bに冷却媒体を通流する。
ここで、媒体流路130bを通流する冷却媒体は、冷却用のガスでもよいし、低損失、かつ、第1封止部132や第2封止部134より低誘電率の液体でもよい。
媒体流路130bは、第1封止部132に面している。したがって、媒体流路130bを流れる冷却媒体は、マイクロ波によって加熱された熱を吸収することができ、第1封止部132の温度上昇を抑制することが可能となる。また、第1封止部132が導波管130内における媒体流路130bの対向面に亘って存在している場合、すなわち、第1封止部132の媒体流路130b側とは逆の面が導波管130の底部に接している場合、マイクロ波によって生じた熱を導波管130底部から外部に放出することもできる。
また、媒体流路130bは、第2封止部134にも面している。したがって、媒体流路130bを流れる冷却媒体は、プラズマ化によって第2封止部134に生じた熱を吸収することができ、第2封止部134の温度上昇を抑制することが可能となる。また、第2封止部134の媒体流路130b側とは逆の面には、ガス導入路140から吹き込まれる反応ガスによっても熱交換がなされ、第2封止部134の上方からも熱を放出することが可能となる。さらに、第2封止部134の厚みを薄く形成することで、熱膨張による形状のゆがみを抑え、第2封止部134の融解や割れを防止することができる。
(ガス導入路140)
ガス導入路140は、図2に示すように、外部のガス供給源128から空隙136a近傍まで濃度を低下させることなく(希釈することなく)、反応ガスを、直接、誘導する(吹き付ける)。ここで、空隙136a近傍は、空隙136aのみならず、空隙136aに反応ガスを直接誘導しなくとも、実質的に空隙136aに反応ガスが到達する程度近い距離にある領域を含む。ガス導入路140は、ガス供給治具138を通じて導入された高濃度の反応ガスを反応領域126の雰囲気中に拡散せず、例えば、空隙136aの側面から空隙136a全体に直接誘導しプラズマ化する。また、上述したように、空隙136aの切り欠き150において電気力線の密度が高くなるので、図2に示すように、ガス導入路140を切り欠き150に向け、切り欠き150における、第2封止部134と対向する面から、空隙136aの特に切り欠き150に反応ガスを直接誘導するのが好ましい。
従来では、反応領域126の雰囲気全体に反応ガスが希釈され、濃度が反応領域126内で均一化されていたところ、上記のガス導入路140によって、空隙136a内といった狭小の空間でのみ均一化され、望ましくは、切り欠き150といった、さらに電気力線の密度が高い狭小の空間でのみ均一化されるので、高濃度の反応ガスを直接プラズマ化することができるようになり、プラズマ化の促進を図ることが可能となる。
(第1封止部132)
図5は、第1封止部132の厚みを説明するための説明図である。上述したように、第1封止部132は、媒体流路130bから離れる方向(Z軸に沿った方向)の厚みを任意に設定することができる。第1封止部132は、誘電体なので、図5に示す厚みdによって下記数式1に示すように電界強度が導かれる。
Figure 0006387242
…(数式1)
ここで、εは第1封止部132の比誘電率、hは導波管130の内面における鉛直上下間の距離、Eは第1封止部132と導波管130内に形成される電界、Eiは第1封止部132内の電界である。
数式1を参照して理解できるように、厚みdに応じて電界比E/Eを調整することができ、対象となる反応ガスの種類に応じて厚みdを設定することで、プラズマ化に必要な電界強度を調整することが可能となる。
また、図示は省略するが、第1封止部132の厚みdによって、当該マイクロ波プラズマ生成装置114で生成されるプラズマの形状が異なる。したがって、被加工物やプラズマ加工処理の種別(親水化処理、エッチング処理、クリーニング処理、プラズマイオン注入処理、CVD処理等)に応じて第1封止部132の厚みdを調整し、最適な形状のプラズマを適用することが可能となる。
以上説明したように、本実施形態によれば、既存の構成を最大限利用し、簡易な構成で、プラズマを生じさせる機能を損なうことなく、温度上昇を抑制することが可能となる。また、マイクロ波生成源110の容量を増やすことなく、上記空隙136aの切り欠き150、ガス導入路140、第2封止部134の構成により、マイクロ波プラズマ生成装置114に生じる電界強度を高めることができ、真空より高い気圧、例えば大気圧下においても安価にプラズマを通じた加工処理を行うことが可能となる。
以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
例えば、上述した実施形態では、マイクロ波プラズマ生成装置114に対してマイクロ波生成源110で生成したマイクロ波を一方向から伝播する構成を示したが、マイクロ波の伝播態様はかかる場合に限らず、マイクロ波生成源110をマイクロ波プラズマ生成装置114の導波管130の両側に設け、両方向からマイクロ波を伝播するとしてもよい。
本発明は、マイクロ波により反応ガスをプラズマ化するマイクロ波プラズマ生成装置に利用することができる。
114 マイクロ波プラズマ生成装置
126 反応領域
128 ガス供給源
130 導波管
130a スロット
130b 媒体流路
132 第1封止部
134 第2封止部
136 金属部
136a 空隙
138 ガス供給治具
140 ガス導入路
150 切り欠き

Claims (4)

  1. 管状に形成され、内部にマイクロ波を伝播し、内面と外面とを貫通させつつ該マイクロ波の進行方向に延在するスロットが形成された導波管と、
    誘電体で構成され、前記導波管の内側から前記スロットを封止する第1封止部と、
    誘電体で構成され、前記導波管の外側から前記スロットを封止する第2封止部と、
    前記第2封止部より前記導波管の外側方向において、前記第2封止部と部分的に重なる金属部と、
    前記導波管の外側から前記金属部および前記第2封止部が臨む空隙に反応ガスを導入するガス導入路と、
    を備え、
    前記スロットに冷却媒体を通流することを特徴とするマイクロ波プラズマ生成装置。
  2. 前記金属部と前記第2封止部との当接面には、前記空隙から前記進行方向と直交する方向に延在する切り欠きが設けられていることを特徴とする請求項1に記載のマイクロ波プラズマ生成装置。
  3. 前記ガス導入路は、前記空隙の前記切り欠きに前記反応ガスを直接誘導することを特徴とする請求項2に記載のマイクロ波プラズマ生成装置。
  4. 前記第1封止部の前記スロットから離れる方向の厚みは、プラズマ化に必要な電界強度に応じて設定されることを特徴とする請求項1から3のいずれか1項に記載のマイクロ波プラズマ生成装置。
JP2014079911A 2014-04-09 2014-04-09 マイクロ波プラズマ生成装置 Active JP6387242B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014079911A JP6387242B2 (ja) 2014-04-09 2014-04-09 マイクロ波プラズマ生成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014079911A JP6387242B2 (ja) 2014-04-09 2014-04-09 マイクロ波プラズマ生成装置

Publications (2)

Publication Number Publication Date
JP2015201364A JP2015201364A (ja) 2015-11-12
JP6387242B2 true JP6387242B2 (ja) 2018-09-05

Family

ID=54552441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014079911A Active JP6387242B2 (ja) 2014-04-09 2014-04-09 マイクロ波プラズマ生成装置

Country Status (1)

Country Link
JP (1) JP6387242B2 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289099A (ja) * 1996-02-20 1997-11-04 Hitachi Ltd プラズマ処理方法および装置
JPH10255998A (ja) * 1997-03-06 1998-09-25 Toshiba Corp マイクロ波励起プラズマ処理装置
JP5036092B2 (ja) * 1999-03-24 2012-09-26 東京エレクトロン株式会社 マイクロ波プラズマ処理装置
JP4163437B2 (ja) * 2002-04-17 2008-10-08 松下電器産業株式会社 プラズマ処理装置用誘電体窓
JP2008305736A (ja) * 2007-06-11 2008-12-18 Tokyo Electron Ltd プラズマ処理装置、プラズマ処理装置の使用方法およびプラズマ処理装置のクリーニング方法
JP5189999B2 (ja) * 2009-01-29 2013-04-24 東京エレクトロン株式会社 マイクロ波プラズマ処理装置、及びマイクロ波プラズマ処理装置のマイクロ波給電方法
JP2010219003A (ja) * 2009-03-19 2010-09-30 Adtec Plasma Technology Co Ltd マイクロ波ラインプラズマ発生装置
JP2010277971A (ja) * 2009-06-01 2010-12-09 Tokyo Electron Ltd プラズマ処理装置及びプラズマ処理装置の給電方法

Also Published As

Publication number Publication date
JP2015201364A (ja) 2015-11-12

Similar Documents

Publication Publication Date Title
JP5717888B2 (ja) プラズマ処理装置
US9252000B2 (en) Microwave waveguide apparatus, plasma processing apparatus and plasma processing method
JP5490192B2 (ja) マイクロ波加熱処理装置および処理方法
US8222579B2 (en) Microwave irradiation system
KR101469915B1 (ko) X선관
JP2008276986A (ja) マイクロ波照射装置
JP5490087B2 (ja) マイクロ波加熱処理装置および処理方法
JP2014026773A (ja) プラズマ処理装置
TW201021630A (en) Microwave plasma processing apparatus and method of supplying microwaves using the apparatus
JP2010225396A (ja) マイクロ波プラズマ処理装置
JP6387242B2 (ja) マイクロ波プラズマ生成装置
JP2016091821A (ja) プラズマ処理装置
JPWO2008018159A1 (ja) 2電源を備えたマイクロ波ラインプラズマ発生装置
JP6046985B2 (ja) マイクロ波プラズマ生成装置
JP4381001B2 (ja) プラズマプロセス装置
JP2015018687A (ja) マイクロ波プラズマ処理装置、スロットアンテナ及び半導体装置
WO2019058856A1 (ja) プラズマ処理装置
KR20150007251A (ko) 마이크로파 플라즈마 처리 장치, 슬롯 안테나 및 반도체 장치
JP2005050646A (ja) 高周波電子銃
US11152193B2 (en) Plasma generation apparatus
JP2006059798A (ja) プラズマ発生装置及びプラズマ処理装置
KR101858867B1 (ko) 챔버 내부에서 전자파를 방출하여 플라즈마를 생성하는 플라즈마 처리 장치
JP7198541B1 (ja) プラズマ発生装置、プラズマリアクター及びプラズマ発生方法
JP2016225228A (ja) 荷電粒子加速器
JPH0330296A (ja) マイクロ波エネルギーの結合・分配装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180813

R150 Certificate of patent or registration of utility model

Ref document number: 6387242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250