JP6385026B1 - Water-based paint composition, air purification mechanism and air purification method - Google Patents

Water-based paint composition, air purification mechanism and air purification method Download PDF

Info

Publication number
JP6385026B1
JP6385026B1 JP2018515698A JP2018515698A JP6385026B1 JP 6385026 B1 JP6385026 B1 JP 6385026B1 JP 2018515698 A JP2018515698 A JP 2018515698A JP 2018515698 A JP2018515698 A JP 2018515698A JP 6385026 B1 JP6385026 B1 JP 6385026B1
Authority
JP
Japan
Prior art keywords
charcoal powder
water
coating
paint
air purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018515698A
Other languages
Japanese (ja)
Other versions
JPWO2018229850A1 (en
Inventor
雅博 林田
雅博 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARTECH CO., LTD.
Original Assignee
ARTECH CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARTECH CO., LTD. filed Critical ARTECH CO., LTD.
Application granted granted Critical
Publication of JP6385026B1 publication Critical patent/JP6385026B1/en
Publication of JPWO2018229850A1 publication Critical patent/JPWO2018229850A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size

Abstract

【課題】品質に優れた塗膜を形成可能であり、室内空間に対して、充分な空気浄化機能を発揮することが可能な水性塗料組成物、空気浄化機構及び空気浄化方法を提供する。
【解決手段】水性塗料組成物は、塗料組成物における全量基準の重量比率が、カチオン系のアクリル酸エステル共重合体水性エマルジョン:29.07%、水:29.07%、1500メッシュの木炭粉末(中心粒径10μm):19.38%、3000メッシュの木炭粉末(中心粒径5μm):9.69%、水酸化アルミニウム:4.84%、アクリル系重合物:2.91%、防腐剤:2.91%、ウレタン変性ポリエーテル:1.94%、防カビ剤:0.10%、シリコーン系消泡剤:0.01%を含む組成を有している。
【選択図】1
An aqueous coating composition, an air purification mechanism, and an air purification method capable of forming a coating film with excellent quality and exhibiting a sufficient air purification function for an indoor space are provided.
The water-based coating composition has a weight ratio based on the total amount in the coating composition of cationic acrylate copolymer aqueous emulsion: 29.07%, water: 29.07%, 1500 mesh charcoal powder. (Center particle size 10 μm): 19.38%, 3000 mesh charcoal powder (center particle size 5 μm): 9.69%, aluminum hydroxide: 4.84%, acrylic polymer: 2.91%, preservative : 2.91%, urethane-modified polyether: 1.94%, fungicide: 0.10%, silicone antifoaming agent: 0.01%.
[Selection] 1

Description

本発明は水性塗料組成物、空気浄化機構及び空気浄化方法に関する。詳しくは、品質に優れた塗膜を形成可能であり、室内空間に対して、充分な空気浄化機能を発揮することが可能な水性塗料組成物、空気浄化機構及び空気浄化方法に係るものである。   The present invention relates to an aqueous coating composition, an air purification mechanism, and an air purification method. Specifically, the present invention relates to an aqueous coating composition, an air purification mechanism, and an air purification method that can form a coating film with excellent quality and that can exhibit a sufficient air purification function for indoor spaces. .

対象物を保護する目的や、美観や機能性を付与する目的から、対象物の表面に対して塗布する塗料が用いられている。塗料を塗布する対象物は、建築物、車両、電気機械、金属製品、家具、皮革等、多岐に渡り、用途ごとに様々な種類の塗料が存在する。   For the purpose of protecting the object and imparting aesthetics and functionality, a paint applied to the surface of the object is used. There are a wide variety of objects to which the paint is applied, such as buildings, vehicles, electric machines, metal products, furniture, leather, and the like, and various types of paint exist for each application.

また、塗料の用途の中でも、建築物、特に室内空間における壁面や天井面に塗布する建築内装用の塗料は、塗膜面の保護や意匠性の向上だけでなく、室内空間の環境改善にも寄与する。この建築内装用の塗料は、主に、合成樹脂、顔料、添加剤及び溶剤で構成されている。   Among paint applications, paints for building interiors, especially those applied to walls and ceilings in indoor spaces, not only protect the coating surface and improve design, but also improve the environment of indoor spaces. Contribute. This building interior paint is mainly composed of a synthetic resin, a pigment, an additive and a solvent.

このような室内空間の環境改善に寄与する塗料は、例えば、室内空間における塵や埃、家具や建材に含まれるホルムアルデヒドや揮発性有機化合物(VOC)等の化学物質、煙草、ペット等の臭気等の有害物質や不快物質を低減又は吸着する能力を有している。   Examples of paints that contribute to improving the environment of indoor spaces include dust and dirt in indoor spaces, chemical substances such as formaldehyde and volatile organic compounds (VOC) contained in furniture and building materials, odors of tobacco, pets, etc. It has the ability to reduce or adsorb harmful substances and unpleasant substances.

こうしたなか、室内空間のおける空気中の有害物質を効率的に吸着することを試みた塗料として、例えば、特許文献1に記載の水性塗料組成物がある。   Under these circumstances, for example, there is an aqueous coating composition described in Patent Document 1 as an attempt to efficiently adsorb harmful substances in the air in an indoor space.

かかる特許文献1に記載された水性塗料組成物は、建築内装用塗膜を得るための塗料であり、α,β−エチレン性不飽和単量体と共重合可能な界面活性剤及びカルボキシル基を有するエチレン性不飽和単量体を必須成分とし、カルボキシル基を除くカルボニル基を有するエチレン性不飽和単量体が0.5質量%〜10質量%共重合された水性樹脂分散体(A)、分子中にヒドラジド基を2個以上有する化合物(B)、及び活性炭(C)を含んでいる。この塗料は、活性炭により有害物質を吸着する。   Such a water-based coating composition described in Patent Document 1 is a coating for obtaining a coating film for building interiors, and has a surfactant and a carboxyl group copolymerizable with an α, β-ethylenically unsaturated monomer. An aqueous resin dispersion (A) in which 0.5% by mass to 10% by mass of an ethylenically unsaturated monomer having a carbonyl group excluding a carboxyl group is copolymerized as an essential component. The compound (B) which has 2 or more of hydrazide groups in a molecule | numerator, and activated carbon (C) are included. This paint adsorbs harmful substances by activated carbon.

また、塗料組成物中に導電性を有する成分を含有させた塗料を、室内空間の空気浄化機構に利用する事例が存在する。例えば、本願の発明者らは、導電性を有する木炭粉末を含有させた塗料の利用及び開発を行っている。   In addition, there is a case where a paint containing a conductive component in a paint composition is used for an air purification mechanism in an indoor space. For example, the inventors of the present application are utilizing and developing a paint containing conductive charcoal powder.

この導電性を有する塗料では、室内空間の空気中の正に帯電した粒子を捕捉することで、室内空間等の空気を浄化する。例えば、廃棄ガスや、PM2.5等の微粒子状物質は、それらの構成粒子が大気中で正に帯電して存在する傾向にある。また、空気中には主にアンモニウムイオンが存在する。導電性を有する塗料の塗膜面に対して、負電圧発生装置を接続させて、塗膜面を負電圧に帯電させることで、上述したような、正に帯電した粒子を捕捉して、室内空間の空気の浄化が可能となる。   This conductive paint purifies the air in the indoor space by capturing positively charged particles in the air in the indoor space. For example, waste gas and particulate matter such as PM2.5 tend to exist as their constituent particles are positively charged in the atmosphere. In addition, ammonium ions are mainly present in the air. By connecting a negative voltage generator to the coating film surface of the conductive paint and charging the coating film surface to a negative voltage, the positively charged particles as described above are captured, and the room The air in the space can be purified.

特開2010−174184号公報JP 2010-174184 A

しかしながら、特許文献1に開示された水性塗料組成物をはじめ、従前の建築内装用塗膜を得るための塗料においては、塗膜の均一性(塗膜の膜厚の均一性)、貯蔵安定性(顔料の1種である無機顔料等の沈殿の発生)、有害物質の吸着性、下地材への付着強度、難燃性等、各種の塗膜性能において改良の余地があると考えられる。   However, in the paint for obtaining a conventional paint film for building interiors, including the aqueous paint composition disclosed in Patent Document 1, the uniformity of the paint film (uniformity of the film thickness of the paint film) and the storage stability It is considered that there is room for improvement in various coating film performances such as (precipitation of an inorganic pigment which is a kind of pigment), adsorptivity of harmful substances, adhesion strength to a base material, flame retardancy, and the like.

特に、塗料中に含まれる鉱物や貝殻、木炭、活性炭等の粉末で構成された無機顔料(骨材)の粒径によって、塗膜の品質や性能に影響が及んでいる。例えば、無機顔料として、木炭粉末を使用した際に、木炭粉末の粒径が大きければ、塗膜にムラが生じ、平滑性が損なわれ、木炭粉末の脱落や、塗料中での木炭粉末の沈殿が発生する。   In particular, the particle size of the inorganic pigment (aggregate) composed of powders of minerals, shells, charcoal, activated carbon and the like contained in the paint affects the quality and performance of the coating film. For example, when charcoal powder is used as an inorganic pigment, if the charcoal powder particle size is large, unevenness occurs in the coating film, smoothness is impaired, charcoal powder falls off, or charcoal powder precipitates in the paint. Occurs.

また、木炭粉末の粒径が小さければ、塗膜を形成するための合成樹脂の量が増え、塗料中の有機分が増加して燃えやすくなり、難燃性が不充分となる。更に、粒径を小さくするための製造コストが高くなる問題もあった。   If the particle size of the charcoal powder is small, the amount of the synthetic resin for forming the coating film increases, the organic content in the paint increases, and it becomes easy to burn, resulting in insufficient flame retardancy. Furthermore, there is a problem that the manufacturing cost for reducing the particle size is increased.

また、上述した導電性を付与した塗料については、水性又はアルコール性の溶剤を含む塗料(水性塗料組成物又はアルコール性塗料組成物)が主に利用されるが、それぞれの溶剤に起因する欠点があった。   In addition, for the paint imparted with the above-described conductivity, paints containing an aqueous or alcoholic solvent (aqueous paint composition or alcoholic paint composition) are mainly used, but there are drawbacks due to the respective solvents. there were.

まず、前提として、導電性を付与した塗料では、塗料中における木炭粉末の粒子同士が接触して、この粒子を介して塗料の導電性が確保される。   First, as a premise, in the paint imparted with conductivity, the charcoal powder particles in the paint come into contact with each other, and the conductivity of the paint is ensured through the particles.

ここで、水性塗料組成物は、アルコール性塗料組成物に比べて、木炭粉末を含有させた塗膜を形成するにあたって必要な合成樹脂の配合量が多く、樹脂層が厚くなる。合成樹脂の配合量が多いことで、木炭粉末の粒子同士の接触が妨げられやすくなり、塗料の導電性が低くなってしまう。この結果、塗料の塗膜面において、空気中の正に帯電した粒子を捕捉する為の良好な帯電状態が得られにくくなっている。   Here, the water-based coating composition requires a larger amount of synthetic resin to form a coating film containing charcoal powder than the alcohol-based coating composition, and the resin layer becomes thicker. When the amount of the synthetic resin is large, contact between the particles of the charcoal powder tends to be hindered, and the conductivity of the paint is lowered. As a result, it is difficult to obtain a good charged state for capturing positively charged particles in the air on the coating film surface of the paint.

一方、アルコール性塗料組成物は、水性塗料組成物よりも、木炭粉末を含有させた塗膜を形成するにあたって必要な合成樹脂の配合量が少なく、樹脂層が薄くなるため、導電性に優れている。しかしながら、アルコール性塗料組成物では、合成樹脂の配合量が少ないことから、塗膜の耐屈曲性が低く、素地の変形等に応じて塗膜にひび割れが生じやすい。   On the other hand, the alcoholic coating composition is superior to the aqueous coating composition in that it requires less synthetic resin to form a coating film containing charcoal powder, and the resin layer becomes thinner, so it has excellent conductivity. Yes. However, in an alcoholic coating composition, since the blending amount of the synthetic resin is small, the bending resistance of the coating film is low, and the coating film is likely to crack according to deformation of the substrate.

塗膜上のひび割れが発生した部分は電気的に不連続な領域となり、やはり塗料の導電性が低くなってしまう問題があった。また、主なアルコール性の溶媒、例えば、エタノール、メタノール、1-プロパノール等は揮発性有機化合物(VOC)であり、人体への健康被害を及ぼす為、安全性の観点から、水性塗料組成物へと代替したいという要求が存在する。このように、従前の導電性を付与した塗料では、導電性と塗膜性能、安全性において不充分なものとなっている。   The portion where the cracks occurred on the coating film was an electrically discontinuous region, and there was also a problem that the conductivity of the coating material was lowered. Also, the main alcoholic solvents such as ethanol, methanol, 1-propanol, etc. are volatile organic compounds (VOC), which are harmful to human health. There is a request to replace it. Thus, the conventional paint imparted with conductivity is insufficient in conductivity, coating film performance, and safety.

本発明は、以上の点に鑑みて創案されたものであり、品質に優れた塗膜を形成可能であり、室内空間に対して、充分な空気浄化機能を発揮することが可能な水性塗料組成物、空気浄化機構及び空気浄化方法を提供することを目的とする。   The present invention was devised in view of the above points, and can form a coating film with excellent quality and can exhibit a sufficient air purification function for indoor spaces. It is an object to provide an object, an air purification mechanism, and an air purification method.

上記の目的を達成するために、本発明の水性塗料組成物は、合成樹脂で構成されたバインダーと、少なくとも2つの粒径の異なる粉末で構成された木炭粉末と、水とを含有するものとなっている。   In order to achieve the above object, the aqueous coating composition of the present invention contains a binder composed of a synthetic resin, charcoal powder composed of at least two powders having different particle sizes, and water. It has become.

ここで、バインダーが合成樹脂で構成されたことによって、合成樹脂が塗膜の主な構成成分となる。即ち、合成樹脂が木炭粉末の粒子同士を繋ぎ、塗膜を形成する。   Here, the synthetic resin becomes the main component of the coating film because the binder is composed of the synthetic resin. That is, the synthetic resin connects the particles of the charcoal powder to form a coating film.

また、木炭粉末は、樹脂に厚みや強度を持たせる骨材として機能すると共に、水性塗料組成物に導電性を付与する。更に、木炭粉末は、臭い・化学物質・湿気等を吸着する。   The charcoal powder functions as an aggregate that gives the resin thickness and strength and imparts conductivity to the aqueous coating composition. Furthermore, charcoal powder adsorbs odors, chemical substances, moisture, and the like.

また、木炭粉末が、少なくとも2つの粒径の異なる粉末で構成されたことによって、塗料が下地材に塗布された際に、粒径の大きな木炭粉末同士の間に、粒径の小さな木炭粉末が入り込むものとなり、木炭粒子の充填状態の均一性を高め、単位面積当たりの木炭粉末の充填率を向上させることができる。なお、ここでいう下地材とは、塗料が塗布される対象となる領域、又は、絶縁層等の中間部材を介して塗料の塗膜面が設けられる領域を意味するものである。更に言えば、下地材とは、壁面を構成する枠状の下地構造体に取り付けられる板状体である。   In addition, since the charcoal powder is composed of at least two powders having different particle sizes, when the paint is applied to the base material, the charcoal powder having a small particle size is interposed between the charcoal powders having a large particle size. It becomes a thing which penetrates, the uniformity of the filling state of charcoal particles can be improved, and the filling rate of charcoal powder per unit area can be improved. In addition, a base material here means the area | region where the coating film surface of a coating material is provided through intermediate | middle members, such as an insulating layer etc., or the object where coating material is applied. Furthermore, the base material is a plate-like body attached to a frame-like base structure constituting the wall surface.

また、木炭粒子の充填状態の均一性が高まることから、塗料の塗膜面が均一(膜厚が均一)になり、成膜性、屈曲性、表面汚染性、表面傷付着性を良好なものとすることができる。また、塗膜の見栄えを良くすることができる。   In addition, since the uniformity of the charcoal particle filling state is increased, the coating film surface of the paint becomes uniform (the film thickness is uniform), and the film formability, flexibility, surface contamination, and surface scratch adhesion are good. It can be. Moreover, the appearance of the coating film can be improved.

また、木炭粒子同士の接触面積が増大することで、塗料の導電性が向上する。また、塗膜強度を高めることができる。   Moreover, the electroconductivity of a coating material improves because the contact area of charcoal particles increases. Moreover, the coating film strength can be increased.

更に、木炭粒子の充填状態の均一性が高まることから、塗膜面全体を負電圧に帯電させる電極面と見た場合、塗膜面上の電気抵抗値のムラが少なくなり、空気中の正に帯電した粒子の捕集効率を高めることができる。   Furthermore, since the uniformity of the charcoal particle filling state increases, when the entire coating surface is viewed as an electrode surface that is charged to a negative voltage, the uneven electrical resistance value on the coating surface is reduced, and positive in air. The collection efficiency of the charged particles can be increased.

また、塗料の塗膜面が均一になるため、単一の粒径(平均粒径)の木炭粉末を塗料に配合したものと比べて、塗布後に木炭粒子の脱落が生じにくくなる。   In addition, since the coating film surface of the paint becomes uniform, the charcoal particles are less likely to fall off after application as compared with a mixture of charcoal powder having a single particle diameter (average particle diameter) in the paint.

また、塗料の塗膜面が平滑化するため、塗膜面を指で触れた際の白化が抑止される。また、塗膜面に対してクロスを貼り付けた際の接着強度が向上する。   Further, since the coating film surface of the paint is smoothed, whitening when the coating film surface is touched with a finger is suppressed. Moreover, the adhesive strength at the time of sticking a cloth on the coating surface is improved.

更には、単一の粒径の木炭粉末を塗料に配合したものと比べて、粒径の異なる木炭粉末が塗料中に分散されたことで、塗料の粘度が高まり、塗料を保存や載置した際に、粒径の大きな木炭粉末の沈殿が生じにくくなる。即ち、貯蔵安定性が良好となる。   Furthermore, the charcoal powder having a different particle size is dispersed in the paint compared to the mixture of the charcoal powder having a single particle size in the paint, thereby increasing the viscosity of the paint and storing or placing the paint. At this time, it becomes difficult for the charcoal powder having a large particle size to precipitate. That is, the storage stability is improved.

また、粒径の小さな木炭粉末を用いることによって、木炭粉末の表面積が大きくなるため、臭い・化学物質・湿気等の吸着効率が向上する。   Moreover, since the surface area of charcoal powder becomes large by using charcoal powder with a small particle diameter, adsorption | suction efficiency, such as a smell, a chemical substance, and moisture, improves.

また、水を含有することによって、合成樹脂や木炭粉末を分散させることができる。   Moreover, a synthetic resin and charcoal powder can be disperse | distributed by containing water.

また、木炭粉末は、第1の木炭粉末と、第1の木炭粉末の粒径の1〜2倍の粒径を有する第2の木炭粉末とを含んで構成された場合には、上述したような塗膜面の均一性、成膜性、屈曲性、表面汚染性、表面傷付着性、塗料の導電性及び塗膜強度の向上、塗膜面上の電気抵抗値のムラの低減、木炭粒子の脱落の抑止、白化の抑止、クロスの接着強度の向上、木炭粉末の沈殿の抑止といった塗膜の性能を、より一層高めることができる。   Further, when the charcoal powder is configured to include the first charcoal powder and the second charcoal powder having a particle size of 1 to 2 times the particle size of the first charcoal powder, as described above. Coating surface uniformity, film formability, bendability, surface contamination, surface flaw adhesion, coating conductivity and coating strength improvement, reduction of uneven electrical resistance on coating surface, charcoal particles It is possible to further improve the performance of the coating film, such as the prevention of falling off, the prevention of whitening, the improvement of the adhesive strength of the cloth, and the prevention of precipitation of charcoal powder.

一方、木炭粉末が、第1の木炭粉末の粒径の1倍未満の粒径を有する第2の木炭粉末を含んで構成された場合には、粒径の大きな木炭粉末同士の間に、粒径の小さな木炭粉末が入り込みにくくなり、木炭粉末の充填状態の均一化が難しくなる。これに伴い、塗膜の性能の改善が不充分となる。また、第2の木炭粉末の粒径が、第1の木炭粉末の粒径に近くなり、この結果、混在状態の密度が下がり、塗膜強度の向上が不充分となる。   On the other hand, in the case where the charcoal powder is configured to include the second charcoal powder having a particle size of less than 1 times the particle size of the first charcoal powder, between the charcoal powders having a large particle size, It becomes difficult for charcoal powder having a small diameter to enter, and it becomes difficult to make the filling state of charcoal powder uniform. Along with this, the improvement of the performance of the coating film becomes insufficient. In addition, the particle size of the second charcoal powder is close to the particle size of the first charcoal powder. As a result, the density of the mixed state is lowered, and the coating film strength is insufficiently improved.

また、木炭粉末が、第1の木炭粉末の粒径の2倍を超える粒径を有する第2の木炭粉末を含んで構成された場合には、第2の木炭粉末の粉末粒子間の隙間が生じやすくなり、混在状態の密度が下がり、塗膜強度の向上が不充分となる。また、第2の木炭粉末の粉末粒子間の表面の凹凸が生じやすくなり、木炭粉末の充填状態を均一化が難しくなる。これに伴い、塗膜の性能の改善が不充分となる。   In addition, when the charcoal powder is configured to include the second charcoal powder having a particle size exceeding twice the particle size of the first charcoal powder, there is a gap between the powder particles of the second charcoal powder. It tends to occur, the density of the mixed state is lowered, and the coating film strength is insufficiently improved. Further, unevenness of the surface between the powder particles of the second charcoal powder tends to occur, and it becomes difficult to make the filling state of the charcoal powder uniform. Along with this, the improvement of the performance of the coating film becomes insufficient.

また、第1の木炭粉末が3000メッシュ以下の中心粒径5μmの粉体であり、第2の木炭粉末が1500メッシュ以下の中心粒径10μmの粉体である場合には、上述したような塗膜面の均一性、成膜性、屈曲性、表面汚染性、表面傷付着性、塗料の導電性及び塗膜強度の向上、塗膜面上の電気抵抗値のムラの低減、木炭粒子の脱落の抑止、白化の抑止、クロスの接着強度の向上、木炭粉末の沈殿の抑止といった塗膜の性能を、更に一層充分に高めることができる。なお、ここでいう中心粒径とは、既知の粒子径計測器による測定や、JIS8815に規定されたふるい分け試験法によって定められた中心粒径を採用することができる。   In addition, when the first charcoal powder is a powder having a center particle size of 5 μm having a mesh size of 3000 mesh or less, and the second charcoal powder is a powder having a center particle size of 10 μm having a mesh size of 1500 mesh or less, the above-described coating is performed. Film surface uniformity, film formability, bendability, surface contamination, surface flaw adherence, paint conductivity and coating film strength improvement, reduction of electrical resistance unevenness on coating film surface, charcoal particle dropping It is possible to further enhance the performance of the coating film, such as suppression of whitening, suppression of whitening, improvement of the adhesive strength of cloth, and suppression of precipitation of charcoal powder. The central particle size used herein may be a central particle size determined by a known particle size measuring instrument or a screening test method defined in JIS8815.

また、第2の木炭粒子の100重量部に対し、第1の木炭粒子が30〜100重量部の範囲内で配合された場合には、塗膜面の均一性、成膜性、屈曲性、表面汚染性、表面傷付着性、塗料の導電性、塗膜強度、貯蔵安定性及び下地材との接着強度の向上といった塗膜の性能を、より一層高めることができる。   In addition, when the first charcoal particles are blended within the range of 30 to 100 parts by weight with respect to 100 parts by weight of the second charcoal particles, the uniformity of the coating surface, film formability, flexibility, It is possible to further improve the performance of the coating film such as surface contamination, surface flaw adhesion, paint conductivity, coating film strength, storage stability, and improvement in adhesion strength with the base material.

一方、第2の木炭粒子の100重量部に対し、第1の木炭粒子が30重量部未満で配合された場合には、塗膜面の均一性、成膜性、屈曲性、表面汚染性、表面傷付着性、塗料の導電性、塗膜強度、貯蔵安定性及び下地材との接着強度の向上が不充分となる。また、第2の木炭粒子の100重量部に対し、第1の木炭粒子が100重量部を超えて配合された場合には、屈曲性が低下し、表面汚染性が改善されず、下地材との接着強度が低下する。   On the other hand, when the first charcoal particles are blended in less than 30 parts by weight with respect to 100 parts by weight of the second charcoal particles, the coating film surface uniformity, film formability, flexibility, surface contamination, Insufficient improvement in surface scratch adhesion, paint conductivity, coating film strength, storage stability and adhesion strength with the base material. Further, when the first charcoal particles are blended in excess of 100 parts by weight with respect to 100 parts by weight of the second charcoal particles, the flexibility is deteriorated, the surface contamination is not improved, and the base material and The adhesive strength of the is reduced.

また、木炭粉末の配合割合は、全量基準の100重量部に対して、30重量部である場合には、樹脂に対する厚みや強度の付与や、塗料への導電性の付与が、より一層充分となる。   Moreover, when the blending ratio of the charcoal powder is 30 parts by weight with respect to 100 parts by weight based on the total amount, the application of thickness and strength to the resin and the provision of conductivity to the paint are more sufficient. Become.

また、バインダーがカチオン性のアクリル樹脂で構成された場合には、粒子の表面が負に帯電しやすい木炭粉末と、カチオン性のアクリル樹脂と間で電気的な接続力が働き、バインダーと木炭粉末が接着しやすくなり、塗膜強度を向上させることができる。また、塗料を塗布する下地材が、例えば、コンクリートや石こうボードのような表面が負に帯電しやすいものである際に、塗料と下地材との間に電気的な接続力が働き、塗料の付着強度を向上させることができる。   In addition, when the binder is made of a cationic acrylic resin, the electrical connection between the charcoal powder, the surface of which is easily negatively charged, and the cationic acrylic resin works, and the binder and the charcoal powder. It becomes easy to adhere | attach, and a coating-film intensity | strength can be improved. In addition, when the base material to which the paint is applied is, for example, a surface such as concrete or gypsum board that tends to be negatively charged, an electrical connection force acts between the paint and the base material, and the paint Adhesion strength can be improved.

また、水酸化アルミニウムから構成された難燃剤を含有する場合には、塗料の難燃性を向上させることができる。   Moreover, when the flame retardant comprised from aluminum hydroxide is contained, the flame retardance of a coating material can be improved.

また、水酸化アルミニウムが全量基準で重量比率が0.1〜10%の範囲内である場合には、塗料の難燃性をより一層充分なものにできる。   Moreover, when the weight ratio of aluminum hydroxide is in the range of 0.1 to 10% based on the total amount, the flame retardancy of the paint can be further improved.

一方、水酸化アルミニウムが全量基準で重量比率が0.1%未満である場合には、難燃性の機能が不充分となる。また、水酸化アルミニウムが全量基準で重量比率が10%を超える場合には、塗料の難燃性が向上するが、必要以上の配合量となり、製造コストの向上や、その他成分の配合に悪影響を及ぼすおそれがある。   On the other hand, when the weight ratio of aluminum hydroxide is less than 0.1% based on the total amount, the flame retardancy function is insufficient. In addition, if the weight ratio of aluminum hydroxide exceeds 10% on the basis of the total amount, the flame retardancy of the paint will be improved, but the amount will be more than necessary, which will adversely affect the production cost and other ingredients. There is a risk.

また、上記の目的を達成するために、本発明の空気浄化機構は、導電性の水性塗料組成物を塗布した塗膜面を負電圧発生手段により負電圧に帯電させる空気浄化機構であって、前記水性塗料組成物は、合成樹脂で構成されたバインダーと、少なくとも2つの粒径の異なる粉末で構成された木炭粉末と、水とを含有するものとなっている。   In order to achieve the above object, the air purification mechanism of the present invention is an air purification mechanism for charging a coating film surface coated with a conductive aqueous coating composition to a negative voltage by a negative voltage generating means, The water-based coating composition contains a binder composed of a synthetic resin, charcoal powder composed of at least two powders having different particle sizes, and water.

ここで、少なくとも2つの粒径の異なる木炭粉末を含有することによって、塗料が下地材に塗布された際に、粒径の大きな木炭粉末同士の間に、粒径の小さな木炭粉末が入り込むものとなり、木炭粒子の充填状態の均一性を高め、単位面積当たりの木炭粉末の充填率を向上させることができる。   Here, by containing at least two charcoal powders having different particle sizes, when the paint is applied to the base material, the charcoal powder having a small particle size enters between the charcoal powders having a large particle size. Further, it is possible to improve the uniformity of the charged state of the charcoal particles and improve the filling rate of the charcoal powder per unit area.

また、導電性の水性塗料組成物を塗布した塗膜面を負電圧発生手段により負電圧に帯電させることによって、塗膜面表面に電気的な引力が生じ、塗膜面の周囲の空気中に存在する正に帯電した粒子を捕集することができる。   In addition, by electrically charging the coating film surface coated with the conductive aqueous coating composition to a negative voltage by the negative voltage generating means, an electric attractive force is generated on the coating film surface, and the air is surrounded in the air around the coating film surface. Any positively charged particles present can be collected.

また、水性塗料組成物の塗膜面への塗布量が150〜300g/m・wetの範囲内である場合には、塗布量が大量にならず、例えば、ロール等の部材を用いて手作業で下地材に塗布を行う際に、1〜2回で塗料を塗布することができる。In addition, when the coating amount of the aqueous coating composition is within the range of 150 to 300 g / m 2 · wet, the coating amount does not become large, for example, using a member such as a roll. When applying to the base material by work, the paint can be applied once or twice.

また、負電圧発生手段により負電圧に帯電させた塗膜面における発生電圧が−100〜−150Vの範囲内である場合には、塗膜面表面の電気的引力が充分なものとなり、塗膜面の周囲の空気中に存在する正に帯電した粒子を捕集する効率を高めることができる。例えば、4つの壁面と天井面に囲まれた室内空間において、複数の面に塗料を塗布せず、1つの壁面又は天井面のいずれか1つに塗布して負電圧に帯電させることで、室内空間の空気を充分に浄化可能となる。   In addition, when the voltage generated on the surface of the coating film charged to a negative voltage by the negative voltage generating means is within the range of −100 to −150 V, the electric attractive force on the surface of the coating film becomes sufficient. The efficiency of collecting positively charged particles present in the air around the surface can be increased. For example, in an indoor space surrounded by four wall surfaces and a ceiling surface, the paint is not applied to a plurality of surfaces, but is applied to any one of the one wall surface or the ceiling surface and charged to a negative voltage. The air in the space can be sufficiently purified.

一方、負電圧発生手段により負電圧に帯電させた塗膜面における発生電圧が−100V未満である場合には、塗膜面の周囲の空気中に存在する正に帯電した粒子を捕集効率が不充分となるおそれがある。また、負電圧発生手段により負電圧に帯電させた塗膜面における発生電圧が−150Vを超える場合には、必要となる負電圧発生手段の発生電圧が大きくなり、負電圧発生手段の大型化や、負電圧の供給に必要な電力コストの高騰に繋がってしまう。   On the other hand, when the generated voltage on the coating film surface charged to a negative voltage by the negative voltage generating means is less than −100 V, the collection efficiency of positively charged particles existing in the air around the coating film surface is high. May be insufficient. In addition, when the generated voltage on the coating film surface charged to a negative voltage by the negative voltage generating means exceeds −150 V, the required generated voltage of the negative voltage generating means becomes large, As a result, the power cost required for supplying the negative voltage will rise.

また、上記の目的を達成するために、本発明の空気浄化方法は、室内空間を構成する複数の壁面又は天井面の少なくとも1つの面に、合成樹脂で構成されたバインダーと、少なくとも2つの粒径の異なる粉末で構成された木炭粉末と、水とを含有する導電性の水性塗料組成物を塗布する工程と、前記水性塗料組成物が塗布された塗膜面を負電圧に帯電させる工程とを備える。   In order to achieve the above object, the air purification method of the present invention includes a binder made of a synthetic resin and at least two particles on at least one of a plurality of wall surfaces or a ceiling surface constituting an indoor space. A step of applying a conductive aqueous coating composition containing charcoal powder composed of powders having different diameters and water, and a step of charging the coating surface coated with the aqueous coating composition to a negative voltage. Is provided.

ここで、水性塗料組成物が木炭粉末を含有することによって、樹脂に厚みや強度を持たせることができる。また、水性塗料組成物に導電性を付与することができる。更に、木炭粉末によって、臭い・化学物質・湿気等を吸着可能となる。   Here, when the water-based coating composition contains charcoal powder, the resin can be given thickness and strength. Moreover, electroconductivity can be provided to an aqueous coating material composition. Furthermore, the charcoal powder can adsorb odors, chemical substances, moisture, and the like.

また、少なくとも2つの粒径の異なる粉末で構成された木炭粉末によって、塗料が下地材に塗布された際に、粒径の大きな木炭粉末同士の間に、粒径の小さな木炭粉末が入り込むものとなり、木炭粒子の充填状態の均一性を高め、単位面積当たりの木炭粉末の充填率を向上させることができる。また、水性塗料組成物の導電性を向上させることができる。   In addition, when charcoal powder composed of at least two powders having different particle sizes is used, the charcoal powder having a small particle size enters between the charcoal powders having a large particle size when the paint is applied to the base material. Further, it is possible to improve the uniformity of the charged state of the charcoal particles and improve the filling rate of the charcoal powder per unit area. Moreover, the electroconductivity of a water-based coating composition can be improved.

また、室内空間を構成する複数の壁面又は天井面の少なくとも1つの面に水性塗料組成物を塗布することによって、壁面又は天井面に塗膜を形成可能となる。また、この塗膜により、壁面又は天井面が保護されるだけでなく、導電性を付与することができる。   Moreover, a coating film can be formed on a wall surface or a ceiling surface by applying the water-based coating composition to at least one of a plurality of wall surfaces or a ceiling surface constituting the indoor space. Moreover, not only the wall surface or the ceiling surface is protected by this coating film, but also conductivity can be imparted.

また、水性塗料組成物が塗布された塗膜面を負電圧に帯電させる工程によって、塗膜面を負に帯電した電極面とすることができる。この結果、塗膜面表面に電気的な引力が生じ、塗膜面の周囲の空気中に存在する正に帯電した粒子を捕集することができる。   Moreover, the electrode surface which negatively charged the coating-film surface can be made by the process which charges the coating-film surface with which the aqueous coating material composition was apply | coated to negative voltage. As a result, an electric attractive force is generated on the surface of the coating film surface, and positively charged particles existing in the air around the coating film surface can be collected.

また、上記の目的を達成するために、本発明の空気浄化方法は、室内空間を構成する複数の壁面又は天井面の少なくとも1つの面に絶縁層を設ける共に、合成樹脂で構成されたバインダーと、少なくとも2つの粒径の異なる粉末で構成された木炭粉末と、水とを含有する導電性の水性塗料組成物を、前記絶縁層の上に塗布する工程と、前記水性塗料組成物が塗布された塗膜面を負電圧に帯電させる工程とを備える   In order to achieve the above object, the air purification method of the present invention includes an insulating layer provided on at least one of a plurality of wall surfaces or a ceiling surface constituting an indoor space, and a binder made of a synthetic resin. Applying a conductive aqueous coating composition containing charcoal powder composed of at least two powders having different particle sizes and water on the insulating layer; and applying the aqueous coating composition. And charging the coated surface to a negative voltage

ここで、少なくとも2つの粒径の異なる粉末で構成された木炭粉末によって、塗料が下地材に塗布された際に、粒径の大きな木炭粉末同士の間に、粒径の小さな木炭粉末が入り込むものとなり、木炭粒子の充填状態の均一性を高め、単位面積当たりの木炭粉末の充填率を向上させることができる。また、水性塗料組成物の導電性を向上させることができる。   Here, when charcoal powder composed of at least two powders having different particle diameters is applied to the base material, charcoal powder having a small particle diameter enters between the charcoal powders having a large particle diameter. Thus, the uniformity of the charged state of the charcoal particles can be improved, and the charging rate of the charcoal powder per unit area can be improved. Moreover, the electroconductivity of a water-based coating composition can be improved.

また、室内空間を構成する複数の壁面又は天井面の少なくとも1つの面に絶縁層を設ける共に、導電性の水性塗料組成物を、絶縁層の上に塗布することによって、壁面又は天井面が導電性を有する素材で形成された際にも、塗膜面を負に帯電させた状態を維持しやすくなる。即ち、壁面又は天井面を介して土壌面側に電流が流れ、塗膜面に生じた電位差が消失することを抑止可能となる。   In addition, an insulating layer is provided on at least one surface of a plurality of wall surfaces or ceiling surfaces constituting the indoor space, and a conductive water-based paint composition is applied on the insulating layer, whereby the wall surfaces or the ceiling surface are made conductive. Even when formed with a material having the property, it becomes easy to maintain the negatively charged state of the coating surface. That is, it is possible to suppress the current from flowing to the soil surface side through the wall surface or the ceiling surface and the disappearance of the potential difference generated on the coating film surface.

また、水性塗料組成物が塗布された塗膜面を負電圧に帯電させる工程によって、塗膜面を負に帯電した電極面とすることができる。この結果、塗膜面表面に電気的な引力が生じ、塗膜面の周囲の空気中に存在する正に帯電した粒子を捕集することができる。   Moreover, the electrode surface which negatively charged the coating-film surface can be made by the process which charges the coating-film surface with which the aqueous coating material composition was apply | coated to negative voltage. As a result, an electric attractive force is generated on the surface of the coating film surface, and positively charged particles existing in the air around the coating film surface can be collected.

また、複数の壁面又は天井面のいずれか1つの面のみに水性塗料組成物の塗膜面を設ける場合には、塗料の使用量を低減しつつ、塗膜面の周囲の空気中に存在する正に帯電した粒子を捕集することができる。   Further, when the coating surface of the aqueous coating composition is provided only on any one of the plurality of wall surfaces or the ceiling surface, it is present in the air around the coating surface while reducing the amount of coating used. Positively charged particles can be collected.

本発明に係る水性塗料組成物は、品質に優れた塗膜を形成可能であり、室内空間に対して、充分な空気浄化機能を発揮することが可能なものとなっている。
また、本発明に係る空気浄化機構は、品質に優れた塗膜を形成可能であり、室内空間に対して、充分な空気浄化機能を発揮することが可能なものとなっている。
更に、本発明に係る空気浄化方法は、品質に優れた塗膜を形成可能であり、室内空間に対して、充分な空気浄化機能を発揮することが可能なものとなっている。
The water-based paint composition according to the present invention can form a coating film with excellent quality, and can exhibit a sufficient air purification function for indoor spaces.
Moreover, the air purification mechanism according to the present invention can form a coating film with excellent quality, and can exhibit a sufficient air purification function for the indoor space.
Furthermore, the air purification method according to the present invention can form a coating film with excellent quality, and can exhibit a sufficient air purification function for the indoor space.

本発明に係る空気浄化機構の概略を示す説明図である。It is explanatory drawing which shows the outline of the air purification mechanism which concerns on this invention. 下地材への塗膜面及びその周辺構造を示す斜視説明図である。It is perspective explanatory drawing which shows the coating-film surface to a base material, and its peripheral structure.

以下、図面を参照して、本発明の実施の形態を説明する。
なお、本実施の形態においては、図1を基準に、天井面2に対する床面の位置を「下」又は「下方」として、床面に対する天井面2の位置を「上」又は「上方」とする。また、図2を基準に、仕上げ材7から見て下地材11aの方向を「下地材側」とし、下地材11aから見て仕上げ材7の方向を「室内側」と称するものとする。
Embodiments of the present invention will be described below with reference to the drawings.
In the present embodiment, with reference to FIG. 1, the position of the floor surface with respect to the ceiling surface 2 is “lower” or “lower”, and the position of the ceiling surface 2 with respect to the floor surface is “upper” or “upward”. To do. Further, with reference to FIG. 2, the direction of the base material 11 a when viewed from the finishing material 7 is referred to as “the base material side”, and the direction of the finishing material 7 when viewed from the base material 11 a is referred to as “the indoor side”.

(空気浄化機構A)
本発明を適用した空気浄化機構の一例である空気浄化機構Aでは、図1に示すように、複数の壁面1及び天井面2に囲まれた室内空間3における空気の浄化を行うものである。空気浄化機構Aでは、壁面11に後述する塗料4の塗膜面41が形成され、塗膜面41を負に帯電させる負電圧発生装置5を有している。即ち、空気浄化機構Aは、塗料4と負電圧発生装置5を組み合わせて、室内空間3における空気の浄化を行う。なお、塗料4は、本発明を適用した水性塗料組成物の一例であり、その詳細な組成は後述する。
(Air purification mechanism A)
In the air purification mechanism A which is an example of the air purification mechanism to which the present invention is applied, as shown in FIG. 1, the air purification in the indoor space 3 surrounded by the plurality of wall surfaces 1 and the ceiling surface 2 is performed. In the air purification mechanism A, a coating film surface 41 of the paint 4 to be described later is formed on the wall surface 11, and the negative voltage generator 5 that negatively charges the coating film surface 41 is provided. That is, the air purification mechanism A combines the paint 4 and the negative voltage generator 5 to purify the air in the indoor space 3. The paint 4 is an example of an aqueous paint composition to which the present invention is applied, and the detailed composition thereof will be described later.

(負電圧発生装置5)
負電圧発生装置5は、正極51及び負極52を有し(図1及び図2参照)、所定の電源54(図2参照)に接続され、負極52と配線接触した壁面11の塗膜面41に電圧を印化して、塗膜面41を負に帯電させる装置である。
(Negative voltage generator 5)
The negative voltage generator 5 has a positive electrode 51 and a negative electrode 52 (see FIGS. 1 and 2), is connected to a predetermined power source 54 (see FIG. 2), and is a coating film surface 41 of the wall surface 11 in wiring contact with the negative electrode 52. Is a device for negatively charging the coating film surface 41 by impressing voltage.

負極52の先端は塗膜面41と直接接触して、取付部材等(図示せず)を介して接触した状態が固定されている。また、正極51は地中のアース53に接続されている。塗膜面41は、地中のアース53に対して1MΩ以上の絶縁抵抗値を有するように塗布されており、塗膜面41が負に帯電した状態を維持可能、即ち、塗膜面41が電気的に独立した状態が維持可能に構成されている。なお、絶縁抵抗値とは、塗膜面41と地中のアース53との間の抵抗値であって、この値が大きい程、塗膜面41が電気的に独立した状態になりやすいものとなる。また、絶縁抵抗値は、塗膜面41と壁面11との間に塗布される絶縁塗料の有無や、塗膜面41と壁面11との間に設けられる絶縁シートの有無、壁面11を構成する下地構造体(壁面の骨格となる枠構造)の素材における絶縁性の有無や、下地構造体に取り付けられる板状の下地材の素材における絶縁性の有無によって変化する。   The state where the tip of the negative electrode 52 is in direct contact with the coating surface 41 and is in contact via an attachment member or the like (not shown) is fixed. Further, the positive electrode 51 is connected to the earth ground 53. The coating surface 41 is applied so as to have an insulation resistance value of 1 MΩ or more with respect to the ground 53 in the ground, and the coating surface 41 can maintain a negatively charged state. An electrically independent state can be maintained. The insulation resistance value is a resistance value between the coating surface 41 and the ground 53 in the ground, and the larger the value, the more easily the coating surface 41 becomes electrically independent. Become. The insulation resistance value includes the presence or absence of an insulating coating applied between the coating surface 41 and the wall surface 11, the presence or absence of an insulating sheet provided between the coating surface 41 and the wall surface 11, and the wall surface 11. It varies depending on the presence or absence of insulation in the material of the foundation structure (frame structure that serves as the skeleton of the wall surface) and the presence or absence of insulation in the material of the plate-like foundation material attached to the foundation structure.

また、負電圧発生装置5は、デバイス発生電圧0〜300Vの装置であり、塗膜面41に対し、−100〜−150Vの基準発生電圧を印化することが可能である。なお、表1に負電圧発生装置5の出力電圧特性(1MΩ、−100V設定時)を示す。また、ここでいう基準発生電圧が、本願請求項の「発生電圧」に相当する。   The negative voltage generator 5 is a device having a device generated voltage of 0 to 300 V, and can mark a reference generated voltage of −100 to −150 V on the coating surface 41. Table 1 shows output voltage characteristics of the negative voltage generator 5 (when 1 MΩ and −100 V are set). The reference generated voltage here corresponds to “generated voltage” in the claims of the present application.

ここで、必ずしも、塗料4の塗膜面41が形成される面が、壁面11に限定される必要はなく、例えば、壁面11以外の壁面1や天井面2に更に塗料4が塗布される態様であってもよい。また、その他の壁面1のみや、天井面2のみに塗料4が塗布される態様でもよい。例えば、室内空間3の大きさに応じて、充分な空気の浄化を行う観点から、複数の壁面1と天井面2の全面に塗料4を塗布することも可能である。   Here, the surface on which the coating film surface 41 of the coating material 4 is formed is not necessarily limited to the wall surface 11. For example, the coating material 4 is further applied to the wall surface 1 and the ceiling surface 2 other than the wall surface 11. It may be. Moreover, the aspect by which the coating material 4 is apply | coated only to the other wall surface 1 or only the ceiling surface 2 may be sufficient. For example, depending on the size of the indoor space 3, the paint 4 can be applied to the entire surface of the plurality of wall surfaces 1 and the ceiling surface 2 from the viewpoint of sufficient air purification.

また、塗料4は、1つの目安であるが、室内の天井面2のみに塗布する前提であれば、室内空間3の空気体積1m3に対して、必要最低限の塗布面積は0.4m2程度となる。例えば、18帖(帖=m2×0.3025×2)以下の一般的な室内空間であれば、その天井面の一面に塗料4を塗布することで、室内空間3の全体の空気中の正に帯電した粒子を効率良く捕集することができる。なお、壁面のみに塗料4を塗布する場合で、室内の広さが広くなる場合には、空間体積が大きくなり、壁面一面では必要最低限の塗布面積を確保できなくなるおそれがあるため、その際には、室内空間の広さに応じて、複数の壁面への塗布により、室内空間3の空気を充分に浄化することが可能となる。In addition, although the paint 4 is one guideline, if it is assumed that the paint 4 is applied only to the ceiling surface 2 in the room, the minimum application area is 0.4 m 2 with respect to the air volume 1 m 3 in the indoor space 3. It will be about. For example, in the case of a general indoor space of 18 帖 (帖 = m 2 × 0.3025 × 2) or less, the paint 4 is applied to one surface of the ceiling surface, so that the entire indoor space 3 can be precisely in the air. Charged particles can be collected efficiently. In addition, when the paint 4 is applied only to the wall surface, if the room is wide, the space volume becomes large, and there is a possibility that the minimum required application area may not be secured on one wall surface. According to the size of the indoor space, the air in the indoor space 3 can be sufficiently purified by application to a plurality of wall surfaces.

また、必ずしも、塗料4が壁面面11の全面に塗布される必要はなく負電圧発生装置5によって塗料4を塗布した面が負に帯電するように構成されていれば充分である。そのため、例えば、壁面11の一部(例えば、壁面11の中の一定の面積範囲)や複数箇所(塗布箇所の間に空間を有するように)に塗料4を塗布する態様も有り得る。但し、室内空間3の空気に対して、一定の面積の塗膜面で作用して、空気中の正に帯電した粒子を捕集する効率を高める観点から、塗料4が壁面面11の全面に塗布されることが好ましい。   In addition, the coating material 4 does not necessarily have to be applied to the entire wall surface 11, and it is sufficient that the surface to which the coating material 4 is applied is negatively charged by the negative voltage generator 5. Therefore, for example, there may be a mode in which the coating material 4 is applied to a part of the wall surface 11 (for example, a certain area range in the wall surface 11) or a plurality of locations (so that there is a space between the application locations). However, from the viewpoint of increasing the efficiency of collecting positively charged particles in the air by acting on the coating surface having a certain area against the air in the indoor space 3, the paint 4 is applied to the entire wall surface 11. It is preferably applied.

また、空気浄化機構Aを適用する室内空間3の広さは特に限定されるものでなく、塗料4が塗布可能な壁面や天井面等の領域を有していれば、広さに関係なく、空気浄化機構Aを利用することができる。   In addition, the width of the indoor space 3 to which the air purification mechanism A is applied is not particularly limited, as long as it has a region such as a wall surface or a ceiling surface to which the paint 4 can be applied, regardless of the size. The air purification mechanism A can be used.

また、負電圧発生装置5は、必ずしも、負極52を塗膜面41に直接接触させて、塗膜面41を負に帯電させる構成必要はない。例えば、塗膜面41に対して負電荷を非接触で照射可能な、イオン発生器等の負電荷発生装置を利用して、塗膜面41を負に帯電させる構成も採用しうる。   Moreover, the negative voltage generator 5 does not necessarily need to be configured so that the negative electrode 52 is brought into direct contact with the coating surface 41 and the coating surface 41 is negatively charged. For example, a configuration in which the coating film surface 41 is negatively charged by using a negative charge generator such as an ion generator that can irradiate the coating film surface 41 with a negative charge in a non-contact manner may be employed.

また、負電圧発生装置5のデバイス発生電圧が0〜300Vの範囲に限定される必要はない。但し、室内空間3の空気中の正に帯電した粒子を充分の捕集する観点から、塗膜面41に−100〜−150Vの基準発生電圧を印化することが可能な態様とすることが好ましく、そのためには、負電圧発生装置5のデバイス発生電圧が0〜300Vの範囲の装置を採用することが好ましい。また、上述した表1の出力電圧特性は、負電圧発生装置5が備える特性の一例に過ぎない。   Further, the device generation voltage of the negative voltage generator 5 need not be limited to the range of 0 to 300V. However, from the viewpoint of sufficiently collecting positively charged particles in the air of the indoor space 3, an aspect in which a reference generated voltage of −100 to −150 V can be marked on the coating surface 41 is adopted. For this purpose, it is preferable to employ a device in which the device voltage of the negative voltage generator 5 is in the range of 0 to 300V. Moreover, the output voltage characteristic of Table 1 mentioned above is only an example of the characteristic with which the negative voltage generator 5 is provided.

(塗膜面41)
図2を用いて、壁面11に設けた塗膜面41とその周辺構造を説明する。
壁面11を構成する下地材11aは、塗膜面41を形成する基礎体(板状体)であり、石こうボードやコンクリート等の導電性を有する素材で形成されている。下地材11aの下部には、壁面11の骨格を構成する枠状の下地構造体が形成されている。また、下地材11aと塗膜面41の間に、塗膜面41から下地材11a側への漏電を防止する絶縁層6が設けられている。また、塗膜面41より室内側には、意匠性を高めるための仕上げ材7が設けられている。
(Coating surface 41)
The coating-film surface 41 provided in the wall surface 11 and its peripheral structure are demonstrated using FIG.
The base material 11a constituting the wall surface 11 is a basic body (plate-like body) that forms the coating film surface 41, and is formed of a conductive material such as gypsum board or concrete. Under the base material 11a, a frame-like base structure constituting the skeleton of the wall surface 11 is formed. An insulating layer 6 is provided between the base material 11 a and the coating film surface 41 to prevent leakage from the coating film surface 41 to the base material 11 a side. Moreover, the finishing material 7 for improving the designability is provided on the indoor side from the coating film surface 41.

塗膜面41は、後述する組成を有する塗料4が、下地材11aの室内側に設けられた絶縁層6の上に塗布されて形成されている。塗料4の塗布量は、150〜300g/m・wetとなっている。The coating surface 41 is formed by applying a coating 4 having a composition described later on an insulating layer 6 provided on the indoor side of the base material 11a. The coating amount of the paint 4 is 150 to 300 g / m 2 · wet.

上述したように、負電圧発生装置5から塗膜面41に電圧が印化されて、塗膜面41が負に帯電される。即ち、塗膜面41の導電性を介して、塗膜面全体が負に帯電した電極面となる。ここで、絶縁層6は、塗膜面41が地中のアース53に対して電気的に独立した状態を維持するために、塗膜面41と下地材11aの間を絶縁する。   As described above, a voltage is applied from the negative voltage generator 5 to the coating film surface 41, and the coating film surface 41 is negatively charged. That is, the entire coating film surface becomes a negatively charged electrode surface through the conductivity of the coating film surface 41. Here, the insulating layer 6 insulates between the coating surface 41 and the base material 11a in order to maintain the coating surface 41 electrically independent from the ground 53 in the ground.

絶縁層6は、室内側の和紙層、ポリエチレンテレフタレートで形成された中間層及び下地材側の和紙層の3層構造を有している。構成する材料はいずれも絶縁性を有している。絶縁層6はクロス(壁紙)貼付け用のりを用いて下地材11aに貼り付けられている。   The insulating layer 6 has a three-layer structure of a Japanese paper layer on the indoor side, an intermediate layer formed of polyethylene terephthalate, and a Japanese paper layer on the base material side. All of the constituent materials have insulating properties. The insulating layer 6 is affixed to the base material 11a using a cloth (wallpaper) affixing glue.

絶縁層6における3層構造では、下地材側の和紙層によって、絶縁シート層と下地材11aとのクロス貼付け用のりを使用した接着が可能となる。また、室内側の和紙層に対して、塗料4との接着性が高められている。和紙層のように紙素材を用いることで、ビニール等の樹脂製の素材を用いた場合よりも、クロス貼付け用のりや、塗料4の接着性を向上させることができる。   In the three-layer structure of the insulating layer 6, it is possible to bond the insulating sheet layer and the base material 11 a using a cross-paste paste by the Japanese paper layer on the base material side. Moreover, the adhesiveness with the coating material 4 is improved with respect to the indoor Japanese paper layer. By using a paper material such as a Japanese paper layer, it is possible to improve the adhesiveness of the paste and the paint 4 as compared to the case of using a resin material such as vinyl.

ここで、必ずしも、絶縁層6が3層構造とされる必要はなく、塗膜面41と下地材11aとの間の絶縁性を担保できるものであれば充分である。但し、絶縁層6の表面及び裏面に和紙層を設けることで、上述したように塗料4やクロス貼付け用のりの接着性を向上させることができる点から、和紙層を含む3層構造が採用されることが好ましい。   Here, the insulating layer 6 does not necessarily have a three-layer structure, and it is sufficient if the insulating property between the coating film surface 41 and the base material 11a can be secured. However, by providing a Japanese paper layer on the front and back surfaces of the insulating layer 6, it is possible to improve the adhesiveness of the paint 4 and the glue for pasting the cloth as described above, so that a three-layer structure including the Japanese paper layer is adopted. It is preferable.

また、必ずしも、絶縁層6の中間層がポリエチレンテレフタレートで形成される必要はなく、電気的な絶縁性を有する素材となっていれば充分である。例えば、絶縁性を有するエポキシ系の防錆、防水塗料塗布した中間層を用いることもできる。   In addition, the intermediate layer of the insulating layer 6 does not necessarily need to be formed of polyethylene terephthalate, and it is sufficient if it is a material having electrical insulation. For example, an intermediate layer coated with an insulating epoxy-based rust-proof and waterproof paint can also be used.

仕上げ材7は、通気性を有するクロス、又は、通気性を有するカラー塗料等であり、塗膜面41の上に貼り付け、又は、塗布されて、木炭粉末に由来する黒色を有する塗膜面41を目隠しする材となる。また、仕上げ材7を構成する通気性を有するクロスやカラー塗料等は絶縁性を有するが、下地材11a上の塗膜面41が負電圧に帯電した場合、仕上げ材7が分極を起こし、仕上げ材7の表面が負に帯電するため、室内空間3における空気中の正に帯電した粒子を吸引することが可能となる。   The finishing material 7 is a breathable cloth or a color paint having a breathability, and is coated or coated on the paint film surface 41 to have a black paint film surface derived from charcoal powder. It becomes the material which blinds 41. Further, the air-permeable cloth or color paint constituting the finishing material 7 has insulating properties, but when the coating film surface 41 on the base material 11a is charged with a negative voltage, the finishing material 7 is polarized, and the finishing material 7 is finished. Since the surface of the material 7 is negatively charged, positively charged particles in the air in the indoor space 3 can be sucked.

室内空間3の空気中の正に帯電した粒子は、非常に小さな粒子であるため(粒子半径が約10-7cmから10-8cm程度の大きさの粒子)、仕上げ材7の通気孔を通過して、下地材11a上の負に帯電した塗膜面41に引き付けられるものとなる。The positively charged particles in the air of the indoor space 3 are very small particles (particles having a particle radius of about 10 −7 cm to 10 −8 cm), so that the ventilation hole of the finishing material 7 is provided. It passes through and is attracted to the negatively charged coating film surface 41 on the base material 11a.

なお、上記では、下地材11a(又は下地構造材)が、鉄骨やコンクリート造の非木造の導電性を有する素材である場合について説明したが、下地材及び下地構造材が、木造等の絶縁性の素材である場合には、上述した絶縁層6を除いた構造を採用することができる。即ち、下地材11aの壁面に直接、塗料4を塗布して塗膜面41を形成し、その上に仕上げ材7を設けた構造となる。下地材及び下地構造材が木造等の絶縁性の素材である場合には、下地材及び下地構造材の絶縁作用により、塗膜面41を地中のアース53に対して電気的に独立した状態を維持可能となる。   In the above description, the case where the base material 11a (or the base structure material) is a steel or concrete non-wooden conductive material has been described. However, the base material and the base structure material have insulating properties such as wooden structures. In the case of this material, a structure excluding the above-described insulating layer 6 can be adopted. That is, the coating material 4 is directly applied to the wall surface of the base material 11a to form the coating film surface 41, and the finishing material 7 is provided thereon. When the base material and the base structure material are insulating materials such as wooden structures, the coating surface 41 is electrically independent from the ground 53 due to the insulating action of the base material and the base structure material. Can be maintained.

更に、下地材が木造であっても、下地構造体に導電性を有する素材が採用されたり、下地材を下地構造体に取り付けに金属製のビス等が用いられたりした場合には、上述したような絶縁層6を設けることが好ましい。   Furthermore, even if the base material is wooden, if a material having conductivity is used for the base structure, or if a metal screw or the like is used to attach the base material to the base structure, the above-mentioned It is preferable to provide such an insulating layer 6.

上述した空気浄化機構Aでは、負電圧発生装置5の電源を入れ、塗膜面41に電圧を印化することで、塗膜面41が地中のアース53に対して電気的に独立した状態となっていれば、塗膜面41が負に帯電した状態となる。負電圧発生装置5の電源を入れたままにすると、塗膜面41が負に帯電した電極面として、室内空間3の空気中の正に帯電した有害物質や不快物質の粒子を引き寄せ、これらの粒子を捕集する。この結果、室内空間3の空気を浄化することができる。   In the air purification mechanism A described above, the negative voltage generator 5 is turned on, and the voltage is applied to the coating surface 41 so that the coating surface 41 is electrically independent from the ground 53 in the ground. If it becomes, the coating-film surface 41 will be in the state electrically charged negatively. If the negative voltage generator 5 is left on, the paint film surface 41 attracts particles of positively charged harmful substances and unpleasant substances in the air of the indoor space 3 as negatively charged electrode surfaces. Collect particles. As a result, the air in the indoor space 3 can be purified.

以下、本発明を適用した水性塗料組成物の一例の組成について説明する。上述した塗料4の組成の一例である。   Hereinafter, the composition of an example of the aqueous coating composition to which the present invention is applied will be described. It is an example of a composition of the coating material 4 mentioned above.

ここで示す塗料(塗料4)は、塗料組成物における全量基準の重量比率が、カチオン系のアクリル酸エステル共重合体水性エマルジョン(モビニール7820(日本合成化学工業(株)社製)):29.07%、水:29.07%、1500メッシュの木炭粉末(中心粒径10μm):19.38%、3000メッシュの木炭粉末(中心粒径5μm):9.69%、水酸化アルミニウム:4.84%、アクリル系重合物(シックナー615(三洋化成工業(株)社製):2.91%、防腐剤(アモルデンFS-14D(大和化学工業(株)社製):2.91%、ウレタン変性ポリエーテル(シックナー660T(三洋化成工業(株)社製):1.94%、防カビ剤(PBM-DS((株)エム・アイ・シー社製):0.10%、シリコーン系消泡剤(アクアレンHS-01(共栄社化学(株)社製):0.01%を含む組成を有している。また、本組成の塗料は、粘度が0.83Pa・s、密度が1.623g/cmである。In the paint (paint 4) shown here, the weight ratio based on the total amount in the paint composition is a cationic acrylic ester copolymer aqueous emulsion (Movinyl 7820 (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.)): 29. 07%, water: 29.07%, 1500 mesh charcoal powder (center particle size 10 μm): 19.38%, 3000 mesh charcoal powder (center particle size 5 μm): 9.69%, aluminum hydroxide: 4. 84%, acrylic polymer (Thickener 615 (manufactured by Sanyo Chemical Industries, Ltd.): 2.91%, preservative (Amorden FS-14D (manufactured by Yamato Chemical Co., Ltd.)): 2.91%, urethane Modified polyether (Thickener 660T (manufactured by Sanyo Chemical Industries, Ltd.)): 1.94%, fungicide (PBM-DS (manufactured by MIC Corporation): 0.10%, silicone Foam (Aqualene HS-01 (Kyoei) (The product made by company chemical Co., Ltd.): It has a composition containing 0.01%, and the paint of this composition has a viscosity of 0.83 Pa · s and a density of 1.623 g / cm 3 .

カチオン系のアクリル酸エステル共重合体水性エマルジョン(モビニール7820(日本合成化学工業(株)社製))は、バインダーであり、塗膜の主な構成成分として、木炭粉末の粒子同士を繋ぎ、塗膜を形成する。また、このアクリル酸エステル共重合体水性エマルジョンは、アクリル酸エステル共重合体を約45%を含み、残りが水で構成された水性エマルジョンであり、ガラス転移温度(Tg)が4℃である   A cationic acrylic ester copolymer aqueous emulsion (Movinyl 7820 (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.)) is a binder, and as a main component of the coating film, the particles of charcoal powder are connected to each other. A film is formed. This aqueous acrylate copolymer emulsion is an aqueous emulsion comprising about 45% of an acrylate copolymer, the remainder being composed of water, and a glass transition temperature (Tg) of 4 ° C.

水は、各成分を混合及び分散させる溶剤である。また、水は塗料の基剤でもある。   Water is a solvent for mixing and dispersing each component. Water is also the base of the paint.

1500メッシュの木炭粉末(中心粒径10μm)及び3000メッシュの木炭粉末(中心粒径5μm)は、樹脂(塗膜)に厚みや強度を持たせる骨材(無機顔料)であり、かつ、塗料に導電性を付与する。更に、木炭粉末は、臭い・化学物質・湿気等を吸着する機能を塗料に付与する。   The 1500 mesh charcoal powder (center particle size 10 μm) and the 3000 mesh charcoal powder (center particle size 5 μm) are aggregates (inorganic pigments) that give the resin (coating film) thickness and strength, and are applied to the paint. Gives conductivity. Further, the charcoal powder imparts a function of adsorbing odors, chemical substances, moisture and the like to the paint.

本塗料では、粒径が異なる2種類の木炭粉末を配合しており、中心粒径の値の比が、粒子径大:粒子径小=2:1の関係となっている。また、2種類の木炭粉末の配合比は、粒子径大の木炭粉末100重量部に対して、粒子径小の木炭粉末50重量部となっている。更に、本塗料では、塗料の全量基準に対する2種類の木炭粉末の合計の配合比が、塗料の全量の100重量部に対して、2種類の木炭粉末が30重量部となっている。   In this paint, two types of charcoal powders having different particle diameters are blended, and the ratio of the values of the central particle diameters is such that the particle diameter is large and the particle diameter is small = 2: 1. The mixing ratio of the two types of charcoal powder is 50 parts by weight of charcoal powder having a small particle size with respect to 100 parts by weight of charcoal powder having a large particle size. Furthermore, in this paint, the total blending ratio of the two types of charcoal powder with respect to the total amount of the paint is 30 parts by weight of the two types of charcoal powder with respect to 100 parts by weight of the total amount of the paint.

また、1500メッシュ及び3000メッシュの木炭粉末は、オトギリソウ科オハグロノキ属(マイテュー、和名なし)の樹木を原料に、1000℃前後で焼かれた白炭である。木炭粉末は、例えば、ウバメガシを900〜1400℃、好ましくは1000〜1200℃の高温で焼いた後に、適量の灰と土をかけて急冷することにより製造される白炭である。白炭には、代表的なものとして備長炭がある。   Moreover, the 1500-mesh and 3000-mesh charcoal powders are white charcoal baked at around 1000 ° C. using a tree belonging to the genus Hypericaceae (Mytune, no Japanese name). The charcoal powder is, for example, white charcoal produced by baking Umegamegashi at a high temperature of 900 to 1400 ° C., preferably 1000 to 1200 ° C., followed by quenching with an appropriate amount of ash and soil. A typical example of white charcoal is Bincho charcoal.

水酸化アルミニウムは、塗料に難燃性を向上させる為の難燃剤である。水酸化アルミニウムは、200℃以上の温度で結晶水の乖離反応が起こり、乖離反応時に吸熱効果を生じる剤である。   Aluminum hydroxide is a flame retardant for improving the flame retardancy of a paint. Aluminum hydroxide is an agent that undergoes a dissociation reaction of crystal water at a temperature of 200 ° C. or higher and produces an endothermic effect during the dissociation reaction.

アクリル系重合物(シックナー615(三洋化成工業(株)社製)及びウレタン変性ポリエーテル(シックナー660T(三洋化成工業(株)社製)は、塗料の粘度を調整するための増粘剤である。なお、各増粘剤は、アクリル系重合物又はウレタン変性ポリエーテルを主成分としている。   Acrylic polymer (Thickener 615 (manufactured by Sanyo Chemical Industries), Ltd.) and urethane-modified polyether (Thickener 660T (manufactured by Sanyo Chemical Industries, Ltd.)) are thickeners for adjusting the viscosity of the paint. Each thickener is mainly composed of an acrylic polymer or urethane-modified polyether.

防腐剤(アモルデンFS-14D(大和化学工業(株)社製)は、細菌、カビに対する防腐性を付与するエマルジョン、水性塗料等用の防腐剤である。防カビ剤(PBM-DS(株)エム・アイ・シー社製)は、カビに対する防腐性を付与する防カビ剤である。シリコーン系消泡剤(アクアレンHS-01(共栄社化学(株)社製)は、塗料中の発泡を抑える水系塗料用消泡剤である。   Antiseptic (Amorden FS-14D (Daiwa Chemical Industry Co., Ltd.)) is an antiseptic for emulsions and water-based paints that provide antiseptic properties against bacteria and fungi. MIC Co., Ltd. is a fungicide that provides antiseptic properties against mold, and a silicone-based antifoaming agent (Aqualen HS-01 (manufactured by Kyoeisha Chemical Co., Ltd.)) suppresses foaming in the paint. It is an antifoaming agent for water-based paints.

ここで、本塗料では、各配合原料や配合割合が上述したものに限定されるものではなく、本発明に求められる機能を逸脱しない範囲で、各成分や配合量を適宜変更することができる。以下にその一例を詳述する。   Here, in this coating material, each compounding raw material and a compounding ratio are not limited to what was mentioned above, Each component and compounding quantity can be suitably changed in the range which does not deviate from the function calculated | required by this invention. One example is described in detail below.

本塗料では、バインダーとして、カチオン系のアクリル酸エステル共重合体水性エマルジョン(モビニール7820(日本合成化学工業(株)社製))以外にも塗膜形成能を有する合成樹脂であれば、採用することができる。例えば、合成樹脂の種類として、アクリル樹脂以外に、アクリルシリコン・変性シリコン樹脂、アミノアルキド樹脂、エポキシ樹脂、塩化ゴム系樹脂、ケイ素樹脂、ビニル樹脂、フッ素樹脂、フェノール樹脂、フタル酸樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂等が採用しうる。   In the present coating material, a synthetic resin having a coating film forming ability other than a cationic acrylic ester copolymer aqueous emulsion (Movinyl 7820 (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.)) is adopted as a binder. be able to. For example, the types of synthetic resins include acrylic silicon, modified silicon resin, amino alkyd resin, epoxy resin, chlorinated rubber resin, silicon resin, vinyl resin, fluorine resin, phenol resin, phthalic acid resin, unsaturated resin, in addition to acrylic resin Polyester resin, polyurethane resin, etc. can be employed.

また、アクリル樹脂塗料としては、例えば、エマルジョン形アクリル樹脂、アクリルラッカー、焼付けアクリル、水溶性アクリル、アクリル化アルキド等の種類が採用しうる。特に、エマルジョン形アクリル樹脂は建築内装材に多用される、アクリル酸エステル等のモノマーを水中で乳化重合させたエマルションポリマーである。   As the acrylic resin paint, for example, emulsion type acrylic resin, acrylic lacquer, baking acrylic, water-soluble acrylic, acrylated alkyd and the like can be adopted. In particular, emulsion acrylic resins are emulsion polymers obtained by emulsion polymerization of monomers such as acrylates in water, which are frequently used in building interior materials.

ここで、必ずしも、本塗料のバインダーがカチオン系のアクリル酸エステル共重合体水性エマルジョンである必要はない。但し、バインダーがカチオン系であることにより、塗料中では、粒子の表面が負に帯電した木炭粉末とバインダーとの接着力が向上し、塗膜強度を向上させることができる。また、塗料の塗布対象となる下地材がコンクリートや石こうボードのような表面が負に帯電しやすいものである際に、塗料と下地材との間に電気的な接続力が働き、塗料の付着強度を向上し、強固な塗膜を形成することができる。このような電気的特性に基づく利点があるため、バインダーとして、カチオン系のアクリル樹脂が採用されることが好ましい。   Here, the binder of the present paint does not necessarily need to be a cationic acrylic ester copolymer aqueous emulsion. However, since the binder is cationic, in the coating material, the adhesive force between the charcoal powder whose particle surface is negatively charged and the binder can be improved, and the coating strength can be improved. In addition, when the base material to which the paint is applied is a material such as concrete or gypsum board that tends to be negatively charged, an electrical connection force acts between the paint and the base material, and the paint adheres. Strength can be improved and a strong coating film can be formed. Since there is an advantage based on such electrical characteristics, a cationic acrylic resin is preferably employed as the binder.

また、必ずしも、本塗料のバインダーが、ガラス転移温度(Tg)が4℃のものである必要はない。但し、ガラス転移温度の低いバインダーを用いることで、塗料を塗布する環境温度をバインダーのガラス転移温度が下回る状態となりやすく、塗膜と下地材との間の収縮応力の発生を抑えて、塗膜の下地材への付着性が低下しにくくなる。そのため、バインダーのガラス転移温度は、例えば10℃以下程度の低い値であることが好ましい。また、室内環境であれば、室内の最低気温は、通常、低くても5℃程度となる為、バインダーのガラス転移温度が4℃であれば、充分に塗膜の付着力を担保することができる。   In addition, the binder of the present paint does not necessarily have a glass transition temperature (Tg) of 4 ° C. However, by using a binder having a low glass transition temperature, the environmental temperature for applying the paint tends to be lower than the glass transition temperature of the binder, and the generation of shrinkage stress between the coating film and the base material is suppressed. It becomes difficult for the adhesiveness to the base material to fall. Therefore, the glass transition temperature of the binder is preferably a low value of about 10 ° C. or less, for example. In the indoor environment, the lowest indoor temperature is usually about 5 ° C. at the lowest, so if the glass transition temperature of the binder is 4 ° C., sufficient adhesion of the coating can be secured. it can.

また、必ずしも、本塗料の木炭粉末が白炭に限定される必要はなく、白炭と黒炭を混合して用いることもできる。但し、黒炭は、低温で焼かれた炭であるため導電性が低く、その粉末を塗料に配合すると、塗膜自体の導電性が低下するため、導電性を向上させる観点からは、木炭粉末は白炭で構成されることが好ましい。また、塗膜の物性、屈曲性、充填率を改善する観点から、白炭と黒炭の混合物を用いることも考えられる。その際には、黒炭の粉末と共に、より粒子径の小さい白炭の粉末を配合することが、導電性を向上させる観点から好ましい。   Further, the charcoal powder of the present paint is not necessarily limited to white charcoal, and white charcoal and black charcoal can be mixed and used. However, since black charcoal is charcoal baked at low temperature, the conductivity is low, and when the powder is blended into the paint, the conductivity of the coating film itself is lowered. From the viewpoint of improving the conductivity, the charcoal powder is It is preferably composed of white coal. Further, from the viewpoint of improving the physical properties, flexibility, and filling rate of the coating film, it is also conceivable to use a mixture of white coal and black coal. In that case, it is preferable from a viewpoint of improving electroconductivity to mix | blend the powder of white coal with a smaller particle diameter with the powder of black coal.

また、必ずしも、木炭粉末の原料がオトギリソウ科オハグロノキ属(マイテュー、和名なし)の樹木に限定される必要はない。例えば、白炭となる既知の原料であるウバメガシ・アラカシ・ナラ・ホオ等を採用することもできる。また、黒炭であれば、ナラ・クヌギ・コナラ・ミズナラ・マツ等を原料とすることができる。   Moreover, the raw material of charcoal powder does not necessarily need to be limited to a tree of the genus Hypericaceae (Amanu, no Japanese name). For example, known raw materials that become white coal, such as Umegashi, Arakashi, oak, and hoo, can be employed. Black coal can be used as raw materials such as oak, kunugi, konara, mizunara and pine.

また、必ずしも、本塗料の骨材(無機顔料)が木炭粉末に限定される必要はなく、樹脂中で、充分な充填率と均一性を担保できる原料であれば骨材として採用しうる。例えば、岩石や粘土等の鉱物の粉末や、貝殻を粉砕した粉末、活性炭の粉末等が採用しうる。但し、塗料に厚みや強度を付与するだけでなく、吸着物質として有害物質や不快物質の吸着性を有する点や、原料の入手が容易な点、粒径の異なる粉末の塗料中の均一性を高めやすい点から、骨材として木炭粉末が採用されることが好ましい。   Moreover, the aggregate (inorganic pigment) of the present paint is not necessarily limited to charcoal powder, and any material that can ensure a sufficient filling rate and uniformity in the resin can be adopted as the aggregate. For example, powders of minerals such as rocks and clay, powders obtained by pulverizing shells, powders of activated carbon, and the like can be employed. However, in addition to providing thickness and strength to the paint, it also has the ability to adsorb harmful substances and unpleasant substances as adsorbents, easy to obtain raw materials, and uniformity in powder paints with different particle sizes. From the viewpoint of being easily raised, it is preferable to employ charcoal powder as the aggregate.

また、必ずしも、本塗料の木炭粉末が、粒径が異なる2種類に限定される必要はなく、例えば、粒径(中心粒径)が異なる木炭粉末を3種類以上配合する態様であってもよい。但し、配合量の調整等による塗膜の均一化の制御が複雑化する点や、製造コストが高くなる点から、木炭粉末は、粒径が異なる2種類を採用することが好ましい。   In addition, the charcoal powder of the present paint is not necessarily limited to two types having different particle diameters. For example, three or more types of charcoal powder having different particle diameters (center particle diameters) may be blended. . However, it is preferable to employ two types of charcoal powders having different particle diameters from the viewpoint that the control of uniformizing the coating film by adjusting the blending amount becomes complicated and the manufacturing cost becomes high.

また、必ずしも、本塗料の木炭粉末が、粒径が異なる2種類を配合し、その中心粒径の値の比が、粒子径大:粒子径小=2:1に限定される必要はない。但し、塗膜の均一性を向上させる観点から、2種類の木炭粉末における中心粒径の値の比が、粒子径大:粒子径小=1〜2:1となることが好ましく、更に好ましくは、粒子径大:粒子径小=1.5〜2:1であり、塗膜の均一性をより一層向上させる点からは、粒子径大:粒子径小=2:1となることがより一層好ましい。   In addition, the charcoal powder of the present paint does not necessarily need to contain two types having different particle diameters, and the ratio of the values of the central particle diameters need not be limited to large particle diameter: small particle diameter = 2: 1. However, from the viewpoint of improving the uniformity of the coating film, the ratio of the values of the central particle sizes in the two types of charcoal powder is preferably large particle diameter: small particle diameter = 1-2: 1, more preferably From the point of further improving the uniformity of the coating film, it is even more preferable that the particle size is large: the particle size is small: 2: 1. preferable.

また、必ずしも、本塗料の粒径の異なる2種類の木炭粉末が、1500メッシュの木炭粉末(中心粒径10μm)と、3000メッシュの木炭粉末(中心粒径5μm)である必要なない。例えば、粒子径大の木炭粉末を3000メッシュ、粒子径小の木炭粉末を6000メッシュとする態様も考えられる。但し、塗料中の木炭粉末の充填状態を均一化しやすくなる点、単位面積当たりの木炭粉末の充填率を向上させやすい点、及び塗膜の形成に必要なバインダー(樹脂)の量が、塗料の難燃性を確保しうる配合量になる点から、粒径の異なる2種類の木炭粉末が、1500メッシュの木炭粉末(中心粒径10μm)と、3000メッシュの木炭粉末(中心粒径5μm)となることが好ましい。   In addition, the two types of charcoal powders having different particle sizes of the present paint are not necessarily 1500 mesh charcoal powder (center particle size 10 μm) and 3000 mesh charcoal powder (center particle size 5 μm). For example, an embodiment in which the charcoal powder having a large particle diameter is 3000 mesh and the charcoal powder having a small particle diameter is 6000 mesh is also conceivable. However, the point that it becomes easy to make the filling state of the charcoal powder in the paint easy, the point that the filling rate of the charcoal powder per unit area is easy to improve, and the amount of the binder (resin) necessary for the formation of the coating film are Two types of charcoal powders with different particle sizes are 1500 mesh charcoal powder (center particle size 10 μm) and 3000 mesh charcoal powder (center particle size 5 μm) in terms of blending amount that can ensure flame retardancy. It is preferable to become.

また、必ずしも、本塗料の粒径の異なる2種類の木炭粉末の配合比が、粒子径大の木炭粉末100重量部に対して、粒子径小の木炭粉末50重量部に限定される必要はない。但し、塗膜の単位面積当たりの木炭粉末の充填率を高める点から、粒子径大の木炭粉末100重量部に対して、粒子径小の木炭粉末が30〜100重量部の範囲で配合されることが好ましく、木炭粉末の充填率をより一層高める点からは、粒子径大の木炭粉末100重量部に対して、粒子径小の木炭粉末が50重量部配合されることが更に好ましい。   In addition, the blending ratio of the two types of charcoal powders having different particle sizes of the paint is not necessarily limited to 50 parts by weight of the charcoal powder having a small particle size with respect to 100 parts by weight of the charcoal powder having a large particle size. . However, the charcoal powder having a small particle size is blended in the range of 30 to 100 parts by weight with respect to 100 parts by weight of the charcoal powder having a large particle size from the viewpoint of increasing the filling rate of the charcoal powder per unit area of the coating film. Preferably, from the viewpoint of further increasing the filling rate of the charcoal powder, it is more preferable that 50 parts by weight of the charcoal powder having a small particle diameter is blended with 100 parts by weight of the charcoal powder having a large particle diameter.

また、必ずしも、本塗料において、塗料の全量基準に対する2種類の木炭粉末の合計の配合比が、塗料の全量の100重量部に対して、2種類の木炭粉末が30重量部に限定されるものではない。塗膜が形成可能であり、電圧を印化した塗膜面が負に帯電した状態を維持可能な導電性を有するものとなっていれば充分である。但し、塗膜の均一性と良好な導電性を確保する点から、塗料の全量基準に対する2種類の木炭粉末の合計の配合比が、塗料の全量の100重量部に対して、2種類の木炭粉末が30重量部となることが好ましい。   In addition, in this paint, the total blending ratio of the two types of charcoal powder relative to the total amount of the paint is limited to 30 parts by weight of the two types of charcoal powder with respect to 100 parts by weight of the total amount of the paint. is not. It is sufficient if the coating film can be formed and the coating film surface on which the voltage is applied has conductivity that can maintain a negatively charged state. However, from the viewpoint of ensuring the uniformity of the coating film and good electrical conductivity, the total blending ratio of the two types of charcoal powder relative to the total amount of the paint is 2 types of charcoal with respect to 100 parts by weight of the total amount of the paint. The powder is preferably 30 parts by weight.

また、必ずしも、本塗料に水酸化アルミニウムが配合される必要はない。但し、塗料の塗膜面の難燃性を向上させることが可能な点から、本塗料に水酸化アルミニウムが配合されることが好ましい。   Further, it is not always necessary to mix aluminum hydroxide with the paint. However, it is preferable that aluminum hydroxide is blended in the paint from the viewpoint that the flame retardancy of the paint film surface of the paint can be improved.

また、必ずしも、本塗料の水酸化アルミニウムの配合量が、塗料の全量基準で重量比率が4.84%に限定される必要はない。但し、塗料の塗膜面の難燃性を向上させる点から、水酸化アルミニウムの配合量が、塗料の全量基準で重量比率が0.5〜10%の範囲内であることが好ましく、充分な難燃性を付与する点から、水酸化アルミニウムの配合量が、塗料の全量基準で重量比率が4.0〜6.0%の範囲内であることが更に好ましい。   In addition, the amount of aluminum hydroxide in the present paint is not necessarily limited to 4.84% by weight based on the total amount of the paint. However, from the viewpoint of improving the flame retardancy of the paint film surface, the blending amount of aluminum hydroxide is preferably within a range of 0.5 to 10% by weight based on the total amount of the paint. From the viewpoint of imparting flame retardancy, the amount of aluminum hydroxide is more preferably in the range of 4.0 to 6.0% by weight based on the total amount of paint.

また、本発明を適用した水性塗料組成物では、必要に応じて、上記に記載した組成以外に、適宜、本発明の効果を逸脱しない範囲で、その他の成分を配合することが可能である。例えば、増粘剤、防腐剤、防カビ剤、消泡剤、難燃剤等の塗料の機能性を向上させる添加成分を別途配合することも可能である。   Moreover, in the water-based coating composition to which the present invention is applied, it is possible to add other components as necessary within the range not departing from the effects of the present invention, as appropriate, in addition to the composition described above. For example, additional components that improve the functionality of the paint, such as thickeners, preservatives, fungicides, antifoaming agents, and flame retardants, can be added separately.

上記で説明した本発明を適用した水性塗料組成物の一例である塗料4は、塗膜面の均一性、成膜性、屈曲性、表面汚染性、表面傷付着性、塗料の導電性、塗膜強度、貯蔵安定性及び下地材との接着強度の向上といった塗膜の性能に優れたものとなっている。   The paint 4 which is an example of the aqueous paint composition to which the present invention is applied as described above is a coating film surface uniformity, film formability, flexibility, surface contamination, surface flaw adhesion, paint conductivity, coating It is excellent in the performance of the coating film, such as improvement in film strength, storage stability and adhesion strength with the base material.

また、塗料4に、負電圧発生装置5を介して電圧を印化することで、塗膜面が負に帯電して、塗膜面の周囲の空気中の正に帯電した粒子を捕集して、室内空間の空気を浄化することができる。   In addition, by applying a voltage to the paint 4 via the negative voltage generator 5, the coating surface becomes negatively charged, and positively charged particles in the air around the coating surface are collected. Thus, the air in the indoor space can be purified.

以上のとおり、本発明を適用した水性塗料組成物、空気浄化機構及び空気浄化方法は、品質に優れた塗膜を形成可能であり、室内空間に対して、充分な空気浄化機能を発揮することが可能なものとなっている。   As described above, the water-based paint composition, the air purification mechanism, and the air purification method to which the present invention is applied can form a coating film with excellent quality and exhibit a sufficient air purification function for indoor spaces. Is possible.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

本発明を適用した塗料の実施例及び比較例の試料を作製し、以下の評価を行った。
(1)試料の原料成分
まず、表2乃至表6に示す組成となるように原料成分を添加して、実施例1〜6及び比較例1〜5の各試料を作製した。なお、以下、表2乃至表6に示す数値は、原料の重量(kg)及び原料の全量を基準にした重量比率(%)を示したものである。また、実施例1〜3及び比較例1〜3は、下地材にロール等を用いて手作業で塗布する際の塗料を想定した組成であり、バインダーとなるアクリル系樹脂に含まれる水分以外に、別途、水を添加して粘度を調整した組成である。また、実施例4〜6及び比較例4、5はロールコーター等の塗布用の機械で塗布する際の塗料を想定した組成であり、バインダーとなるアクリル系樹脂に含まれる水分以外に水を添加せずに粘度を調整した組成である。
実施例1〜3及び比較例1〜3に対して、以下に記載する試験番号1〜12の各種試験を行った結果を表7に示す。また、実施例4〜6及び比較例4、5に対して、以下に記載する試験番号1〜11の各種試験を行った結果を表8に示す。
The sample of the Example and comparative example of the coating material to which this invention was applied was produced, and the following evaluation was performed.
(1) Raw material component of sample First, the raw material component was added so that it might become a composition shown in Table 2 thru | or Table 6, and each sample of Examples 1-6 and Comparative Examples 1-5 was produced. In the following, the numerical values shown in Tables 2 to 6 indicate the weight ratio (%) based on the weight (kg) of the raw material and the total amount of the raw material. Moreover, Examples 1-3 and Comparative Examples 1-3 are the compositions which assumed the coating material at the time of apply | coating by hand using a roll etc. to a base material, In addition to the water | moisture content contained in the acrylic resin used as a binder Separately, the viscosity is adjusted by adding water. In addition, Examples 4 to 6 and Comparative Examples 4 and 5 are compositions assuming a coating material when applied by a coating machine such as a roll coater, and water is added in addition to water contained in the acrylic resin serving as a binder. It is the composition which adjusted the viscosity without doing.
Table 7 shows the results of various tests of Test Nos. 1 to 12 described below for Examples 1 to 3 and Comparative Examples 1 to 3. Table 8 shows the results of various tests of Test Nos. 1 to 11 described below for Examples 4 to 6 and Comparative Examples 4 and 5.

(2)粘度(試験番号1)
実施例1〜6及び比較例1〜5について、TVC-5型粘度計(東機産業(株)社製)を用いて、粘度(Pa・s)を測定した。測定は、25℃±2の温度条件下で1つの試料につき3回測定を行い、3回測定の平均値を測定結果とした。また、測定結果について、手作業による塗装用(ロール塗装用)の塗料については、適正な粘度範囲を0.5~5.0Pa・sに設定し、機械塗装用の塗料については、適正な粘度範囲を10~100Pa・sに設定して、試料を評価するものとした。
(2) Viscosity (Test No. 1)
About Examples 1-6 and Comparative Examples 1-5, the viscosity (Pa * s) was measured using TVC-5 type viscometer (made by Toki Sangyo Co., Ltd.). The measurement was performed three times for each sample under a temperature condition of 25 ° C. ± 2 and the average value of the three measurements was taken as the measurement result. As for the measurement results, the appropriate viscosity range is set to 0.5 to 5.0 Pa · s for paints for manual painting (roll coating), and the appropriate viscosity range is set to 10 for paints for machine coating. The sample was evaluated at a setting of ~ 100 Pa · s.

実施例1〜3はいずれも、粘度が0.8~2.4Pa・sの範囲内の値となり、手作業による塗装用の塗料における適正な粘度の数値範囲の値であった。また、実施例4〜6は、いずれも、粘度が31~82Pa・sの範囲内の値となり、機械塗装用の塗料における適正な粘度の数値範囲であった。   In all of Examples 1 to 3, the viscosity was a value in the range of 0.8 to 2.4 Pa · s, which was a value in a numerical range of an appropriate viscosity for a paint for manual painting. In all of Examples 4 to 6, the viscosity was a value in the range of 31 to 82 Pa · s, which was a numerical range of an appropriate viscosity in a paint for machine coating.

(3)密度(木炭固形充填率)(試験番号2)
実施例1〜6及び比較例1〜5について、単位体積当たりの重量を測定して密度(g/cm)を確認した。容器寸法100mm×100mm×100mmのアクリル容器に試料を入れ、表面をスクレーパーで掬い取ってから重量を測定し、マスの体積で密度を算出した。測定は、25℃±2の温度条件下で1つの試料につき3回測定を行い、3回測定の平均値を測定結果とした。また、測定結果について、密度1.5g/cm3以上の値となるものを木炭固形充填率が良好な塗料として評価するものとした。
(3) Density (charcoal solid filling rate) (test number 2)
About Examples 1-6 and Comparative Examples 1-5, the weight per unit volume was measured and the density (g / cm < 3 >) was confirmed. A sample was put into an acrylic container having a container size of 100 mm × 100 mm × 100 mm, the surface was scraped with a scraper, the weight was measured, and the density was calculated by the volume of the mass. The measurement was performed three times for each sample under a temperature condition of 25 ° C. ± 2, and the average value of the three measurements was taken as the measurement result. As for the measurement results, those having a density of 1.5 g / cm 3 or more were evaluated as paints having a good charcoal solid filling rate.

実施例1〜6はいずれも、密度の値が1.5g/cm3以上であり、良好な木炭固形充填率を有していた。In all of Examples 1 to 6, the density value was 1.5 g / cm 3 or more and had a good charcoal solid filling rate.

(4)貯蔵安定性(試験番号3)
実施例1〜6及び比較例1〜5について、試料を撹拌した後容器を静止させ、所要時間経過後における容器底への木炭粉末の沈殿の有無を確認した。プラスチック製のへら(幅2cm、厚み2mm)を使用し、容器の底の木炭の沈殿の有無を調べた。評価は、25℃±2の温度条件下で行った。また、静止後1時間後、24時間後及び72時間後の試料を確認した。試験結果は、沈殿なし(表7及び表8では○で記載)、容器底部に木炭粉末の沈殿は見られないが、粘度の上昇が確認できる(表7及び表8では△で記載)、及び、容器底に木炭粉末の分離した沈殿が見られる(表7及び表8では×で記載)の3段階で評価した。
(4) Storage stability (Test No. 3)
About Examples 1-6 and Comparative Examples 1-5, after stirring a sample, the container was made stationary and the presence or absence of the charcoal powder precipitation to the container bottom after progress for a required time was confirmed. Using a plastic spatula (width 2 cm, thickness 2 mm), the presence of charcoal precipitation at the bottom of the container was examined. Evaluation was performed under the temperature condition of 25 ° C. ± 2. In addition, samples after 1 hour, 24 hours and 72 hours after rest were confirmed. The test results show no precipitation (indicated by ○ in Tables 7 and 8), no precipitation of charcoal powder is observed at the bottom of the container, but an increase in viscosity can be confirmed (indicated by Δ in Tables 7 and 8), and Evaluation was made in three stages, in which a separated precipitate of charcoal powder was observed at the bottom of the container (denoted by x in Tables 7 and 8).

実施例1〜6はいずれも、すべての時間において木炭粉末の沈殿が確認されなかった。   In all of Examples 1 to 6, no precipitation of charcoal powder was confirmed at all times.

(5)成膜性(分散度)(試験番号4)
実施例1〜6及び比較例1〜5について、各試料における塗料中の木炭粉末の分散度(μm)を測定して、成膜性の評価とした。分散度の測定は、JIS K 5600-2-5の方法に準拠して行った。分散度の測定に100μmの粒度ゲージを使用した。測定は、25℃±2の温度条件下で1つの試料につき3回測定を行い、3回測定の平均値を測定結果とした。また、測定結果について、測定値の平均値が50μm以下のものを、木炭粉末の分散度が良好、即ち、成膜性が良好な塗料と評価するものとした。
(5) Film formability (dispersion degree) (test number 4)
About Examples 1-6 and Comparative Examples 1-5, the dispersibility (micrometer) of the charcoal powder in the coating material in each sample was measured, and it was set as film forming evaluation. The degree of dispersion was measured according to the method of JIS K 5600-2-5. A 100 μm particle size gauge was used to measure the degree of dispersion. The measurement was performed three times for each sample under a temperature condition of 25 ° C. ± 2, and the average value of the three measurements was taken as the measurement result. As for the measurement results, those having an average value of 50 μm or less were evaluated as paints having good dispersion of charcoal powder, that is, good film formability.

実施例1〜5はいずれも、測定結果が50μm以下であった。   In all of Examples 1 to 5, the measurement result was 50 μm or less.

(6)耐屈曲性(試験番号5)
実施例1〜6及び比較例1〜5について、各試料を基材に塗布して乾燥後に負荷をかけて亀裂の発生の有無を確認して耐屈曲性(塗膜強度)の評価とした。帯状の基材(幅5cm、長さ20cm、ポリプロピレン製)に、3パターンの規定量(150g/m3、300g/m3及び450g/m3)の各試料を塗布して、7日間乾燥後、基材の中心にφ5mmの支柱を置き、2秒かけて180℃基材を折り曲げる。折り曲げ後、基材の中心部における亀裂の発生の有無を確認した。試験結果は、亀裂なし(表7及び表8では○で記載)、及び、亀裂有り(表7及び表8では×で記載)で評価した。
(6) Bending resistance (test number 5)
About Examples 1-6 and Comparative Examples 1-5, each sample was apply | coated to the base material, the load was applied after drying, the presence or absence of the generation | occurrence | production of a crack was confirmed, and it was set as evaluation of bending resistance (coating-film strength). Each sample of 3 patterns (150g / m 3 , 300g / m 3 and 450g / m 3 ) was applied to a belt-shaped substrate (width 5cm, length 20cm, made of polypropylene) and dried for 7 days Place a 5mm support in the center of the substrate and fold the substrate at 180 ° C over 2 seconds. After bending, the presence or absence of cracks in the center of the substrate was confirmed. The test results were evaluated without cracks (indicated by ◯ in Tables 7 and 8) and with cracks (indicated by x in Tables 7 and 8).

実施例1、2、4、及び5では、3パターンの規定量のいずれにおいても、亀裂の発生が見られなかった。実施例3は、2パターンの規定量(150g/m3、300g/m3)において亀裂の発生が見られなかった。実施例6は、150g/m3の塗布量において亀裂の発生が見られなかった。In Examples 1, 2, 4, and 5, no crack was observed in any of the three patterns. In Example 3, generation of cracks was not observed at the prescribed amounts of two patterns (150 g / m 3 and 300 g / m 3 ). In Example 6, no crack was observed at a coating amount of 150 g / m 3 .

(7)導電性(試験番号6)
実施例1〜6及び比較例1〜5について、各試料を基材に塗布して乾燥後に、デジタルマルチメーター(三和電気計器(株)社製、RD700)を用いて塗膜抵抗値(kΩ)を測定して、導電性の評価とした。基材(100mm×100mm、ポリプロピレン製)に、8パターンの規定量(100g/m3、150g/m3、200g/m3、250g/m3、300g/m3、350g/m3、400g/m3及び450g/m3)の各試料を塗布して、7日間乾燥後、基材の表面の抵抗値を測定した。測定は、25℃±2の温度条件下で1つの試料につき5回測定を行い、5回測定の平均値を測定結果とした。また、測定結果について、測定値の平均値が3kΩ以下のものを、適切な導電性を有する塗料(塗布量)と評価した。なお、塗膜抵抗値とは、塗膜面における電気の流れやすさの指標となる数値であり、この値が小さい程、塗膜面の導電性に優れたものとなる。
(7) Conductivity (test number 6)
About Examples 1-6 and Comparative Examples 1-5, after apply | coating each sample to a base material and drying, coating-film resistance value (kohm) using a digital multimeter (Sanwa Electric Instruments Co., Ltd. product, RD700). ) Was measured to evaluate conductivity. The specified amount of 8 patterns (100g / m 3 , 150g / m 3 , 200g / m 3 , 250g / m 3 , 300g / m 3 , 350g / m 3 , 400g / Each sample of m 3 and 450 g / m 3 ) was applied and dried for 7 days, and then the resistance value of the surface of the substrate was measured. The measurement was performed five times for each sample under a temperature condition of 25 ° C. ± 2 and the average value of the five measurements was taken as the measurement result. Moreover, about the measurement result, the thing whose average value of a measured value is 3 k (ohm) or less was evaluated as the coating material (coating amount) which has appropriate electroconductivity. In addition, a coating-film resistance value is a numerical value used as the parameter | index of the ease of the electricity flow in a coating-film surface, and it is what was excellent in the electroconductivity of a coating-film surface, so that this value is small.

実施例1、2及び4では、300g/m3〜450g/m3の塗布量の範囲で測定値の平均値が3kΩ以下となった。また、実施例3及び5では、350g/m3〜450g/m3の塗布量の範囲で測定値の平均値が3kΩ以下となった。In Examples 1, 2 and 4, the average value of the measured values in the range of coating weight of 300g / m 3 ~450g / m 3 becomes 3kΩ less. In Examples 3 and 5, the average value of the measured values in the range of coating weight of 350g / m 3 ~450g / m 3 becomes 3kΩ less.

(8)吸着性(試験番号7)
実施例1〜6及び比較例1〜5について、各試料を基材に塗布して乾燥後に、試験容器内で吸着対象ガス(アンモニア、ホルムアルデヒド、トルエン)と10分間接触させ、対象ガスに対する初期吸着性(%)を測定して、吸着性を評価した。基材(100mm×100mm、ポリプロピレン製)に、規定量(300g/m3)の各試料を塗布して、7日間乾燥したものを試験片とした。また、4Lのガラス製容器に吸着対象ガスを充満させ、試験片を容器内にいれ、10分経過後の容器中のガス濃度を測定した。ガス濃度の測定は、(株)ガステック社製のガス検知器及びガス検知管を用いて測定した。吸着性は、容器内に試験片を入れる前後の低減率(%)で表すものとした。測定は、25℃±2の温度条件下で1つの試料につき3回測定を行い、3回測定の平均値を測定結果とした。また、測定結果について、測定値の平均値(低減率)において、アンモニア及びホルムアルデヒドは80%以上のもの、また、トルエンは40%以上のものを、対象吸着ガスに対する初期吸着性が良好な塗料であると評価した。
(8) Adsorbability (test number 7)
For Examples 1 to 6 and Comparative Examples 1 to 5, each sample was applied to a substrate and dried, and then contacted with an adsorption target gas (ammonia, formaldehyde, toluene) for 10 minutes in a test container, and initial adsorption to the target gas. The adsorptivity was evaluated by measuring the property (%). A sample (100 mm × 100 mm, made of polypropylene) was coated with a specified amount (300 g / m 3 ) of each sample and dried for 7 days to obtain a test piece. Further, a 4 L glass container was filled with the gas to be adsorbed, the test piece was placed in the container, and the gas concentration in the container after 10 minutes was measured. The gas concentration was measured using a gas detector and a gas detector tube manufactured by Gastec Corporation. The adsorptivity was expressed as a reduction rate (%) before and after placing the test piece in the container. The measurement was performed three times for each sample under a temperature condition of 25 ° C. ± 2, and the average value of the three measurements was taken as the measurement result. In addition, regarding the measurement results, ammonia and formaldehyde with an average value (reduction rate) of 80% or more, and toluene with 40% or more are paints with good initial adsorptivity to the target adsorption gas. Evaluated that there was.

実施例1〜6はいずれも、すべての対象ガスに対して良好な吸着性を示した。   Examples 1 to 6 all showed good adsorptivity to all target gases.

(9)水分吸放出量(試験番号8)
実施例1〜6及び比較例1〜5について、各試料を基材に塗布して乾燥後に、乾燥環境又は湿潤環境下で24時間保持して、保持前後の基材重量の変化量から水分吸放出量を評価した。基材(100mm×100mm、ポリプロピレン製)に、規定量(300g/m3)の各試料を塗布して、7日間乾燥したものを試験片とした。また、乾燥環境(室温25℃、湿度50%)又は湿潤環境(室温25℃、湿度90%)の各環境下で試験片を24時間保持した。試験片は、保持前と保持後に重量(g)を測定した。保持前後の試験片の重量変化を算出して、乾燥環境下で保持させた試験片の重量変化の値を水分放出量(g/m2)とした。また、保持前後の試験片の重量変化を算出して、湿潤環境下で保持させた試験片の重量変化の値を水分吸収量(g/m2)とした。また、水分放出及び水分吸収の測定結果について重量変化の値が15g/m2以上のものを水分吸放出量(調湿性)が良好な塗料であると評価した。
(9) Moisture absorption and release (test number 8)
For Examples 1 to 6 and Comparative Examples 1 to 5, each sample was applied to a substrate and dried, then held for 24 hours in a dry or wet environment, and moisture absorption was determined from the amount of change in substrate weight before and after holding. The amount released was evaluated. A sample (100 mm × 100 mm, made of polypropylene) was coated with a specified amount (300 g / m 3 ) of each sample and dried for 7 days to obtain a test piece. Moreover, the test piece was hold | maintained for 24 hours in each environment of dry environment (room temperature 25 degreeC, humidity 50%) or wet environment (room temperature 25 degreeC, humidity 90%). The test piece was measured for weight (g) before and after holding. The change in the weight of the test piece before and after holding was calculated, and the value of the change in the weight of the test piece held in the dry environment was taken as the moisture release amount (g / m 2 ). Moreover, the weight change of the test piece before and after holding was calculated, and the value of the weight change of the test piece held in a wet environment was taken as the water absorption amount (g / m 2 ). In addition, regarding the measurement results of moisture release and moisture absorption, those having a weight change value of 15 g / m 2 or more were evaluated as paints having good moisture absorption and release (humidity control).

実施例1〜6はいずれも、水分放出量及び水分吸収量が15g/m2以上となり、良好な水分吸放出量を有していた。In all of Examples 1 to 6, the water release amount and the water absorption amount were 15 g / m 2 or more, and the water absorption and release amount was favorable.

(10)付着強度(試験番号9)
実施例1〜6及び比較例1〜5について、各試料を基材に塗布して乾燥後に、又は、乾燥後更に湿潤環境下で24時間保持して、引っ張り試験を行い、塗膜の付着強度を評価した。塗膜の付着強度が高ければ、塗料の下地材との密着性及び下地材への追従性が良好なものと言える。基材(100mm×100mm、石こうボード)に、規定量(300g/m3)の各試料を塗布して、7日間乾燥させ、乾燥後の試料を「乾燥時(試験片)」とし、7日間乾燥後に更に湿潤環境(室温25℃、湿度90%)の各環境下で24時間保持させたものを「高湿環境時(試験片)」とした。各試験片に対して、試験片に接着剤となるエポキシ樹脂を介して金属アタッチメントを接着させ、建研式接着力試験機(LPT-400、オックスジャッキ(株)社製)を用いて、金属アタッチメントの引っ張り試験を行い、塗膜の破断が生じた際、又は、試験片が破損した際の荷重(kg/cm2)を測定した。測定は、25℃±2の温度条件下で行った。また、測定結果について、測定値が15kg/cm2以上のものを、下地材への付着強度(下地密着性、下地追従性)が良好な塗料であると評価した。
(10) Adhesive strength (test number 9)
For Examples 1 to 6 and Comparative Examples 1 to 5, each sample was applied to a substrate and dried, or after drying, further held in a humid environment for 24 hours, a tensile test was performed, and the adhesion strength of the coating film Evaluated. If the adhesion strength of the coating film is high, it can be said that the adhesion of the coating material to the base material and the followability to the base material are good. Apply the specified amount (300g / m 3 ) of each sample to the base material (100mm x 100mm, gypsum board) and dry it for 7 days. Let the dried sample be "Dry (test piece)" for 7 days. What was kept for 24 hours in each environment of a humid environment (room temperature 25 ° C., humidity 90%) after drying was defined as “high humidity environment (test specimen)”. For each test piece, a metal attachment is bonded to the test piece via an epoxy resin as an adhesive, and metal is used using a Kenken-type adhesive strength tester (LPT-400, manufactured by Oxjack Co., Ltd.). A tensile test of the attachment was performed, and the load (kg / cm 2 ) when the coating film was broken or when the test piece was damaged was measured. The measurement was performed under a temperature condition of 25 ° C. ± 2. As for the measurement results, those having a measured value of 15 kg / cm 2 or more were evaluated as paints having good adhesion strength to the base material (base adhesion, base followability).

実施例1は乾燥時及び高湿環境時の両方において15kg/cm2以上の付着強度を示した。また、実施例2〜6は、乾燥時に15kg/cm2以上の付着強度(下地密着性、下地追従性)を示した。Example 1 showed an adhesion strength of 15 kg / cm 2 or more both in the dry and high humidity environments. In addition, Examples 2 to 6 exhibited adhesion strengths (base adhesion, base followability) of 15 kg / cm 2 or more when dried.

(11)表面汚染性(試験番号10)
実施例1〜6及び比較例1〜5について、各試料を基材に塗布して乾燥後に、又は、乾燥後更に湿潤環境下で24時間保持して、生地汚染試験を行い、表面汚染性を評価した。基材(200mm×200mm、石こうボード)に、規定量(300g/m3)の各試料を塗布して、7日間乾燥させ、乾燥後の試料を「乾燥時(試験片)」とし、7日間乾燥後に更に湿潤環境(室温25℃、湿度90%)の各環境下で24時間保持させたものを「高湿環境時(試験片)」とした。各試験片に対して、試験片表面に白色の生地を置いて、その上に100gの重りを載せ、生地を引っ張って、生地の汚れ具合の有無を確認した。試験結果は、汚れなし(表7及び表8では○で記載)、及び、汚れ有り(表7及び表8では×で記載)で評価した。
(11) Surface contamination (test number 10)
About Examples 1-6 and Comparative Examples 1-5, after apply | coating each sample to a base material and drying, it is further hold | maintained for 24 hours in a humid environment after drying, a dough contamination test is performed, surface contamination property is checked. evaluated. Apply the specified amount (300 g / m 3 ) of each sample to the base material (200 mm × 200 mm, gypsum board), and dry for 7 days. The dried sample is called “Dry (test piece)” for 7 days. What was kept for 24 hours in each environment of a humid environment (room temperature 25 ° C., humidity 90%) after drying was defined as “high humidity environment (test specimen)”. For each test piece, a white dough was placed on the surface of the test piece, a weight of 100 g was placed thereon, and the dough was pulled to check whether the dough was dirty. The test results were evaluated without contamination (indicated by ◯ in Tables 7 and 8) and with contamination (indicated by x in Tables 7 and 8).

実施例1、2、4及び5は乾燥時及び高湿環境時の両方において、生地に汚れの付着が確認されなかった。また、実施例3及び6は、乾燥時に生地に汚れの付着が確認されなかった。   In Examples 1, 2, 4 and 5, no adhesion of dirt to the fabric was confirmed in both the dry and high humidity environments. In Examples 3 and 6, no dirt was confirmed on the fabric during drying.

(12)表面傷付着性(試験番号11)
実施例1〜6及び比較例1〜5について、各試料を基材に塗布して乾燥後に生地による塗膜への傷付着試験を行い、表面傷付着性を評価した。基材(200mm×200mm、石こうボード)に、規定量(300g/m3)の各試料を塗布して、7日間乾燥させ、乾燥後の試料を試験片とした。各試験片に対して、試験片表面に白色の生地を置いて、その上に100gの重りを載せ、生地を引っ張って、生地と塗膜面との摩擦の発生により、塗膜表面に対する傷の発生の有無を確認した。試験結果は、傷付着なし(表7及び表8では○で記載)、及び、傷付着有り(表7及び表8では×で記載)で評価した。
(12) Surface scratch adhesion (test number 11)
About Examples 1-6 and Comparative Examples 1-5, each sample was apply | coated to the base material, the damage | wound adhesion test to the coating film by material | dough was done after drying, and surface damage | wound adhesiveness was evaluated. A specified amount (300 g / m 3 ) of each sample was applied to a base material (200 mm × 200 mm, gypsum board), dried for 7 days, and the dried sample was used as a test piece. For each test piece, place a white fabric on the surface of the test piece, place a 100 g weight on it, pull the fabric, and the friction between the fabric and the coating surface will cause scratches on the coating surface. The presence or absence of occurrence was confirmed. The test results were evaluated with no flaw adhesion (shown as ◯ in Tables 7 and 8) and with flaw adhesion (shown as x in Tables 7 and 8).

実施例1〜6はいずれも傷の付着が確認されなかった。   In all of Examples 1 to 6, adhesion of scratches was not confirmed.

(13)難燃性(試験番号12)
実施例1〜3及び比較例1〜3について、各試料を基材に塗布して乾燥後に燃焼性試験を行い、難燃性を評価した。基材(15cm×30cm、石こうボード)に、規定量(300g/m3)の各試料を塗布して、7日間乾燥させ、乾燥後の試料を試験片とした。各試験片に対して、試験片から20cm離れた位置にバーナーを設置して、バーナーに火を添加して2分後に火を止め、試験片の塗膜表面における損傷の発生や、煙・ガスの発生を確認した。試験結果は、塗膜表面における損傷の発生や、煙・ガスの発生なし(表7及び表8では○で記載)、及び、塗膜表面における損傷の発生や、煙・ガスの発生有り(表7及び表8では×で記載)で評価した。
(13) Flame retardancy (test number 12)
About Examples 1-3 and Comparative Examples 1-3, each sample was apply | coated to the base material, the flammability test was done after drying, and the flame retardance was evaluated. A specified amount (300 g / m 3 ) of each sample was applied to a base material (15 cm × 30 cm, gypsum board), dried for 7 days, and the dried sample was used as a test piece. For each test piece, install a burner at a position 20 cm away from the test piece, add fire to the burner, stop the fire after 2 minutes, cause damage on the coating surface of the test piece, smoke and gas The occurrence of was confirmed. The test results showed that there was no damage on the coating surface, no smoke / gas generation (indicated by circles in Tables 7 and 8), and there was damage on the coating surface or smoke / gas generation (table 7 and Table 8).

実施例1〜3はいずれも塗膜表面における損傷の発生や、煙・ガスの発生が確認されなかった。   In all of Examples 1 to 3, generation of damage on the surface of the coating film and generation of smoke and gas were not confirmed.

(12)水酸化アルミニウムの配合量による難燃性の評価
上述した実施例2の組成をベースに、水酸化アルミニウムの配合量を異ならせた(0%、0.5%、1%、2.5%、5%、7.5%、10%、12.5%、)塗料を調製して、実施例7〜14とした。この実施例に対して、上述した難燃性(試験番号12)と同様の試験であり、バーナーに火を添加した後、30秒後、1分後及び2分後の各試験片の塗膜表面における損傷の発生や、煙・ガスの発生を確認した。試験結果は、塗膜表面における損傷の発生や、煙・ガスの発生なし(表9では○で記載)、塗膜表面における損傷の発生や、煙・ガスの発生がわずかに確認されたもの(表9では△で記載)、及び、塗膜表面における損傷の発生や、煙・ガスの発生有り(表9では×で記載)で評価した。結果は以下の表9に示す。
(12) Evaluation of flame retardancy by blending amount of aluminum hydroxide Based on the composition of Example 2 described above, the blending amount of aluminum hydroxide was varied (0%, 0.5%, 1%, 2.5%, 5 %, 7.5%, 10%, 12.5%)) were prepared and used as Examples 7-14. This example is a test similar to the above-mentioned flame retardancy (test number 12), and after adding fire to the burner, the coating on each test piece 30 seconds later, 1 minute later and 2 minutes later The occurrence of damage on the surface and the generation of smoke and gas were confirmed. The test results show that there was no damage on the coating surface, no smoke or gas (circled in Table 9), slight damage on the coating surface, or generation of smoke or gas ( In Table 9, it was evaluated by Δ), and the occurrence of damage on the surface of the coating film and the occurrence of smoke / gas (indicated by x in Table 9). The results are shown in Table 9 below.

実施例11〜14はいずれも2分後においても、塗膜表面における損傷の発生や、煙・ガスの発生が確認されなかった。   In any of Examples 11 to 14, even after 2 minutes, no damage on the surface of the coating film, nor generation of smoke or gas was confirmed.

1 壁面
11 壁面
11a 下地材
2 天井面
3 室内空間
4 塗料
5 負電圧発生装置
51 正極
52 負極
53 アース
54 電源
6 絶縁層
7 仕上げ材
DESCRIPTION OF SYMBOLS 1 Wall surface 11 Wall surface 11a Base material 2 Ceiling surface 3 Indoor space 4 Paint 5 Negative voltage generator 51 Positive electrode 52 Negative electrode 53 Ground 54 Power supply 6 Insulating layer 7 Finishing material

Claims (16)

合成樹脂で構成されたバインダーと、
少なくとも2つの粒径の異なる粉末で構成され、第1の木炭粉末は3000メッシュ以下の中心粒径5μmの粉体であり、前記第2の木炭粉末は1500メッシュ以下の中心粒径10μmの粉体である木炭粉末と、
水とを含有する
水性塗料組成物。
A binder composed of synthetic resin;
The first charcoal powder is composed of at least two powders having different particle sizes, the first charcoal powder is a powder having a center particle size of 5 μm having a mesh size of 3000 mesh or less, and the second charcoal powder is a powder having a center particle size of 10 μm having a mesh size of 1500 mesh or less Charcoal powder that is
A water-based coating composition containing water.
前記第2の木炭粒子の100重量部に対し、前記第1の木炭粒子が30〜100重量部の範囲内で配合された
請求項1に記載の水性塗料組成物。
The water-based paint composition according to claim 1, wherein the first charcoal particles are blended within a range of 30 to 100 parts by weight with respect to 100 parts by weight of the second charcoal particles .
前記木炭粉末の配合割合は、全量基準の100重量部に対して、30重量部である
請求項1又は請求項2に記載の水性塗料組成物。
The water-based paint composition according to claim 1 or 2, wherein a blending ratio of the charcoal powder is 30 parts by weight with respect to 100 parts by weight based on the total amount .
前記バインダーはカチオン性のアクリル樹脂で構成された
請求項1、請求項2又は請求項3に記載の水性塗料組成物。
The binder is composed of a cationic acrylic resin.
The water-based paint composition according to claim 1, claim 2 or claim 3.
水酸化アルミニウムから構成された難燃剤を含有する
請求項1、請求項2、請求項3又は請求項4に記載の水性塗料組成物。
The water-based paint composition according to claim 1, 2, 3, or 4 containing a flame retardant composed of aluminum hydroxide .
前記水酸化アルミニウムは全量基準で重量比率が0.1〜10%の範囲内である
請求項5に記載の水性塗料組成物。
The water-based coating composition according to claim 5, wherein the aluminum hydroxide has a weight ratio in the range of 0.1 to 10% based on the total amount .
カチオン性のアクリル樹脂で構成されたバインダーと、A binder composed of a cationic acrylic resin;
少なくとも2つの粒径の異なる粉末で構成された木炭粉末と、  Charcoal powder composed of at least two powders of different particle sizes;
水とを含有するContains water
水性塗料組成物。Water-based paint composition.
合成樹脂で構成されたバインダーと、A binder composed of synthetic resin;
少なくとも2つの粒径の異なる粉末で構成された木炭粉末と、  Charcoal powder composed of at least two powders of different particle sizes;
水と、  water and,
水酸化アルミニウムから構成された難燃剤とを含有する  Contains a flame retardant composed of aluminum hydroxide
水性塗料組成物。  Water-based paint composition.
導電性の水性塗料組成物を塗布した塗膜面を負電圧発生手段により負電圧に帯電させる空気浄化機構であって、
前記水性塗料組成物は、合成樹脂で構成されたバインダーと、少なくとも2つの粒径の異なる粉末で構成された木炭粉末と、水とを含有する
空気浄化機構。
An air purification mechanism for charging a coating film surface coated with a conductive aqueous coating composition to a negative voltage by a negative voltage generating means,
The water-based paint composition contains a binder composed of a synthetic resin, charcoal powder composed of at least two powders having different particle sizes, and water.
前記水性塗料組成物の塗膜面への塗布量が150〜300g/m・wetの範囲内である
請求項9に記載の空気浄化機構。
The air purification mechanism according to claim 9, wherein the coating amount of the water-based coating composition is within a range of 150 to 300 g / m 2 · wet.
前記負電圧発生手段により負電圧に帯電させた塗膜面における発生電圧が−100〜−150Vの範囲内である
請求項9又は請求項10に記載の空気浄化機構。
The air purification mechanism according to claim 9 or 10, wherein a generated voltage on a coating film surface charged to a negative voltage by the negative voltage generating means is in a range of -100 to -150V.
前記木炭粉末は、第1の木炭粉末と、該第1の木炭粉末の粒径の1〜2倍の粒径を有する第2の木炭粉末とを含んで構成された
請求項9、請求項10又は請求項11に記載の空気浄化機構。
The said charcoal powder was comprised including the 1st charcoal powder and the 2nd charcoal powder which has a particle size 1 to 2 times the particle size of this 1st charcoal powder. Or the air purification mechanism of Claim 11.
室内空間を構成する複数の壁面又は天井面の少なくとも1つの面に、合成樹脂で構成されたバインダーと、少なくとも2つの粒径の異なる粉末で構成された木炭粉末と、水とを含有する導電性の水性塗料組成物を塗布する工程と、
前記水性塗料組成物が塗布された塗膜面を負電圧に帯電させる工程とを備える
空気浄化方法。
Conductivity containing at least one surface of a plurality of wall surfaces or ceiling surfaces constituting an indoor space containing a binder composed of synthetic resin, charcoal powder composed of at least two powders having different particle sizes, and water Applying a water-based paint composition of
An air purification method comprising: charging a coating film surface coated with the aqueous coating composition to a negative voltage.
室内空間を構成する複数の壁面又は天井面の少なくとも1つの面に絶縁層を設ける共に、合成樹脂で構成されたバインダーと、少なくとも2つの粒径の異なる粉末で構成された木炭粉末と、水とを含有する導電性の水性塗料組成物を、前記絶縁層の上に塗布する工程と、
前記水性塗料組成物が塗布された塗膜面を負電圧に帯電させる工程とを備える
空気浄化方法。
An insulating layer is provided on at least one of a plurality of wall surfaces or ceiling surfaces constituting the indoor space, a binder composed of a synthetic resin, charcoal powder composed of at least two powders having different particle sizes, and water A step of applying a conductive aqueous coating composition containing the composition on the insulating layer;
An air purification method comprising: charging a coating film surface coated with the aqueous coating composition to a negative voltage.
前記木炭粉末は、第1の木炭粉末と、該第1の木炭粉末の粒径の1〜2倍の粒径を有する第2の木炭粉末とを含んで構成された
請求項13又は請求項14に記載の空気浄化方法。
The said charcoal powder was comprised including the 1st charcoal powder and the 2nd charcoal powder which has a particle size 1 to 2 times the particle size of this 1st charcoal powder. The air purification method as described in 2.
前記複数の壁面又は天井面のいずれか1つの面のみに前記水性塗料組成物の塗膜面を設ける
請求項13、請求項14又は請求項15に記載の空気浄化方法。
The air purification method according to claim 13, 14 or 15, wherein a coating surface of the water-based paint composition is provided only on any one of the plurality of wall surfaces or ceiling surfaces.
JP2018515698A 2017-06-13 2017-06-13 Water-based paint composition, air purification mechanism and air purification method Active JP6385026B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/021744 WO2018229850A1 (en) 2017-06-13 2017-06-13 Aqueous coating composition, air cleaning mechanism, and air cleaning method

Publications (2)

Publication Number Publication Date
JP6385026B1 true JP6385026B1 (en) 2018-09-05
JPWO2018229850A1 JPWO2018229850A1 (en) 2019-06-27

Family

ID=62748492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018515698A Active JP6385026B1 (en) 2017-06-13 2017-06-13 Water-based paint composition, air purification mechanism and air purification method

Country Status (5)

Country Link
JP (1) JP6385026B1 (en)
KR (1) KR102306766B1 (en)
CN (1) CN109392301B (en)
PH (1) PH12017502285A1 (en)
WO (1) WO2018229850A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131597A (en) * 1997-07-10 1999-02-02 Kawai Musical Instr Mfg Co Ltd Conductive sheet
JP2004083572A (en) * 2002-06-28 2004-03-18 Nobuo Saito Ant proof composition
JP2005255811A (en) * 2004-03-11 2005-09-22 Shikoku Chem Corp Interior coating material having electromagnetic wave-shielding function and method for electromagnetic wave-shielding using the same
JP2007170117A (en) * 2005-12-26 2007-07-05 Heathcoat Clearway Kk Indoor environment improving method
JP2009209327A (en) * 2008-03-06 2009-09-17 Hinomaru Carbo Techno Co Ltd Charcoal powder-containing coating agent and its use
JP2009238716A (en) * 2008-03-26 2009-10-15 Shinrin Kenkyusho:Kk Static electricity prevention agent and static electricity prevention sheet
JP2010174184A (en) * 2009-01-30 2010-08-12 Ahtech Kobo Kk Water paint composition
JP2011102491A (en) * 2009-11-11 2011-05-26 Sekisui House Ltd Indoor environmental improvement system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4210429A (en) * 1977-04-04 1980-07-01 Alpine Roomaire Systems, Inc. Air purifier
WO1996037288A1 (en) * 1995-05-26 1996-11-28 Hitachi Chemical Company, Ltd. Environment purifying material
JP3133962B2 (en) * 1997-07-10 2001-02-13 道晴 吉松 Paint composition
WO2003005826A1 (en) * 2001-07-10 2003-01-23 Michiharu Yoshimatsu Aqueous tar solution and tar-containing coating
JP2003342530A (en) * 2002-05-30 2003-12-03 Ishitake:Kk Aqueous coating composition
US20110240064A1 (en) * 2002-09-09 2011-10-06 Reactive Surfaces, Ltd. Polymeric Coatings Incorporating Bioactive Enzymes for Cleaning a Surface
JP5834008B2 (en) * 2010-08-31 2015-12-16 協立化学産業株式会社 Conductive composition for battery or electric double layer capacitor current collector coating, battery or electric double layer capacitor current collector, battery and electric double layer capacitor
CN103642068B (en) * 2013-11-25 2015-04-15 桂林电器科学研究院有限公司 Antistatic slurry

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131597A (en) * 1997-07-10 1999-02-02 Kawai Musical Instr Mfg Co Ltd Conductive sheet
JP2004083572A (en) * 2002-06-28 2004-03-18 Nobuo Saito Ant proof composition
JP2005255811A (en) * 2004-03-11 2005-09-22 Shikoku Chem Corp Interior coating material having electromagnetic wave-shielding function and method for electromagnetic wave-shielding using the same
JP2007170117A (en) * 2005-12-26 2007-07-05 Heathcoat Clearway Kk Indoor environment improving method
JP2009209327A (en) * 2008-03-06 2009-09-17 Hinomaru Carbo Techno Co Ltd Charcoal powder-containing coating agent and its use
JP2009238716A (en) * 2008-03-26 2009-10-15 Shinrin Kenkyusho:Kk Static electricity prevention agent and static electricity prevention sheet
JP2010174184A (en) * 2009-01-30 2010-08-12 Ahtech Kobo Kk Water paint composition
JP2011102491A (en) * 2009-11-11 2011-05-26 Sekisui House Ltd Indoor environmental improvement system

Also Published As

Publication number Publication date
CN109392301B (en) 2021-06-01
WO2018229850A1 (en) 2018-12-20
CN109392301A (en) 2019-02-26
JPWO2018229850A1 (en) 2019-06-27
PH12017502285A1 (en) 2018-06-11
KR102306766B1 (en) 2021-09-30
KR20190139981A (en) 2019-12-18

Similar Documents

Publication Publication Date Title
CN101068877B (en) Adhesive sheet and manufacturing method thereof
JP2006341163A (en) Coating finishing method
JP6385026B1 (en) Water-based paint composition, air purification mechanism and air purification method
JP2006341411A (en) Laminate
CN105315805B (en) A kind of energy-saving water paint of absorption degradation formaldehyde and releasing negative oxygen ion
KR101323878B1 (en) Water―based coating composition containing powder made from needle leaf trees and method for preparing the same
JP2005299381A (en) Execution method of moisture absorbing/desorbing building material and moisture permeable structure
JP2000001649A (en) Coating composition for interior
JP2005105010A (en) Inorganic coating material and voc-adsorbing functional material using the same
JP3429469B2 (en) Indoor building materials
JP4522827B2 (en) Wallpaper and manufacturing method thereof
KR101375150B1 (en) Bio liquid stated wall- paper composition and method there of
KR101356571B1 (en) Powder type wall paint composition for incombustible and electromagnetic wave shielding wallpaper
WO2006134808A1 (en) Coated article
JP2009002145A (en) Plate-like ventilation and lamination material
JP3701541B2 (en) Architectural interior material and construction method of architectural interior structure having anion generation function
JP2019037544A (en) Deodorant coating structure, interior building material and indoor space
JP2005097512A (en) Conductive composition, primer, coating material for floor, and method for applying the same
JP2013113012A (en) Humidity-conditioning wallpaper
JP2002264247A (en) Building plate for interior decoration
JP2010094378A (en) Sheet-like material with adsorption decomposition layer formed on its surface and method of execution of the same
KR100643002B1 (en) Anion-emissing wallpaper for reducing sick house syndrome
JP2001336094A (en) Moisture absorbing and releasing wall paper and method for manufacturing the same
JP2001049594A (en) Conductive non-woven fabric sheet
JP2017031699A (en) Antistatic floor and building comprising the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180323

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180323

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180607

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180806

R150 Certificate of patent or registration of utility model

Ref document number: 6385026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250