JPWO2018229850A1 - Aqueous paint composition, air purification mechanism and air purification method - Google Patents

Aqueous paint composition, air purification mechanism and air purification method Download PDF

Info

Publication number
JPWO2018229850A1
JPWO2018229850A1 JP2018515698A JP2018515698A JPWO2018229850A1 JP WO2018229850 A1 JPWO2018229850 A1 JP WO2018229850A1 JP 2018515698 A JP2018515698 A JP 2018515698A JP 2018515698 A JP2018515698 A JP 2018515698A JP WO2018229850 A1 JPWO2018229850 A1 JP WO2018229850A1
Authority
JP
Japan
Prior art keywords
charcoal powder
coating
water
paint
charcoal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018515698A
Other languages
Japanese (ja)
Other versions
JP6385026B1 (en
Inventor
雅博 林田
雅博 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARTECH CO., LTD.
Original Assignee
ARTECH CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARTECH CO., LTD. filed Critical ARTECH CO., LTD.
Application granted granted Critical
Publication of JP6385026B1 publication Critical patent/JP6385026B1/en
Publication of JPWO2018229850A1 publication Critical patent/JPWO2018229850A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size

Abstract

【課題】品質に優れた塗膜を形成可能であり、室内空間に対して、充分な空気浄化機能を発揮することが可能な水性塗料組成物、空気浄化機構及び空気浄化方法を提供する。【解決手段】水性塗料組成物は、塗料組成物における全量基準の重量比率が、カチオン系のアクリル酸エステル共重合体水性エマルジョン:29.07%、水:29.07%、1500メッシュの木炭粉末(中心粒径10μm):19.38%、3000メッシュの木炭粉末(中心粒径5μm):9.69%、水酸化アルミニウム:4.84%、アクリル系重合物:2.91%、防腐剤:2.91%、ウレタン変性ポリエーテル:1.94%、防カビ剤:0.10%、シリコーン系消泡剤:0.01%を含む組成を有している。【選択図】1An aqueous paint composition, an air purification mechanism, and an air purification method capable of forming a coating film excellent in quality and capable of exhibiting a sufficient air purification function to indoor space are provided. A water-based paint composition has a weight ratio based on the total amount in the paint composition, the cationic acrylic acid ester copolymer aqueous emulsion: 29.07%, water: 29.07%, 1500 mesh charcoal powder (Central particle size 10 μm): 19.38%, 3000 mesh charcoal powder (central particle size 5 μm): 9.69%, aluminum hydroxide: 4.84%, acrylic polymer: 2.91%, preservative It has a composition including: 2.91%, urethane-modified polyether: 1.94%, antifungal agent: 0.10%, and silicone antifoaming agent: 0.01%. [Selected figure] 1

Description

本発明は水性塗料組成物、空気浄化機構及び空気浄化方法に関する。詳しくは、品質に優れた塗膜を形成可能であり、室内空間に対して、充分な空気浄化機能を発揮することが可能な水性塗料組成物、空気浄化機構及び空気浄化方法に係るものである。   The present invention relates to an aqueous coating composition, an air purification mechanism and an air purification method. Specifically, the invention relates to an aqueous coating composition capable of forming a coating film excellent in quality and capable of exhibiting a sufficient air purification function to indoor space, an air purification mechanism, and an air purification method. .

対象物を保護する目的や、美観や機能性を付与する目的から、対象物の表面に対して塗布する塗料が用いられている。塗料を塗布する対象物は、建築物、車両、電気機械、金属製品、家具、皮革等、多岐に渡り、用途ごとに様々な種類の塗料が存在する。   Background Art A paint applied to the surface of an object is used for the purpose of protecting the object and for the purpose of imparting beauty and functionality. The objects to which the paint is applied include a building, a vehicle, an electric machine, a metal product, furniture, a leather, etc., and a wide variety of paints exist for each application.

また、塗料の用途の中でも、建築物、特に室内空間における壁面や天井面に塗布する建築内装用の塗料は、塗膜面の保護や意匠性の向上だけでなく、室内空間の環境改善にも寄与する。この建築内装用の塗料は、主に、合成樹脂、顔料、添加剤及び溶剤で構成されている。   In addition, among the uses of paints, paints for building interiors, especially for building interiors applied to wall surfaces and ceilings in indoor spaces, not only improve the coating surface protection and design, but also improve the indoor space environment. To contribute. The paint for interiors of buildings is mainly composed of synthetic resin, pigment, additives and solvent.

このような室内空間の環境改善に寄与する塗料は、例えば、室内空間における塵や埃、家具や建材に含まれるホルムアルデヒドや揮発性有機化合物(VOC)等の化学物質、煙草、ペット等の臭気等の有害物質や不快物質を低減又は吸着する能力を有している。   The paint that contributes to the environmental improvement of such indoor spaces includes, for example, dust and dirt in indoor spaces, chemical substances such as formaldehyde and volatile organic compounds (VOC) contained in furniture and building materials, odors of cigarettes, pets, etc. Have the ability to reduce or adsorb harmful substances and unpleasant substances.

こうしたなか、室内空間のおける空気中の有害物質を効率的に吸着することを試みた塗料として、例えば、特許文献1に記載の水性塗料組成物がある。   Among these, as a paint that attempts to efficiently adsorb harmful substances in air in the indoor space, for example, there is an aqueous paint composition described in Patent Document 1.

かかる特許文献1に記載された水性塗料組成物は、建築内装用塗膜を得るための塗料であり、α,β−エチレン性不飽和単量体と共重合可能な界面活性剤及びカルボキシル基を有するエチレン性不飽和単量体を必須成分とし、カルボキシル基を除くカルボニル基を有するエチレン性不飽和単量体が0.5質量%〜10質量%共重合された水性樹脂分散体(A)、分子中にヒドラジド基を2個以上有する化合物(B)、及び活性炭(C)を含んでいる。この塗料は、活性炭により有害物質を吸着する。   The water-based paint composition described in Patent Document 1 is a paint for obtaining a coating film for building interior, and comprises a surfactant and a carboxyl group copolymerizable with an α, β-ethylenically unsaturated monomer. A water-based resin dispersion (A) containing, as an essential component, an ethylenically unsaturated monomer having a copolymerized 0.5% by mass to 10% by mass of an ethylenically unsaturated monomer having a carbonyl group excluding a carboxyl group, It contains a compound (B) having two or more hydrazide groups in the molecule, and activated carbon (C). This paint adsorbs harmful substances by activated carbon.

また、塗料組成物中に導電性を有する成分を含有させた塗料を、室内空間の空気浄化機構に利用する事例が存在する。例えば、本願の発明者らは、導電性を有する木炭粉末を含有させた塗料の利用及び開発を行っている。   Further, there is a case where a paint containing a conductive component in a paint composition is used for an air purification mechanism of an indoor space. For example, the inventors of the present application use and develop a paint containing charcoal powder having conductivity.

この導電性を有する塗料では、室内空間の空気中の正に帯電した粒子を捕捉することで、室内空間等の空気を浄化する。例えば、廃棄ガスや、PM2.5等の微粒子状物質は、それらの構成粒子が大気中で正に帯電して存在する傾向にある。また、空気中には主にアンモニウムイオンが存在する。導電性を有する塗料の塗膜面に対して、負電圧発生装置を接続させて、塗膜面を負電圧に帯電させることで、上述したような、正に帯電した粒子を捕捉して、室内空間の空気の浄化が可能となる。   The paint having this conductivity purifies air in the indoor space and the like by capturing positively charged particles in air in the indoor space. For example, waste gases and particulate matter such as PM 2.5 tend to be positively charged in the atmosphere and their constituent particles. Also, ammonium ions are mainly present in the air. A negative voltage generator is connected to the coating surface of the conductive paint, and the coating surface is charged to a negative voltage to capture positively charged particles as described above. It is possible to purify the air in the space.

特開2010−174184号公報JP, 2010-174184, A

しかしながら、特許文献1に開示された水性塗料組成物をはじめ、従前の建築内装用塗膜を得るための塗料においては、塗膜の均一性(塗膜の膜厚の均一性)、貯蔵安定性(顔料の1種である無機顔料等の沈殿の発生)、有害物質の吸着性、下地材への付着強度、難燃性等、各種の塗膜性能において改良の余地があると考えられる。   However, in the paint for obtaining the coating film for conventional building interiors including the water-based paint composition disclosed in Patent Document 1, the uniformity of the coating film (uniformity of the film thickness of the coating film), the storage stability It is considered that there is room for improvement in various coating film performances such as (generation of precipitation of inorganic pigment and the like which is one type of pigment), adsorptivity of harmful substances, adhesion strength to a base material, flame retardancy and the like.

特に、塗料中に含まれる鉱物や貝殻、木炭、活性炭等の粉末で構成された無機顔料(骨材)の粒径によって、塗膜の品質や性能に影響が及んでいる。例えば、無機顔料として、木炭粉末を使用した際に、木炭粉末の粒径が大きければ、塗膜にムラが生じ、平滑性が損なわれ、木炭粉末の脱落や、塗料中での木炭粉末の沈殿が発生する。   In particular, the quality and performance of the coating film are affected by the particle size of the inorganic pigment (aggregate) composed of the powder of minerals, shells, charcoal, activated carbon and the like contained in the paint. For example, when charcoal powder is used as an inorganic pigment, if the particle size of charcoal powder is large, unevenness occurs in the coating film, the smoothness is impaired, dropping of charcoal powder, precipitation of charcoal powder in paint Occurs.

また、木炭粉末の粒径が小さければ、塗膜を形成するための合成樹脂の量が増え、塗料中の有機分が増加して燃えやすくなり、難燃性が不充分となる。更に、粒径を小さくするための製造コストが高くなる問題もあった。   Further, if the particle size of the charcoal powder is small, the amount of synthetic resin for forming a coating film increases, the organic content in the paint increases and it becomes easy to burn, and the flame retardancy becomes insufficient. Furthermore, there is also a problem that the manufacturing cost for reducing the particle size is high.

また、上述した導電性を付与した塗料については、水性又はアルコール性の溶剤を含む塗料(水性塗料組成物又はアルコール性塗料組成物)が主に利用されるが、それぞれの溶剤に起因する欠点があった。   In addition, for the above-described coatings to which conductivity has been imparted, paints containing aqueous or alcoholic solvents (water-based paint compositions or alcoholic paint compositions) are mainly used, but there are disadvantages caused by the respective solvents. there were.

まず、前提として、導電性を付与した塗料では、塗料中における木炭粉末の粒子同士が接触して、この粒子を介して塗料の導電性が確保される。   First, as a premise, in the paint to which conductivity has been imparted, particles of charcoal powder in the paint are in contact with each other, and the conductivity of the paint is secured via the particles.

ここで、水性塗料組成物は、アルコール性塗料組成物に比べて、木炭粉末を含有させた塗膜を形成するにあたって必要な合成樹脂の配合量が多く、樹脂層が厚くなる。合成樹脂の配合量が多いことで、木炭粉末の粒子同士の接触が妨げられやすくなり、塗料の導電性が低くなってしまう。この結果、塗料の塗膜面において、空気中の正に帯電した粒子を捕捉する為の良好な帯電状態が得られにくくなっている。   Here, the water-based paint composition contains a large amount of the synthetic resin necessary for forming a coating film containing charcoal powder, as compared with the alcoholic paint composition, and the resin layer becomes thicker. When the blending amount of the synthetic resin is large, the contact of the particles of the charcoal powder is likely to be disturbed, and the conductivity of the paint is lowered. As a result, it is difficult to obtain a good charged state for capturing positively charged particles in the air on the paint film surface of the paint.

一方、アルコール性塗料組成物は、水性塗料組成物よりも、木炭粉末を含有させた塗膜を形成するにあたって必要な合成樹脂の配合量が少なく、樹脂層が薄くなるため、導電性に優れている。しかしながら、アルコール性塗料組成物では、合成樹脂の配合量が少ないことから、塗膜の耐屈曲性が低く、素地の変形等に応じて塗膜にひび割れが生じやすい。   On the other hand, the alcoholic coating composition is superior in conductivity to the aqueous coating composition because the amount of the synthetic resin necessary for forming a coating film containing charcoal powder is smaller and the resin layer becomes thinner. There is. However, in the alcoholic coating composition, since the blending amount of the synthetic resin is small, the bending resistance of the coating film is low, and the coating film is easily cracked in accordance with the deformation of the base and the like.

塗膜上のひび割れが発生した部分は電気的に不連続な領域となり、やはり塗料の導電性が低くなってしまう問題があった。また、主なアルコール性の溶媒、例えば、エタノール、メタノール、1-プロパノール等は揮発性有機化合物(VOC)であり、人体への健康被害を及ぼす為、安全性の観点から、水性塗料組成物へと代替したいという要求が存在する。このように、従前の導電性を付与した塗料では、導電性と塗膜性能、安全性において不充分なものとなっている。   There is a problem that the portion of the coating film where the crack has occurred becomes an electrically discontinuous region, and the conductivity of the coating also decreases. In addition, main alcoholic solvents such as ethanol, methanol and 1-propanol are volatile organic compounds (VOCs), which cause health damage to the human body. There is a demand to replace it. As described above, in the case of the paint provided with the conventional conductivity, the conductivity, the coating film performance, and the safety become insufficient.

本発明は、以上の点に鑑みて創案されたものであり、品質に優れた塗膜を形成可能であり、室内空間に対して、充分な空気浄化機能を発揮することが可能な水性塗料組成物、空気浄化機構及び空気浄化方法を提供することを目的とする。   The present invention has been made in view of the above points, is capable of forming a coating film excellent in quality, and is capable of exhibiting a sufficient air purification function for indoor space, and an aqueous paint composition. It is an object of the present invention to provide an air purification mechanism and an air purification method.

上記の目的を達成するために、本発明の水性塗料組成物は、合成樹脂で構成されたバインダーと、少なくとも2つの粒径の異なる粉末で構成された木炭粉末と、水とを含有するものとなっている。   In order to achieve the above object, the aqueous coating composition of the present invention comprises a binder composed of a synthetic resin, charcoal powder composed of at least two powders different in particle size, and water. It has become.

ここで、バインダーが合成樹脂で構成されたことによって、合成樹脂が塗膜の主な構成成分となる。即ち、合成樹脂が木炭粉末の粒子同士を繋ぎ、塗膜を形成する。   Here, when the binder is made of a synthetic resin, the synthetic resin becomes a main component of the coating film. That is, the synthetic resin connects the particles of charcoal powder to form a coating film.

また、木炭粉末は、樹脂に厚みや強度を持たせる骨材として機能すると共に、水性塗料組成物に導電性を付与する。更に、木炭粉末は、臭い・化学物質・湿気等を吸着する。   Charcoal powder functions as an aggregate that gives the resin thickness and strength, and imparts conductivity to the water-based paint composition. Furthermore, charcoal powder adsorbs odors, chemical substances, moisture and the like.

また、木炭粉末が、少なくとも2つの粒径の異なる粉末で構成されたことによって、塗料が下地材に塗布された際に、粒径の大きな木炭粉末同士の間に、粒径の小さな木炭粉末が入り込むものとなり、木炭粒子の充填状態の均一性を高め、単位面積当たりの木炭粉末の充填率を向上させることができる。なお、ここでいう下地材とは、塗料が塗布される対象となる領域、又は、絶縁層等の中間部材を介して塗料の塗膜面が設けられる領域を意味するものである。更に言えば、下地材とは、壁面を構成する枠状の下地構造体に取り付けられる板状体である。   In addition, because the charcoal powder is composed of at least two different particle sizes, when the paint is applied to the base material, the charcoal powder having a small particle size is located between the charcoal particles having a large particle size. It is possible to enhance the uniformity of the packing state of charcoal particles and to improve the packing rate of charcoal powder per unit area. In addition, a foundation | substrate material means the area | region used as the object which a coating material is apply | coated, or the area | region where the coating-film surface of a coating material is provided through intermediate members, such as an insulating layer. Furthermore, the base material is a plate-like body attached to a frame-like base structure forming a wall surface.

また、木炭粒子の充填状態の均一性が高まることから、塗料の塗膜面が均一(膜厚が均一)になり、成膜性、屈曲性、表面汚染性、表面傷付着性を良好なものとすることができる。また、塗膜の見栄えを良くすることができる。   In addition, since the uniformity of the filling state of charcoal particles is enhanced, the coating film surface of the coating becomes uniform (the film thickness is uniform), and the film forming property, flexibility, surface contamination, and surface flaw adhesion are good. It can be done. In addition, the appearance of the coating can be improved.

また、木炭粒子同士の接触面積が増大することで、塗料の導電性が向上する。また、塗膜強度を高めることができる。   Moreover, the electrical conductivity of a coating material improves because the contact area of charcoal particle | grains increases. Also, the coating film strength can be enhanced.

更に、木炭粒子の充填状態の均一性が高まることから、塗膜面全体を負電圧に帯電させる電極面と見た場合、塗膜面上の電気抵抗値のムラが少なくなり、空気中の正に帯電した粒子の捕集効率を高めることができる。   Furthermore, since the uniformity of the filling state of the charcoal particles is enhanced, the unevenness of the electrical resistance value on the coating film surface is reduced when the entire coating film surface is regarded as an electrode surface to be charged to a negative voltage. The collection efficiency of charged particles can be enhanced.

また、塗料の塗膜面が均一になるため、単一の粒径(平均粒径)の木炭粉末を塗料に配合したものと比べて、塗布後に木炭粒子の脱落が生じにくくなる。   In addition, since the coating film surface of the coating becomes uniform, it becomes difficult to cause detachment of the charcoal particles after application, as compared with the one in which the charcoal powder having a single particle size (average particle size) is blended in the paint.

また、塗料の塗膜面が平滑化するため、塗膜面を指で触れた際の白化が抑止される。また、塗膜面に対してクロスを貼り付けた際の接着強度が向上する。   Moreover, since the coating film surface of a coating is smooth | blunted, the whitening at the time of touching a coating film surface with a finger is suppressed. Moreover, the adhesive strength at the time of sticking a cloth | cross with respect to a coating-film surface improves.

更には、単一の粒径の木炭粉末を塗料に配合したものと比べて、粒径の異なる木炭粉末が塗料中に分散されたことで、塗料の粘度が高まり、塗料を保存や載置した際に、粒径の大きな木炭粉末の沈殿が生じにくくなる。即ち、貯蔵安定性が良好となる。   Furthermore, the viscosity of the paint increased by the fact that charcoal powder having different particle sizes was dispersed in the paint, as compared to a single particle size charcoal powder blended in the paint, and the paint was preserved and placed At the same time, it becomes difficult to cause precipitation of charcoal powder with a large particle size. That is, storage stability is improved.

また、粒径の小さな木炭粉末を用いることによって、木炭粉末の表面積が大きくなるため、臭い・化学物質・湿気等の吸着効率が向上する。   Further, by using charcoal powder having a small particle size, the surface area of charcoal powder is increased, so that the adsorption efficiency of odor, chemical substance, moisture and the like is improved.

また、水を含有することによって、合成樹脂や木炭粉末を分散させることができる。   Moreover, synthetic resin and charcoal powder can be disperse | distributed by containing water.

また、木炭粉末は、第1の木炭粉末と、第1の木炭粉末の粒径の1〜2倍の粒径を有する第2の木炭粉末とを含んで構成された場合には、上述したような塗膜面の均一性、成膜性、屈曲性、表面汚染性、表面傷付着性、塗料の導電性及び塗膜強度の向上、塗膜面上の電気抵抗値のムラの低減、木炭粒子の脱落の抑止、白化の抑止、クロスの接着強度の向上、木炭粉末の沈殿の抑止といった塗膜の性能を、より一層高めることができる。   Further, as described above, the charcoal powder includes the first charcoal powder and the second charcoal powder having a particle size of 1 to 2 times the particle size of the first charcoal powder, as described above. Uniformity of film surface, film formation, flexibility, surface contamination, surface flaw adhesion, conductivity of paint and improvement of film strength, reduction of unevenness of electric resistance value on film surface, charcoal particles The performance of the coating film can be further enhanced, such as suppression of falling off, suppression of whitening, improvement of adhesive strength of cloth, and suppression of sedimentation of charcoal powder.

一方、木炭粉末が、第1の木炭粉末の粒径の1倍未満の粒径を有する第2の木炭粉末を含んで構成された場合には、粒径の大きな木炭粉末同士の間に、粒径の小さな木炭粉末が入り込みにくくなり、木炭粉末の充填状態の均一化が難しくなる。これに伴い、塗膜の性能の改善が不充分となる。また、第2の木炭粉末の粒径が、第1の木炭粉末の粒径に近くなり、この結果、混在状態の密度が下がり、塗膜強度の向上が不充分となる。   On the other hand, when the charcoal powder is configured to include the second charcoal powder having a particle size smaller than 1 time of the particle size of the first charcoal powder, particles between charcoal powder having a large particle size can be obtained. Charcoal powder with a small diameter is difficult to enter and it becomes difficult to make the filling state of charcoal powder uniform. Along with this, the improvement of the coating film performance becomes insufficient. In addition, the particle size of the second charcoal powder becomes close to the particle size of the first charcoal powder, and as a result, the density of the mixed state decreases, and the improvement of the coating film strength becomes insufficient.

また、木炭粉末が、第1の木炭粉末の粒径の2倍を超える粒径を有する第2の木炭粉末を含んで構成された場合には、第2の木炭粉末の粉末粒子間の隙間が生じやすくなり、混在状態の密度が下がり、塗膜強度の向上が不充分となる。また、第2の木炭粉末の粉末粒子間の表面の凹凸が生じやすくなり、木炭粉末の充填状態を均一化が難しくなる。これに伴い、塗膜の性能の改善が不充分となる。   In addition, when the charcoal powder is configured to include the second charcoal powder having a particle size more than twice the particle size of the first charcoal powder, a gap between powder particles of the second charcoal powder is It tends to occur, the density of the mixed state decreases, and the improvement of the coating film strength becomes insufficient. In addition, unevenness of the surface between powder particles of the second charcoal powder is likely to occur, and it is difficult to make the filling state of charcoal powder uniform. Along with this, the improvement of the coating film performance becomes insufficient.

また、第1の木炭粉末が3000メッシュ以下の中心粒径5μmの粉体であり、第2の木炭粉末が1500メッシュ以下の中心粒径10μmの粉体である場合には、上述したような塗膜面の均一性、成膜性、屈曲性、表面汚染性、表面傷付着性、塗料の導電性及び塗膜強度の向上、塗膜面上の電気抵抗値のムラの低減、木炭粒子の脱落の抑止、白化の抑止、クロスの接着強度の向上、木炭粉末の沈殿の抑止といった塗膜の性能を、更に一層充分に高めることができる。なお、ここでいう中心粒径とは、既知の粒子径計測器による測定や、JIS8815に規定されたふるい分け試験法によって定められた中心粒径を採用することができる。   Also, when the first charcoal powder is a powder with a center particle diameter of 5 μm of 3000 mesh or less and the second charcoal powder is a powder with a center particle diameter of 10 μm of 1500 mesh or less, the coating described above Uniformity of film surface, film forming property, flexibility, surface contamination property, surface flaw adhesion property, conductivity of coating material and improvement of coating film strength, reduction of unevenness of electric resistance value on coating film surface, removal of charcoal particles The performance of the coating film, such as the suppression of whitening, the suppression of whitening, the improvement of the adhesive strength of the cloth, and the suppression of the precipitation of charcoal powder, can be further sufficiently enhanced. In addition, with the central particle size said here, the central particle size defined by the measurement by a known particle diameter measuring device or the sieving test method prescribed | regulated to JIS8815 is employable.

また、第2の木炭粒子の100重量部に対し、第1の木炭粒子が30〜100重量部の範囲内で配合された場合には、塗膜面の均一性、成膜性、屈曲性、表面汚染性、表面傷付着性、塗料の導電性、塗膜強度、貯蔵安定性及び下地材との接着強度の向上といった塗膜の性能を、より一層高めることができる。   When the first charcoal particles are blended in the range of 30 to 100 parts by weight with respect to 100 parts by weight of the second charcoal particles, the uniformity of the coating surface, the film forming property, the flexibility, It is possible to further enhance the performance of the coating film, such as surface contamination, surface flaw adhesion, conductivity of coating material, coating film strength, storage stability, and adhesion strength with a base material.

一方、第2の木炭粒子の100重量部に対し、第1の木炭粒子が30重量部未満で配合された場合には、塗膜面の均一性、成膜性、屈曲性、表面汚染性、表面傷付着性、塗料の導電性、塗膜強度、貯蔵安定性及び下地材との接着強度の向上が不充分となる。また、第2の木炭粒子の100重量部に対し、第1の木炭粒子が100重量部を超えて配合された場合には、屈曲性が低下し、表面汚染性が改善されず、下地材との接着強度が低下する。   On the other hand, when the first charcoal particles are compounded in an amount of less than 30 parts by weight with respect to 100 parts by weight of the second charcoal particles, uniformity of film surface, film forming property, flexibility, surface contamination, The surface flaw adhesion, the conductivity of the paint, the coating strength, the storage stability, and the adhesion strength to the base material are not sufficiently improved. When the first charcoal particles are added in an amount of more than 100 parts by weight with respect to 100 parts by weight of the second charcoal particles, the flexibility decreases and the surface contamination is not improved, and The adhesive strength of the

また、木炭粉末の配合割合は、全量基準の100重量部に対して、30重量部である場合には、樹脂に対する厚みや強度の付与や、塗料への導電性の付与が、より一層充分となる。   When the blending ratio of charcoal powder is 30 parts by weight with respect to 100 parts by weight on the basis of the total amount, it is even more sufficient to impart thickness and strength to the resin and impart conductivity to the paint. Become.

また、バインダーがカチオン性のアクリル樹脂で構成された場合には、粒子の表面が負に帯電しやすい木炭粉末と、カチオン性のアクリル樹脂と間で電気的な接続力が働き、バインダーと木炭粉末が接着しやすくなり、塗膜強度を向上させることができる。また、塗料を塗布する下地材が、例えば、コンクリートや石こうボードのような表面が負に帯電しやすいものである際に、塗料と下地材との間に電気的な接続力が働き、塗料の付着強度を向上させることができる。   In addition, when the binder is made of a cationic acrylic resin, the electrical connection between the charcoal powder whose surface of the particles tends to be negatively charged and the cationic acrylic resin work, and the binder and charcoal powder are produced. Can be easily adhered, and the coating film strength can be improved. In addition, when the base material to which the paint is applied is such that the surface is likely to be negatively charged, such as concrete or gypsum board, for example, the electrical connection between the paint and the base material works to make the paint Adhesion strength can be improved.

また、水酸化アルミニウムから構成された難燃剤を含有する場合には、塗料の難燃性を向上させることができる。   Moreover, when the flame retardant comprised from aluminum hydroxide is contained, the flame retardance of a coating material can be improved.

また、水酸化アルミニウムが全量基準で重量比率が0.1〜10%の範囲内である場合には、塗料の難燃性をより一層充分なものにできる。   In addition, when the weight ratio of aluminum hydroxide is in the range of 0.1 to 10% on the basis of the total amount, the flame retardancy of the paint can be further enhanced.

一方、水酸化アルミニウムが全量基準で重量比率が0.1%未満である場合には、難燃性の機能が不充分となる。また、水酸化アルミニウムが全量基準で重量比率が10%を超える場合には、塗料の難燃性が向上するが、必要以上の配合量となり、製造コストの向上や、その他成分の配合に悪影響を及ぼすおそれがある。   On the other hand, when the weight ratio of aluminum hydroxide is less than 0.1% based on the total amount, the flame retardancy function becomes insufficient. In addition, when the weight ratio of aluminum hydroxide exceeds 10% based on the total amount, the flame retardancy of the paint is improved, but the compounding amount becomes more than necessary, which adversely affects the improvement of the manufacturing cost and the compounding of other components. There is a risk of

また、上記の目的を達成するために、本発明の空気浄化機構は、導電性の水性塗料組成物を塗布した塗膜面を負電圧発生手段により負電圧に帯電させる空気浄化機構であって、前記水性塗料組成物は、合成樹脂で構成されたバインダーと、少なくとも2つの粒径の異なる粉末で構成された木炭粉末と、水とを含有するものとなっている。   Further, in order to achieve the above object, the air purification mechanism of the present invention is an air purification mechanism in which a coating surface to which a conductive aqueous paint composition is applied is charged to a negative voltage by negative voltage generation means. The aqueous coating composition contains a binder composed of a synthetic resin, charcoal powder composed of at least two powders different in particle diameter, and water.

ここで、少なくとも2つの粒径の異なる木炭粉末を含有することによって、塗料が下地材に塗布された際に、粒径の大きな木炭粉末同士の間に、粒径の小さな木炭粉末が入り込むものとなり、木炭粒子の充填状態の均一性を高め、単位面積当たりの木炭粉末の充填率を向上させることができる。   Here, by containing charcoal powder having at least two different particle sizes, when the paint is applied to the base material, charcoal powder having a small particle size gets in between the charcoal particles having a large particle size. The uniformity of the packing state of charcoal particles can be enhanced, and the packing rate of charcoal powder per unit area can be improved.

また、導電性の水性塗料組成物を塗布した塗膜面を負電圧発生手段により負電圧に帯電させることによって、塗膜面表面に電気的な引力が生じ、塗膜面の周囲の空気中に存在する正に帯電した粒子を捕集することができる。   In addition, when the coating surface coated with the conductive aqueous coating composition is charged to a negative voltage by a negative voltage generation means, an electrical attraction is generated on the surface of the coating surface, and the air around the coating surface is in the air. The positively charged particles present can be collected.

また、水性塗料組成物の塗膜面への塗布量が150〜300g/m・wetの範囲内である場合には、塗布量が大量にならず、例えば、ロール等の部材を用いて手作業で下地材に塗布を行う際に、1〜2回で塗料を塗布することができる。In addition, when the coating amount of the aqueous coating composition on the coating film surface is in the range of 150 to 300 g / m 2 · wet, the coating amount does not become large, for example, using a member such as a roll When coating is applied to the base material in operation, the paint can be applied one or two times.

また、負電圧発生手段により負電圧に帯電させた塗膜面における発生電圧が−100〜−150Vの範囲内である場合には、塗膜面表面の電気的引力が充分なものとなり、塗膜面の周囲の空気中に存在する正に帯電した粒子を捕集する効率を高めることができる。例えば、4つの壁面と天井面に囲まれた室内空間において、複数の面に塗料を塗布せず、1つの壁面又は天井面のいずれか1つに塗布して負電圧に帯電させることで、室内空間の空気を充分に浄化可能となる。   In addition, when the generated voltage at the coating film surface charged to a negative voltage by the negative voltage generation means is in the range of -100 to -150 V, the electric attraction of the coating film surface becomes sufficient, and the coating film The efficiency of collecting positively charged particles present in the air surrounding the surface can be increased. For example, in an indoor space surrounded by four wall surfaces and a ceiling surface, the paint is not applied to a plurality of surfaces, but is applied to any one of one wall surface or ceiling surface and charged to a negative voltage. The air in the space can be sufficiently cleaned.

一方、負電圧発生手段により負電圧に帯電させた塗膜面における発生電圧が−100V未満である場合には、塗膜面の周囲の空気中に存在する正に帯電した粒子を捕集効率が不充分となるおそれがある。また、負電圧発生手段により負電圧に帯電させた塗膜面における発生電圧が−150Vを超える場合には、必要となる負電圧発生手段の発生電圧が大きくなり、負電圧発生手段の大型化や、負電圧の供給に必要な電力コストの高騰に繋がってしまう。   On the other hand, if the generated voltage at the coating film surface charged to a negative voltage by the negative voltage generation means is less than -100 V, the collection efficiency of positively charged particles present in the air around the coating film surface is There is a risk that it will be insufficient. When the voltage generated on the coating film surface charged to a negative voltage by the negative voltage generation means exceeds -150 V, the voltage generated by the required negative voltage generation means becomes large, and the negative voltage generation means becomes larger or This leads to a rise in the cost of power required to supply a negative voltage.

また、上記の目的を達成するために、本発明の空気浄化方法は、室内空間を構成する複数の壁面又は天井面の少なくとも1つの面に、合成樹脂で構成されたバインダーと、少なくとも2つの粒径の異なる粉末で構成された木炭粉末と、水とを含有する導電性の水性塗料組成物を塗布する工程と、前記水性塗料組成物が塗布された塗膜面を負電圧に帯電させる工程とを備える。   Further, in order to achieve the above object, according to the air purification method of the present invention, at least one surface of a plurality of wall surfaces or a ceiling surface constituting an indoor space, a binder made of a synthetic resin, and at least two particles Applying a conductive aqueous coating composition containing charcoal powder composed of powders different in diameter and water, and charging the coating surface on which the aqueous coating composition is applied to a negative voltage Equipped with

ここで、水性塗料組成物が木炭粉末を含有することによって、樹脂に厚みや強度を持たせることができる。また、水性塗料組成物に導電性を付与することができる。更に、木炭粉末によって、臭い・化学物質・湿気等を吸着可能となる。   Here, when the water-based paint composition contains charcoal powder, the resin can have thickness and strength. In addition, conductivity can be imparted to the aqueous coating composition. Furthermore, charcoal powder can adsorb odors, chemical substances, moisture and the like.

また、少なくとも2つの粒径の異なる粉末で構成された木炭粉末によって、塗料が下地材に塗布された際に、粒径の大きな木炭粉末同士の間に、粒径の小さな木炭粉末が入り込むものとなり、木炭粒子の充填状態の均一性を高め、単位面積当たりの木炭粉末の充填率を向上させることができる。また、水性塗料組成物の導電性を向上させることができる。   In addition, charcoal powder composed of powder having at least two different particle sizes causes charcoal powder with small particle size to be inserted between charcoal particles with large particle size when paint is applied to the base material. The uniformity of the packing state of charcoal particles can be enhanced, and the packing rate of charcoal powder per unit area can be improved. In addition, the conductivity of the water-based paint composition can be improved.

また、室内空間を構成する複数の壁面又は天井面の少なくとも1つの面に水性塗料組成物を塗布することによって、壁面又は天井面に塗膜を形成可能となる。また、この塗膜により、壁面又は天井面が保護されるだけでなく、導電性を付与することができる。   Moreover, a coating film can be formed in a wall surface or a ceiling surface by apply | coating an aqueous | water-based coating composition to the surface of at least 1 of several wall surfaces or ceiling surfaces which comprise indoor space. Moreover, not only a wall surface or a ceiling surface is protected by this coating film, but conductivity can be provided.

また、水性塗料組成物が塗布された塗膜面を負電圧に帯電させる工程によって、塗膜面を負に帯電した電極面とすることができる。この結果、塗膜面表面に電気的な引力が生じ、塗膜面の周囲の空気中に存在する正に帯電した粒子を捕集することができる。   In addition, the coating film surface can be made into a negatively charged electrode surface by the step of charging the coating film surface coated with the aqueous coating composition to a negative voltage. As a result, an electrical attraction is generated on the surface of the coating surface, and positively charged particles present in the air around the coating surface can be collected.

また、上記の目的を達成するために、本発明の空気浄化方法は、室内空間を構成する複数の壁面又は天井面の少なくとも1つの面に絶縁層を設ける共に、合成樹脂で構成されたバインダーと、少なくとも2つの粒径の異なる粉末で構成された木炭粉末と、水とを含有する導電性の水性塗料組成物を、前記絶縁層の上に塗布する工程と、前記水性塗料組成物が塗布された塗膜面を負電圧に帯電させる工程とを備える   Further, in order to achieve the above object, according to the air purification method of the present invention, an insulating layer is provided on at least one surface of a plurality of wall surfaces or ceiling surfaces constituting an indoor space, and a binder made of a synthetic resin Applying a conductive aqueous coating composition containing charcoal powder composed of at least two different particle sizes of powder and water on the insulating layer, and applying the aqueous coating composition Charging the coated film surface to a negative voltage

ここで、少なくとも2つの粒径の異なる粉末で構成された木炭粉末によって、塗料が下地材に塗布された際に、粒径の大きな木炭粉末同士の間に、粒径の小さな木炭粉末が入り込むものとなり、木炭粒子の充填状態の均一性を高め、単位面積当たりの木炭粉末の充填率を向上させることができる。また、水性塗料組成物の導電性を向上させることができる。   Here, when the paint is applied to the base material by charcoal powder composed of at least two different particle sizes of powder, charcoal powder of small particle size enters between charcoal particles of large particle size. As a result, the uniformity of the packing state of charcoal particles can be enhanced, and the packing rate of charcoal powder per unit area can be improved. In addition, the conductivity of the water-based paint composition can be improved.

また、室内空間を構成する複数の壁面又は天井面の少なくとも1つの面に絶縁層を設ける共に、導電性の水性塗料組成物を、絶縁層の上に塗布することによって、壁面又は天井面が導電性を有する素材で形成された際にも、塗膜面を負に帯電させた状態を維持しやすくなる。即ち、壁面又は天井面を介して土壌面側に電流が流れ、塗膜面に生じた電位差が消失することを抑止可能となる。   Moreover, while providing an insulating layer on at least one surface of a plurality of wall surfaces or ceiling surfaces constituting an indoor space, the wall surface or ceiling surface is electrically conductive by applying a conductive aqueous coating composition on the insulating layer. Even when it is formed of a material having a property, it becomes easy to maintain the negatively charged surface of the coated film. That is, the current flows to the soil surface side via the wall surface or the ceiling surface, and the potential difference generated on the coating film surface can be prevented from disappearing.

また、水性塗料組成物が塗布された塗膜面を負電圧に帯電させる工程によって、塗膜面を負に帯電した電極面とすることができる。この結果、塗膜面表面に電気的な引力が生じ、塗膜面の周囲の空気中に存在する正に帯電した粒子を捕集することができる。   In addition, the coating film surface can be made into a negatively charged electrode surface by the step of charging the coating film surface coated with the aqueous coating composition to a negative voltage. As a result, an electrical attraction is generated on the surface of the coating surface, and positively charged particles present in the air around the coating surface can be collected.

また、複数の壁面又は天井面のいずれか1つの面のみに水性塗料組成物の塗膜面を設ける場合には、塗料の使用量を低減しつつ、塗膜面の周囲の空気中に存在する正に帯電した粒子を捕集することができる。   Moreover, when providing the coating film surface of a water-based coating composition only in any one surface of several wall surfaces or a ceiling surface, it exists in the air around a coating film surface, reducing the usage-amount of a coating material. Positively charged particles can be collected.

本発明に係る水性塗料組成物は、品質に優れた塗膜を形成可能であり、室内空間に対して、充分な空気浄化機能を発揮することが可能なものとなっている。
また、本発明に係る空気浄化機構は、品質に優れた塗膜を形成可能であり、室内空間に対して、充分な空気浄化機能を発揮することが可能なものとなっている。
更に、本発明に係る空気浄化方法は、品質に優れた塗膜を形成可能であり、室内空間に対して、充分な空気浄化機能を発揮することが可能なものとなっている。
The water-based paint composition according to the present invention can form a coating film excellent in quality, and can exhibit a sufficient air purification function to indoor space.
In addition, the air purification mechanism according to the present invention can form a coating film excellent in quality, and can exhibit a sufficient air purification function to the indoor space.
Furthermore, the air purification method according to the present invention can form a coating film excellent in quality, and can exhibit a sufficient air purification function for indoor space.

本発明に係る空気浄化機構の概略を示す説明図である。It is an explanatory view showing an outline of an air purification mechanism concerning the present invention. 下地材への塗膜面及びその周辺構造を示す斜視説明図である。It is perspective explanatory drawing which shows the coating-film surface to a base material, and its periphery structure.

以下、図面を参照して、本発明の実施の形態を説明する。
なお、本実施の形態においては、図1を基準に、天井面2に対する床面の位置を「下」又は「下方」として、床面に対する天井面2の位置を「上」又は「上方」とする。また、図2を基準に、仕上げ材7から見て下地材11aの方向を「下地材側」とし、下地材11aから見て仕上げ材7の方向を「室内側」と称するものとする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the present embodiment, the position of the floor surface with respect to the ceiling surface 2 is referred to as “below” or “below”, and the position of the ceiling surface 2 relative to the floor is referred to as “above” or “above”. Do. The direction of the base material 11a is referred to as "base material side" when viewed from the finishing material 7 with reference to FIG. 2, and the direction of the finishing material 7 is referred to as "room side" when viewed from the base material 11a.

(空気浄化機構A)
本発明を適用した空気浄化機構の一例である空気浄化機構Aでは、図1に示すように、複数の壁面1及び天井面2に囲まれた室内空間3における空気の浄化を行うものである。空気浄化機構Aでは、壁面11に後述する塗料4の塗膜面41が形成され、塗膜面41を負に帯電させる負電圧発生装置5を有している。即ち、空気浄化機構Aは、塗料4と負電圧発生装置5を組み合わせて、室内空間3における空気の浄化を行う。なお、塗料4は、本発明を適用した水性塗料組成物の一例であり、その詳細な組成は後述する。
(Air purification mechanism A)
In an air purification mechanism A which is an example of an air purification mechanism to which the present invention is applied, as shown in FIG. 1, the air in the indoor space 3 surrounded by the plurality of wall surfaces 1 and the ceiling surface 2 is purified. In the air purification mechanism A, a coating film surface 41 of a coating material 4 to be described later is formed on the wall surface 11, and has a negative voltage generator 5 for charging the coating film surface 41 negatively. That is, the air purification mechanism A purifies the air in the indoor space 3 by combining the paint 4 and the negative voltage generator 5. The paint 4 is an example of a water-based paint composition to which the present invention is applied, and the detailed composition thereof will be described later.

(負電圧発生装置5)
負電圧発生装置5は、正極51及び負極52を有し(図1及び図2参照)、所定の電源54(図2参照)に接続され、負極52と配線接触した壁面11の塗膜面41に電圧を印化して、塗膜面41を負に帯電させる装置である。
(Negative voltage generator 5)
The negative voltage generator 5 has a positive electrode 51 and a negative electrode 52 (see FIGS. 1 and 2), is connected to a predetermined power supply 54 (see FIG. 2), and has a coating surface 41 of the wall surface 11 in wiring contact with the negative electrode 52. And the coating film surface 41 is negatively charged.

負極52の先端は塗膜面41と直接接触して、取付部材等(図示せず)を介して接触した状態が固定されている。また、正極51は地中のアース53に接続されている。塗膜面41は、地中のアース53に対して1MΩ以上の絶縁抵抗値を有するように塗布されており、塗膜面41が負に帯電した状態を維持可能、即ち、塗膜面41が電気的に独立した状態が維持可能に構成されている。なお、絶縁抵抗値とは、塗膜面41と地中のアース53との間の抵抗値であって、この値が大きい程、塗膜面41が電気的に独立した状態になりやすいものとなる。また、絶縁抵抗値は、塗膜面41と壁面11との間に塗布される絶縁塗料の有無や、塗膜面41と壁面11との間に設けられる絶縁シートの有無、壁面11を構成する下地構造体(壁面の骨格となる枠構造)の素材における絶縁性の有無や、下地構造体に取り付けられる板状の下地材の素材における絶縁性の有無によって変化する。   The tip of the negative electrode 52 is in direct contact with the coating surface 41 and fixed in a state of being in contact via a mounting member or the like (not shown). The positive electrode 51 is connected to the ground 53 in the ground. The coating surface 41 is applied so as to have an insulation resistance value of 1 MΩ or more with respect to the ground 53 in the ground, and the coating surface 41 can maintain the negatively charged state, that is, the coating surface 41 is The electrically independent state is configured to be maintainable. The insulation resistance value is a resistance value between the coating surface 41 and the ground 53 in the ground, and the larger the value is, the more easily the coating surface 41 becomes electrically independent. Become. Further, the insulation resistance value includes the presence or absence of the insulating paint applied between the coating surface 41 and the wall surface 11, the presence or absence of the insulating sheet provided between the coating surface 41 and the wall surface 11, and the wall surface 11. It changes with the presence or absence of the insulation in the raw material of a base structure (frame structure used as frame | skeleton of a wall surface), and the insulation in the raw material of the plate-shaped base material attached to a base structure.

また、負電圧発生装置5は、デバイス発生電圧0〜300Vの装置であり、塗膜面41に対し、−100〜−150Vの基準発生電圧を印化することが可能である。なお、表1に負電圧発生装置5の出力電圧特性(1MΩ、−100V設定時)を示す。また、ここでいう基準発生電圧が、本願請求項の「発生電圧」に相当する。   The negative voltage generator 5 is a device with a device generated voltage of 0 to 300 V, and can print a reference generated voltage of -100 to -150 V on the coating film surface 41. Table 1 shows the output voltage characteristics (when 1 MΩ, -100 V are set) of the negative voltage generator 5. Further, the reference generation voltage mentioned here corresponds to the “generation voltage” in the claims of the present application.

ここで、必ずしも、塗料4の塗膜面41が形成される面が、壁面11に限定される必要はなく、例えば、壁面11以外の壁面1や天井面2に更に塗料4が塗布される態様であってもよい。また、その他の壁面1のみや、天井面2のみに塗料4が塗布される態様でもよい。例えば、室内空間3の大きさに応じて、充分な空気の浄化を行う観点から、複数の壁面1と天井面2の全面に塗料4を塗布することも可能である。   Here, the surface on which the paint film surface 41 of the paint 4 is formed is not necessarily limited to the wall surface 11. For example, the paint 4 is further applied to the wall surface 1 other than the wall surface 11 and the ceiling surface 2. It may be In addition, the paint 4 may be applied only to the other wall surfaces 1 or only to the ceiling surface 2. For example, it is also possible to apply the paint 4 to the entire surfaces of the plurality of wall surfaces 1 and the ceiling surface 2 from the viewpoint of sufficient air purification according to the size of the indoor space 3.

また、塗料4は、1つの目安であるが、室内の天井面2のみに塗布する前提であれば、室内空間3の空気体積1m3に対して、必要最低限の塗布面積は0.4m2程度となる。例えば、18帖(帖=m2×0.3025×2)以下の一般的な室内空間であれば、その天井面の一面に塗料4を塗布することで、室内空間3の全体の空気中の正に帯電した粒子を効率良く捕集することができる。なお、壁面のみに塗料4を塗布する場合で、室内の広さが広くなる場合には、空間体積が大きくなり、壁面一面では必要最低限の塗布面積を確保できなくなるおそれがあるため、その際には、室内空間の広さに応じて、複数の壁面への塗布により、室内空間3の空気を充分に浄化することが可能となる。Moreover, although the coating material 4 is one standard, if it is premised to apply only to the ceiling surface 2 in the room, the minimum required coating area is 0.4 m 2 to 1 m 3 of air volume of the indoor space 3. It becomes degree. For example, if it is a general indoor space of 18 帖 (帖 = m 2 × 0.3025 × 2) or less, by applying the paint 4 to one surface of the ceiling surface, it is possible to Charged particles can be collected efficiently. In the case where the paint 4 is applied only to the wall surface, the space volume is increased when the indoor area is wide, and there is a risk that the necessary minimum application area can not be secured on the entire wall surface. In accordance with the size of the indoor space, it is possible to sufficiently purify the air in the indoor space 3 by applying to a plurality of wall surfaces.

また、必ずしも、塗料4が壁面面11の全面に塗布される必要はなく負電圧発生装置5によって塗料4を塗布した面が負に帯電するように構成されていれば充分である。そのため、例えば、壁面11の一部(例えば、壁面11の中の一定の面積範囲)や複数箇所(塗布箇所の間に空間を有するように)に塗料4を塗布する態様も有り得る。但し、室内空間3の空気に対して、一定の面積の塗膜面で作用して、空気中の正に帯電した粒子を捕集する効率を高める観点から、塗料4が壁面面11の全面に塗布されることが好ましい。   Further, the paint 4 does not necessarily have to be applied to the entire surface of the wall surface 11, and it is sufficient if the negative voltage generator 5 is configured to negatively charge the surface to which the paint 4 is applied. Therefore, for example, there may be a mode in which the paint 4 is applied to a part of the wall surface 11 (for example, a certain area range in the wall surface 11) or a plurality of places (so as to have a space between the application places). However, the paint 4 acts on the entire surface of the wall surface 11 from the viewpoint of increasing the efficiency of collecting positively charged particles in the air by acting on the film surface of a certain area with respect to the air in the indoor space 3. Preferably, it is applied.

また、空気浄化機構Aを適用する室内空間3の広さは特に限定されるものでなく、塗料4が塗布可能な壁面や天井面等の領域を有していれば、広さに関係なく、空気浄化機構Aを利用することができる。   Further, the size of the indoor space 3 to which the air purification mechanism A is applied is not particularly limited, and if it has an area such as a wall surface or a ceiling surface to which the paint 4 can be applied, regardless of the size. The air purification mechanism A can be used.

また、負電圧発生装置5は、必ずしも、負極52を塗膜面41に直接接触させて、塗膜面41を負に帯電させる構成必要はない。例えば、塗膜面41に対して負電荷を非接触で照射可能な、イオン発生器等の負電荷発生装置を利用して、塗膜面41を負に帯電させる構成も採用しうる。   In addition, the negative voltage generator 5 does not necessarily have to have a configuration in which the negative electrode 52 is brought into direct contact with the coating surface 41 to negatively charge the coating surface 41. For example, a configuration may be employed in which the coating surface 41 is negatively charged by using a negative charge generator such as an ion generator capable of irradiating the coating surface 41 without negative charge in a noncontact manner.

また、負電圧発生装置5のデバイス発生電圧が0〜300Vの範囲に限定される必要はない。但し、室内空間3の空気中の正に帯電した粒子を充分の捕集する観点から、塗膜面41に−100〜−150Vの基準発生電圧を印化することが可能な態様とすることが好ましく、そのためには、負電圧発生装置5のデバイス発生電圧が0〜300Vの範囲の装置を採用することが好ましい。また、上述した表1の出力電圧特性は、負電圧発生装置5が備える特性の一例に過ぎない。   Further, the device generated voltage of the negative voltage generator 5 does not have to be limited to the range of 0 to 300V. However, from the viewpoint of collecting positively charged particles in the air of the indoor space 3 sufficiently, it is possible to print a reference generation voltage of -100 to -150 V on the coating film surface 41. For that purpose, it is preferable to adopt a device in which the device generated voltage of the negative voltage generator 5 is in the range of 0 to 300V. Moreover, the output voltage characteristic of Table 1 mentioned above is only an example of the characteristic with which the negative voltage generator 5 is provided.

(塗膜面41)
図2を用いて、壁面11に設けた塗膜面41とその周辺構造を説明する。
壁面11を構成する下地材11aは、塗膜面41を形成する基礎体(板状体)であり、石こうボードやコンクリート等の導電性を有する素材で形成されている。下地材11aの下部には、壁面11の骨格を構成する枠状の下地構造体が形成されている。また、下地材11aと塗膜面41の間に、塗膜面41から下地材11a側への漏電を防止する絶縁層6が設けられている。また、塗膜面41より室内側には、意匠性を高めるための仕上げ材7が設けられている。
(Painted surface 41)
The coating film surface 41 provided on the wall surface 11 and the peripheral structure thereof will be described with reference to FIG.
The base material 11a which comprises the wall surface 11 is a basic body (plate-like body) which forms the coating-film surface 41, and is formed by the raw material which has electroconductivity, such as a gypsum board and a concrete. Under the base material 11 a, a frame-like base structure that constitutes a skeleton of the wall surface 11 is formed. In addition, an insulating layer 6 is provided between the base material 11 a and the coating film surface 41 to prevent current leakage from the coating film surface 41 to the base material 11 a side. Further, on the indoor side of the coating film surface 41, a finishing material 7 for enhancing the designability is provided.

塗膜面41は、後述する組成を有する塗料4が、下地材11aの室内側に設けられた絶縁層6の上に塗布されて形成されている。塗料4の塗布量は、150〜300g/m・wetとなっている。The coating film surface 41 is formed by applying a paint 4 having a composition to be described later on the insulating layer 6 provided on the indoor side of the base material 11a. The coating amount of the paint 4 is 150 to 300 g / m 2 · wet.

上述したように、負電圧発生装置5から塗膜面41に電圧が印化されて、塗膜面41が負に帯電される。即ち、塗膜面41の導電性を介して、塗膜面全体が負に帯電した電極面となる。ここで、絶縁層6は、塗膜面41が地中のアース53に対して電気的に独立した状態を維持するために、塗膜面41と下地材11aの間を絶縁する。   As described above, a voltage is applied to the coating film surface 41 from the negative voltage generator 5 so that the coating film surface 41 is negatively charged. That is, through the conductivity of the coating film surface 41, the entire coating film surface becomes an negatively charged electrode surface. Here, the insulating layer 6 insulates between the coating surface 41 and the base material 11 a in order to maintain the coating surface 41 electrically isolated from the ground 53 in the ground.

絶縁層6は、室内側の和紙層、ポリエチレンテレフタレートで形成された中間層及び下地材側の和紙層の3層構造を有している。構成する材料はいずれも絶縁性を有している。絶縁層6はクロス(壁紙)貼付け用のりを用いて下地材11aに貼り付けられている。   The insulating layer 6 has a three-layer structure of a Japanese paper layer on the indoor side, an intermediate layer formed of polyethylene terephthalate, and a Japanese paper layer on the base material side. All of the constituent materials have insulating properties. The insulating layer 6 is bonded to the base material 11 a using a cloth (wall paper) bonding paste.

絶縁層6における3層構造では、下地材側の和紙層によって、絶縁シート層と下地材11aとのクロス貼付け用のりを使用した接着が可能となる。また、室内側の和紙層に対して、塗料4との接着性が高められている。和紙層のように紙素材を用いることで、ビニール等の樹脂製の素材を用いた場合よりも、クロス貼付け用のりや、塗料4の接着性を向上させることができる。   In the three-layer structure of the insulating layer 6, the Japanese paper layer on the base material side enables adhesion using the adhesive for cross-bonding of the insulating sheet layer and the base material 11a. In addition, the adhesion to the paint 4 is enhanced with respect to the Japanese paper layer on the indoor side. By using a paper material such as a Japanese paper layer, it is possible to improve the adhesion of the paste for cross attachment and the adhesion of the paint 4 more than when a resin material such as vinyl is used.

ここで、必ずしも、絶縁層6が3層構造とされる必要はなく、塗膜面41と下地材11aとの間の絶縁性を担保できるものであれば充分である。但し、絶縁層6の表面及び裏面に和紙層を設けることで、上述したように塗料4やクロス貼付け用のりの接着性を向上させることができる点から、和紙層を含む3層構造が採用されることが好ましい。   Here, the insulating layer 6 does not necessarily have to have a three-layer structure, and it is sufficient if it can ensure insulation between the coating surface 41 and the base material 11 a. However, by providing washi paper layers on the front and back surfaces of the insulating layer 6, a three-layer structure including the washi paper layer is adopted, as it is possible to improve the adhesion of the coating 4 and paste for cross attachment as described above. Is preferred.

また、必ずしも、絶縁層6の中間層がポリエチレンテレフタレートで形成される必要はなく、電気的な絶縁性を有する素材となっていれば充分である。例えば、絶縁性を有するエポキシ系の防錆、防水塗料塗布した中間層を用いることもできる。   Further, the intermediate layer of the insulating layer 6 does not necessarily have to be formed of polyethylene terephthalate, and it is sufficient if it is a material having electrical insulation. For example, it is also possible to use an epoxy-based rustproof, waterproof coating-coated intermediate layer having insulation properties.

仕上げ材7は、通気性を有するクロス、又は、通気性を有するカラー塗料等であり、塗膜面41の上に貼り付け、又は、塗布されて、木炭粉末に由来する黒色を有する塗膜面41を目隠しする材となる。また、仕上げ材7を構成する通気性を有するクロスやカラー塗料等は絶縁性を有するが、下地材11a上の塗膜面41が負電圧に帯電した場合、仕上げ材7が分極を起こし、仕上げ材7の表面が負に帯電するため、室内空間3における空気中の正に帯電した粒子を吸引することが可能となる。   The finishing material 7 is a breathable cloth, a color paint having breathability, or the like, and is applied or coated on the coating surface 41 and has a black coating surface derived from charcoal powder. It becomes the material which blindfolds 41. Also, although the air-permeable cloth, color paint, etc. constituting the finishing material 7 have insulation properties, when the coating film surface 41 on the base material 11a is charged to a negative voltage, the finishing material 7 is polarized to finish Since the surface of the material 7 is negatively charged, positively charged particles in the air in the indoor space 3 can be sucked.

室内空間3の空気中の正に帯電した粒子は、非常に小さな粒子であるため(粒子半径が約10-7cmから10-8cm程度の大きさの粒子)、仕上げ材7の通気孔を通過して、下地材11a上の負に帯電した塗膜面41に引き付けられるものとなる。Since the positively charged particles in the air of the indoor space 3 are very small particles (particles having a particle radius of about 10 −7 cm to 10 −8 cm), the air holes of the finish 7 are It passes through and is attracted to the negatively charged coating surface 41 on the base material 11a.

なお、上記では、下地材11a(又は下地構造材)が、鉄骨やコンクリート造の非木造の導電性を有する素材である場合について説明したが、下地材及び下地構造材が、木造等の絶縁性の素材である場合には、上述した絶縁層6を除いた構造を採用することができる。即ち、下地材11aの壁面に直接、塗料4を塗布して塗膜面41を形成し、その上に仕上げ材7を設けた構造となる。下地材及び下地構造材が木造等の絶縁性の素材である場合には、下地材及び下地構造材の絶縁作用により、塗膜面41を地中のアース53に対して電気的に独立した状態を維持可能となる。   In addition, although the case where the foundation material 11a (or foundation structure material) is a material which has electrical conductivity of non-wooden structure made of steel frame or concrete was explained above, the foundation material and the foundation structure material are insulating properties such as wooden In the case of the material of the above, the structure excluding the above-described insulating layer 6 can be adopted. That is, the coating material 4 is directly applied to the wall surface of the base material 11a to form the coating film surface 41, and the finish material 7 is provided thereon. In the case where the base material and the base structure material are insulating materials such as wooden, the coating surface 41 is electrically isolated from the ground 53 in the ground by the insulating function of the base material and the base structure material. Can be maintained.

更に、下地材が木造であっても、下地構造体に導電性を有する素材が採用されたり、下地材を下地構造体に取り付けに金属製のビス等が用いられたりした場合には、上述したような絶縁層6を設けることが好ましい。   Furthermore, even if the base material is a wooden structure, the above-described case is adopted where a conductive material is adopted for the base structure, or a metal screw or the like is used to attach the base material to the base structure. It is preferable to provide such an insulating layer 6.

上述した空気浄化機構Aでは、負電圧発生装置5の電源を入れ、塗膜面41に電圧を印化することで、塗膜面41が地中のアース53に対して電気的に独立した状態となっていれば、塗膜面41が負に帯電した状態となる。負電圧発生装置5の電源を入れたままにすると、塗膜面41が負に帯電した電極面として、室内空間3の空気中の正に帯電した有害物質や不快物質の粒子を引き寄せ、これらの粒子を捕集する。この結果、室内空間3の空気を浄化することができる。   In the air purification mechanism A described above, the negative voltage generator 5 is turned on, and a voltage is applied to the film surface 41 so that the film surface 41 is electrically independent of the ground 53 in the ground. If it becomes, the coating film surface 41 will be in the state negatively charged. When the negative voltage generator 5 is turned on, the coating surface 41 attracts particles of positively charged harmful substances and unpleasant substances in the air of the indoor space 3 as an electrode surface negatively charged. Collect particles. As a result, the air in the indoor space 3 can be purified.

以下、本発明を適用した水性塗料組成物の一例の組成について説明する。上述した塗料4の組成の一例である。   Hereinafter, the composition of an example of the water-based paint composition to which the present invention is applied will be described. It is an example of a composition of the coating material 4 mentioned above.

ここで示す塗料(塗料4)は、塗料組成物における全量基準の重量比率が、カチオン系のアクリル酸エステル共重合体水性エマルジョン(モビニール7820(日本合成化学工業(株)社製)):29.07%、水:29.07%、1500メッシュの木炭粉末(中心粒径10μm):19.38%、3000メッシュの木炭粉末(中心粒径5μm):9.69%、水酸化アルミニウム:4.84%、アクリル系重合物(シックナー615(三洋化成工業(株)社製):2.91%、防腐剤(アモルデンFS-14D(大和化学工業(株)社製):2.91%、ウレタン変性ポリエーテル(シックナー660T(三洋化成工業(株)社製):1.94%、防カビ剤(PBM-DS((株)エム・アイ・シー社製):0.10%、シリコーン系消泡剤(アクアレンHS-01(共栄社化学(株)社製):0.01%を含む組成を有している。また、本組成の塗料は、粘度が0.83Pa・s、密度が1.623g/cmである。In the paint (paint 4) shown here, the weight ratio based on the total amount in the paint composition is a cationic acrylic acid ester copolymer aqueous emulsion (Movinyl 7820 (manufactured by Japan Synthetic Chemical Industry Co., Ltd.)): 29. 07%, water: 29.07%, 1500 mesh charcoal powder (central particle diameter 10 μm): 19.38%, 3000 mesh charcoal powder (central particle diameter 5 μm): 9.69%, aluminum hydroxide: 4. 84%, acrylic polymer (thickener 615 (manufactured by Sanyo Chemical Industries, Ltd.): 2.91%, preservative (Amolden FS-14D (manufactured by Daiwa Chemical Co., Ltd.): 2.91%, urethane) Modified polyether (Sickner 660T (manufactured by Sanyo Chemical Industries, Ltd.): 1.94%, antifungal agent (PBM-DS (manufactured by MCC Co., Ltd.): 0.10%, silicone based extinguisher) Foaming agent (Aqualen HS-01 (Kyoei The chemical composition of the present composition has a viscosity of 0.83 Pa · s and a density of 1.623 g / cm 3 .

カチオン系のアクリル酸エステル共重合体水性エマルジョン(モビニール7820(日本合成化学工業(株)社製))は、バインダーであり、塗膜の主な構成成分として、木炭粉末の粒子同士を繋ぎ、塗膜を形成する。また、このアクリル酸エステル共重合体水性エマルジョンは、アクリル酸エステル共重合体を約45%を含み、残りが水で構成された水性エマルジョンであり、ガラス転移温度(Tg)が4℃である   The cationic acrylic acid ester copolymer aqueous emulsion (Movinyl 7820 (manufactured by Japan Synthetic Chemical Industry Co., Ltd.)) is a binder, which connects particles of charcoal powder as a main component of the coating film, Form a film. Moreover, this acrylic acid ester copolymer aqueous emulsion is an aqueous emulsion containing about 45% of acrylic acid ester copolymer, and the remainder being composed of water, and having a glass transition temperature (Tg) of 4 ° C.

水は、各成分を混合及び分散させる溶剤である。また、水は塗料の基剤でもある。   Water is a solvent that mixes and disperses the components. Water is also the basis of paints.

1500メッシュの木炭粉末(中心粒径10μm)及び3000メッシュの木炭粉末(中心粒径5μm)は、樹脂(塗膜)に厚みや強度を持たせる骨材(無機顔料)であり、かつ、塗料に導電性を付与する。更に、木炭粉末は、臭い・化学物質・湿気等を吸着する機能を塗料に付与する。   1500 mesh charcoal powder (central particle size 10 μm) and 3000 mesh charcoal powder (central particle size 5 μm) are aggregates (inorganic pigments) that give thickness (strength) to resin (coating film), and paint Give conductivity. Furthermore, charcoal powder imparts the function of adsorbing odors, chemical substances, moisture and the like to paints.

本塗料では、粒径が異なる2種類の木炭粉末を配合しており、中心粒径の値の比が、粒子径大:粒子径小=2:1の関係となっている。また、2種類の木炭粉末の配合比は、粒子径大の木炭粉末100重量部に対して、粒子径小の木炭粉末50重量部となっている。更に、本塗料では、塗料の全量基準に対する2種類の木炭粉末の合計の配合比が、塗料の全量の100重量部に対して、2種類の木炭粉末が30重量部となっている。   In this paint, two types of charcoal powder having different particle sizes are mixed, and the ratio of the value of the central particle size is in the relation of large particle diameter: small particle diameter = 2: 1. Further, the blending ratio of the two types of charcoal powder is 50 parts by weight of charcoal powder with a small particle size with respect to 100 parts by weight of charcoal powder with a large particle size. Furthermore, in this paint, the blending ratio of the total of the two types of charcoal powder to the basis of the total weight of the paint is 30 parts by weight of the two types of charcoal powder with respect to 100 parts by weight of the total weight of the paint.

また、1500メッシュ及び3000メッシュの木炭粉末は、オトギリソウ科オハグロノキ属(マイテュー、和名なし)の樹木を原料に、1000℃前後で焼かれた白炭である。木炭粉末は、例えば、ウバメガシを900〜1400℃、好ましくは1000〜1200℃の高温で焼いた後に、適量の灰と土をかけて急冷することにより製造される白炭である。白炭には、代表的なものとして備長炭がある。   In addition, charcoal powder of 1500 mesh and 3000 mesh is white charcoal baked at around 1000 ° C., using a tree of the Hypericillium genus Methonia (Mitue, without a Japanese name) as a raw material. Charcoal powder is, for example, white carbon produced by baking ubamegashi at a high temperature of 900 to 1400 ° C., preferably 1000 to 1200 ° C., followed by quenching with an appropriate amount of ash and soil. Among the white coals, there is Bincho charcoal as a representative one.

水酸化アルミニウムは、塗料に難燃性を向上させる為の難燃剤である。水酸化アルミニウムは、200℃以上の温度で結晶水の乖離反応が起こり、乖離反応時に吸熱効果を生じる剤である。   Aluminum hydroxide is a flame retardant for improving the flame retardancy of the paint. Aluminum hydroxide is an agent which causes dissociation reaction of crystal water at a temperature of 200 ° C. or more and produces an endothermic effect at the time of dissociation reaction.

アクリル系重合物(シックナー615(三洋化成工業(株)社製)及びウレタン変性ポリエーテル(シックナー660T(三洋化成工業(株)社製)は、塗料の粘度を調整するための増粘剤である。なお、各増粘剤は、アクリル系重合物又はウレタン変性ポリエーテルを主成分としている。   Acrylic polymers (Siccner 615 (manufactured by Sanyo Chemical Industries, Ltd.) and urethane-modified polyether (Sickner 660T (manufactured by Sanyo Chemical Co., Ltd.)) are thickeners for adjusting the viscosity of the paint. Each thickening agent contains an acrylic polymer or a urethane-modified polyether as a main component.

防腐剤(アモルデンFS-14D(大和化学工業(株)社製)は、細菌、カビに対する防腐性を付与するエマルジョン、水性塗料等用の防腐剤である。防カビ剤(PBM-DS(株)エム・アイ・シー社製)は、カビに対する防腐性を付与する防カビ剤である。シリコーン系消泡剤(アクアレンHS-01(共栄社化学(株)社製)は、塗料中の発泡を抑える水系塗料用消泡剤である。   Preservative (Amolden FS-14D (manufactured by Daiwa Chemical Industry Co., Ltd.)) is an antiseptic for emulsions, water-based paints, etc. which imparts antiseptic properties against bacteria and molds. M.I.C. Co., Ltd. is an antifungal agent which imparts antiseptic properties to molds A silicone based antifoam agent (Aqualen HS-01 (Kyoeisha Chemical Co., Ltd.)) suppresses foaming in the paint. It is an antifoamer for water-based paints.

ここで、本塗料では、各配合原料や配合割合が上述したものに限定されるものではなく、本発明に求められる機能を逸脱しない範囲で、各成分や配合量を適宜変更することができる。以下にその一例を詳述する。   Here, in the present coating material, the respective blending raw materials and the blending ratio are not limited to those described above, and the respective components and blending amounts can be appropriately changed without departing from the function required in the present invention. An example will be described in detail below.

本塗料では、バインダーとして、カチオン系のアクリル酸エステル共重合体水性エマルジョン(モビニール7820(日本合成化学工業(株)社製))以外にも塗膜形成能を有する合成樹脂であれば、採用することができる。例えば、合成樹脂の種類として、アクリル樹脂以外に、アクリルシリコン・変性シリコン樹脂、アミノアルキド樹脂、エポキシ樹脂、塩化ゴム系樹脂、ケイ素樹脂、ビニル樹脂、フッ素樹脂、フェノール樹脂、フタル酸樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂等が採用しうる。   In the present paint, as a binder, any synthetic resin having a film-forming ability besides a cationic acrylic acid ester copolymer aqueous emulsion (Movin 7820 (manufactured by Japan Synthetic Chemical Industry Co., Ltd.)) may be employed. be able to. For example, as a kind of synthetic resin, in addition to acrylic resin, acrylic silicone / modified silicone resin, amino alkyd resin, epoxy resin, chlorinated rubber resin, silicone resin, vinyl resin, fluorocarbon resin, phenol resin, phthalic acid resin, unsaturation Polyester resin, polyurethane resin, etc. can be adopted.

また、アクリル樹脂塗料としては、例えば、エマルジョン形アクリル樹脂、アクリルラッカー、焼付けアクリル、水溶性アクリル、アクリル化アルキド等の種類が採用しうる。特に、エマルジョン形アクリル樹脂は建築内装材に多用される、アクリル酸エステル等のモノマーを水中で乳化重合させたエマルションポリマーである。   Further, as the acrylic resin paint, for example, types such as an emulsion type acrylic resin, an acrylic lacquer, a baked acrylic, a water soluble acrylic, an acrylated alkyd and the like can be adopted. In particular, the emulsion-type acrylic resin is an emulsion polymer obtained by emulsion-polymerizing a monomer such as an acrylic ester in water, which is widely used for building interior materials.

ここで、必ずしも、本塗料のバインダーがカチオン系のアクリル酸エステル共重合体水性エマルジョンである必要はない。但し、バインダーがカチオン系であることにより、塗料中では、粒子の表面が負に帯電した木炭粉末とバインダーとの接着力が向上し、塗膜強度を向上させることができる。また、塗料の塗布対象となる下地材がコンクリートや石こうボードのような表面が負に帯電しやすいものである際に、塗料と下地材との間に電気的な接続力が働き、塗料の付着強度を向上し、強固な塗膜を形成することができる。このような電気的特性に基づく利点があるため、バインダーとして、カチオン系のアクリル樹脂が採用されることが好ましい。   Here, the binder of the present paint does not necessarily have to be a cationic acrylic ester copolymer aqueous emulsion. However, when the binder is cationic, the adhesion between the binder and the charcoal powder in which the surface of the particles is negatively charged can be improved in the coating, and the coating film strength can be improved. Also, when the base material to which the paint is applied is such that the surface is likely to be negatively charged, such as concrete or gypsum board, the electrical connection between the paint and the base material works to adhere the paint. The strength can be improved, and a strong coating film can be formed. Since there is an advantage based on such electrical properties, it is preferable to use a cationic acrylic resin as the binder.

また、必ずしも、本塗料のバインダーが、ガラス転移温度(Tg)が4℃のものである必要はない。但し、ガラス転移温度の低いバインダーを用いることで、塗料を塗布する環境温度をバインダーのガラス転移温度が下回る状態となりやすく、塗膜と下地材との間の収縮応力の発生を抑えて、塗膜の下地材への付着性が低下しにくくなる。そのため、バインダーのガラス転移温度は、例えば10℃以下程度の低い値であることが好ましい。また、室内環境であれば、室内の最低気温は、通常、低くても5℃程度となる為、バインダーのガラス転移温度が4℃であれば、充分に塗膜の付着力を担保することができる。   Moreover, the binder of the present coating does not necessarily have to have a glass transition temperature (Tg) of 4 ° C. However, by using a binder having a low glass transition temperature, the glass transition temperature of the binder is likely to fall below the environmental temperature at which the coating is applied, thereby suppressing the generation of shrinkage stress between the coating and the base material. Adhesion to the base material is less likely to decrease. Therefore, it is preferable that the glass transition temperature of a binder is a low value about 10 degrees C or less, for example. In the case of an indoor environment, the lowest temperature in the room is usually at most 5 ° C., so if the glass transition temperature of the binder is 4 ° C., sufficient adhesion of the coating can be ensured. it can.

また、必ずしも、本塗料の木炭粉末が白炭に限定される必要はなく、白炭と黒炭を混合して用いることもできる。但し、黒炭は、低温で焼かれた炭であるため導電性が低く、その粉末を塗料に配合すると、塗膜自体の導電性が低下するため、導電性を向上させる観点からは、木炭粉末は白炭で構成されることが好ましい。また、塗膜の物性、屈曲性、充填率を改善する観点から、白炭と黒炭の混合物を用いることも考えられる。その際には、黒炭の粉末と共に、より粒子径の小さい白炭の粉末を配合することが、導電性を向上させる観点から好ましい。   In addition, the charcoal powder of the present coating does not necessarily have to be limited to white charcoal, and white charcoal and black charcoal can also be mixed and used. However, since black charcoal is charcoal that has been baked at a low temperature, its conductivity is low, and if the powder is blended in a paint, the conductivity of the coating film itself is lowered, so from the viewpoint of improving the conductivity, charcoal powder is It is preferable to be composed of white charcoal. In addition, it is also conceivable to use a mixture of white charcoal and black charcoal from the viewpoint of improving the physical properties, flexibility and filling rate of the coating film. In that case, it is preferable to mix | blend the powder of the white charcoal with a smaller particle diameter with the powder of black charcoal from a viewpoint of improving electroconductivity.

また、必ずしも、木炭粉末の原料がオトギリソウ科オハグロノキ属(マイテュー、和名なし)の樹木に限定される必要はない。例えば、白炭となる既知の原料であるウバメガシ・アラカシ・ナラ・ホオ等を採用することもできる。また、黒炭であれば、ナラ・クヌギ・コナラ・ミズナラ・マツ等を原料とすることができる。   Moreover, the raw material of charcoal powder does not necessarily need to be limited to a tree of the Hypericaceae family Aeglonum (Mitue, without a Japanese name). For example, Uva megashi, Arakashi, Nara hoo, etc. which are known raw materials to be white coal can also be adopted. In addition, if it is black charcoal, it is possible to use nara, kunugi, konara, Mizunara, pine, etc. as raw materials.

また、必ずしも、本塗料の骨材(無機顔料)が木炭粉末に限定される必要はなく、樹脂中で、充分な充填率と均一性を担保できる原料であれば骨材として採用しうる。例えば、岩石や粘土等の鉱物の粉末や、貝殻を粉砕した粉末、活性炭の粉末等が採用しうる。但し、塗料に厚みや強度を付与するだけでなく、吸着物質として有害物質や不快物質の吸着性を有する点や、原料の入手が容易な点、粒径の異なる粉末の塗料中の均一性を高めやすい点から、骨材として木炭粉末が採用されることが好ましい。   Further, the aggregate (inorganic pigment) of the present coating does not necessarily have to be limited to charcoal powder, and any material that can ensure sufficient filling rate and uniformity in resin can be adopted as the aggregate. For example, powders of minerals such as rock and clay, powders obtained by crushing shells, powders of activated carbon, and the like can be adopted. However, in addition to providing thickness and strength to the paint, it has the adsorptive properties of harmful substances and unpleasant substances as an adsorptive substance, the availability of raw materials is easy, and the uniformity in the paint of powders different in particle diameter From the point of being easy to raise, it is preferable that charcoal powder is adopted as an aggregate.

また、必ずしも、本塗料の木炭粉末が、粒径が異なる2種類に限定される必要はなく、例えば、粒径(中心粒径)が異なる木炭粉末を3種類以上配合する態様であってもよい。但し、配合量の調整等による塗膜の均一化の制御が複雑化する点や、製造コストが高くなる点から、木炭粉末は、粒径が異なる2種類を採用することが好ましい。   In addition, the charcoal powder of the present coating does not necessarily have to be limited to two types having different particle sizes, and may be, for example, an embodiment in which three or more types of charcoal powders having different particle sizes (central particle sizes) are mixed. . However, it is preferable to use two types of charcoal powder having different particle sizes from the viewpoint that the control of the uniformity of the coating film by the adjustment of the blending amount becomes complicated and the manufacturing cost becomes high.

また、必ずしも、本塗料の木炭粉末が、粒径が異なる2種類を配合し、その中心粒径の値の比が、粒子径大:粒子径小=2:1に限定される必要はない。但し、塗膜の均一性を向上させる観点から、2種類の木炭粉末における中心粒径の値の比が、粒子径大:粒子径小=1〜2:1となることが好ましく、更に好ましくは、粒子径大:粒子径小=1.5〜2:1であり、塗膜の均一性をより一層向上させる点からは、粒子径大:粒子径小=2:1となることがより一層好ましい。   In addition, it is not necessary that the charcoal powder of the present coating compound two kinds of different particle sizes, and the ratio of the value of the central particle size is not limited to large particle size: small particle size = 2: 1. However, from the viewpoint of improving the uniformity of the coating film, the ratio of the value of the central particle diameter in the two types of charcoal powder is preferably: particle diameter large: particle diameter small = 1 to 2: 1, and more preferably Particle diameter: 1.5 to 2: 1, and from the viewpoint of further improving the uniformity of the coating, particle diameter: 2: 1 preferable.

また、必ずしも、本塗料の粒径の異なる2種類の木炭粉末が、1500メッシュの木炭粉末(中心粒径10μm)と、3000メッシュの木炭粉末(中心粒径5μm)である必要なない。例えば、粒子径大の木炭粉末を3000メッシュ、粒子径小の木炭粉末を6000メッシュとする態様も考えられる。但し、塗料中の木炭粉末の充填状態を均一化しやすくなる点、単位面積当たりの木炭粉末の充填率を向上させやすい点、及び塗膜の形成に必要なバインダー(樹脂)の量が、塗料の難燃性を確保しうる配合量になる点から、粒径の異なる2種類の木炭粉末が、1500メッシュの木炭粉末(中心粒径10μm)と、3000メッシュの木炭粉末(中心粒径5μm)となることが好ましい。   Further, the two types of charcoal powder different in particle diameter of the present paint are not necessarily the 1500 mesh charcoal powder (central particle diameter 10 μm) and the 3000 mesh charcoal powder (central particle diameter 5 μm). For example, an aspect may be considered in which a large particle size charcoal powder is 3000 mesh and a small particle size charcoal powder is 6000 mesh. However, the point at which the filling state of charcoal powder in the paint is easily made uniform, the point at which the filling rate of charcoal powder per unit area is easy to improve, and the amount of binder (resin) necessary for forming a coating film Two types of charcoal powder with different particle sizes, 1500 mesh charcoal powder (central particle size 10 μm) and 3000 mesh charcoal powder (central particle size 5 μm) from the point of achieving a blending amount that can ensure flame retardancy It is preferable that

また、必ずしも、本塗料の粒径の異なる2種類の木炭粉末の配合比が、粒子径大の木炭粉末100重量部に対して、粒子径小の木炭粉末50重量部に限定される必要はない。但し、塗膜の単位面積当たりの木炭粉末の充填率を高める点から、粒子径大の木炭粉末100重量部に対して、粒子径小の木炭粉末が30〜100重量部の範囲で配合されることが好ましく、木炭粉末の充填率をより一層高める点からは、粒子径大の木炭粉末100重量部に対して、粒子径小の木炭粉末が50重量部配合されることが更に好ましい。   Furthermore, the blending ratio of the two types of charcoal powder having different particle sizes of the present paint does not necessarily have to be limited to 50 parts by weight of charcoal powder with a small particle size with respect to 100 parts by weight of charcoal powder with a large particle size. . However, from the viewpoint of increasing the filling rate of charcoal powder per unit area of coating film, charcoal powder with small particle size is blended in a range of 30 to 100 parts by weight with respect to 100 parts by weight of charcoal powder of large particle size. It is more preferable that 50 parts by weight of small particle size charcoal powder be blended with 100 parts by weight of large particle size charcoal powder from the viewpoint of further increasing the filling rate of charcoal powder.

また、必ずしも、本塗料において、塗料の全量基準に対する2種類の木炭粉末の合計の配合比が、塗料の全量の100重量部に対して、2種類の木炭粉末が30重量部に限定されるものではない。塗膜が形成可能であり、電圧を印化した塗膜面が負に帯電した状態を維持可能な導電性を有するものとなっていれば充分である。但し、塗膜の均一性と良好な導電性を確保する点から、塗料の全量基準に対する2種類の木炭粉末の合計の配合比が、塗料の全量の100重量部に対して、2種類の木炭粉末が30重量部となることが好ましい。   In addition, in the present paint, the total blending ratio of the two types of charcoal powder to the total weight of the paint is limited to 30 parts by weight of the two types of charcoal powder relative to 100 parts by weight of the total weight of the paint is not. It is sufficient that the coating film can be formed and the coating film surface on which the voltage is printed has a conductivity capable of maintaining the negatively charged state. However, from the viewpoint of securing the uniformity of the coating film and good conductivity, the blending ratio of the total of the two types of charcoal powder to the basis of the total weight of the paint is two types of charcoal with respect to 100 parts by weight of the total amount of paint. Preferably, the powder is 30 parts by weight.

また、必ずしも、本塗料に水酸化アルミニウムが配合される必要はない。但し、塗料の塗膜面の難燃性を向上させることが可能な点から、本塗料に水酸化アルミニウムが配合されることが好ましい。   In addition, the present paint does not necessarily have to contain aluminum hydroxide. However, aluminum hydroxide is preferably blended in the present paint, from the viewpoint of being able to improve the flame retardancy of the paint film surface of the paint.

また、必ずしも、本塗料の水酸化アルミニウムの配合量が、塗料の全量基準で重量比率が4.84%に限定される必要はない。但し、塗料の塗膜面の難燃性を向上させる点から、水酸化アルミニウムの配合量が、塗料の全量基準で重量比率が0.5〜10%の範囲内であることが好ましく、充分な難燃性を付与する点から、水酸化アルミニウムの配合量が、塗料の全量基準で重量比率が4.0〜6.0%の範囲内であることが更に好ましい。   Moreover, the blending ratio of aluminum hydroxide in the present paint does not necessarily have to be limited to 4.84% by weight based on the total weight of the paint. However, from the viewpoint of improving the flame retardancy of the paint film surface of the paint, it is preferable that the weight ratio of the aluminum hydroxide is in the range of 0.5 to 10% on the basis of the total weight of the paint. From the viewpoint of imparting flame retardancy, it is more preferable that the blending ratio of aluminum hydroxide is in the range of 4.0 to 6.0% by weight based on the total weight of the paint.

また、本発明を適用した水性塗料組成物では、必要に応じて、上記に記載した組成以外に、適宜、本発明の効果を逸脱しない範囲で、その他の成分を配合することが可能である。例えば、増粘剤、防腐剤、防カビ剤、消泡剤、難燃剤等の塗料の機能性を向上させる添加成分を別途配合することも可能である。   In addition, in the water-based paint composition to which the present invention is applied, other components can be blended as needed in the range not departing from the effects of the present invention, as needed, in addition to the composition described above. For example, it is also possible to separately add an additive component that improves the functionality of the paint, such as a thickener, an antiseptic, an antifungal agent, an antifoaming agent, and a flame retardant.

上記で説明した本発明を適用した水性塗料組成物の一例である塗料4は、塗膜面の均一性、成膜性、屈曲性、表面汚染性、表面傷付着性、塗料の導電性、塗膜強度、貯蔵安定性及び下地材との接着強度の向上といった塗膜の性能に優れたものとなっている。   The paint 4 which is an example of the water-based paint composition to which the present invention described above is applied has uniformity of film surface, film forming property, flexibility, surface contamination property, surface flaw adhesion property, conductivity of paint, coating It is excellent in the performance of the coating film, such as improvement of film strength, storage stability, and adhesive strength with the base material.

また、塗料4に、負電圧発生装置5を介して電圧を印化することで、塗膜面が負に帯電して、塗膜面の周囲の空気中の正に帯電した粒子を捕集して、室内空間の空気を浄化することができる。   Further, by applying a voltage to the paint 4 through the negative voltage generator 5, the coating film surface is negatively charged, and positively charged particles in the air around the coating film surface are collected. Thus, the air in the indoor space can be purified.

以上のとおり、本発明を適用した水性塗料組成物、空気浄化機構及び空気浄化方法は、品質に優れた塗膜を形成可能であり、室内空間に対して、充分な空気浄化機能を発揮することが可能なものとなっている。   As described above, the water-based paint composition, the air purification mechanism and the air purification method to which the present invention is applied can form a coating film excellent in quality, and exhibit a sufficient air purification function to indoor space. Is possible.

以下、本発明の実施例を説明する。   Hereinafter, examples of the present invention will be described.

本発明を適用した塗料の実施例及び比較例の試料を作製し、以下の評価を行った。
(1)試料の原料成分
まず、表2乃至表6に示す組成となるように原料成分を添加して、実施例1〜6及び比較例1〜5の各試料を作製した。なお、以下、表2乃至表6に示す数値は、原料の重量(kg)及び原料の全量を基準にした重量比率(%)を示したものである。また、実施例1〜3及び比較例1〜3は、下地材にロール等を用いて手作業で塗布する際の塗料を想定した組成であり、バインダーとなるアクリル系樹脂に含まれる水分以外に、別途、水を添加して粘度を調整した組成である。また、実施例4〜6及び比較例4、5はロールコーター等の塗布用の機械で塗布する際の塗料を想定した組成であり、バインダーとなるアクリル系樹脂に含まれる水分以外に水を添加せずに粘度を調整した組成である。
実施例1〜3及び比較例1〜3に対して、以下に記載する試験番号1〜12の各種試験を行った結果を表7に示す。また、実施例4〜6及び比較例4、5に対して、以下に記載する試験番号1〜11の各種試験を行った結果を表8に示す。
The sample of the example of the coating material to which this invention is applied, and the comparative example was produced, and the following evaluation was performed.
(1) Raw material component of sample First, the raw material component was added so that it might become a composition shown in Tables 2-6, and each sample of Examples 1-6 and comparative examples 1-5 was produced. The numerical values shown in Tables 2 to 6 below indicate the weight (kg) of the raw material and the weight ratio (%) based on the total amount of the raw material. Further, Examples 1 to 3 and Comparative Examples 1 to 3 are compositions assuming coating materials when manually applied to a base material using a roll or the like, and in addition to the moisture contained in the acrylic resin to be a binder. It is the composition which added water separately and adjusted the viscosity. Moreover, Example 4-6 and Comparative Examples 4 and 5 are the compositions supposing the coating material at the time of applying with machines for application | coating, such as a roll coater, and add water other than the water | moisture content contained in acrylic resin used as a binder. It is the composition which adjusted viscosity without doing.
Table 7 shows the results of various tests of Test Nos. 1 to 12 described below for Examples 1 to 3 and Comparative Examples 1 to 3. Moreover, the result of having performed various tests of the test numbers 1-11 described below with respect to Examples 4-6 and Comparative Examples 4 and 5 is shown in Table 8.

(2)粘度(試験番号1)
実施例1〜6及び比較例1〜5について、TVC-5型粘度計(東機産業(株)社製)を用いて、粘度(Pa・s)を測定した。測定は、25℃±2の温度条件下で1つの試料につき3回測定を行い、3回測定の平均値を測定結果とした。また、測定結果について、手作業による塗装用(ロール塗装用)の塗料については、適正な粘度範囲を0.5~5.0Pa・sに設定し、機械塗装用の塗料については、適正な粘度範囲を10~100Pa・sに設定して、試料を評価するものとした。
(2) Viscosity (Test No. 1)
The viscosity (Pa · s) of each of Examples 1 to 6 and Comparative Examples 1 to 5 was measured using a TVC-5 viscometer (manufactured by Toki Sangyo Co., Ltd.). The measurement was performed three times per sample under the temperature condition of 25 ° C. ± 2 and the average value of the three measurements was taken as the measurement result. Regarding the measurement results, for paints for coating by hand (for roll coating), the appropriate viscosity range is set to 0.5 to 5.0 Pa · s, and for paints for machine coating, the appropriate viscosity range is 10 The sample was evaluated at a setting of ̃100 Pa · s.

実施例1〜3はいずれも、粘度が0.8~2.4Pa・sの範囲内の値となり、手作業による塗装用の塗料における適正な粘度の数値範囲の値であった。また、実施例4〜6は、いずれも、粘度が31~82Pa・sの範囲内の値となり、機械塗装用の塗料における適正な粘度の数値範囲であった。   In each of Examples 1 to 3, the viscosity was a value within the range of 0.8 to 2.4 Pa · s, which was a value of the numerical range of the appropriate viscosity in the paint for manual coating. In all of Examples 4 to 6, the viscosity was a value within the range of 31 to 82 Pa · s, which was the numerical range of the appropriate viscosity in the paint for machine coating.

(3)密度(木炭固形充填率)(試験番号2)
実施例1〜6及び比較例1〜5について、単位体積当たりの重量を測定して密度(g/cm)を確認した。容器寸法100mm×100mm×100mmのアクリル容器に試料を入れ、表面をスクレーパーで掬い取ってから重量を測定し、マスの体積で密度を算出した。測定は、25℃±2の温度条件下で1つの試料につき3回測定を行い、3回測定の平均値を測定結果とした。また、測定結果について、密度1.5g/cm3以上の値となるものを木炭固形充填率が良好な塗料として評価するものとした。
(3) Density (solid charcoal filling rate) (Test No. 2)
The weight per unit volume of each of Examples 1 to 6 and Comparative Examples 1 to 5 was measured to confirm the density (g / cm 3 ). The sample was put into an acrylic container with a container size of 100 mm × 100 mm × 100 mm, the surface was scraped with a scraper, and then the weight was measured, and the density was calculated by the volume of the mass. The measurement was performed three times per sample under the temperature condition of 25 ° C. ± 2 and the average value of the three measurements was taken as the measurement result. Moreover, about a measurement result, what used as a value with a density of 1.5 g / cm < 3 > or more shall be evaluated as a coating material with a favorable charcoal solid filling rate.

実施例1〜6はいずれも、密度の値が1.5g/cm3以上であり、良好な木炭固形充填率を有していた。Each of Examples 1 to 6 had a density value of 1.5 g / cm 3 or more, and had a good charcoal solid filling rate.

(4)貯蔵安定性(試験番号3)
実施例1〜6及び比較例1〜5について、試料を撹拌した後容器を静止させ、所要時間経過後における容器底への木炭粉末の沈殿の有無を確認した。プラスチック製のへら(幅2cm、厚み2mm)を使用し、容器の底の木炭の沈殿の有無を調べた。評価は、25℃±2の温度条件下で行った。また、静止後1時間後、24時間後及び72時間後の試料を確認した。試験結果は、沈殿なし(表7及び表8では○で記載)、容器底部に木炭粉末の沈殿は見られないが、粘度の上昇が確認できる(表7及び表8では△で記載)、及び、容器底に木炭粉末の分離した沈殿が見られる(表7及び表8では×で記載)の3段階で評価した。
(4) Storage stability (Test No. 3)
About Example 1-6 and Comparative Examples 1-5, after stirring a sample, the container was made to stand and the presence or absence of the precipitation of the charcoal powder to the container bottom after required time progress was confirmed. A plastic spatula (width 2 cm, thickness 2 mm) was used to check for the presence of charcoal on the bottom of the container. The evaluation was performed under the temperature condition of 25 ° C. ± 2. In addition, samples after 24 hours and 72 hours after 1 hour after stationary were confirmed. The test results are as follows: no precipitation (indicated by ○ in Tables 7 and 8), no precipitation of charcoal powder is observed at the bottom of the container, but an increase in viscosity can be confirmed (indicated by Δ in Tables 7 and 8), The evaluation was made in three stages, where separated precipitation of charcoal powder was observed at the bottom of the vessel (indicated by x in Tables 7 and 8).

実施例1〜6はいずれも、すべての時間において木炭粉末の沈殿が確認されなかった。   In all of Examples 1 to 6, no precipitation of charcoal powder was observed at all times.

(5)成膜性(分散度)(試験番号4)
実施例1〜6及び比較例1〜5について、各試料における塗料中の木炭粉末の分散度(μm)を測定して、成膜性の評価とした。分散度の測定は、JIS K 5600-2-5の方法に準拠して行った。分散度の測定に100μmの粒度ゲージを使用した。測定は、25℃±2の温度条件下で1つの試料につき3回測定を行い、3回測定の平均値を測定結果とした。また、測定結果について、測定値の平均値が50μm以下のものを、木炭粉末の分散度が良好、即ち、成膜性が良好な塗料と評価するものとした。
(5) Film forming property (dispersion degree) (Test No. 4)
About Examples 1-6 and Comparative Examples 1-5, the dispersion degree (micrometer) of the charcoal powder in the coating material in each sample was measured, and it was set as evaluation of film-forming property. The degree of dispersion was measured in accordance with the method of JIS K 5600-2-5. A 100 μm particle size gauge was used to measure the degree of dispersion. The measurement was performed three times per sample under the temperature condition of 25 ° C. ± 2 and the average value of the three measurements was taken as the measurement result. With regard to the measurement results, those having an average value of 50 μm or less were evaluated as paints having a good degree of dispersion of the charcoal powder, ie, a good film forming property.

実施例1〜5はいずれも、測定結果が50μm以下であった。   In all of Examples 1 to 5, the measurement result was 50 μm or less.

(6)耐屈曲性(試験番号5)
実施例1〜6及び比較例1〜5について、各試料を基材に塗布して乾燥後に負荷をかけて亀裂の発生の有無を確認して耐屈曲性(塗膜強度)の評価とした。帯状の基材(幅5cm、長さ20cm、ポリプロピレン製)に、3パターンの規定量(150g/m3、300g/m3及び450g/m3)の各試料を塗布して、7日間乾燥後、基材の中心にφ5mmの支柱を置き、2秒かけて180℃基材を折り曲げる。折り曲げ後、基材の中心部における亀裂の発生の有無を確認した。試験結果は、亀裂なし(表7及び表8では○で記載)、及び、亀裂有り(表7及び表8では×で記載)で評価した。
(6) Flexibility (Test No. 5)
About Examples 1-6 and Comparative Examples 1-5, each sample was apply | coated to a base material, after drying, load was applied and the presence or absence of generation | occurrence | production of a crack was confirmed, and it was set as evaluation of the bending resistance (coating-film strength). Apply samples of prescribed amounts (150 g / m 3 , 300 g / m 3 and 450 g / m 3 ) of three patterns on a strip-like substrate (width 5 cm, length 20 cm, made of polypropylene) and dry for 7 days Place a 5 mm φ pillar at the center of the substrate and bend the 180 ° C. substrate for 2 seconds. After bending, it was confirmed whether or not a crack was generated at the center of the substrate. The test results were evaluated with no crack (denoted by ○ in Tables 7 and 8) and cracked (denoted by × in Tables 7 and 8).

実施例1、2、4、及び5では、3パターンの規定量のいずれにおいても、亀裂の発生が見られなかった。実施例3は、2パターンの規定量(150g/m3、300g/m3)において亀裂の発生が見られなかった。実施例6は、150g/m3の塗布量において亀裂の発生が見られなかった。In Examples 1, 2, 4 and 5, no crack was observed in any of the prescribed amounts of the three patterns. In Example 3, the occurrence of cracks was not observed at the prescribed amounts (150 g / m 3 and 300 g / m 3 ) of two patterns. In Example 6, no crack was observed at a coating amount of 150 g / m 3 .

(7)導電性(試験番号6)
実施例1〜6及び比較例1〜5について、各試料を基材に塗布して乾燥後に、デジタルマルチメーター(三和電気計器(株)社製、RD700)を用いて塗膜抵抗値(kΩ)を測定して、導電性の評価とした。基材(100mm×100mm、ポリプロピレン製)に、8パターンの規定量(100g/m3、150g/m3、200g/m3、250g/m3、300g/m3、350g/m3、400g/m3及び450g/m3)の各試料を塗布して、7日間乾燥後、基材の表面の抵抗値を測定した。測定は、25℃±2の温度条件下で1つの試料につき5回測定を行い、5回測定の平均値を測定結果とした。また、測定結果について、測定値の平均値が3kΩ以下のものを、適切な導電性を有する塗料(塗布量)と評価した。なお、塗膜抵抗値とは、塗膜面における電気の流れやすさの指標となる数値であり、この値が小さい程、塗膜面の導電性に優れたものとなる。
(7) Conductivity (Test No. 6)
About Example 1-6 and Comparative Examples 1-5, after apply | coating each sample to a base material and drying, using a digital multimeter (manufactured by Sanwa Denki Keiki Co., Ltd., RD700), a coating resistance value (kΩ) ) Was measured to determine the conductivity. Base material (100 mm x 100 mm, made of polypropylene), the prescribed amount of eight patterns (100 g / m 3 , 150 g / m 3 , 200 g / m 3 , 250 g / m 3 , 300 g / m 3 , 350 g / m 3 , 400 g / m Each sample of m 3 and 450 g / m 3 ) was applied, and after drying for 7 days, the resistance value of the surface of the substrate was measured. The measurement was performed 5 times per sample under the temperature condition of 25 ° C. ± 2 and the average value of the 5 times measurement was taken as the measurement result. Moreover, about the measurement result, that whose average value of a measured value is 3 k (ohm) or less was evaluated as the coating material (application amount) which has suitable conductivity. In addition, a coating-film resistance value is a numerical value used as the parameter | index of the flowability of electricity in a coating-film surface, and the smaller this value, the more excellent the conductivity of the coating-film surface.

実施例1、2及び4では、300g/m3〜450g/m3の塗布量の範囲で測定値の平均値が3kΩ以下となった。また、実施例3及び5では、350g/m3〜450g/m3の塗布量の範囲で測定値の平均値が3kΩ以下となった。In Examples 1, 2 and 4, the average value of the measured values in the range of coating weight of 300g / m 3 ~450g / m 3 becomes 3kΩ less. In Examples 3 and 5, the average value of the measured values in the range of coating weight of 350g / m 3 ~450g / m 3 becomes 3kΩ less.

(8)吸着性(試験番号7)
実施例1〜6及び比較例1〜5について、各試料を基材に塗布して乾燥後に、試験容器内で吸着対象ガス(アンモニア、ホルムアルデヒド、トルエン)と10分間接触させ、対象ガスに対する初期吸着性(%)を測定して、吸着性を評価した。基材(100mm×100mm、ポリプロピレン製)に、規定量(300g/m3)の各試料を塗布して、7日間乾燥したものを試験片とした。また、4Lのガラス製容器に吸着対象ガスを充満させ、試験片を容器内にいれ、10分経過後の容器中のガス濃度を測定した。ガス濃度の測定は、(株)ガステック社製のガス検知器及びガス検知管を用いて測定した。吸着性は、容器内に試験片を入れる前後の低減率(%)で表すものとした。測定は、25℃±2の温度条件下で1つの試料につき3回測定を行い、3回測定の平均値を測定結果とした。また、測定結果について、測定値の平均値(低減率)において、アンモニア及びホルムアルデヒドは80%以上のもの、また、トルエンは40%以上のものを、対象吸着ガスに対する初期吸着性が良好な塗料であると評価した。
(8) Adsorptive properties (Test No. 7)
About Examples 1-6 and Comparative Examples 1-5, after apply | coating each sample to a base material and drying, it is made to contact with adsorption object gas (ammonia, formaldehyde, toluene) for 10 minutes within a test container, and initial stage adsorption with respect to object gas The percentage (%) was measured to evaluate the adsorptivity. Each sample of a prescribed amount (300 g / m 3 ) was applied to a base material (100 mm × 100 mm, made of polypropylene), and dried for 7 days as a test piece. Further, a 4 L glass container was filled with the gas to be adsorbed, the test piece was placed in the container, and the gas concentration in the container after 10 minutes was measured. The gas concentration was measured using a gas detector and a gas detection tube manufactured by Gastec Co., Ltd. The adsorptivity was represented by the reduction rate (%) before and after placing the test piece in the container. The measurement was performed three times per sample under the temperature condition of 25 ° C. ± 2 and the average value of the three measurements was taken as the measurement result. With regard to the measurement results, in the average value (reduction rate) of the measured values, ammonia and formaldehyde are 80% or more, and toluene is 40% or more. It evaluated that there was.

実施例1〜6はいずれも、すべての対象ガスに対して良好な吸着性を示した。   Examples 1 to 6 all showed good adsorptivity to all the target gases.

(9)水分吸放出量(試験番号8)
実施例1〜6及び比較例1〜5について、各試料を基材に塗布して乾燥後に、乾燥環境又は湿潤環境下で24時間保持して、保持前後の基材重量の変化量から水分吸放出量を評価した。基材(100mm×100mm、ポリプロピレン製)に、規定量(300g/m3)の各試料を塗布して、7日間乾燥したものを試験片とした。また、乾燥環境(室温25℃、湿度50%)又は湿潤環境(室温25℃、湿度90%)の各環境下で試験片を24時間保持した。試験片は、保持前と保持後に重量(g)を測定した。保持前後の試験片の重量変化を算出して、乾燥環境下で保持させた試験片の重量変化の値を水分放出量(g/m2)とした。また、保持前後の試験片の重量変化を算出して、湿潤環境下で保持させた試験片の重量変化の値を水分吸収量(g/m2)とした。また、水分放出及び水分吸収の測定結果について重量変化の値が15g/m2以上のものを水分吸放出量(調湿性)が良好な塗料であると評価した。
(9) Water absorption and release amount (Test No. 8)
For each of Examples 1 to 6 and Comparative Examples 1 to 5, after each sample is applied to a substrate and dried, it is held in a dry environment or a wet environment for 24 hours, and the moisture absorption is obtained from the change amount of the substrate weight before and after the holding. The amount released was evaluated. Each sample of a prescribed amount (300 g / m 3 ) was applied to a base material (100 mm × 100 mm, made of polypropylene), and dried for 7 days as a test piece. In addition, the test piece was kept for 24 hours in each of a dry environment (room temperature 25 ° C., humidity 50%) or a wet environment (room temperature 25 ° C., humidity 90%). The test pieces were weighed (g) before and after holding. The weight change of the test piece before and after holding was calculated, and the value of the weight change of the test piece held in the dry environment was taken as the amount of released water (g / m 2 ). Moreover, the weight change of the test piece before and behind holding | maintenance was calculated, and the value of the weight change of the test piece hold | maintained in a wet environment was made into water absorption amount (g / m < 2 >). Further, the results of measurement of water release and water absorption were evaluated to be paint having a weight change value of 15 g / m 2 or more as a paint having a good water absorption and release amount (humidity control property).

実施例1〜6はいずれも、水分放出量及び水分吸収量が15g/m2以上となり、良好な水分吸放出量を有していた。The water release amount and the water absorption amount were 15 g / m 2 or more in all Examples 1 to 6, and had a good water absorption and release amount.

(10)付着強度(試験番号9)
実施例1〜6及び比較例1〜5について、各試料を基材に塗布して乾燥後に、又は、乾燥後更に湿潤環境下で24時間保持して、引っ張り試験を行い、塗膜の付着強度を評価した。塗膜の付着強度が高ければ、塗料の下地材との密着性及び下地材への追従性が良好なものと言える。基材(100mm×100mm、石こうボード)に、規定量(300g/m3)の各試料を塗布して、7日間乾燥させ、乾燥後の試料を「乾燥時(試験片)」とし、7日間乾燥後に更に湿潤環境(室温25℃、湿度90%)の各環境下で24時間保持させたものを「高湿環境時(試験片)」とした。各試験片に対して、試験片に接着剤となるエポキシ樹脂を介して金属アタッチメントを接着させ、建研式接着力試験機(LPT-400、オックスジャッキ(株)社製)を用いて、金属アタッチメントの引っ張り試験を行い、塗膜の破断が生じた際、又は、試験片が破損した際の荷重(kg/cm2)を測定した。測定は、25℃±2の温度条件下で行った。また、測定結果について、測定値が15kg/cm2以上のものを、下地材への付着強度(下地密着性、下地追従性)が良好な塗料であると評価した。
(10) Adhesion strength (Test No. 9)
For each of Examples 1 to 6 and Comparative Examples 1 to 5, after each sample is applied to a substrate and dried, or after being dried, it is further held in a wet environment for 24 hours to conduct a tensile test, and the adhesion strength of the coating is obtained. Was evaluated. If the adhesion strength of the coating film is high, it can be said that the adhesion of the coating to the base material and the followability to the base material are good. Apply a specified amount (300 g / m 3 ) of each sample to a substrate (100 mm × 100 mm, gypsum board), dry for 7 days, and let the dried sample be “dry (test piece)” for 7 days After drying, those kept for 24 hours under each environment of a wet environment (room temperature 25 ° C., humidity 90%) were taken as “high humidity environment (test piece)”. A metal attachment is adhered to each test piece via an epoxy resin as an adhesive agent to the test piece, and a metal is used with a bond strength tester (LPT-400, manufactured by Oxjack Co., Ltd.). The tensile test of the attachment was performed to measure the load (kg / cm 2 ) when the coating film broke or when the test piece broke. The measurement was performed under the temperature condition of 25 ° C. ± 2. Moreover, about the measurement result, the thing with a measured value of 15 kg / cm < 2 > or more was evaluated as the coating material in which the adhesion strength (base | substrate adhesiveness and base | substrate following property) to a base material is favorable.

実施例1は乾燥時及び高湿環境時の両方において15kg/cm2以上の付着強度を示した。また、実施例2〜6は、乾燥時に15kg/cm2以上の付着強度(下地密着性、下地追従性)を示した。Example 1 showed an adhesion strength of 15 kg / cm 2 or more both in dry and in a high humidity environment. Moreover, Examples 2-6 showed 15 kg / cm < 2 > or more of adhesion strength (base | substrate adhesiveness, base | substrate follow-up property) at the time of drying.

(11)表面汚染性(試験番号10)
実施例1〜6及び比較例1〜5について、各試料を基材に塗布して乾燥後に、又は、乾燥後更に湿潤環境下で24時間保持して、生地汚染試験を行い、表面汚染性を評価した。基材(200mm×200mm、石こうボード)に、規定量(300g/m3)の各試料を塗布して、7日間乾燥させ、乾燥後の試料を「乾燥時(試験片)」とし、7日間乾燥後に更に湿潤環境(室温25℃、湿度90%)の各環境下で24時間保持させたものを「高湿環境時(試験片)」とした。各試験片に対して、試験片表面に白色の生地を置いて、その上に100gの重りを載せ、生地を引っ張って、生地の汚れ具合の有無を確認した。試験結果は、汚れなし(表7及び表8では○で記載)、及び、汚れ有り(表7及び表8では×で記載)で評価した。
(11) Surface contamination (Test No. 10)
For each of Examples 1 to 6 and Comparative Examples 1 to 5, after each sample was applied to a substrate and dried, or after being dried, it was kept in a wet environment for 24 hours to perform a fabric contamination test, evaluated. Apply a specified amount (300 g / m 3 ) of each sample to a substrate (200 mm × 200 mm, gypsum board), dry for 7 days, and let the dried sample be “dried (test piece)” for 7 days After drying, those kept for 24 hours under each environment of a wet environment (room temperature 25 ° C., humidity 90%) were taken as “high humidity environment (test piece)”. For each test piece, a white cloth was placed on the surface of the test piece, a weight of 100 g was placed thereon, the cloth was pulled, and the presence or absence of soiling of the cloth was checked. The test results were evaluated on the basis of no stain (denoted by 表 in Tables 7 and 8) and dirt (denoted by x in Tables 7 and 8).

実施例1、2、4及び5は乾燥時及び高湿環境時の両方において、生地に汚れの付着が確認されなかった。また、実施例3及び6は、乾燥時に生地に汚れの付着が確認されなかった。   In Examples 1, 2, 4 and 5, no soiling was observed on the fabric both in the dry and in the high humidity environment. Moreover, in Examples 3 and 6, no adhesion of dirt was observed on the dough at the time of drying.

(12)表面傷付着性(試験番号11)
実施例1〜6及び比較例1〜5について、各試料を基材に塗布して乾燥後に生地による塗膜への傷付着試験を行い、表面傷付着性を評価した。基材(200mm×200mm、石こうボード)に、規定量(300g/m3)の各試料を塗布して、7日間乾燥させ、乾燥後の試料を試験片とした。各試験片に対して、試験片表面に白色の生地を置いて、その上に100gの重りを載せ、生地を引っ張って、生地と塗膜面との摩擦の発生により、塗膜表面に対する傷の発生の有無を確認した。試験結果は、傷付着なし(表7及び表8では○で記載)、及び、傷付着有り(表7及び表8では×で記載)で評価した。
(12) Surface flaw adhesion (Test No. 11)
About Examples 1-6 and Comparative Examples 1-5, each sample was apply | coated to a base material, the wound adhesion test to the coating film by cloth was done after drying, and surface wound adhesion was evaluated. A specified amount (300 g / m 3 ) of each sample was applied to a substrate (200 mm × 200 mm, gypsum board), dried for 7 days, and the dried sample was used as a test piece. For each test piece, place a white cloth on the surface of the test piece, place a 100 g weight on it, pull the cloth, and generate friction between the cloth and the coated surface to scratch the coating surface. We confirmed the presence or absence of outbreak. The test results were evaluated with no scratch adhesion (indicated by 記載 in Tables 7 and 8) and with scratch adhesion (indicated by × in Tables 7 and 8).

実施例1〜6はいずれも傷の付着が確認されなかった。   In Examples 1 to 6, no adhesion of scratches was confirmed.

(13)難燃性(試験番号12)
実施例1〜3及び比較例1〜3について、各試料を基材に塗布して乾燥後に燃焼性試験を行い、難燃性を評価した。基材(15cm×30cm、石こうボード)に、規定量(300g/m3)の各試料を塗布して、7日間乾燥させ、乾燥後の試料を試験片とした。各試験片に対して、試験片から20cm離れた位置にバーナーを設置して、バーナーに火を添加して2分後に火を止め、試験片の塗膜表面における損傷の発生や、煙・ガスの発生を確認した。試験結果は、塗膜表面における損傷の発生や、煙・ガスの発生なし(表7及び表8では○で記載)、及び、塗膜表面における損傷の発生や、煙・ガスの発生有り(表7及び表8では×で記載)で評価した。
(13) Flame retardancy (Test No. 12)
About Example 1-3 and Comparative Examples 1-3, each sample was apply | coated to a base material, the flammability test was done after drying, and the flame retardance was evaluated. A specified amount (300 g / m 3 ) of each sample was applied to a substrate (15 cm × 30 cm, gypsum board), dried for 7 days, and the dried sample was used as a test piece. For each test piece, install a burner at a distance of 20 cm from the test piece, add fire to the burner, turn off the fire after 2 minutes, and generate damage on the coating surface of the test piece, smoke and gas We confirmed the occurrence of The test results show that there is no generation of damage on the surface of the coating film, no generation of smoke or gas (indicated by 7 in Tables 7 and 8), generation of damage on the surface of the coating film, or generation of smoke or gas (Table In Table 7 and Table 8).

実施例1〜3はいずれも塗膜表面における損傷の発生や、煙・ガスの発生が確認されなかった。   In any of Examples 1 to 3, the occurrence of damage on the coating film surface and the generation of smoke and gas were not confirmed.

(12)水酸化アルミニウムの配合量による難燃性の評価
上述した実施例2の組成をベースに、水酸化アルミニウムの配合量を異ならせた(0%、0.5%、1%、2.5%、5%、7.5%、10%、12.5%、)塗料を調製して、実施例7〜14とした。この実施例に対して、上述した難燃性(試験番号12)と同様の試験であり、バーナーに火を添加した後、30秒後、1分後及び2分後の各試験片の塗膜表面における損傷の発生や、煙・ガスの発生を確認した。試験結果は、塗膜表面における損傷の発生や、煙・ガスの発生なし(表9では○で記載)、塗膜表面における損傷の発生や、煙・ガスの発生がわずかに確認されたもの(表9では△で記載)、及び、塗膜表面における損傷の発生や、煙・ガスの発生有り(表9では×で記載)で評価した。結果は以下の表9に示す。
(12) Evaluation of flame retardancy by blending amount of aluminum hydroxide Based on the composition of Example 2 described above, blending amounts of aluminum hydroxide were varied (0%, 0.5%, 1%, 2.5%, 5 %, 7.5%, 10%, 12.5%, and the like) were prepared to give Examples 7-14. For this example, the test is the same as the above-mentioned flame retardancy (Test No. 12), and after 30 seconds, 1 minute and 2 minutes after the fire is added to the burner, the coating film of each test piece We confirmed the occurrence of damage on the surface and the generation of smoke and gas. The test results show that the occurrence of damage on the surface of the coating and the occurrence of smoke and gas (denoted by 9 in Table 9), the occurrence of damage on the surface of the coating and the occurrence of smoke and gas were slightly confirmed ( In Table 9, it evaluated by generation | occurrence | production of the damage in the coating-film surface, and generation | occurrence | production of smoke and gas (it described by x in Table 9). The results are shown in Table 9 below.

実施例11〜14はいずれも2分後においても、塗膜表面における損傷の発生や、煙・ガスの発生が確認されなかった。   In any of Examples 11 to 14, after 2 minutes, neither generation of damage on the surface of the coating nor generation of smoke or gas was confirmed.

1 壁面
11 壁面
11a 下地材
2 天井面
3 室内空間
4 塗料
5 負電圧発生装置
51 正極
52 負極
53 アース
54 電源
6 絶縁層
7 仕上げ材
Reference Signs List 1 wall surface 11 wall surface 11a base material 2 ceiling surface 3 indoor space 4 paint 5 negative voltage generator 51 positive electrode 52 negative electrode 53 ground 54 power source 6 insulating layer 7 finish material

Claims (16)

合成樹脂で構成されたバインダーと、
少なくとも2つの粒径の異なる粉末で構成された木炭粉末と、
水とを含有する
水性塗料組成物。
A binder made of a synthetic resin,
Charcoal powder composed of at least two different particle size powders,
Water-based paint composition containing water.
前記木炭粉末は、第1の木炭粉末と、該第1の木炭粉末の粒径の1〜2倍の粒径を有する第2の木炭粉末とを含んで構成された
請求項1に記載の水性塗料組成物。
The aqueous charcoal according to claim 1, wherein the charcoal powder comprises a first charcoal powder and a second charcoal powder having a particle size of 1 to 2 times the particle size of the first charcoal powder. Paint composition.
前記第1の木炭粉末は3000メッシュ以下の中心粒径5μmの粉体であり、
前記第2の木炭粉末は1500メッシュ以下の中心粒径10μmの粉体である
請求項2に記載の水性塗料組成物。
The first charcoal powder is a powder having a center particle size of 5 μm or less of 3000 mesh,
The water-based paint composition according to claim 2, wherein the second charcoal powder is a powder having a median particle diameter of 10 μm of 1500 mesh or less.
前記第2の木炭粒子の100重量部に対し、前記第1の木炭粒子が30〜100重量部の範囲内で配合された
請求項2又は請求項3に記載の水性塗料組成物。
The water-based paint composition according to claim 2 or 3, wherein the first charcoal particles are blended in a range of 30 to 100 parts by weight with respect to 100 parts by weight of the second charcoal particles.
前記木炭粉末の配合割合は、全量基準の100重量部に対して、30重量部である
請求項1、請求項2、請求項3又は請求項4に記載の水性塗料組成物。
The water-based paint composition according to claim 1, 2, 3 or 4, wherein a blending ratio of the charcoal powder is 30 parts by weight with respect to 100 parts by weight based on the total amount.
前記バインダーはカチオン性のアクリル樹脂で構成された
請求項1、請求項2、請求項3、請求項4又は請求項5に記載の水性塗料組成物。
The water-based paint composition according to any one of claims 1, 2, 3, 4 and 5, wherein the binder is composed of a cationic acrylic resin.
水酸化アルミニウムから構成された難燃剤を含有する
請求項1、請求項2、請求項3、請求項4、請求項5又は請求項6に記載の水性塗料組成物。
The water-based paint composition according to any one of claims 1, 2, 3, 4, 5 and 6, containing a flame retardant composed of aluminum hydroxide.
前記水酸化アルミニウムは全量基準で重量比率が0.1〜10%の範囲内である
請求項7に記載の水性塗料組成物。
The water-based paint composition according to claim 7, wherein the weight ratio of the aluminum hydroxide is in the range of 0.1 to 10% based on the total amount.
導電性の水性塗料組成物を塗布した塗膜面を負電圧発生手段により負電圧に帯電させる空気浄化機構であって、
前記水性塗料組成物は、合成樹脂で構成されたバインダーと、少なくとも2つの粒径の異なる粉末で構成された木炭粉末と、水とを含有する
空気浄化機構。
An air purification mechanism for charging a coating surface, to which a conductive aqueous coating composition is applied, to a negative voltage by a negative voltage generating means,
The water-based paint composition comprises a binder made of a synthetic resin, charcoal powder made of at least two powders different in particle size, and water.
前記水性塗料組成物の塗膜面への塗布量が150〜300g/m・wetの範囲内である
請求項9に記載の空気浄化機構。
The air purification mechanism according to claim 9, wherein the amount of the aqueous coating composition applied to the coating surface is in the range of 150 to 300 g / m 2 · wet.
前記負電圧発生手段により負電圧に帯電させた塗膜面における発生電圧が−100〜−150Vの範囲内である
請求項9又は請求項10に記載の空気浄化機構。
The air purification mechanism according to claim 9 or 10, wherein a generated voltage at a coating film surface charged to a negative voltage by the negative voltage generation means is in a range of -100 to -150V.
前記木炭粉末は、第1の木炭粉末と、該第1の木炭粉末の粒径の1〜2倍の粒径を有する第2の木炭粉末とを含んで構成された
請求項9、請求項10又は請求項11に記載の空気浄化機構。
The charcoal powder comprises a first charcoal powder and a second charcoal powder having a particle size of 1 to 2 times the particle size of the first charcoal powder. Or the air purification mechanism of Claim 11.
室内空間を構成する複数の壁面又は天井面の少なくとも1つの面に、合成樹脂で構成されたバインダーと、少なくとも2つの粒径の異なる粉末で構成された木炭粉末と、水とを含有する導電性の水性塗料組成物を塗布する工程と、
前記水性塗料組成物が塗布された塗膜面を負電圧に帯電させる工程とを備える
空気浄化方法。
Electrically conductive material containing water and at least one surface of a plurality of wall surfaces or ceiling surfaces constituting an indoor space, a binder made of a synthetic resin, charcoal powder composed of at least two different particle sizes of powder, and Applying an aqueous paint composition of
Charging the coated surface to which the aqueous coating composition has been applied to a negative voltage.
室内空間を構成する複数の壁面又は天井面の少なくとも1つの面に絶縁層を設ける共に、合成樹脂で構成されたバインダーと、少なくとも2つの粒径の異なる粉末で構成された木炭粉末と、水とを含有する導電性の水性塗料組成物を、前記絶縁層の上に塗布する工程と、
前記水性塗料組成物が塗布された塗膜面を負電圧に帯電させる工程とを備える
空気浄化方法。
An insulating layer is provided on at least one surface of a plurality of wall surfaces or ceiling surfaces constituting an indoor space, a binder made of a synthetic resin, charcoal powder made of at least two powders different in particle diameter, water, Applying a conductive aqueous paint composition containing the above on the insulating layer;
Charging the coated surface to which the aqueous coating composition has been applied to a negative voltage.
前記木炭粉末は、第1の木炭粉末と、該第1の木炭粉末の粒径の1〜2倍の粒径を有する第2の木炭粉末とを含んで構成された
請求項13又は請求項14に記載の空気浄化方法。
The charcoal powder comprises a first charcoal powder, and a second charcoal powder having a particle size of 1 to 2 times the particle size of the first charcoal powder. The air purification method described in.
前記複数の壁面又は天井面のいずれか1つの面のみに前記水性塗料組成物の塗膜面を設ける
請求項13、請求項14又は請求項15に記載の空気浄化方法。
The air purification method according to claim 13, wherein the coated surface of the water-based paint composition is provided only on any one surface of the plurality of wall surfaces or ceiling surfaces.
JP2018515698A 2017-06-13 2017-06-13 Water-based paint composition, air purification mechanism and air purification method Active JP6385026B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/021744 WO2018229850A1 (en) 2017-06-13 2017-06-13 Aqueous coating composition, air cleaning mechanism, and air cleaning method

Publications (2)

Publication Number Publication Date
JP6385026B1 JP6385026B1 (en) 2018-09-05
JPWO2018229850A1 true JPWO2018229850A1 (en) 2019-06-27

Family

ID=62748492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018515698A Active JP6385026B1 (en) 2017-06-13 2017-06-13 Water-based paint composition, air purification mechanism and air purification method

Country Status (5)

Country Link
JP (1) JP6385026B1 (en)
KR (1) KR102306766B1 (en)
CN (1) CN109392301B (en)
PH (1) PH12017502285A1 (en)
WO (1) WO2018229850A1 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4210429A (en) * 1977-04-04 1980-07-01 Alpine Roomaire Systems, Inc. Air purifier
JP3204982B2 (en) * 1995-05-26 2001-09-04 日立化成工業株式会社 Environmental purification material
JP3133962B2 (en) * 1997-07-10 2001-02-13 道晴 吉松 Paint composition
JPH1131597A (en) * 1997-07-10 1999-02-02 Kawai Musical Instr Mfg Co Ltd Conductive sheet
WO2003005826A1 (en) * 2001-07-10 2003-01-23 Michiharu Yoshimatsu Aqueous tar solution and tar-containing coating
JP2003342530A (en) * 2002-05-30 2003-12-03 Ishitake:Kk Aqueous coating composition
JP4177719B2 (en) * 2002-06-28 2008-11-05 信夫 齋藤 Anti-ant composition
US20110240064A1 (en) * 2002-09-09 2011-10-06 Reactive Surfaces, Ltd. Polymeric Coatings Incorporating Bioactive Enzymes for Cleaning a Surface
JP2005255811A (en) * 2004-03-11 2005-09-22 Shikoku Chem Corp Interior coating material having electromagnetic wave-shielding function and method for electromagnetic wave-shielding using the same
JP2007170117A (en) * 2005-12-26 2007-07-05 Heathcoat Clearway Kk Indoor environment improving method
JP2009209327A (en) * 2008-03-06 2009-09-17 Hinomaru Carbo Techno Co Ltd Charcoal powder-containing coating agent and its use
JP2009238716A (en) * 2008-03-26 2009-10-15 Shinrin Kenkyusho:Kk Static electricity prevention agent and static electricity prevention sheet
JP5517145B2 (en) * 2009-01-30 2014-06-11 アーテック工房株式会社 Water-based paint composition
JP2011102491A (en) * 2009-11-11 2011-05-26 Sekisui House Ltd Indoor environmental improvement system
CN103081192B (en) * 2010-08-31 2016-01-06 协立化学产业株式会社 Battery or double electric layer capacitor collector body coating conductive composition, battery or double electric layer capacitor collector body, battery and double electric layer capacitor
CN103642068B (en) * 2013-11-25 2015-04-15 桂林电器科学研究院有限公司 Antistatic slurry

Also Published As

Publication number Publication date
KR102306766B1 (en) 2021-09-30
PH12017502285A1 (en) 2018-06-11
WO2018229850A1 (en) 2018-12-20
KR20190139981A (en) 2019-12-18
CN109392301B (en) 2021-06-01
CN109392301A (en) 2019-02-26
JP6385026B1 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
JP5594367B2 (en) Antiallergen
JP6385026B1 (en) Water-based paint composition, air purification mechanism and air purification method
CN105315805B (en) A kind of energy-saving water paint of absorption degradation formaldehyde and releasing negative oxygen ion
JP2000001649A (en) Coating composition for interior
JP4748159B2 (en) Painted article
CN104177966A (en) Environment-friendly type polymer emulsion building waterproof coating
JP2009263425A (en) Aqueous coating composition
JPH062417A (en) Method of constructing floor coated with anti-static paint
KR100552324B1 (en) Wall application agent composition for completion using pozzolan and the method of manufacture
JP4522827B2 (en) Wallpaper and manufacturing method thereof
KR101356571B1 (en) Powder type wall paint composition for incombustible and electromagnetic wave shielding wallpaper
JP2005105010A (en) Inorganic coating material and voc-adsorbing functional material using the same
JP3429469B2 (en) Indoor building materials
JP2009238716A (en) Static electricity prevention agent and static electricity prevention sheet
JP5151365B2 (en) Articles painted with epoxy resin powder paint
JP3701541B2 (en) Architectural interior material and construction method of architectural interior structure having anion generation function
JP2005097512A (en) Conductive composition, primer, coating material for floor, and method for applying the same
JP2019037544A (en) Deodorant coating structure, interior building material and indoor space
JP2017031699A (en) Antistatic floor and building comprising the same
KR100859192B1 (en) Method of manufacturing painting composite including illite and the composite thereof
JP2005226025A (en) Conductive hard urethane-based composition
JP2003082274A (en) Aqueous coating and method for manufacturing the same
CN110862728A (en) Dust particle adsorption type coating and preparation method thereof
JPH03151460A (en) Electroconductive decoration material
JP2006143820A (en) Antistatic coating

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180323

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180323

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180607

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180806

R150 Certificate of patent or registration of utility model

Ref document number: 6385026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250