JP2005226025A - Conductive hard urethane-based composition - Google Patents

Conductive hard urethane-based composition Download PDF

Info

Publication number
JP2005226025A
JP2005226025A JP2004037817A JP2004037817A JP2005226025A JP 2005226025 A JP2005226025 A JP 2005226025A JP 2004037817 A JP2004037817 A JP 2004037817A JP 2004037817 A JP2004037817 A JP 2004037817A JP 2005226025 A JP2005226025 A JP 2005226025A
Authority
JP
Japan
Prior art keywords
conductive
coating
floor
composition
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004037817A
Other languages
Japanese (ja)
Inventor
Kunihiro Hisatsune
邦裕 久恒
Masahiro Uchida
昌宏 内田
Satoshi Yamaguchi
聖史 山口
Manabu Ikeda
学 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aica Kogyo Co Ltd
Original Assignee
Aica Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aica Kogyo Co Ltd filed Critical Aica Kogyo Co Ltd
Priority to JP2004037817A priority Critical patent/JP2005226025A/en
Publication of JP2005226025A publication Critical patent/JP2005226025A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive hard urethane-based composition and a conductive coated floor that maintain a stable antistatic property and are excellent in durability, and to provide a method for applying the same. <P>SOLUTION: The conductive composition comprises a stainless steel fiber, whose length is 80-150 μm and diameter is 10-15 μm, a resin and a compounding agent. The above-mentioned problem can be solved by using the conductive composition as a coating material of a conductive coated floor, and also a film forming layer of a top-coat material for a conductive coated floor excellent in adhesiveness can be formed by using the conductive composition. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は安定した帯電防止性能を保持し、耐久性に優れる導電性組成物、導電性塗り床、及びその施工方法に関するものである。すなわち、本発明は電気不良導体の表面に導電性を付与し、あるいは静電気の発生を回避すべき環境に帯電防止性能を付与する導電性組成物、導電性塗り床、及びその施工方法に関するものである。 The present invention relates to a conductive composition that retains stable antistatic performance and is excellent in durability, a conductive coating floor, and a method for applying the same. That is, the present invention relates to a conductive composition that imparts conductivity to the surface of an electrically defective conductor, or imparts antistatic performance to an environment in which the generation of static electricity should be avoided, a conductive coating floor, and a construction method thereof. is there.

従来、電気不良導体の表面に導電性を付与するための導電性上塗り塗材組成物すなわち帯電防止塗材として、金属、酸化亜鉛などの電気良導体の粉末、導電性カーボンブラック、炭素繊維を配合したものが知られている(特許文献1、特許文献2、特許文献3参照)。このような技術は工業的にかなり広く採用されており、例えば、導電性塗り床の仕様としては下塗り、中塗り、上塗りの3層から形成する方法が提案されている。そして、下塗りには下地調整材、中塗りにはカーボングラファイトを配合した導電性中塗り材、上塗りには酸化亜鉛等の導電性物質を配合した導電性上塗り材が用いられている(特許文献4参照)。
さらに、塗料組成物中に導電性フィラーを含み、塗膜の乾燥速度を大きくするため、マイクロ波照射により硬化させる方法が提案されている(特許文献4参照)。
特開平4−298536 特開平5‐43823 特開平10−195406 特開平8−143793 特開2003-64314
Conventionally, as a conductive top coating composition for imparting conductivity to the surface of an electrically defective conductor, that is, an antistatic coating material, a powder of a good electric conductor such as metal and zinc oxide, conductive carbon black, and carbon fiber are blended. Those are known (see Patent Document 1, Patent Document 2, and Patent Document 3). Such a technique is widely used industrially. For example, as a specification of the conductive coating floor, a method of forming from three layers of undercoat, intermediate coat, and topcoat has been proposed. In addition, an undercoat material is used for the undercoating, a conductive intermediate coating material containing carbon graphite is used for the intermediate coating, and a conductive top coating material containing a conductive substance such as zinc oxide is used for the top coating (Patent Document 4). reference).
Furthermore, a method of curing by microwave irradiation has been proposed in order to include a conductive filler in the coating composition and increase the drying speed of the coating film (see Patent Document 4).
JP-A-4-298536 JP-A-5-43823 JP-A-10-195406 JP-A-8-143793 JP2003-64314

しかしながら、帯電防止塗材として、金属、酸化亜鉛などの電気良導体の粉末、導電性カーボンブラック、炭素繊維を配合したものは、塗膜の導電性が未だ小さいので、高い導電性を付与するためには、多量の導電性カーボンブラックを添加する必要がある。
しかし、導電性カーボンブラックを樹脂溶液に添加すると、塗布液の粘度が大幅に上昇し、吹き付け、ディッピングなどの方法による均一な塗布が困難である。
従って、作業性が低下するだけでなく、多量のカーボンブラックの添加により被膜強度が低下すると共に、塗膜にクラックなどが発生し易く、さらに、上塗り層と中塗り層の密着性が低下するという問題があった。
また、塗料組成物中に導電性フィラーを含み、塗膜の乾燥速度を大きくするため、マイクロ波照射により硬化させる方法では、マイクロ波照照射装置が別途必要になるため、コスト高となる。
本発明は、以上の点に鑑みなされたものであり、多量のカーボンブラックの添加を必要とせず、自然硬化によって密着性に優れた導電性組成物、導電性塗り床、及びその施工方法を提供するものである。
However, the anti-static coating material, which contains metal, good electrical conductor powder such as zinc oxide, conductive carbon black, and carbon fiber, has a low conductivity of the coating film. Requires a large amount of conductive carbon black to be added.
However, when conductive carbon black is added to the resin solution, the viscosity of the coating solution increases significantly, and uniform coating by a method such as spraying or dipping is difficult.
Accordingly, not only the workability is lowered, but the coating strength is lowered by adding a large amount of carbon black, cracks are easily generated in the coating film, and the adhesion between the top coat layer and the intermediate coat layer is lowered. There was a problem.
In addition, since the coating composition includes a conductive filler and increases the drying speed of the coating film, the method of curing by microwave irradiation requires a separate microwave irradiation apparatus, which increases costs.
The present invention has been made in view of the above points, and provides a conductive composition having excellent adhesion by natural curing, a conductive coating floor, and a method for its construction without the need for adding a large amount of carbon black. To do.

請求項1の発明は、繊維長が80μmから150μm、繊維径が10〜15μmの範囲にあるステンレスファイバー、樹脂及び配合材を含む導電性組成物を要旨とする。本発明の導電性組成物を導電性塗り床として用いることで、背景技術に記載した上記の問題点を解決することができる。また、本発明の導電性組成物を導電性塗り床の床用上塗り材として用いることで、背景技術に記載した上記の問題点を解決することができる。つまり、密着性に優れた床用上塗り材の成膜層を形成することができる。 The gist of the invention of claim 1 is a conductive composition containing stainless fiber, resin and compounding material having a fiber length in the range of 80 to 150 μm and a fiber diameter of 10 to 15 μm. By using the conductive composition of the present invention as a conductive floor, the above-mentioned problems described in the background art can be solved. Moreover, said problem described in background art can be solved by using the electrically conductive composition of this invention as a floor coating material for an electrically conductive floor. That is, it is possible to form a film layer of a floor top coating material having excellent adhesion.

本発明の導電性組成物中に含まれるステンレスファイバーは繊維状のため樹脂内部でネットワークを形成し高い導電性を付与できる。さらに、繊維長が80μm以下だと導電性が得られず、150μmより長いと仕上がり外観が悪くなるため、繊維長は80μmから150μmの範囲が望ましい。また、繊維径は、塗膜の均一性、作業性を損なわない限り特に制限されないが、電気導電性、作業性を低下させない範囲として、10〜15μmの範囲が好ましい。
ステンレスファイバーとしては、具体的には、川崎テクノリサーチ株式会社製、不定形微細繊維状SMF(ステンレス・スチール・マイクロ・ファイバー)等が挙げられる。
Since the stainless steel fiber contained in the conductive composition of the present invention is fibrous, it can form a network inside the resin and impart high conductivity. Furthermore, if the fiber length is 80 μm or less, conductivity cannot be obtained, and if it is longer than 150 μm, the finished appearance is deteriorated. Therefore, the fiber length is preferably in the range of 80 μm to 150 μm. Further, the fiber diameter is not particularly limited as long as the uniformity and workability of the coating film are not impaired, but a range of 10 to 15 μm is preferable as a range in which the electrical conductivity and workability are not deteriorated.
Specific examples of the stainless steel fiber include Kawasaki Techno Research Co., Ltd., amorphous fine fiber SMF (stainless steel, microfiber, etc.).

本発明の導電性組成物中に含まれる、ステンレスファイバーの配合量は、1.5重量%以下の配合量では安定した導電性が得られず、5重量%よりも多く配合したときは、仕上がり外観が悪くなるため、導電性組成物100重量部に対して1.5重量%から5重量%の範囲が望ましい。
本発明の導電性組成物は、仕上がりに影響の無い範囲で導電性無機質材料とステンレスファイバーの併用も可能である。導電性無機質材料としてはカーボングラファイトや炭素繊維、雲母、錫、アルミニウム、銅、ニッケル、亜鉛、アンチモン、チタン等の金属酸化物、及びこれらの中から選ばれる2種以上の組み合わせが用いられる。
The blending amount of the stainless fiber contained in the conductive composition of the present invention is not stable when the blending amount is 1.5% by weight or less, and when the blending amount is more than 5% by weight, a finished appearance is obtained. Therefore, the range of 1.5% by weight to 5% by weight with respect to 100 parts by weight of the conductive composition is desirable.
The conductive composition of the present invention can be used in combination with a conductive inorganic material and a stainless fiber within a range that does not affect the finish. As the conductive inorganic material, carbon graphite, carbon fiber, mica, tin, aluminum, copper, nickel, zinc, antimony, titanium and other metal oxides, and combinations of two or more selected from these are used.

本発明の導電性組成物に含まれる樹脂としては、例えばエポキシ樹脂、ポリウレタン樹脂、アクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、塩ビ酢ビ共重合樹脂、ポリエステル樹脂、フェノール樹脂、アルキド樹脂、アクリルエマルジョンなど、通常塗り床材に使われる汎用樹脂が利用でき、必要により組み合わせて用いられる。また、添加剤としては分散剤、可塑剤、顔料、表面調整剤、レベリング剤、消泡剤等が必要に応じて用いられる。配合材は、樹脂100重量部に対して、1.0〜20重量部、さらに好ましくは5.0〜10重量部の範囲で用いることが好ましい。本発明の導電性組成物は、上記の成分を溶剤と共に混合して導電性組成物とする。溶剤としては、例えば、ブタノール、キシレン、ケトン、トルエン、メチルエチルケトン等が用いられる。 Examples of the resin contained in the conductive composition of the present invention include epoxy resin, polyurethane resin, acrylic resin, polyamide resin, vinyl chloride resin, polyvinyl chloride copolymer resin, polyester resin, phenol resin, alkyd resin, acrylic emulsion, and the like. In general, general-purpose resins used for coating floor materials can be used and used in combination if necessary. Further, as additives, a dispersant, a plasticizer, a pigment, a surface conditioner, a leveling agent, an antifoaming agent, and the like are used as necessary. The compounding material is preferably used in the range of 1.0 to 20 parts by weight, more preferably 5.0 to 10 parts by weight with respect to 100 parts by weight of the resin. In the conductive composition of the present invention, the above components are mixed with a solvent to form a conductive composition. Examples of the solvent include butanol, xylene, ketone, toluene, methyl ethyl ketone, and the like.

本発明の導電性組成物は、最終的に塗膜とした場合に、表面抵抗率が5×104〜1×10Ωとなるよう調整することが好ましい。 The conductive composition of the present invention is preferably adjusted so that the surface resistivity is 5 × 10 4 to 1 × 10 8 Ω when finally formed into a coating film.

請求項2の発明は、請求項1に記載の導電性組成物から成る上塗りを要旨とする。本発明の導電性組成物を導電性塗り床の上塗りとして用いることで、密着性に優れた上塗り層の成膜層を形成することができる。 The gist of the invention of claim 2 is a top coat comprising the conductive composition of claim 1. By using the conductive composition of the present invention as a top coat of a conductive coating floor, a film-forming layer of a top coat layer having excellent adhesion can be formed.

本発明の導電性塗り床は、導電性上塗りの成膜層以外の構成は、任意のものとすることができる。例えば、導電性中塗りの成膜層よりも下層に、下地調整材から成る層を備えていてもよい。更に、本発明の導電性塗り床は、導電性中塗りの成膜層よりも下層に下地調整材から成る層を備えると同時に、導電性中塗りから成る成膜層よりも上層に、上塗り材から成る層を備えていてもよい。
また、上記中塗り材は、例えば、導電性上塗りと同様に、請求項1記載の導電性組成物であってもよい。上記上塗り材は、塗膜とした場合に表面電気抵抗値が5×104〜1×10Ωとなるように調整することが好ましい。また、上記上塗り材の施工塗布量は、例えば0.8〜2.0Kg/ m2の範囲が好ましい。
The conductive coated floor of the present invention may have any configuration other than the conductive overcoating film-forming layer. For example, a layer made of a base conditioner may be provided below the conductive intermediate coating layer. Furthermore, the conductive coating floor of the present invention comprises a layer made of a base conditioning material in a lower layer than the film-forming layer of the conductive intermediate coating, and at the same time, a top-coating material in an upper layer than the film-forming layer made of the conductive intermediate coating You may provide the layer which consists of.
Moreover, the said intermediate coating material may be the electroconductive composition of Claim 1 similarly to electroconductive top coat, for example. It is preferable that the top coating material is adjusted so that the surface electrical resistance value is 5 × 10 4 to 1 × 10 8 Ω when a coating film is formed. Moreover, the application amount of the top coating material is preferably in the range of 0.8 to 2.0 kg / m 2 , for example.

本発明の導電性塗り床では、床用上塗り材の成膜層以外の構成は任意のものとすることができる。例えば、床用上塗り材から成る成膜層よりも下層に、下地調整材から成る層、または導電性中塗りから成る層を備えていても良い。また、本発明の導電性塗り床は、上塗り材から成る成膜層よりも下層に、下地調整材から成る層と、導電性中塗りから成る層との両方を備えていても良い。
上記導電性中塗りは、例えば、床用上塗り材と同様に、請求項1記載の導電性組成物であってもよい。導電性中塗りの施工塗布量は、例えば、0.1〜0.3Kg/mの範囲が好ましい。上記導電性中塗りは、最終的に塗膜とした場合に表面抵抗率が120KΩ以下となるよう調整することが好ましい。
In the conductive coating floor of the present invention, the configuration other than the film forming layer of the floor top coating material can be arbitrary. For example, a layer made of an undercoat conditioning material or a layer made of a conductive intermediate coating may be provided below the film-forming layer made of a floor top coating material. In addition, the conductive coating floor of the present invention may include both a layer made of an undercoat conditioning material and a layer made of a conductive intermediate coating in a lower layer than a film-forming layer made of a top coating material.
The conductive intermediate coating may be the conductive composition according to claim 1, for example, in the same manner as a floor top coating material. The applied amount of the conductive intermediate coating is preferably, for example, in the range of 0.1 to 0.3 Kg / m 2 . The conductive intermediate coating is preferably adjusted so that the surface resistivity is 120 KΩ or less when finally formed as a coating film.

本発明の導電性組成物は、繊維長が80μmから150μm、繊維径が10〜15μmの範囲にあるステンレスファイバー、樹脂及び配合材を含む導電性組成物から成り、帯電防止性能を保持し、密着性に優れる導電性床材を形成することができる。また、床用上塗り材を用いて、帯電防止性能及び密着性に優れる導電性塗り床を形成することができる。 The conductive composition of the present invention is composed of a conductive composition containing stainless fiber, resin and compounding material having a fiber length of 80 μm to 150 μm and a fiber diameter of 10 to 15 μm. A conductive flooring having excellent properties can be formed. Moreover, the conductive coating floor which is excellent in antistatic performance and adhesiveness can be formed using the floor coating material.

以下、実施例により本発明をさらに詳述する。尚、実施例における、%配合量は重量%である。
実施例1
基材上に、下地調整材(アイカ工業(株)製、商品名:JJ-100)をコテにて、0.6kg/mの密度で塗布した後、導電性中塗り(アイカ工業(株)製、商品名:JJ-160)をローラーにて0.2kg/m塗布した。更に、床用上塗り材として、下記表1に示す主剤、硬化剤を4/1の割合で配合し、コテにて1.2kg/m塗布し、本発明の導電性塗り床を得た。尚、表1に示す床用上塗り材において、「その他」に含まれる沈降防止剤は配合剤に該当する。
Hereinafter, the present invention will be described in more detail by way of examples. In the examples, the% compounding amount is% by weight.
Example 1
After applying a ground preparation material (product name: JJ-100, manufactured by Aika Kogyo Co., Ltd.) on a substrate with a trowel at a density of 0.6 kg / m 2 , a conductive intermediate coating (Aika Industry Co., Ltd.) (Product name: JJ-160) was applied with a roller at 0.2 kg / m 2 . Further, as a floor top coat material, a main agent and a curing agent shown in Table 1 below were blended at a ratio of 4/1, and 1.2 kg / m 2 was applied with a trowel to obtain a conductive coated floor of the present invention. In the floor top coat shown in Table 1, the anti-settling agent included in “Others” corresponds to the compounding agent.

比較例1
比較例1として、従来品の配合例を説明する。実施例1と同様な手段にて、基材上に下地調整材を塗布した後、導電性中塗り(アイカ工業(株)製、商品名:JJ-160)をローラーにて0.2kg/m塗布した。更に、床用上塗り材として、下記表1に示す導電性上塗り組成物の主剤、硬化剤を4/1の割合で配合し、コテにて1.2kg/m塗布し、導電性塗り床を得た。この比較例1における上塗り材は、硬質多孔性炭素材料を含まないため、請求項1の発明の範囲外である。尚、下記表1における各成分の配合量は、溶剤、不揮発分を含む。
Comparative Example 1
As Comparative Example 1, an example of blending a conventional product will be described. After applying the substrate conditioning material on the substrate by the same means as in Example 1, a conductive intermediate coat (manufactured by Aika Industry Co., Ltd., trade name: JJ-160) was 0.2 kg / m 2 with a roller. Applied. Further, as the floor top coat material, the main component and curing agent of the conductive top coat composition shown in Table 1 below were blended at a ratio of 4/1, and applied with 1.2 kg / m 2 with a trowel to obtain a conductive coat floor. It was. Since the top coat material in Comparative Example 1 does not contain a hard porous carbon material, it is outside the scope of the invention of claim 1. In addition, the compounding quantity of each component in following Table 1 contains a solvent and a non volatile matter.



次に、実施例1及び比較例1において形成した導電性塗り床について、以下の実験より特性を測定し、その結果を表2に示す。
強制剥離試験
実施例1で形成した導電性塗り床における導電性中塗りの成層膜に皮スキで力を加え、強制的に剥離させて密着性を評価した。
評価の項目は○、×で示した。
○:下地の破壊。
×:成膜層に抵抗感がほとんど無く皮スキが入り、簡単に塗膜が剥がれる。
Next, the characteristics of the conductive coated floors formed in Example 1 and Comparative Example 1 were measured from the following experiments, and the results are shown in Table 2.
Forced Peel Test A force was applied to the layered film of the conductive intermediate coat in the conductive coated floor formed in Example 1 to forcibly peel and evaluate the adhesion.
Items for evaluation are indicated by ○ and ×.
○: Destruction of the substrate.
X: There is almost no sense of resistance in the film-forming layer, and the coating is easily peeled off.

電気抵抗試験
90cm×90cm×0.4cmのスレート板上に、まず、下地調整材を0.6 kg/m2コテを用いて塗装し、次に、導電性中塗り(アイカ工業(株)製、商品名:JJ-160)を0.2 kg/m2ローラーを用いて重ねて塗装した。その後、25℃で3日間養生後、導電性上塗りの成膜層の特性を測定した。測定方法は、500Vテスターを使用し、測定間隔91.4cmで、床用上塗り材の成膜層の表面電気抵抗値を測定した。
Electrical resistance test
On the 90cm x 90cm x 0.4cm slate plate, first apply the base material with 0.6 kg / m 2 iron, then conductive intermediate coat (trade name: JJ-, manufactured by Aika Kogyo Co., Ltd.). 160) was coated with 0.2 kg / m 2 roller. Then, after curing at 25 ° C. for 3 days, the characteristics of the conductive overcoat film-forming layer were measured. As a measuring method, a surface electric resistance value of a film forming layer of the floor top coat was measured using a 500V tester at a measurement interval of 91.4 cm.


上記表2示すように、強制剥離試験では、実施例1作成した床用上塗り材の成膜層は、比較例1で作成した成膜層よりも遙かに密着性が高かった。これは、実施例1は、床用上塗り材に繊維長が80μmから150μm、繊維径が10〜15μmの範囲にあるステンレスファイバーを含むためである。一方、電気抵抗試験では、実施例1で作成した床用上塗り材の成膜層は、比較例1で作成した上塗り電気抵抗値よりも低い導電性能を示した。この結果から、実施例1の床用上塗り材は、比較例1に示した問題点を解決し、中塗り層との密着性に優れ、しかも、安定した帯電防止性能を付与することができることが確認できた。
尚、本発明は前記実施例になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
As shown in Table 2 above, in the forced peel test, the film formation layer of the floor top coating material prepared in Example 1 was much higher in adhesion than the film formation layer prepared in Comparative Example 1. This is because Example 1 includes a stainless steel fiber having a fiber length in the range of 80 μm to 150 μm and a fiber diameter of 10 to 15 μm in the floor top coat. On the other hand, in the electrical resistance test, the film-forming layer of the floor top coating material prepared in Example 1 exhibited a conductive performance lower than the top coating electrical resistance value prepared in Comparative Example 1. From this result, the floor top coating material of Example 1 can solve the problems shown in Comparative Example 1, has excellent adhesion to the intermediate coating layer, and can provide stable antistatic performance. It could be confirmed.
Needless to say, the present invention is not limited to the above-described embodiments, and can be implemented in various modes without departing from the scope of the present invention.

Claims (2)

繊維長が80μmから150μm、繊維径が10〜15μmの範囲にあるステンレスファイバー、樹脂及び配合材を含む導電性組成物。 A conductive composition comprising a stainless fiber having a fiber length of 80 μm to 150 μm and a fiber diameter of 10 to 15 μm, a resin and a compounding material. 請求項1に記載の導電性組成物を上塗り材として用いる導電性塗り床。 The electroconductive coating floor which uses the electroconductive composition of Claim 1 as topcoat material.
JP2004037817A 2004-02-16 2004-02-16 Conductive hard urethane-based composition Pending JP2005226025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004037817A JP2005226025A (en) 2004-02-16 2004-02-16 Conductive hard urethane-based composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004037817A JP2005226025A (en) 2004-02-16 2004-02-16 Conductive hard urethane-based composition

Publications (1)

Publication Number Publication Date
JP2005226025A true JP2005226025A (en) 2005-08-25

Family

ID=35000988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004037817A Pending JP2005226025A (en) 2004-02-16 2004-02-16 Conductive hard urethane-based composition

Country Status (1)

Country Link
JP (1) JP2005226025A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036994A (en) * 2004-07-29 2006-02-09 Aica Kogyo Co Ltd Electroconductive resin composition
JP2007303094A (en) * 2006-05-09 2007-11-22 Sumitomo Rubber Ind Ltd Antistatically coated floor and coating agent
WO2013120719A1 (en) * 2012-02-17 2013-08-22 Construction Research & Technology Gmbh Antistatic flooring composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036994A (en) * 2004-07-29 2006-02-09 Aica Kogyo Co Ltd Electroconductive resin composition
JP4679849B2 (en) * 2004-07-29 2011-05-11 アイカ工業株式会社 Conductive resin composition
JP2007303094A (en) * 2006-05-09 2007-11-22 Sumitomo Rubber Ind Ltd Antistatically coated floor and coating agent
WO2013120719A1 (en) * 2012-02-17 2013-08-22 Construction Research & Technology Gmbh Antistatic flooring composition

Similar Documents

Publication Publication Date Title
CN106998597A (en) Electric heating device and device and preparation method thereof
JP2017147163A (en) Conductive paste and conductive film formed using the same
JP2016509740A (en) Coating system with protection against electrostatic discharge
JP4833728B2 (en) Antistatic coating floor and coating agent
JP2005226025A (en) Conductive hard urethane-based composition
JPS63145490A (en) Conductive floor finish material
JP2013040446A (en) Floor coating material formed through flow-spreading technique and antistatic coated floor
JP2005097512A (en) Conductive composition, primer, coating material for floor, and method for applying the same
JPH062417A (en) Method of constructing floor coated with anti-static paint
JPH08143793A (en) Conductive coating material and manufacture of antistatic layer
JP5392991B2 (en) Conductive floor and construction method
JP4679849B2 (en) Conductive resin composition
CN106883704B (en) A kind of attapulgite-graphene composite conductive priming paint and preparation method thereof
JP2607660B2 (en) Conductive paint film for seawater electrolysis
JP2017002193A (en) Conductive coating floor paint and conductive coating floor
JPH02255787A (en) Antistatic sealing material
JPH0340448B2 (en)
JPH06192597A (en) Electrically conductive coating composition and electrically conductive coated article using the same
JP5624856B2 (en) Antistatic coating floor
JP2580308B2 (en) Conductive paint film for seawater electrolysis
JP6385026B1 (en) Water-based paint composition, air purification mechanism and air purification method
JP2017031699A (en) Antistatic floor and building comprising the same
JPH10188668A (en) Conductive composition
JPS6251106A (en) Manufacture of highly conducting resin film
JP5878391B2 (en) Antistatic coating floor