JP2607660B2 - Conductive paint film for seawater electrolysis - Google Patents

Conductive paint film for seawater electrolysis

Info

Publication number
JP2607660B2
JP2607660B2 JP1189889A JP1189889A JP2607660B2 JP 2607660 B2 JP2607660 B2 JP 2607660B2 JP 1189889 A JP1189889 A JP 1189889A JP 1189889 A JP1189889 A JP 1189889A JP 2607660 B2 JP2607660 B2 JP 2607660B2
Authority
JP
Japan
Prior art keywords
paint film
film
conductive
conductive paint
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1189889A
Other languages
Japanese (ja)
Other versions
JPH02194069A (en
Inventor
正博 宇佐美
健二 植田
清美 友重
昭三 太田
勉 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Marine Paints Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Chugoku Marine Paints Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Marine Paints Ltd, Mitsubishi Heavy Industries Ltd filed Critical Chugoku Marine Paints Ltd
Priority to JP1189889A priority Critical patent/JP2607660B2/en
Publication of JPH02194069A publication Critical patent/JPH02194069A/en
Application granted granted Critical
Publication of JP2607660B2 publication Critical patent/JP2607660B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、海水電解用導電塗料膜に関し、例えば船体
外板や海洋構造物等の海水没水部、発電プラントの海水
取水部等の防食塗膜等として適用される上記塗料膜に関
する。
Description: TECHNICAL FIELD The present invention relates to a conductive paint film for seawater electrolysis, for example, anticorrosion in a seawater submerged portion of a hull outer panel or an offshore structure, a seawater intake portion of a power plant, and the like. The present invention relates to the paint film applied as a coating film or the like.

[従来の技術] 従来の海水電解用導電塗料膜は、第2図に示すよう
に、船体外板01の防食塗膜02の上に下塗り導電塗料膜03
を塗装し、その上に電解耐久型の上塗り導電塗料膜05を
塗装して形成される。
[Prior Art] A conventional conductive paint film for seawater electrolysis is, as shown in FIG.
Is formed, and an electro-durable type top-coating conductive paint film 05 is applied thereon.

この上塗り導電塗料膜05の中の樹脂及び溶剤は、下塗
り導電塗料膜03表面を溶解し、相溶して、総合塗料膜を
構成し、海水電解用に供せられる。
The resin and the solvent in the overcoating conductive paint film 05 dissolve and dissolve on the surface of the undercoating conductive paint film 03 to form an overall paint film, which is used for seawater electrolysis.

すなわち、この塗料膜を形成した例えば船体外板等を
海水中に没水させておくと、上塗り導電塗料膜05表面で
海水が電解されて塩素イオンが発生し、該塩素イオンに
より海水中の微生物等が該船体外板等に付着するのを防
止することができ、この結果、船体外板等の防食を図る
ことができるのである。
That is, when the outer shell of the hull, for example, on which the paint film is formed is submerged in seawater, the seawater is electrolyzed on the surface of the overcoating conductive paint film 05 to generate chlorine ions, and the chlorine ions cause microorganisms in the seawater. Can be prevented from adhering to the hull outer panel and the like, and as a result, corrosion prevention of the hull outer panel and the like can be achieved.

[発明が解決しようとする課題] ところで、金属系の導電フィラを使用する導電塗料
は、該導電フィラのバインダとしてはアクリル系樹脂が
使用され、該導電フィラとしては銅粉やニッケル粉が使
用され、溶剤としては作業性の面からキシレンが使用さ
れている。
[Problems to be Solved by the Invention] By the way, in a conductive paint using a metallic conductive filler, an acrylic resin is used as a binder of the conductive filler, and copper powder or nickel powder is used as the conductive filler. As a solvent, xylene is used from the viewpoint of workability.

海水電解用の導電塗料膜の場合には、上記の金属フィ
ラ、バインダ、溶剤からなる塗料膜単独では、金属フィ
ラが海水中に溶解してしまい用をなさないため、前述の
ように、電解耐久型の上塗り導電塗料膜05が形成されて
いる。
In the case of a conductive paint film for seawater electrolysis, the paint film alone consisting of the above-mentioned metal filler, binder, and solvent dissolves the metal filler in seawater and does not use it. An overcoating conductive paint film 05 of the mold is formed.

この上塗り導電塗料膜05は、下塗り導電塗料膜03とは
導電性フィラの種類が異なっており、比抵抗が下塗り導
電塗料膜03よりも3桁以上も高くなっている。
The top-coating conductive paint film 05 differs from the undercoating conductive paint film 03 in the type of conductive filler, and has a specific resistance higher than that of the undercoating conductive paint film 03 by three digits or more.

このように、上塗り導電塗料膜05の比抵抗値が高い
(すなわち導電性が低い)ため、この上塗り導電塗料膜
05が下塗り導電塗料膜03と相溶すると、下塗り導電塗料
膜03の導電性を低下させてしまい、海水電解用導電塗料
膜としての実用性を喪失してしまう。
As described above, since the specific resistance value of the top-coating conductive paint film 05 is high (that is, the conductivity is low), this top-coating conductive paint film 05
When 05 is compatible with the undercoating conductive paint film 03, the conductivity of the undercoating conductive paint film 03 is reduced, and the practicality as a conductive coating film for seawater electrolysis is lost.

また、市販の金属系フィラを使用したアクリル系樹脂
の導電塗料は、乾燥が遅く、これを下塗り導電塗料とし
て用いる時は、乾燥が充分でない下塗り導電塗料膜03上
に上塗り導電塗料が塗装されることがしばしば生じ、上
塗り導電塗料塗装時に、下塗り導電塗料膜03と上塗り導
電塗料とが相溶して、下塗り導電塗料膜03の導電性が低
下する。
In addition, a conductive paint of an acrylic resin using a commercially available metal filler is dried slowly, and when this is used as an undercoat conductive paint, an overcoat conductive paint is applied on the undercoat conductive paint film 03 that is not sufficiently dried. This often occurs, and when the overcoating conductive paint is applied, the undercoating conductive paint film 03 and the overcoating conductive paint are compatible with each other, and the conductivity of the undercoating conductive paint film 03 is reduced.

この傾向は、塗装時の気温に最も大きく影響され、気
温が低くなると、この傾向が大きくなる。
This tendency is most affected by the temperature at the time of painting, and the tendency becomes larger as the temperature decreases.

本発明は、このような問題を解決し、実用性が高く、
耐久性に優れた海水電解用導電塗料膜を提供することを
目的とするものである。
The present invention solves such a problem, has high practicality,
An object of the present invention is to provide a conductive paint film for seawater electrolysis having excellent durability.

[課題を解決するための手段] 本発明は、上記目的を、海水電解による塩素イオン発
生目的に供され、下塗り、上塗りからなる導電塗料膜に
おいて、前記下塗り導電塗料膜が、二液硬化型ウレタン
系、二液硬化型エポキシ系、アクリル系、ビニル系の樹
脂のいずれか1種以上からなり、かつ該膜中に銅、ニッ
ケル又は銀を25〜40容量%含有し、導電性が比抵抗値10
-1〜10-4Ω−cmであることを特徴とする海水電解用導電
塗料膜により達成するものである。
[Means for Solving the Problems] The present invention provides the above-mentioned object for the purpose of generating chloride ions by seawater electrolysis, wherein the undercoating conductive coating film is a two-component curable urethane. , Two-part curable epoxy, acrylic, or vinyl resin, and contains 25-40% by volume of copper, nickel, or silver in the film, and has a specific resistance of conductivity. Ten
This is achieved by a conductive paint film for seawater electrolysis, which is characterized by having a -1 to 10 -4 Ω-cm.

また、本発明においては、上記の下塗り導電塗料膜と
上塗り導電塗料膜との間に中塗り導電塗料膜が設けられ
ていても良い。
Further, in the present invention, an intermediate conductive paint film may be provided between the undercoat conductive paint film and the top conductive paint film.

[作用] 本発明では、下塗り導電塗料膜として、二液硬化型の
ウレタン系樹脂、エポキシ系樹脂を用い、主剤と硬化剤
の重合反応により乾燥促進を図る。
[Function] In the present invention, a two-component curable urethane-based resin or epoxy-based resin is used as the undercoating conductive paint film, and drying is promoted by a polymerization reaction between the main agent and the curing agent.

また、本発明では、下塗り導電塗料膜として、上記樹
脂の外にアクリル系、ビニル系の樹脂を使用する。
In the present invention, an acrylic resin or a vinyl resin is used as the undercoat conductive paint film in addition to the above resin.

そして、これら樹脂の溶剤として従来のアクリル系,
ビニル系の樹脂溶剤であるキシレンに代えて、トルエ
ン、エチルベンゼン、n−オクタン、メチルシクロヘキ
サン、ジエチルケトン、メチル・n−プロピルケトン、
メチルイソブチルケトン等を単独で又は混合して用い
る。これらの溶剤の蒸気圧は、キシレンの蒸気圧より高
いため、乾燥が促進される。
And, as a solvent for these resins, a conventional acrylic resin,
Instead of xylene which is a vinyl resin solvent, toluene, ethylbenzene, n-octane, methylcyclohexane, diethylketone, methyl / n-propylketone,
Methyl isobutyl ketone or the like is used alone or in combination. Since the vapor pressure of these solvents is higher than the vapor pressure of xylene, drying is promoted.

更に、本発明では、下塗り塗料膜の導電性を確保する
ために、上記の樹脂の1種以上からなる塗料に導電フィ
ラとして、銅、ニッケル又は銀を含有させる。特に、導
電性やコスト等を考慮すると、銅が好ましい。
Further, in the present invention, in order to secure the conductivity of the undercoat paint film, copper, nickel or silver is contained as a conductive filler in a paint comprising at least one of the above resins. In particular, copper is preferable in consideration of conductivity, cost, and the like.

この銅、ニッケル又は銀の配合量を25〜40容量%とす
るのは、次ぎの理由による。25容量%未満であると、下
塗り導電塗料膜を所期の導電性とすることができない。
逆に、40容量%より多いと、該フィラのバインダとして
作用する上記樹脂の量が相対的に少なくなり、所期の膜
強度が得られず、耐久性が悪くなり、また気孔が多くな
って、塗り重ね時の抵抗アップも大きくなる。
The reason why the content of copper, nickel or silver is set to 25 to 40% by volume is as follows. If it is less than 25% by volume, the undercoating conductive paint film cannot have the desired conductivity.
Conversely, if it is more than 40% by volume, the amount of the resin acting as a binder for the filler becomes relatively small, and the desired film strength cannot be obtained, the durability becomes poor, and the number of pores increases. In addition, the resistance at the time of recoating increases.

また、下塗り塗料膜の導電性を比抵抗値で10-1〜10-4
Ω−cmとするのは、比抵抗値は小さい程望ましいが、塗
料膜では10-4Ω−cm以下とすることができず、また10-1
Ω−cmより大きくなると、海水電解用導電塗料膜の下塗
り塗料膜としての作用をなさなくなるからである。
Further, the conductivity of the undercoat paint film is expressed as a specific resistance value of 10 -1 to 10 -4.
Although it is preferable that the specific resistance value is as small as Ω-cm, the coating film cannot be reduced to 10 -4 Ω-cm or less, and 10 -1
If it is larger than Ω-cm, it will not function as an undercoat paint film for the conductive paint film for seawater electrolysis.

なお、従来の下塗り導電塗料膜においても上記の比抵
抗値の範囲が確保されている。
The above-described range of the specific resistance value is ensured even in the conventional undercoat conductive paint film.

この下塗り導電塗料膜の膜厚は、乾燥膜厚として実用
上から最低100μmは必要である。該膜厚の上限は、抵
抗値(厚い程小さくなる)、乾燥時間、コストあるいは
膜強度等により異なり、一概には決められないが、実用
上は1mm程度が限度である。なお、比抵抗値と膜厚との
関係は、 の式で表される。ここで、Rは塗料膜の抵抗値、ρは比
抵抗値、Lは塗料膜の長さ、Wは塗料膜の幅、Dは塗料
膜の厚さである。
The undercoating conductive paint film must have a dry film thickness of at least 100 μm for practical use. The upper limit of the film thickness depends on the resistance value (smaller as the thickness increases), drying time, cost, film strength, and the like, and cannot be unconditionally determined, but is practically 1 mm or less. The relationship between the specific resistance and the film thickness is as follows: It is represented by the following equation. Here, R is the resistance value of the paint film, ρ is the specific resistance value, L is the length of the paint film, W is the width of the paint film, and D is the thickness of the paint film.

また、本発明では、上記の下塗り導電塗料膜と上塗り
導電塗料膜との間に、上塗り塗料の溶剤及び樹脂に相溶
しない中塗り塗料膜を形成しても良い。
Further, in the present invention, an intermediate coating film that is incompatible with the solvent and the resin of the top coating may be formed between the undercoat conductive coating film and the top coating conductive coating film.

すなわち、この中塗り塗料膜は、上記の下塗り導電塗
料膜と、海水中で海水を電解する作用を有する上塗り導
電塗料膜(10-2〜102Ω−cm)の塗り重ね時に、下塗り
塗料膜と上塗り塗料が相溶して導電性を低下させるのを
防止する作用をなすバリヤ膜である。
That is, the intermediate coating film is formed by applying the above-mentioned undercoating conductive coating film and an overcoating conductive coating film (10 -2 to 10 2 Ω-cm) having an action of electrolyzing seawater in seawater. And a barrier film that functions to prevent the lowering of the conductivity due to the compatibility of the upper coating with the top coating.

この中塗り塗料としては、前述の上塗り導電塗料の溶
剤(キシレン等)及び上塗り導電塗料の樹脂(ビニル系
樹脂等)に耐性を有し、かつ三次元分子構造となる高分
子塗料を選定することが必要で、本発明では、二液硬化
型ウレタン系、二液硬化型エポキ系、不飽和ポリエステ
ル系の樹脂を使用することが好ましい。
As the intermediate coating, a polymer coating having a three-dimensional molecular structure that is resistant to the solvent (eg, xylene) of the above-described conductive coating and the resin (eg, a vinyl resin) of the conductive coating must be selected. In the present invention, it is preferable to use a two-component curable urethane resin, a two-component curable epoxy resin, or an unsaturated polyester resin.

この三次元分子構造をとる中塗り塗料膜は、この上に
上塗り塗料膜が塗装されても、該上塗り塗料膜と相溶す
ることはないし、また該中塗り塗料膜が下・上塗り塗料
膜間に存在するため、上塗り塗料による下塗り塗料膜に
対する悪影響がなくなり、従って上記の下塗り塗料膜の
導電性を低下させることはない。
The intermediate coating film having the three-dimensional molecular structure does not become compatible with the upper coating film even when the upper coating film is coated thereon, and the intermediate coating film is not formed between the lower and upper coating films. , The adverse effect of the top coat on the undercoat paint film is eliminated, and therefore the conductivity of the undercoat paint film is not reduced.

また、この中塗り導電塗料膜には、カーボン系の導電
フィラを好ましくは30〜60容量%混入し、導電性を比抵
抗値で10-1〜102Ω−cmとするのが望ましい。
Further, it is desirable that a carbon-based conductive filler is mixed into the intermediate coating conductive coating film, preferably in an amount of 30 to 60% by volume, and the conductivity is set to a specific resistance of 10 -1 to 10 2 Ω-cm.

[実施例] 第1表は、下塗り導電塗料膜の樹脂として二液硬化型
ウレタン系樹脂を用い、銅の量を種々変えて、a,b,cの
3群の組成の下塗り塗料を調製し、これらの塗料から得
られた塗膜(厚さ200μm)についての導電性と、乾燥
性に関する効果を示したものである。
[Examples] Table 1 shows that three-component compositions of a, b, and c were prepared by using a two-component curable urethane-based resin as the resin for the undercoating conductive coating film and varying the amount of copper. This shows the effect of the coating film (thickness: 200 μm) obtained from these paints on the conductivity and the drying property.

なお、第1表中、二液硬化型ウレタン系樹脂は、基剤
ポリオールと硬化剤イソシアナート(デスモジュール
L)を配合して塗料化し、銅粉は、福田金属箔粉工業
《株》製商品名FCC−155Aを使用した。
In Table 1, the two-component curable urethane-based resin is made into a paint by blending a base polyol and a curing agent isocyanate (Desmodur L), and the copper powder is a product manufactured by Fukuda Metal Foil Powder Co., Ltd. The name FCC-155A was used.

第2表は、下塗り導電塗料膜の樹脂として二液硬化型
エポキシ系樹脂を用いた以外は、第1表の場合と同様に
して、d,e,fの3種の組成の下塗り塗料を調製し、これ
らの塗料から得られた塗膜についての導電性と、乾燥性
に関する効果を示したものである。
Table 2 shows that three types of d, e, and f undercoats were prepared in the same manner as in Table 1 except that a two-part curable epoxy resin was used as the resin for the undercoat conductive film. However, it shows the effect on the conductivity and the drying property of the coating films obtained from these paints.

なお、第2表中、二液効果型エポキシ系樹脂は、シェ
ル化学《株》製商品名エピコート1001を用い、硬化剤と
してポリアミド樹脂(第一工業製薬《株》製商品名バー
サミド115)を配合して塗料化し、銅粉は、第1表と同
じものを用いた。
In Table 2, the two-part effect type epoxy resin used was Epicoat 1001 (trade name, manufactured by Shell Chemical Co., Ltd.), and was blended with a polyamide resin (Versamide 115, trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) Then, the same copper powder as in Table 1 was used.

第3表は、下塗り導電塗料膜の樹脂としてアクリル系
樹脂を用いた以外は、第1表の場合と同様にして、g,h,
i,jの4種の組成の下塗り塗料を調製し、これらの塗料
から得られた都膜についての導電性と、乾燥性に関する
効果を示したものである。
Table 3 shows g, h, and g in the same manner as in Table 1 except that an acrylic resin was used as the resin for the undercoat conductive film.
The undercoat paints of four compositions of i and j were prepared, and the effect on the conductivity and the drying property of the membrane obtained from these paints was shown.

なお、第3表中、溶剤Cはキシレンとメチルイソブチ
ルケトンの混合溶剤、溶剤Dはトルエンとメチルイソブ
チルケトンの混合溶剤であり、銅粉は、第1表と同じも
のを用いた。
In Table 3, the solvent C was a mixed solvent of xylene and methyl isobutyl ketone, the solvent D was a mixed solvent of toluene and methyl isobutyl ketone, and the same copper powder as in Table 1 was used.

なお、第1〜3表において、銅の代わりにニッケル又
は銀を用いても同様な結果を得ることができる。
In Tables 1 to 3, similar results can be obtained by using nickel or silver instead of copper.

また、第3表において、アクリル樹脂の代わりにビニ
ル樹脂を用いても第3表と同様の結果を得ることができ
る。
Also, in Table 3, the same results as in Table 3 can be obtained by using a vinyl resin instead of an acrylic resin.

第3図は、第1〜3表の結果を示す図で、横軸の体積
顔料濃度PVC(%)は(乾燥)塗膜中の銅の容量%を示
している。
FIG. 3 is a diagram showing the results of Tables 1 to 3, wherein the volume pigment concentration PVC (%) on the horizontal axis indicates the volume% of copper in the (dried) coating film.

なお、第1〜3表において、いずれの塗料も、1%以
内の塗料性状調整用添加剤(チクソ剤としてポリエチレ
ンワックス)を含む。
In addition, in Tables 1-3, all paints contain 1% or less of paint property adjusting additives (polyethylene wax as a thixotropic agent).

第1図は、本発明の海水電解用導電塗料膜の一構成例
を示す図で、船体外板1上の防食塗膜(絶縁塗膜)2
に、第1〜3表の下塗り塗料膜3を200μmの厚さで塗
装し、その上に中塗り導電塗料膜4を10〜150μmの厚
さで塗装し、更に上塗り導電塗料膜5を300μmで塗装
したものである。
FIG. 1 is a view showing an example of the configuration of a conductive coating film for seawater electrolysis according to the present invention, wherein an anticorrosion coating (insulating coating) 2 on a hull outer panel 1 is shown.
Then, the undercoat paint film 3 shown in Tables 1 to 3 is applied with a thickness of 200 μm, the intermediate coat conductive paint film 4 is applied thereon with a thickness of 10 to 150 μm, and the top coat conductive paint film 5 is applied with a thickness of 300 μm. It is painted.

なお、この中塗り導電塗料膜3は、基剤ポリールと硬
化剤イソシアナート(デスモジュールL)を配合(基
剤:硬化剤=8.3:2.5重量比)した二液硬化型ウレタン
樹脂53.2gと、平均粒度45μm,粒度分布20〜100μmの高
純度黒鉛粉末と、平均粒度2μm,粒度分布0.5〜30μm
の高純度黒鉛粉末の2種の等量混合物135gからなる塗料
を塗装した(乾燥塗膜の比抵抗値は、下塗り導電塗料膜
3のみの抵抗《初期電気抵抗》との比較で0.05Ω−cmで
あった)。
The intermediate coating conductive coating film 3 was composed of 53.2 g of a two-part curable urethane resin containing a base poly and a hardener isocyanate (Desmodur L) (base: hardener = 8.3: 2.5 weight ratio), High-purity graphite powder with an average particle size of 45 μm and a particle size distribution of 20 to 100 μm, and an average particle size of 2 μm and a particle size distribution of 0.5 to 30 μm
(A specific resistance value of the dried coating film is 0.05 Ω-cm compared with the resistance of the undercoating conductive coating film 3 alone (initial electric resistance)). Met).

[発明の効果] 第1〜3表から明らかなように、本発明の下塗り導電
塗料膜は、この下塗り導電塗料塗装後に該下塗り導電塗
料膜上への塗料、すなわち上塗り導電塗料又は中塗り導
電塗料を塗装するまでの乾燥期間が短い。
[Effects of the Invention] As is apparent from Tables 1 to 3, the undercoating conductive coating film of the present invention is a coating on the undercoating conductive coating film after the application of the undercoating coating, that is, an overcoating conductive coating or an intermediate coating conductive coating. The drying period before painting is short.

従って、これらの上塗り導電塗料又は中塗り導電塗料
塗装までには、下塗り導電塗料膜は完全に乾燥し、下塗
り導電塗料膜がその上に塗装される塗料と相溶すること
はない。
Therefore, the undercoating conductive paint film is completely dried before the topcoating or intermediate coating paint application, and the undercoating conductive coating film does not become compatible with the paint applied thereon.

この結果、下塗り導電塗料膜の導電性が低下すること
はない。
As a result, the conductivity of the undercoat conductive paint film does not decrease.

また、比抵抗値が10-3〜10-4(Ω−cm)クラスの乾燥
塗料膜が海水電解用塗料膜として実用的ではあるが、電
解時に発生する塩素イオンの効率にこだわらなければ、
第1〜3表に示すいずれの組成のものであっても充分使
用できる。
Although a dry paint film having a specific resistance of 10 -3 to 10 -4 (Ω-cm) is practical as a paint film for seawater electrolysis, if it is not particular about the efficiency of chlorine ions generated during electrolysis,
Any of the compositions shown in Tables 1 to 3 can be used satisfactorily.

特に、船体外板の防食塗料膜として本発明膜を使用す
る場合は、海水中の微生物を寄付けない程度の塩素イオ
ンが発生すれば良いのであるから、第1〜3表の組成の
いずれも良好に使用できる。
In particular, when the film of the present invention is used as an anticorrosion paint film for a hull outer panel, it is sufficient that chlorine ions are generated to such an extent that microorganisms in seawater are not attracted. Can be used well.

更に、上記の下塗り導電塗料膜の上に中塗り導電塗料
膜を設ける場合は、該中塗り導電塗料膜がバリヤ膜とし
て作用し、下塗り導電塗料膜と上塗り導電塗料膜との相
溶を防止して、より効果的に下塗り導電塗料膜の導電性
の低下を防止することができる。
Further, when the intermediate coating conductive coating film is provided on the undercoating conductive coating film, the intermediate coating conductive coating film acts as a barrier film to prevent compatibility between the undercoating conductive coating film and the upper coating conductive coating film. Thus, it is possible to more effectively prevent the conductivity of the undercoating conductive paint film from lowering.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明膜の一構成例を示す図、第2図は従来の
海水電解用導電塗料膜を示す図、第3図は本発明の下塗
り導電塗料膜中の銅含有量と比抵抗値との関係を示す図
である。
FIG. 1 is a view showing one configuration example of the film of the present invention, FIG. 2 is a view showing a conventional conductive paint film for seawater electrolysis, and FIG. 3 is a diagram showing the copper content and specific resistance in the undercoat conductive paint film of the present invention. It is a figure showing the relation with a value.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植田 健二 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎研究所内 (72)発明者 友重 清美 長崎県長崎市飽の浦町1番1号 三菱重 工業株式会社長崎造船所内 (72)発明者 太田 昭三 長崎県長崎市飽の浦町5番7号 菱興ビ ル別館5階 長菱エンジニアリング株式 会社内 (72)発明者 堀口 勉 長崎県長崎市飽の浦町5番7号 菱興ビ ル別館5階 長菱エンジニアリング株式 会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kenji Ueda 1-1, Akunouracho, Nagasaki-shi, Nagasaki Prefecture Mitsubishi Heavy Industries, Ltd. Nagasaki Research Laboratory (72) Inventor Kiyomi Tomoshige 1-1, Akunouracho, Nagasaki-shi, Nagasaki Prefecture (72) Inventor Shozo Ota 5-7 Akunoura-cho, Nagasaki City, Nagasaki Prefecture, Ryoko Building Annex Building 5th Floor, Nagaishi Engineering Co., Ltd. (72) Inventor Tsutomu Horiguchi, Tsutomu Horiguchi Atsunoura, Nagasaki City, Nagasaki Prefecture 5-7 Ryocho Building Ryoko Building Annex 5F Nagaishi Engineering Co., Ltd.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】海水電解による塩素イオン発生目的に供さ
れ、下塗り、上塗りからなる導電塗料膜において、前記
下塗り導電塗料膜が二液硬化型ウレタン系、二液硬化型
エポキシ系、アクリル系、ビニル系の樹脂のいずれか1
種以上からなり、かつ該膜中に銅、ニッケル又は銀を25
〜40容量%含有し、導電性が比抵抗値10-1〜10-4Ω−cm
であることを特徴とする海水電解用導電塗料膜。
1. A conductive paint film provided for the purpose of generating chlorine ions by seawater electrolysis and comprising an undercoat and an overcoat, wherein the undercoat conductive paint film is a two-part curable urethane-based, two-part curable epoxy-based, acrylic, vinyl, Any one of the resin of the system
Of copper, nickel or silver in the film.
~ 40% by volume, conductivity is specific resistance 10 -1 ~ 10 -4 Ω-cm
A conductive paint film for seawater electrolysis, characterized in that:
【請求項2】下塗り導電塗料膜と上塗り導電塗料膜との
間に中塗り導電塗料膜が設けられてなることを特徴とす
る請求項(1)記載の海水電解用導電塗料膜。
2. The conductive paint film for seawater electrolysis according to claim 1, wherein an intermediate paint film is provided between the undercoat paint film and the top paint film.
JP1189889A 1989-01-23 1989-01-23 Conductive paint film for seawater electrolysis Expired - Lifetime JP2607660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1189889A JP2607660B2 (en) 1989-01-23 1989-01-23 Conductive paint film for seawater electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1189889A JP2607660B2 (en) 1989-01-23 1989-01-23 Conductive paint film for seawater electrolysis

Publications (2)

Publication Number Publication Date
JPH02194069A JPH02194069A (en) 1990-07-31
JP2607660B2 true JP2607660B2 (en) 1997-05-07

Family

ID=11790550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1189889A Expired - Lifetime JP2607660B2 (en) 1989-01-23 1989-01-23 Conductive paint film for seawater electrolysis

Country Status (1)

Country Link
JP (1) JP2607660B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8913512D0 (en) * 1989-06-13 1989-08-02 Cookson Group Plc Coated particulate metallic materials
CN101822403B (en) * 2010-04-20 2012-12-26 王衍洲 Ocean element electrolysis concentrated product and manufacture method thereof
CA2809387A1 (en) * 2010-08-31 2012-03-08 Mitsubishi Heavy Industries, Ltd. Antistatic coating, structure made of composite material using same, and production method therefor

Also Published As

Publication number Publication date
JPH02194069A (en) 1990-07-31

Similar Documents

Publication Publication Date Title
US5580907A (en) Cathodic coating compositions comprising lightweight hollow glass microspheres, zinc powder and zinc dust
WO2006039179A2 (en) Use of cathodic protection compounds on treated metal articles
JP2006501108A5 (en)
WO2005078158A2 (en) Cathodic protection compounds
GB2040731A (en) Protective coating for cathodically protected metal surfaces
JPH06503108A (en) Corrosion-resistant protective composite
JP2607660B2 (en) Conductive paint film for seawater electrolysis
JPS60221414A (en) Antistatic resin composition
JPH06212100A (en) Coating consisting of copper/nickel epoxide and method of applying it
JP2580308B2 (en) Conductive paint film for seawater electrolysis
JP3074581B2 (en) Conductive paint for prevention of marine organism adhesion
JPH02194070A (en) Conductive coating film for electrolyzing sea water
CN1035881C (en) Anti-corrosive paint
JP2002327151A (en) Coating composition and method for preventing corrosion of weather resistance steel by using the same
JPS5821458A (en) Coating compound composition
JPH061929A (en) Electrically conductive paint for preventing adhesion of marine life
JPS6355547B2 (en)
JPH05179163A (en) Conductive coating material for preventing adhesion of marine organism
JPH05179168A (en) Conductive coating material for preventing adhesion of marine organism
CN108690413A (en) Vehicle plastics single-component water-based conductive primer and preparation method thereof
JPH05179167A (en) Conductive coating material for preventing adhesion of marine organism
JPS5953306B2 (en) Aluminum pigment-containing epoxy resin coating composition
JPH0615825Y2 (en) FRP ship
JPH0255504B2 (en)
JPH0141664B2 (en)