JPH0615825Y2 - FRP ship - Google Patents

FRP ship

Info

Publication number
JPH0615825Y2
JPH0615825Y2 JP1987109960U JP10996087U JPH0615825Y2 JP H0615825 Y2 JPH0615825 Y2 JP H0615825Y2 JP 1987109960 U JP1987109960 U JP 1987109960U JP 10996087 U JP10996087 U JP 10996087U JP H0615825 Y2 JPH0615825 Y2 JP H0615825Y2
Authority
JP
Japan
Prior art keywords
resin
coating
copper
surface roughness
frp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987109960U
Other languages
Japanese (ja)
Other versions
JPS6414598U (en
Inventor
清水  晃
健二 蓮井
昌憲 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Toryo KK
Original Assignee
Dai Nippon Toryo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Toryo KK filed Critical Dai Nippon Toryo KK
Priority to JP1987109960U priority Critical patent/JPH0615825Y2/en
Publication of JPS6414598U publication Critical patent/JPS6414598U/ja
Application granted granted Critical
Publication of JPH0615825Y2 publication Critical patent/JPH0615825Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Laminated Bodies (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、船底等に水中微生物等の付着を防止したFR
P(繊維強化プラスチック)船に関するものである。
[Detailed Description of the Invention] (Industrial field of application) The present invention is an FR which prevents adhesion of underwater microorganisms to the bottom of a ship.
It relates to a P (fiber reinforced plastic) ship.

(従来の技術) FRP船底外板の防汚方法については、従来から各種の
方法が行われているが、いまだ決定的な方法は見つかっ
ていない。
(Prior Art) Various methods have been conventionally used for the antifouling method of the FRP bottom plate, but a definitive method has not been found yet.

従来、各種の防汚剤を基材表面に塗布し、微生物や藻類
の付着を防ぐことが一般的に行われていた。特に有機錫
化合物、例えばトルブチル錫オキサイド、トリブチル錫
フルオライドなどの低分子有機錫化合物、あるいはトル
ブチル錫メタクリレートの共重合体などの高分子有機錫
化合物などが広く用いられていた。
Conventionally, it has been generally practiced to apply various antifouling agents to the surface of a substrate to prevent the adhesion of microorganisms and algae. In particular, organic tin compounds, for example, low molecular weight organic tin compounds such as tolbutyltin oxide and tributyltin fluoride, and high molecular weight organic tin compounds such as a copolymer of tolbutyltin methacrylate have been widely used.

しかしながら、これらの有機錫化合物を中心とした防汚
剤については、近年その毒性及び魚貝類への残留性が問
題視されるようになり、特に低分子有機錫化合物はその
使用が著しく制限されるようになってきた。
However, with regard to antifouling agents centering on these organotin compounds, in recent years, their toxicity and persistence to fish and shellfish have come to be problematic, and the use of low molecular weight organotin compounds is particularly limited. It's starting to happen.

一方、銅及び銅合金は、水中生物が付着しにくく、また
魚貝類及びこれらを通じた食物連鎖による人体への影響
もほとんど無視できることが古くから知られており、安
全性の観点から防汚剤として好ましい特性を有してい
る。
On the other hand, copper and copper alloys have long been known to be less susceptible to aquatic organisms, and the effects of fish and shellfish and the food chain through them on the human body can be almost ignored. Has desirable characteristics.

そこでこの利点を利用して銅又は銅合金の板あるいは板
を表面に接着した構造体を用いることが知られている
が、構造体の強度、耐久性あるいは経済性等の問題があ
り、実用的にはあまり利用されていない。
Therefore, it is known to use a copper or copper alloy plate or a structure in which a plate is adhered to the surface by utilizing this advantage, but there are problems such as strength, durability or economical efficiency of the structure, and it is practical. Is not used to much.

又、銅又は銅合金粉末を樹脂中に混合して得られた樹脂
組成物を、各種基材上に塗布する方法も種々提案されて
いる。しかしながら、基材上への長期密着性や防汚性の
点で、満足すべきものは得られていないのが現状であ
る。
Further, various methods have been proposed in which a resin composition obtained by mixing copper or copper alloy powder in a resin is applied to various base materials. However, at present, satisfactory results have not been obtained in terms of long-term adhesion on a substrate and antifouling property.

特にFRPが基板である場合には、その表面平滑性の故
に密着性の高い被膜を得ることは非常に困難であった。
In particular, when the FRP is a substrate, it was very difficult to obtain a coating having high adhesion because of its surface smoothness.

一方、銅又は銅合金を基材上に溶射し、溶射被膜を形成
する方法も公知である(特開昭59−145074号)
が、溶射被膜の密着性の保持、あるいは溶射時の塗着効
率を上げるためには、基材の粗面化処理を充分に行う必
要があった。そのような粗面化処理としては、ブラスト
処理、研磨処理等の物理的方法や、あるいは化学的な方
法があるが、いずれも多大な労力と、粗面化処理後の粉
塵や廃液の処理等多くの問題点があった。
On the other hand, a method of spraying copper or a copper alloy on a substrate to form a sprayed coating is also known (Japanese Patent Laid-Open No. 59-145074).
However, in order to maintain the adhesiveness of the sprayed coating or improve the coating efficiency during spraying, it was necessary to sufficiently roughen the surface of the substrate. Such roughening treatments include physical methods such as blasting and polishing, or chemical methods, but all of them require a great deal of labor and treatment of dust or waste liquid after the roughening treatment. There were many problems.

(考案の目的) 本考案は、以上の如き従来技術の問題を解消もしくは改
良することを目的とし、密着性が非常に優れ、その結果
長時間にわたる防汚性を維持出来る防汚被膜を有するF
RP船を提供しようとするものである。
(Purpose of the Invention) The present invention aims to solve or improve the problems of the conventional techniques as described above, and has an antifouling film having excellent adhesion and, as a result, capable of maintaining the antifouling property for a long time.
It intends to provide an RP ship.

(問題点を解決するための手段) 以上の目的は、FRP船体没水部に、粒子径5〜200
μmの非導電性固体粒子を樹脂に対して25〜400容
量%含有する表面粗さ(Rz)が30〜250μmの樹
脂層と、その樹脂層上に銅又は銅合金溶射被膜層とを設
けることにより達成される。
(Means for Solving Problems) The above-mentioned object is to provide a particle size of 5 to 200 in the submerged portion of the FRP ship.
To provide a resin layer having a surface roughness (Rz) of 30 to 250 μm containing 25 to 400% by volume of non-conductive solid particles of μm with respect to the resin, and a copper or copper alloy sprayed coating layer on the resin layer. Achieved by

以下、本考案について詳述する。Hereinafter, the present invention will be described in detail.

本考案において、FRPと金属溶射被膜層の間に設けら
れる溶射前処理層としての樹脂層は、平均粒子径5〜2
00μmの非導電性固体粒子を含有する樹脂組成物を塗
布乾燥することにより得られるものである。
In the present invention, the resin layer as the thermal spray pretreatment layer provided between the FRP and the metal thermal spray coating layer has an average particle size of 5 to 2
It is obtained by applying and drying a resin composition containing non-conductive solid particles of 00 μm.

前記非導電性固体粒子としては、例えば、銅、ニッケ
ル、アルミニウム、亜鉛、鉄、珪素などの金属の酸化
物、窒化物、炭化物等が挙げられる。
Examples of the non-conductive solid particles include oxides, nitrides and carbides of metals such as copper, nickel, aluminum, zinc, iron and silicon.

具体的には、例えば酸化アルミニウム、酸化珪素、酸化
鉄、炭化珪素、窒化硼素等が挙げられる。
Specific examples include aluminum oxide, silicon oxide, iron oxide, silicon carbide, boron nitride, and the like.

又、組成物の溶媒組成によっては、アクリル樹脂、スチ
レン樹脂、エポキシ樹脂等の粉末を使用してもよい。
Further, depending on the solvent composition of the composition, powders of acrylic resin, styrene resin, epoxy resin and the like may be used.

これらの粒子は1種もしくは2種以上の混合物として使
用可能である。
These particles can be used alone or as a mixture of two or more kinds.

使用される樹脂に対する化学的安定性や溶射材と腐食電
池を形成せず、硬く、かつ組成物中で沈澱しにくいこと
などを考慮すると、珪砂、アルミナ、炭化珪素等の使用
が、特に好ましい。
Considering the chemical stability with respect to the resin used, the fact that it does not form a corrosion battery with the thermal spray material, is hard, and is unlikely to precipitate in the composition, it is particularly preferable to use silica sand, alumina, silicon carbide or the like.

本考案に於て前記粒子の粒子径は、5〜200μmの範
囲、好ましくは30〜100μmである。前記範囲に於
て、粒子径が200μmをこえると、樹脂組成物に粒子
が沈澱し易くなるとともに、スプレー塗布する場合ノズ
ル詰りをおこし易くなる傾向がある。又、たとえ塗布で
きても表面粗さが粗くなり過ぎ、金属溶射膜の表面が粗
くなり、そのため外観が非常に悪くなる。一方、粒子径
が5μmより小さいと、樹脂組成物を基材表面に塗布し
ても目的とする表面粗さが得られず、従って密着性の優
れた金属溶射被膜が得られ難くなる。
In the present invention, the particle size of the particles is in the range of 5 to 200 μm, preferably 30 to 100 μm. If the particle diameter exceeds 200 μm in the above range, the particles are likely to precipitate in the resin composition and the nozzles are likely to be clogged when spray coating. Further, even if it can be applied, the surface roughness becomes too rough, and the surface of the metal sprayed film becomes rough, so that the appearance becomes very poor. On the other hand, when the particle size is smaller than 5 μm, the desired surface roughness cannot be obtained even when the resin composition is applied to the surface of the substrate, and thus it becomes difficult to obtain a metal sprayed coating having excellent adhesion.

本考案に於て、前記粒子は、後述する樹脂に対して25
〜400容量%〔顔料容積濃度(PVC)にして20〜
80%〕、好ましくは65〜150容量%〔顔料容積濃
度(PVC)にして40〜60%〕の範囲で使用する。
前記範囲に於て、樹脂に対する含有量が25容量%に満
たない場合、樹脂分が多くなり、そのため表面粗さが小
さくなり、その結果、金属溶射被膜の密着性が低下す
る。
In the present invention, the particles are added to the resin described later in 25
~ 400% by volume [pigment volume concentration (PVC) 20 ~
80%], preferably 65 to 150% by volume [pigment volume concentration (PVC) 40 to 60%].
In the above range, when the content with respect to the resin is less than 25% by volume, the amount of the resin is large and therefore the surface roughness is small, and as a result, the adhesion of the metal sprayed coating is deteriorated.

一方、樹脂に対する粒子の含有量が400容量%をこえ
ると、樹脂分が極端に少なくなり粒子間の結合力が弱く
なり、その結果金属溶射被膜の密着性も低下するので好
ましくない。
On the other hand, if the content of the particles with respect to the resin exceeds 400% by volume, the resin content is extremely reduced and the bonding force between the particles is weakened, and as a result, the adhesiveness of the metal spray coating is deteriorated, which is not preferable.

本考案に於て使用される「樹脂」とは、ある程度の乾燥
性、硬度、密着性、耐水性及び耐久性があれば特に限定
はない。
The "resin" used in the present invention is not particularly limited as long as it has a certain degree of drying property, hardness, adhesion, water resistance and durability.

具体例としては、一液常温乾燥型樹脂である熱可塑性ア
クリル樹脂、ビニル樹脂、塩化ゴム、アルキド樹脂、二
液硬化型樹脂である不飽和ポリエステル樹脂、アクリル
−ウレタン樹脂、ポリエステル−ウレタン樹脂、エポキ
シ樹脂、熱硬化性樹脂であるメラミン−アルキド樹脂、
メラミン−アクリル樹脂、メラミン−ポリエステル樹
脂、アクリル樹脂、アクリル−ウレタン樹脂等が挙げら
れる。
Specific examples thereof include thermoplastic acrylic resin that is a one-liquid room temperature drying type resin, vinyl resin, chlorinated rubber, alkyd resin, unsaturated polyester resin that is a two-component curing type resin, acrylic-urethane resin, polyester-urethane resin, and epoxy. Resin, melamine-alkyd resin which is a thermosetting resin,
Examples include melamine-acrylic resin, melamine-polyester resin, acrylic resin, acrylic-urethane resin and the like.

これらは1種もしくは2種以上の混合物としても使用可
能である。
These may be used alone or as a mixture of two or more.

本考案の組成物には前記樹脂以外の成分として、該樹脂
を溶解又は分散せしめるための有機溶剤、水等を必要に
より加える。
If necessary, an organic solvent for dissolving or dispersing the resin, water or the like is added to the composition of the present invention as a component other than the resin.

更に、染料、顔料や分散剤、発泡防止剤、ダレ防止剤
(チキソトロピック性付与剤)等の添加剤等も併用出来
る。
Further, additives such as dyes, pigments, dispersants, antifoaming agents and anti-sagging agents (thixotropic agents) can also be used in combination.

前記組成物の形態としては、溶剤系、水溶性系、水分散
系、溶剤分散系等の如くいずれの形態でもとりうる。
The composition may take any form such as a solvent system, a water-soluble system, a water dispersion system, and a solvent dispersion system.

本考案に於て、組成物は、前記樹脂及び粒子と、必要に
より溶媒もしくは分散媒や各種添加剤等を加えて、通常
の分散、混合方法により混合して作製される。
In the present invention, the composition is prepared by adding the above-mentioned resin and particles, if necessary, a solvent or dispersion medium, various additives and the like, and mixing them by a usual dispersion and mixing method.

かくして得られた(樹脂)組成物は、一般の塗料組成物
と同じような方法により基材上に塗布される。特に塗布
量のコントロールの容易さ等から、エアースプレー法の
採用が好ましい。しかし、通常の塗料と同様に組成や、
粘度等を適宜調整することにより、刷毛塗りやロール塗
装も可能であることは云うまでもない。
The thus-obtained (resin) composition is applied onto a substrate by the same method as in a general coating composition. In particular, it is preferable to use the air spray method because it is easy to control the coating amount. However, as with ordinary paints,
It goes without saying that brush coating and roll coating are also possible by appropriately adjusting the viscosity and the like.

本考案において樹脂層の厚さは自由に選択出来るが、大
略10〜300g/m2の割合で塗布して得られる膜厚が
好ましく、特に好ましくは約20〜150g/m2の割合
で塗布して得られる膜厚程度である。前記塗布量の範囲
において、10g/m2より少ない場合には、表面粗さが
小さくなり、金属の溶射効率が低くなるとともに溶射被
膜の密着性も低下するので好ましくない。一方、塗布量
が300g/m2をこえると、表面粗さが粗くなり過ぎた
り、あるいは組成物の組成・性状によっては被膜が平滑
になり過ぎたりするため、金属溶射被膜の密着性が低下
するようになるので好ましくない。
The thickness of the resin layer in the present invention is freely selectable, the film thickness obtained by coating at a rate of approximately 10 to 300 g / m 2, particularly preferably is applied at a rate of about 20 to 150 g / m 2 It is about the film thickness obtained. If the coating amount is less than 10 g / m 2 , the surface roughness will be small, the thermal spraying efficiency of the metal will be low, and the adhesion of the thermal spray coating will also be low, such being undesirable. On the other hand, when the coating amount exceeds 300 g / m 2 , the surface roughness becomes too rough, or the coating becomes too smooth depending on the composition and properties of the composition, so that the adhesion of the metal spray coating decreases. This is not preferable.

本考案に於て、組成物塗布後の被膜の表面粗さ(Rz)
は、30〜250μmであり、好ましくは60〜120
μmの範囲にあることが好ましい。〔尚、前記表面粗さ
(Rz)とは、JISB−0601(1982)「表面
粗さの定義と表示」の十点平均粗さを示し、表面粗さ
(Rz)の測定は、東京精密(株)製表面粗さ形状測定
機サーフコム554Aで行ったものである。〕 前記表面粗さの範囲において、30μmにみたない場合
には、溶射効率が低く、金属溶射被膜の密着性が低下す
るようになり、一方、表面粗さが250μmをこえる
と、溶射被膜面が粗く、外観が著しく悪化し、溶射被膜
をこすると下地の樹脂組成物の被膜が露出することもあ
り、いずれもあまり好ましくない。
In the present invention, the surface roughness (Rz) of the coating film after application of the composition
Is 30 to 250 μm, preferably 60 to 120
It is preferably in the range of μm. [In addition, the said surface roughness (Rz) shows the ten-point average roughness of JISB-0601 (1982) "definition and display of surface roughness", and the surface roughness (Rz) is measured by Tokyo Seimitsu ( The surface roughness profile measuring instrument Surfcom 554A manufactured by K.K. In the range of the surface roughness, when the thickness is not 30 μm, the thermal spraying efficiency is low and the adhesion of the metal sprayed coating is deteriorated. On the other hand, when the surface roughness exceeds 250 μm, the surface of the sprayed coating is Both are not preferable because they are rough and have a significantly deteriorated appearance, and when the sprayed coating is rubbed, the coating of the underlying resin composition may be exposed.

前記の如き表面粗さは、樹脂組成物中に含有される粒子
の粒子径とその含有量、及び基材への塗布量によって決
定される。
The surface roughness as described above is determined by the particle size of the particles contained in the resin composition and the content thereof, and the coating amount on the substrate.

例えば前記の如き特定組成物をエアースプレー法によ
り、ややドライスプレー気味に前記塗布量範囲内で塗布
すると、目的とする表面粗さが得られる。又、例えば前
記特定組成物に必要に応じてチキソトロピック性を付与
して、刷毛等で塗布しても目的とする表面粗さを得るこ
とが出来よう。
For example, when the specific composition as described above is applied by an air spray method in a slightly dry spray manner within the above application amount range, a desired surface roughness can be obtained. Further, for example, it is possible to obtain the desired surface roughness by applying thixotropic property to the above-mentioned specific composition, if necessary, and applying it with a brush or the like.

本考案においては、前記の如く樹脂層の上に銅又は銅合
金溶射被膜を設けることにより、目的とするFRP船が
得られる。
In the present invention, the target FRP ship can be obtained by providing the copper or copper alloy spray coating on the resin layer as described above.

前記金属溶射被膜を得る方法としては、例えばプラズマ
溶射方法、ガスフレーム溶射方法、電気アーク溶射方
法、減圧内アーク溶射機による低温溶射方法等があり、
いずれの方法でもよい。
Examples of the method for obtaining the metal sprayed coating include a plasma spraying method, a gas flame spraying method, an electric arc spraying method, and a low temperature spraying method using a reduced pressure arc sprayer.
Either method may be used.

但し、溶射を行うFRPに樹脂層が形成されているた
め、これら樹脂の分解あるいは流動が起こらないよう
に、又FRP基材が著しい高温下にさらされないよう、
溶射方法、条件などを考慮する必要がある。例えば、ガ
ス量、空気量、電流、電圧、溶射速度、溶射距離などを
コントロールする必要がある。
However, since the resin layer is formed on the FRP that is sprayed, the decomposition or flow of these resins does not occur, and the FRP substrate is not exposed to extremely high temperatures.
It is necessary to consider the spraying method and conditions. For example, it is necessary to control the amount of gas, the amount of air, the current, the voltage, the spray rate, the spray distance, and the like.

前記溶射に使用される金属は、銅又は、銅とニッケル、
アルミニウム、亜鉛、錫、マンガン、鉄等の金属との合
金である。前記合金中の銅の含有量は防汚性等を考慮す
れば最低10重量%、好ましくは50重量%以上であ
る。
The metal used for the thermal spray is copper or copper and nickel,
It is an alloy with metals such as aluminum, zinc, tin, manganese, and iron. The content of copper in the alloy is at least 10% by weight, preferably 50% by weight or more, in consideration of antifouling property.

又、前記銅又は銅合金被膜層の厚さは、溶射量約100
〜3000g/m2の割合で溶射して得られる程度の膜厚
であることが好ましい。
The thickness of the copper or copper alloy coating layer is about 100
It is preferable that the film thickness is such that it can be obtained by thermal spraying at a rate of up to 3000 g / m 2 .

かくして、本考案によれば、従来金属溶射被膜の付着し
にくいとされていたFRP上に、簡単に銅又は銅合金被
膜を設けることが出来、その結果長時間安定な防汚被膜
を有するFRP船を得ることが出来るようになった。
Thus, according to the present invention, it is possible to easily provide a copper or copper alloy coating on the FRP that has been conventionally hard to adhere to a metal spray coating, and as a result, an FRP ship having a long-term stable antifouling coating. Can be obtained.

以下、図面及び実施例により本考案を更に詳細に説明す
る。
Hereinafter, the present invention will be described in more detail with reference to the drawings and embodiments.

実施例1 エポキシ樹脂(エピクロン4051 大日本インキ化学
工業製 エポキシ当量950)100gに、キシレン8
0g、メチルエチルケトン60g、ブタノール25gを
加えて溶解した後、ポリアミド樹脂(エピキュアー89
2、セラニーズ製 活性水素当量133)10gを添加
して得た加熱残分40重量%のエポキシ−ポリアミド樹
脂B275g(樹脂固形分容量100cm3)と、平均粒
子径48μmの炭化珪素(緑色炭化珪素CG320名古
屋研磨機材工業製 比重3.16)221g(粒子容量7
0cm3、PVC41%)とを充分に撹拌し樹脂組成物A
を作製した。
Example 1 100 g of an epoxy resin (Epiclon 4051, manufactured by Dainippon Ink and Chemicals, Inc., epoxy equivalent: 950) was mixed with 8 parts of xylene.
After adding 0 g, 60 g of methyl ethyl ketone and 25 g of butanol and dissolving, a polyamide resin (Epicure 89
2, 275 g of epoxy-polyamide resin B having a heating residue of 40% by weight (resin solid content volume of 100 cm 3 ) obtained by adding 10 g of active hydrogen equivalent 133 manufactured by Celanese, and silicon carbide having an average particle diameter of 48 μm (green silicon carbide CG320) Product made in Nagoya polishing machine industry specific gravity 3.16 221 g (particle volume 7
0 cm 3 , PVC 41%) and thoroughly mixed with resin composition A
Was produced.

長さ約1.5mのFRP製ボートの底面没水部に前記樹脂
組成Aをエアースプレーで60g/m2塗布すると、その
表面粗さ(Rz)は70μmとなった。24時間乾燥し
た後、キュプロニッケル(銅:ニッケル=90:10の
合金)を110μmになるように低温溶射した。
When the resin composition A was applied to the bottom submerged portion of a FRP boat having a length of about 1.5 m by air spray at 60 g / m 2 , the surface roughness (Rz) was 70 μm. After drying for 24 hours, cupro nickel (copper: nickel = 90: 10 alloy) was sprayed at a low temperature to 110 μm.

低温溶射の条件は、減圧内アーク溶射機PA600(パ
ンアートクラフト社製)にて線材直径1.1mmのキュプロ
ニッケル線材を使用し、搬線速度5m/分、電圧20V
で行った。
The conditions for low-temperature spraying are as follows: arc-spraying machine PA600 (manufactured by Pan Art Craft Co., Ltd.) under reduced pressure, using cupro-nickel wire with a wire diameter of 1.1 mm, wire speed 5 m / min, voltage 20 V
I went there.

この溶射被膜に垂直引張強度は55kg/cm2と良好であ
った。
The vertical tensile strength of this sprayed coating was good at 55 kg / cm 2 .

防汚性の試験結果を第1表に示す。The results of the antifouling test are shown in Table 1.

その他に1年後の皮膜状態を観察したが、皮膜のワレ、
剥離、フクレなどは見られず良好であった。
In addition, the state of the film after 1 year was observed.
No peeling or blistering was observed and it was good.

実施例2 アクリルポリオール樹脂(水酸基価100、加熱残分5
0%)170gに、イソシアネート樹脂スミジュールN
75(住友バイエルウレタン製、加熱残分75重量%)
33gを添加して得た加熱残分54重量%の溶剤型ウレ
タン−アクリル樹脂203g(容量100cm3)と、平
均粒子径20μmの酸化アルミニウム(白色溶融アルミ
ナWA800名古屋研磨機材工業製 比重3.96)11
9g(粒子容量30cm3、PVC23%)とを充分に撹
拌し樹脂組成物Bを作製した。
Example 2 Acrylic polyol resin (hydroxyl value 100, heating residue 5
0%) 170 g, isocyanate resin Sumidule N
75 (Sumitomo Bayer Urethane, heating residue 75% by weight)
203 g of solvent type urethane-acrylic resin having a heating residue of 54% by weight obtained by adding 33 g (volume 100 cm 3 ) and aluminum oxide having an average particle size of 20 μm (white fused alumina WA800, manufactured by Nagoya Abrasive Equipment Industry, specific gravity 3.96). 11
9 g (particle volume 30 cm 3 , PVC 23%) were sufficiently stirred to prepare a resin composition B.

実施例1と同様の被塗物に、前記樹脂組成物Bをエアー
スプレーで80g/m2の割合で塗布すると、表面粗さ
(Rz)は90μmとなった。24時間乾燥した後、P
A600にて線材直径1.1mmの、5%亜鉛含有の丹銅線
材を膜厚80μmになるよう溶射した。溶射条件は、搬
線速度8m/分、電圧19Vであった。
When the resin composition B was applied to the same article as in Example 1 by air spray at a rate of 80 g / m 2 , the surface roughness (Rz) was 90 μm. After drying for 24 hours, P
A copper wire rod having a diameter of 1.1 mm and containing 5% zinc was sprayed by A600 to a film thickness of 80 μm. The thermal spraying conditions were a carrying speed of 8 m / min and a voltage of 19V.

得られた被膜の垂直引張強度は50kg/cm2であり、防
汚性も良好であった。
The obtained film had a vertical tensile strength of 50 kg / cm 2 and good antifouling property.

第1図において、実施例2で得られたFRP船船底外板
の一部断面図(概略)が示されていて、FRP船底外板
1上に、前記樹脂組成物Bから得られた樹脂層2と、そ
の上に被膜された銅合金溶射被膜層3とが設けられてい
る。
In FIG. 1, a partial cross-sectional view (outline) of the FRP ship bottom skin obtained in Example 2 is shown, and a resin layer obtained from the resin composition B on the FRP ship bottom skin 1 is shown. 2 and a copper alloy sprayed coating layer 3 coated thereon.

試験は、実施例及び比較例のFRP船を三重県鳥羽湾内
に係船し、フジツボなどの貝類、アオサ、アオノリなど
の海藻類の付着を面積比率で観察し、その結果を第1表
に示したものである。
In the test, the FRP boats of Examples and Comparative Examples were laid up in Toba Bay, Mie Prefecture, and the adhesion of shellfish such as barnacles and seaweeds such as sea lettuce and sea lions was observed in area ratio, and the results are shown in Table 1. It is a thing.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案FRP船の船底外板一部断面図(概略
図)である。 1……FRP外板、2……樹脂層、3……溶射被膜層。
FIG. 1 is a partial cross-sectional view (schematic diagram) of a bottom plate of a FRP ship of the present invention. 1 ... FRP outer plate, 2 ... resin layer, 3 ... sprayed coating layer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】船体没水部が、樹脂層と、該樹脂層上に設
けられた銅又は銅合金溶射被膜層とを有し、前記樹脂層
が、粒子径5〜200μmの非導電性固体粒子を樹脂に
対して25〜400容量%含有するとともにその表面粗
さ(R)が30〜250μmであるFRP船。
1. A submerged portion of a ship has a resin layer and a copper or copper alloy sprayed coating layer provided on the resin layer, and the resin layer is a non-conductive solid having a particle diameter of 5 to 200 μm. An FRP ship containing particles in an amount of 25 to 400% by volume with respect to the resin and having a surface roughness (R z ) of 30 to 250 μm.
JP1987109960U 1987-07-17 1987-07-17 FRP ship Expired - Lifetime JPH0615825Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987109960U JPH0615825Y2 (en) 1987-07-17 1987-07-17 FRP ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987109960U JPH0615825Y2 (en) 1987-07-17 1987-07-17 FRP ship

Publications (2)

Publication Number Publication Date
JPS6414598U JPS6414598U (en) 1989-01-25
JPH0615825Y2 true JPH0615825Y2 (en) 1994-04-27

Family

ID=31346681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987109960U Expired - Lifetime JPH0615825Y2 (en) 1987-07-17 1987-07-17 FRP ship

Country Status (1)

Country Link
JP (1) JPH0615825Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2906785B1 (en) * 2006-10-10 2009-12-04 Airbus France AIRCRAFT FUSELAGE MADE FROM LONGITUDINAL PANELS AND METHOD FOR PRODUCING SUCH A FUSELAGE

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128182U (en) * 1985-01-31 1986-08-11
JPS61235551A (en) * 1985-04-11 1986-10-20 Kobe Steel Ltd Coating method for surface of ocean structural member

Also Published As

Publication number Publication date
JPS6414598U (en) 1989-01-25

Similar Documents

Publication Publication Date Title
JPS63176453A (en) Production of thermally sprayed metal film
WO2008086402A1 (en) Coating compositions for marine applications and methods of making and using the same
TW376406B (en) Composite material comprising a surface coating of matt surface appearance
JP2000129168A (en) Corrosion-resisting coating composition, corrosion- resisting coating film and corrosion-resisting method for metal base surface
JP6462683B2 (en) Oxidized and / or phosphorous copper composite coating
JPH06212100A (en) Coating consisting of copper/nickel epoxide and method of applying it
JPH0615825Y2 (en) FRP ship
JPH11507982A (en) Composite cuprous oxide powder
EP0254164A1 (en) Thermal spray powder for antifouling coating
JP2007508138A (en) Ship bottom paint coating method
US10556652B2 (en) Vessels comprising a composite envelope
JPH11333374A (en) Method for coating outside part of ship and coated ship
GB2084488A (en) Biofouling of surfaces
JP2617377B2 (en) Pigment for underwater antifouling paint and underwater antifouling paint composition
WO2019236107A1 (en) Multilayer coatings
JPH02238941A (en) Stainproof and corrosionproof coated steel
JPH0328507B2 (en)
JPH0226674A (en) Surface finish method
JPS6218583B2 (en)
JP4058829B2 (en) Paint composition
JPS60215076A (en) Antifouling paint composition
JP3013831U (en) Base material coating structure
JPH0225555A (en) Formation of molten metal-sprayed coating film
JPH03259965A (en) Top coating composition for preventing marine organism from adhering
JP7171523B2 (en) LAMINATED BODY HAVING ALUMINUM-MAGNESIUM ALLOY SPRAYED LAYER AND METHOD FOR MANUFACTURING THE SAME METAL SPRAYED LAYER