JP6380088B2 - ヒートポンプサイクルの制御方法、および加熱システム - Google Patents

ヒートポンプサイクルの制御方法、および加熱システム Download PDF

Info

Publication number
JP6380088B2
JP6380088B2 JP2014260333A JP2014260333A JP6380088B2 JP 6380088 B2 JP6380088 B2 JP 6380088B2 JP 2014260333 A JP2014260333 A JP 2014260333A JP 2014260333 A JP2014260333 A JP 2014260333A JP 6380088 B2 JP6380088 B2 JP 6380088B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat pump
pressure
pump cycle
power management
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014260333A
Other languages
English (en)
Other versions
JP2016121818A (ja
Inventor
直弘 大矢
直弘 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014260333A priority Critical patent/JP6380088B2/ja
Publication of JP2016121818A publication Critical patent/JP2016121818A/ja
Application granted granted Critical
Publication of JP6380088B2 publication Critical patent/JP6380088B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、ヒートポンプサイクルの制御方法、およびヒートポンプサイクルにて加熱対象流体を加熱する加熱システムに関する。
従来、ヒートポンプサイクルにて加熱した給湯水(湯)を貯湯タンクに貯湯し、貯湯された給湯水をキッチンや風呂場等へ給湯するヒートポンプ式給湯機が知られている。例えば、特許文献1には、商用電力の電気料金が他の時間帯よりも安価に設定された深夜電力時間帯に、ヒートポンプサイクルを作動させて給湯水を加熱するヒートポンプ式給湯機が開示されている。
ところで、近年、電力の効率的な消費を目的として、電力の地産地消化(電力を消費する場所で必要とされる電力を発電すること)が提案されている。さらに、このような電力の地産地消化を実現する手段として、いわゆるHEMS(ホーム・エネルギ・マネージメント・システム)の開発が進められている。
ここで、HEMSとは、太陽光発電装置や風力発電装置等の発電装置、空調装置やヒートポンプ式給湯機等の電動装置、入力側に接続された発電装置の発電量等に応じて出力側に接続された電動装置に消費させる電力量を管理する電力管理装置等によって構成されるシステムである。
HEMSによれば、例えば、昼間に太陽光発電装置によって発電された電力が余剰となった際に、この余剰電力を消費させるように電力管理装置がヒートポンプ式給湯機のヒートポンプサイクルを作動させることができる。
このように、深夜よりも外気温が高くなる昼間にヒートポンプサイクルを作動させることで、深夜電力時間帯よりも外気からの吸熱量を増加させてヒートポンプサイクルの成績係数(COP)を向上させることができる。さらに、深夜電力時間帯のヒートポンプサイクルの作動時間を短縮させることができる。従って、HEMSによれば、余剰電力を有効に活用して、電力の効率的な消費を実現することができる。
特開2010−266135号公報
ところが、太陽光発電装置の発電量は日射条件の変化等によって変化しやすい。このため、電力管理装置が太陽光発電装置の発電量等に応じて決定するヒートポンプサイクルに消費させる電力量(以下、消費指示電力量という。)も変化しやすい。
従って、ヒートポンプサイクルに電力管理装置が決定した消費指示電力量を確実に消費させるためには、消費指示電力量に応じて、ヒートポンプサイクルの加熱能力を変化させて実際の消費電力量を速やかに変化させる必要がある。さらに、ヒートポンプサイクルの実際の消費電力量を速やかに変化させる手段としては、圧縮機の回転数(冷媒吐出能力)を速やかに変化させる手段が有効である。
しかしながら、圧縮機の回転数(冷媒吐出能力)を急変させると、サイクルの高圧側冷媒圧力の異常上昇を招いてしまうことがあり、ヒートポンプサイクルの耐久寿命に悪影響を及ぼしてしまうおそれがある。
本発明は、上記点に鑑み、耐久寿命に悪影響を及ぼすことなく、消費電力量を速やかに変更可能なヒートポンプサイクルの制御方法を提供することを目的とする。
また、本発明は、ヒートポンプサイクルの耐久寿命に悪影響を及ぼすことなく、ヒートポンプサイクルの消費電力量を速やかに変更可能な加熱システムを提供することを別の目的とする。
本発明は、上記目的を達成するために案出されたもので、請求項1に記載の発明では、冷媒を圧縮して吐出する圧縮機(21)と、圧縮機(21)から吐出された高圧冷媒と加熱対象流体とを熱交換させて加熱対象流体を加熱する加熱用熱交換器(22)と、加熱用熱交換器(22)から流出した冷媒を減圧させる減圧装置(23)と、を備えるヒートポンプサイクルの制御方法であって、
ヒートポンプサイクル(20)には、ヒートポンプサイクル(20)に消費させる消費指示電力量(Eo1)に相関を有する電力管理用制御信号を出力する電力管理装置(10)が接続されており、
電力管理用制御信号に応じて決定される目標冷媒吐出能力に近づくように、圧縮機(21)の冷媒吐出能力を制御する吐出能力制御ステップ(S3)と、
電力管理用制御信号の変化があった後に、圧縮機(21)の吐出口側から減圧装置(23)の入口側へ至る冷媒流路を流通する高圧側冷媒の高圧側冷媒圧力(Pd)の変動を抑制するように、減圧装置(23)の絞り開度を制御する変化時絞り開度制御ステップ(S8、S81、S82)と、を有することを特徴としている。
これによれば、吐出能力制御ステップ(S3)にて、電力管理用制御信号に応じて決定される目標冷媒吐出能力に近づくように圧縮機(21)の冷媒吐出能力を制御するので、電力管理装置(10)が決定した消費指示電力量(Eo1)の変化に応じて圧縮機(21)の冷媒吐出能力を速やかに変化させることができる。従って、ヒートポンプサイクル(20)の実際の消費電力量を、速やかに消費指示電力量(Eo1)に近づけることができる。
さらに、電力管理用制御信号の変化があった後に、変化時絞り開度制御ステップ(S8、S81、S82)にて、高圧側冷媒圧力(Pd)の変動を抑制するように減圧装置(23)の絞り開度を制御するので、高圧側冷媒圧力(Pd)の異常上昇を抑制することができる。
従って、本請求項に記載の発明によれば、電力管理装置(10)が決定した消費指示電力量(Eo1)が変化しても、ヒートポンプサイクルの耐久寿命に悪影響を及ぼすことなく、消費電力量を速やかに変化させることができる。
また、請求項2に記載の発明では、冷媒を圧縮して吐出する圧縮機(21)と、圧縮機(21)から吐出された高圧冷媒と加熱対象流体とを熱交換させて加熱対象流体を加熱する加熱用熱交換器(22)と、加熱用熱交換器(22)から流出した冷媒を減圧させる減圧装置(23)と、を備えるヒートポンプサイクルの制御方法であって、
ヒートポンプサイクル(20)には、ヒートポンプサイクル(20)に消費させる消費指示電力量(Eo1)に相関を有する電力管理用制御信号を出力する電力管理装置(10)が接続されており、
電力管理用制御信号に応じて決定される目標冷媒吐出能力に近づくように、圧縮機(21)の冷媒吐出能力を制御する吐出能力制御ステップ(S3)と、
電力管理用制御信号が変化した際に、圧縮機(21)の吐出口側から減圧装置(23)の入口側へ至る冷媒流路を流通する高圧側冷媒の高圧側冷媒圧力(Pd)の変動を抑制するように、減圧装置(23)の絞り開度を制御する変化時絞り開度制御ステップ(S8、S81、S82)と、を有し、
変化時絞り開度制御ステップ(S8、S81、S82)は、電力管理用制御信号が変化してから、圧縮機(21)の単位時間当たりの回転数の変動量が予め定めた基準変動量以下となるまで、実行されることを特徴としている。
これによれば、請求項1に記載の発明と同様の効果を得ることができる。
また、請求項3に記載の発明では、冷媒を圧縮して吐出する圧縮機(21)と、圧縮機(21)から吐出された高圧冷媒と加熱対象流体とを熱交換させて加熱対象流体を加熱する加熱用熱交換器(22)と、加熱用熱交換器(22)から流出した冷媒を減圧させる減圧装置(23)と、を備えるヒートポンプサイクルの制御方法であって、
ヒートポンプサイクル(20)には、ヒートポンプサイクル(20)に消費させる消費指示電力量(Eo1)に相関を有する電力管理用制御信号を出力する電力管理装置(10)が接続されており、
電力管理用制御信号に応じて決定される目標冷媒吐出能力に近づくように、圧縮機(21)の冷媒吐出能力を制御する吐出能力制御ステップ(S3)と、
電力管理用制御信号が変化した際に、圧縮機(21)の吐出口側から減圧装置(23)の入口側へ至る冷媒流路を流通する高圧側冷媒の高圧側冷媒圧力(Pd)の変動を抑制するように、減圧装置(23)の絞り開度を制御する変化時絞り開度制御ステップ(S8、S81、S82)と、を有し、
変化時絞り開度制御ステップ(S8、S81、S82)は、電力管理用制御信号が変化してから、予め定めた基準経過時間(KTm)が経過するまで、実行されることを特徴としている。
これによれば、請求項1に記載の発明と同様の効果を得ることができる。
また、請求項11に記載の発明では、電力を生じさせる発電装置(12)と、電力を供給されることによって作動するヒートポンプサイクル(20)と、発電装置(12)にて発電された電力のうちヒートポンプサイクル(20)に消費させる消費指示電力量(Eo1)に相関を有する電力管理用制御信号を出力する電力管理装置(10)と、を備え、
ヒートポンプサイクル(20)は、冷媒を圧縮して吐出する圧縮機(21)、圧縮機(21)から吐出された高圧冷媒と加熱対象流体とを熱交換させて加熱対象流体を加熱する加熱用熱交換器(22)、加熱用熱交換器(22)から流出した冷媒を減圧させる減圧装置(23)、圧縮機(21)の作動を制御する吐出能力制御手段(40a)、および減圧装置(23)の作動を制御する絞り開度制御手段(40b)を有し、
吐出能力制御手段(40a)は、電力管理用制御信号に応じて決定される目標冷媒吐出能力に近づくように、圧縮機(21)の冷媒吐出能力を制御するものであり、
絞り開度制御手段(40b)は、電力管理用制御信号の変化があった後に、圧縮機(21)の吐出口側から減圧装置(23)の入口側へ至る冷媒流路を流通する高圧側冷媒の高圧側冷媒圧力(Pd)の変動を抑制するように、減圧装置(23)の絞り開度を制御するものである加熱システムを特徴としている。
これによれば、吐出能力制御手段(40a)が、電力管理用制御信号に応じて決定される目標冷媒吐出能力に近づくように、圧縮機(21)の冷媒吐出能力を制御するので、電力管理装置(10)が決定した消費指示電力量(Eo1)の変化に応じて圧縮機(21)の冷媒吐出能力を速やかに変化させることができる。従って、ヒートポンプサイクル(20)の実際の消費電力量を、速やかに消費指示電力量(Eo1)に近づけることができる。
さらに、電力管理用制御信号の変化があった後に、絞り開度制御手段(40b)が、圧縮機(21)の吐出口側から減圧装置(23)の入口側へ至る冷媒流路を流通する高圧側冷媒の高圧側冷媒圧力(Pd)の変動を抑制するように、減圧装置(23)の絞り開度を制御するので、高圧側冷媒圧力(Pd)の異常上昇を抑制することができる。
従って、本請求項に記載の発明によれば、ヒートポンプサイクル(20)の耐久寿命に悪影響を及ぼすことなく、ヒートポンプサイクル(20)の消費電力量を速やかに変更可能な加熱システムを提供することができる。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
第1実施形態のヒートポンプ式給湯システムの全体構成図である。 第1実施形態の電力管理装置のブロック図である。 第1実施形態のヒートポンプサイクルの電気制御部のブロック図である。 第1実施形態のヒートポンプサイクルの制御処理を示すフローチャートである。 第1実施形態の電力管理装置の制御処理を示すフローチャートである。 第1実施形態のヒートポンプサイクルにおける消費指示電力量の変化に伴う高圧側冷媒圧力の変化等を示すタイムチャートである。 第2実施形態のヒートポンプサイクルの制御処理を示すフローチャートである。 第3実施形態のヒートポンプサイクルの制御処理を示すフローチャートである。 第3実施形態のヒートポンプサイクルにおける消費指示電力量の変化に伴う高圧側冷媒圧力の変化等を示すタイムチャートである。
(第1実施形態)
以下、図面を用いて、本発明の第1実施形態を説明する。本実施形態では、ヒートポンプサイクル20によって給湯水(加熱対象流体)を加熱するヒートポンプ式給湯システム1(加熱システム)について説明する。このヒートポンプ式給湯システム1は、図1に示すように、ヒートポンプサイクル20へ供給される電力を管理する電力管理装置10を備えている。
電力管理装置10は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。
電力管理装置10の入力側には、商用電力の受電用端子11の他に、発電装置としての太陽光発電装置12が接続されている。さらに、電力管理装置10の入力側には、図2のブロック図に示すように、供給されている商用電力量Ei1を検出する商用電力量検出手段としての商用電力用電力計11a、および太陽光発電装置12の発電量Ei2を検出する太陽光発電量検出手段としての太陽光発電用電力計12aが接続されている。
一方、電力管理装置10の出力側には、ヒートポンプサイクル20の他に、その他の電動装置としての空調装置30が接続されている。より具体的には、本実施形態では、電力管理装置10の出力側に、ヒートポンプサイクル20の給湯用制御装置40の入力側が接続されている。さらに、電力管理装置10の出力側には、太陽光発電装置12にて発電した電力を電力会社に売電するための売電用端子13が接続されている。
そして、電力管理装置10は、上述した各電力計11a、12aの検出信号等に基づいて、ヒートポンプサイクル20(具体的には、給湯用制御装置40)に対して、ヒートポンプサイクル20に消費させる消費指示電力量Eo1を電力管理用制御信号として出力する。さらに、電力管理装置10は、発電装置の発電量および電動装置の消費電力量等に基づいて売電量Esを決定し、売電用の電力を売電用端子13へ出力する。
従って、本実施形態のヒートポンプ式給湯システム1は、発電装置(本実施形態では、太陽光発電装置12)や、その他の電動装置(本実施形態では、空調装置30)とともに、HEMS(ホーム・エネルギ・マネージメント・システム)を構成している。
次に、ヒートポンプサイクル20について説明する。ヒートポンプサイクル20は、給湯水を加熱する蒸気圧縮式の冷凍サイクルである。より詳細には、ヒートポンプサイクル20は、図1に示すように、圧縮機21、水−冷媒熱交換器22、電気式膨張弁23、および蒸発器24を順次配管で接続して構成されたものである。
また、本実施形態のヒートポンプサイクル20では、冷媒として二酸化炭素を採用しており、圧縮機21の吐出口側から電気式膨張弁23の入口側へ至るサイクルの高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成している。この冷媒には圧縮機21を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
圧縮機21は、ヒートポンプサイクル20において冷媒を吸入し、臨界圧力以上となるまで圧縮して吐出するもので、吐出容量が固定された固定容量型圧縮機構を電動モータにて駆動する電動圧縮機である。固定容量型圧縮機構としては、具体的に、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用することができる。
電動モータは、給湯用制御装置40から出力される制御信号によって、その回転数が制御されるもので、交流モータ、直流モータのいずれの形式を採用してもよい。そして、この回転数制御によって、圧縮機21の冷媒吐出能力が変更される。従って、本実施形態の電動モータは、圧縮機21の吐出能力変更手段を構成している。
圧縮機21の吐出口には、水−冷媒熱交換器22の冷媒通路入口側が接続されている。水−冷媒熱交換器22は、圧縮機21から吐出された高圧冷媒を流通させる冷媒通路、および後述する水循環回路25を循環する給湯水を流通させる水通路を有し、冷媒通路を流通する高圧冷媒と水通路を流通する給湯水とを熱交換させて、給湯水を加熱する加熱用熱交換器である。
このような水−冷媒熱交換器22の具体的構成としては、冷媒通路の外周に水通路を配置して冷媒と冷却水とを熱交換させる構成を採用してもよい。また、冷媒通路として冷媒を流通させる蛇行状のチューブあるいは複数本のチューブを採用し、隣り合うチューブ間に水通路を形成し、さらに、冷媒と冷却水との間の熱交換を促進するコルゲートフィンやプレートフィンを設ける構成を採用してもよい。
さらに、本実施形態では、水−冷媒熱交換器22として、冷媒通路を流通する冷媒の流れ方向と水通路を流通する給湯水の流れ方向が対向流となる対向流型の熱交換器を採用している。また、本実施形態のヒートポンプサイクル20は、前述の如く、超臨界冷凍サイクルを構成しているので、水−冷媒熱交換器22の冷媒通路では、冷媒は凝縮することなく超臨界状態のまま放熱する。
水−冷媒熱交換器22の冷媒通路出口には、電気式膨張弁23の入口側が接続されている。電気式膨張弁23は冷媒通路から流出した冷媒を減圧させる減圧装置である。
より具体的には、本実施形態の電気式膨張弁23は、絞り開度を変更可能に構成された弁体、およびこの弁体の絞り開度を変化させる電動アクチュエータを有する可変絞り機構で構成されている。この電動アクチュエータは、給湯用制御装置40から出力される制御信号によって、その作動が制御される。
電気式膨張弁23の出口には、蒸発器24の冷媒入口側が接続されている。蒸発器24は、電気式膨張弁23にて減圧された低圧冷媒と送風ファン24aにより送風された外気(室外空気)とを熱交換させることによって、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用の室外熱交換器である。送風ファン24aは、給湯用制御装置40から出力される制御電圧によって回転数(送風空気量)が制御される外気送風手段である。
蒸発器24の冷媒出口には、圧縮機21の吸入口側が接続されている。なお、蒸発器24の冷媒出口側から圧縮機21の吸入口側へ至る冷媒経路に、蒸発器24から流出した冷媒の気液を分離し、分離された気相冷媒を圧縮機21の吸入口側へ流出させるとともに、分離された液相冷媒を余剰冷媒として貯えるアキュムレータを配置してもよい。
水循環回路25は、ヒートポンプサイクル20の水−冷媒熱交換器22と貯湯タンク26との間で給湯水を循環させる水回路である。
貯湯タンク26は、水−冷媒熱交換器22にて加熱された給湯水を貯湯する貯湯手段である。より詳細には、貯湯タンク26は、耐食性に優れた金属(例えば、ステンレス合金)で形成されており、その外周を断熱材で覆う断熱構造あるいは二重タンクによる真空断熱構造等を有し、高温の給湯水を長時間保温することができる。
さらに、貯湯タンク26は、中空円柱状に形成され、軸方向が略鉛直方向に延びる縦長形状に形成されている。貯湯タンク26の上方側には、水−冷媒熱交換器22にて加熱された給湯水を流入させる給湯水入口、および貯湯タンク26内に貯湯されている給湯水を流出させる給湯水出口が設けられている。
給湯水出口には、図示しない温度調整弁を介して、キッチンや風呂場等に配置された蛇口、シャワーといった給湯端末が接続されている。温度調整弁は、貯湯タンク26から流出した高温の給湯水と低温の水道水とを混合させて、給湯端末から出湯される給湯水をユーザの所望の温度に調整するものである。
一方、貯湯タンク26の下方側には、水道水を流入させる水道水入口と、貯湯タンク26内の比較的低い温度の低温給湯水を水−冷媒熱交換器22側へ流出させる低温水出口が設けられている。また、水循環回路25には、低温水出口から吸入した低温給湯水を水−冷媒熱交換器22の水通路へ圧送する水ポンプ27が配置されている。水ポンプ27は、給湯用制御装置40から出力される制御電圧によって、その作動が制御される。
次に、図3のブロック図を用いて、給湯用制御装置40について説明する。給湯用制御装置40は、電力管理装置10と同様に、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成されている。そして、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行い、その出力側に接続された各種制御対象機器の作動を制御する。
給湯用制御装置40の出力側には、圧縮機21の電動モータ、電気式膨張弁23の電動アクチュエータ、送風ファン24a、および水ポンプ27等の各種制御対象機器が接続されている。
一方、給湯用制御装置40の入力側には、電力管理装置10の他に、タンク内温度センサ41、入水温度センサ42、沸上温度センサ43、蒸発器温度センサ44、外気温センサ45、吐出圧力センサ46等が接続され、これらのセンサ群の検出信号が給湯用制御装置40へ入力される。
タンク内温度センサ41は、貯湯タンク26内に貯湯された給湯水の温度を検出するタンク内温度検出手段である。より具体的には、本実施形態のタンク内温度センサ41は、貯湯タンク26内に上下方向に並んで配置された複数個(本実施形態では、5つ)の温度センサによって構成されている。
これにより、給湯用制御装置40では、複数のタンク内温度センサ41の出力信号によって、貯湯タンク26内の水位レベルに応じた給湯水の温度、および貯湯タンク26内の温度分布を検出することができる。
入水温度センサ42は、水−冷媒熱交換器22の水通路入口側の給湯水温度である入水温度Twiを検出する入水温度検出手段である。沸上温度センサ43は、水通路出口側の給湯水温度である沸上温度Twoを検出する沸上温度検出手段である。
蒸発器温度センサ44は、蒸発器24における冷媒蒸発温度(蒸発器24の温度)Teを検出する蒸発器温度検出手段である。より具体的には、本実施形態の蒸発器温度センサ44は、蒸発器24内の冷媒温度を検出している。もちろん、蒸発器温度検出手段として、蒸発器24の熱交換フィン温度を検出する温度検出手段を採用してもよいし、蒸発器24のその他の部位の温度を検出する温度検出手段を採用してもよい。
外気温センサ45は、蒸発器24にて低圧冷媒と熱交換する外気の温度である外気温Tamを検出する外気温検出手段である。吐出圧力センサ46は、圧縮機21の吐出口側から23の入口側へ至る冷媒流路を流通する高圧側冷媒の圧力(高圧側冷媒圧力)Pdを検出する高圧側冷媒圧力検出手段である。
さらに、給湯用制御装置40の入力側には、室内に配置されたリモコン(操作パネル)50が接続されている。このリモコン50には、ヒートポンプサイクル20の作動を要求する作動要求信号および停止を要求する停止要求信号を出力する作動スイッチ、各給湯端末から出湯される給湯水の温度(目標出湯温度)を設定する温度設定スイッチ等が設けられており、これらのスイッチの操作信号が給湯用制御装置40へ入力される。
また、本実施形態の給湯用制御装置40は、その出力側に接続された各種制御対象機器を制御する制御手段が一体的に構成されたものであるが、給湯用制御装置40のうちそれぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の作動を制御する制御手段を構成している。
例えば、給湯用制御装置40のうち、圧縮機21の作動(冷媒吐出能力)を制御する構成が吐出能力制御手段40aを構成しており、電気式膨張弁23の作動(絞り開度)を制御する構成が絞り開度制御手段40bを構成している。さらに、吐出能力制御手段40a、および絞り開度制御手段40bを、給湯用制御装置40に対して別の装置で構成してもよい。
次に、図4、図5のフローチャートを用いて、上記構成における本実施形態のヒートポンプ式給湯システム1の作動を説明する。
図4のフローチャートは、給湯用制御装置40が実行する制御処理を示している。この制御処理は、給湯用制御装置40の記憶回路に予め記憶されており、リモコン50の作動スイッチが投入(ON)されるとスタートする。なお、図4に示すフローチャートの各制御ステップは、給湯用制御装置40が有する各種の機能実現手段を構成している。このことは、後述する各実施形態においても同様である。
まず、ステップS1では、フラグ、タイマ等の初期化がなされ、続くステップS2では、操作パネルの操作信号および上述した制御用センサ群により検出された検出信号を読み込む。さらに、この制御処理では、ステップS20に示すように、電力管理装置10から出力された電力管理用制御信号(ヒートポンプサイクル20に消費させる消費指示電力量Eo1)を適時読み込んでいる。
ここで、電力管理装置10から出力される消費指示電力量Eo1について説明する。本実施形態のヒートポンプ式給湯システム1では、電力コストの低減のため、商用電力の電気料金が他の時間帯よりも安価に設定されている深夜電力時間帯(例えば、23時から翌朝7時に至る時間帯)に、商用電力によってヒートポンプサイクル20を作動させ、加熱された給湯水(湯)を貯湯タンク26に貯湯する沸上運転を実行する。
従って、電力管理装置10では、深夜電力時間帯には、ヒートポンプサイクル20が給湯水を加熱するために必要とする電力を消費指示電力量Eo1として出力する。このため、深夜電力時間帯に沸上運転が実行されている際は、消費指示電力量Eo1は、基本的には殆ど変化することなく一定の値となる。
さらに、深夜電力時間帯以外の時間帯では、余剰電力量Eexを有効に活用するために、電力管理装置10は、図5のフローチャートに示すように決定された値を消費指示電力量Eo1として出力する。なお、図5のフローチャートは、電力管理装置10が実行する制御処理のメインルーチンのサブルーチンとして実行される制御処理を示している。
図5のステップS31では、太陽光発電用電力計12aによって検出された発電量Ei2等の検出信号を読み込む。続くステップS32では、余剰電力量Eexを算定する。具体的には、ステップS32では、以下数式F1によって余剰電力量Eexを算定する。
Eex=Ei2−Es−Eo2 …(F1)
ここで、Esは、電力管理装置10が別の制御ルーチンで決定した売電量であり、Eo2は、電力管理装置10が別の制御ルーチンで決定した空調装置30に消費させる消費指示電力量Eo2である。
ステップS33では、Eexが0より大きいか否かを判定する。ステップS33にて、Eexが0より大きいと判定された際には、ステップS34へ進み、ヒートポンプサイクル20に消費させる消費指示電力量Eo1をEexに決定してステップS36へ進む。一方、ステップS33にて、Eexが0より大きくなっていないと判定された際には、ステップS35へ進み、消費指示電力量Eo1を0に決定してステップS36へ進む。
つまり、深夜電力時間帯以外の時間帯では、ステップS33、S34で説明したように、太陽光発電装置12にて発電された電力量の範囲内で、消費指示電力量Eo1が決定される。
ステップS36では、給湯用制御装置40に対して、消費指示電力量Eo1を出力してメインルーチンへ戻る。つまり、深夜電力時間帯以外の時間帯では、図5の制御ステップS36にて出力された消費指示電力量Eo1が、図4の制御ステップS20に示すように給湯用制御装置40に読み込まれる。
次に、図4のフローチャートに戻り、ステップS3〜S8では、電力管理装置10から出力された消費指示電力量Eo1、並びに、ステップS2で読み込んだ操作信号および検出信号に基づいて、給湯用制御装置40の出力側に接続されたヒートポンプサイクル20の各構成機器の制御状態を決定する。
まず、ステップS3では、圧縮機21の回転数(冷媒吐出能力)、すなわち圧縮機21の電動モータへ出力される制御信号を決定する。
より具体的には、ステップS3では、消費指示電力量Eo1および外気温センサ45によって検出された外気温Tamに基づいて、予め給湯用制御装置40が記憶している制御マップを参照して圧縮機21の目標回転数(目標冷媒吐出能力)を決定する。この制御マップでは、消費指示電力量Eo1の増加および外気温Tamの低下に伴って、圧縮機21の目標回転数(目標冷媒吐出能力)が増加するように決定される。
そして、実際の圧縮機21の回転数(冷媒吐出能力)が目標回転数(目標冷媒吐出能力)に近づくように、圧縮機21の回転数を予め定めた基準変化量の分だけ増減させる。従って、本実施形態の圧縮機21の回転数は、制御周期毎に基準変化量の分だけ変化する。さらに、本実施形態の制御ステップS3は、特許請求の範囲に記載された吐出能力制御ステップを構成している。
ステップS4では、送風ファン24aの回転数(送風能力)、すなわち送風ファン24aへ出力される制御電圧を決定する。送風ファン24aへ出力される制御電圧については、外気温Tamに基づいて、予め給湯用制御装置40に記憶された制御マップを参照して決定される。
ステップS5では、水ポンプ27の回転数(水圧送能力)、すなわち水ポンプ27へ出力される制御電圧を決定する。水ポンプ27へ出力される制御電圧については、フィードバック制御手法等を用いて、沸上温度センサ43によって検出された沸上温度Twoが目標沸上温度Tw(本実施形態では、90℃)となるように決定される。
この目標沸上温度Twは、貯湯タンク26に貯えられる給湯水の温度が、貯湯タンク26内のレジオネラ菌を死滅させることのできる温度以上、あるいは、レジオネラ菌の繁殖を抑制可能な温度以上となるように設定されている。
続くステップS6では、消費指示電力量Eo1が変化してからの経過時間Tmが、予め定めた基準経過時間KTm以上となっているか否かを判定する。ステップS6にて、経過時間Tmが基準経過時間KTm以上となっていると判定された際には、ステップS7へ進む。一方、ステップS6にて、経過時間Tmが基準経過時間KTm以上となっていないと判定された際には、ステップS8へ進む。
ここで、基準経過時間KTmは、消費指示電力量Eo1の変化に伴って圧縮機21の回転数を変化させた際に、圧縮機21の回転数の変化を完了可能な時間に設定されている。従って、経過時間Tmが基準経過時間KTm以上となっている場合には、圧縮機21の回転数変化は収束しており、回転数は略一定となっている。
ステップS7、およびステップS8では、電気式膨張弁23の絞り開度、すなわち電気式膨張弁23の電動アクチュエータへ出力される制御信号を決定する。まず、ステップS7では、圧縮機21の回転数が略一定となっている際に、電気式膨張弁23の電動アクチュエータへ出力される制御信号を決定する。
このステップS7では、外気温Tamおよび吐出圧力センサ46よって検出された高圧側冷媒圧力Pdに基づいて、予め給湯用制御装置40が記憶している制御マップを参照して、高圧側冷媒圧力Pdの目標高圧Pdoを決定する。目標高圧Pdoは、ヒートポンプサイクル20の成績係数(COP)が極大値となるように決定される。
さらに、図4のステップS7に記載された制御特性図に示すように、目標高圧Pdoと吐出冷媒圧力Pdとの偏差(Pdo−Pd)に応じて、電気式膨張弁23の絞り開度の変化量を決定して、ステップS9へ進む。
より詳細には、ステップS7では、偏差(Pdo−Pd)が0よりも大きくなるに伴って、絞り開度の増加量を増大させ、偏差(Pdo−Pd)が0よりも小さくなるに伴って、絞り開度の減少量を増大させるように変化量決定する。これにより、電気式膨張弁23の絞り開度は、高圧側冷媒圧力Pdが目標高圧Pdoに近づくように、すなわちヒートポンプサイクル20のCOPが極大値に近づくように制御される。
一方、ステップS8では、消費指示電力量Eo1が変化してから基準経過時間KTmが経過するまでの間に、電気式膨張弁23の電動アクチュエータへ出力される制御信号を決定する。ステップS8では、ステップS7と同様に、目標高圧Pdoを決定し、図4のステップS8に記載された制御特性図に示すように、偏差(Pdo−Pd)に応じて、電気式膨張弁23の絞り開度の変化量を決定して、ステップS9へ進む。
より詳細には、ステップS8では、消費指示電力量Eo1が増加する側に変更された際には、ステップS7よりも絞り開度の増加量を増大させ、消費指示電力量Eo1が減少する側に変更された際には、ステップS7よりも絞り開度の減少量を増大させるように変化量を決定する。つまり、ステップS8では、ステップS7よりも、単位時間当たりの絞り開度の変化量を増加させている。
以上の説明から明らかなように、本実施形態の制御ステップS7は、特許請求の範囲に記載された通常時絞り開度制御ステップを構成しており、制御ステップS8は、特許請求の範囲に記載された変化時絞り開度制御ステップを構成している。
次に、ステップS9では、ステップS3〜S8にて決定された制御信号および制御電圧を各種制御対象機器へ出力する。続くステップS10では、予め定めた作動停止条件が成立したか否かを判定し、ステップS10にて作動停止条件が成立していると判定された際にはヒートポンプサイクル20の作動を停止させ、作動停止条件が成立していないと判定された際には、ステップS2へ戻る。
ここで、作動停止条件としては、深夜電力時間帯では、タンク内温度センサ41のうち所定のセンサによって検出された給湯水の温度が予め定めた基準温度以上となった際に、成立するものとすればよい。また、深夜電力時間帯以外の時間帯では、消費指示電力量Eo1が0となった際に、作動停止条件が成立するものとすればよい。さらに、ユーザが作動スイッチをOFFとした際にも、作動停止条件が成立するものとすればよい。
従って、本実施形態のヒートポンプサイクル20が作動すると、圧縮機21から吐出された高温高圧冷媒が水−冷媒熱交換器22の冷媒通路へ流入する。冷媒通路へ流入した高温高圧冷媒は、水ポンプ27によって水−冷媒熱交換器22の水通路へ圧送された給湯水と熱交換する。これにより、水−冷媒熱交換器22へ流入した給湯水が目標沸上温度Twとなるように加熱される。
水−冷媒熱交換器22から流出した高圧冷媒は、電気式膨張弁23にて減圧される。電気式膨張弁23にて減圧された冷媒は、蒸発器24へ流入し、送風ファン24aから送風された外気から吸熱して蒸発する。蒸発器24から流出した冷媒は、圧縮機21へ吸入されて再び圧縮される。
一方、水−冷媒熱交換器22にて加熱された給湯水は、貯湯タンク26の上方側へ流入して貯湯される。なお、本実施形態の貯湯タンク26は、その軸方向が略鉛直方向に延びる縦長形状に形成されているので、沸上運転が終了した際の貯湯タンク26内の給湯水には、上方側から下方側へ向かって徐々に温度低下する温度分布が生じることになる。
貯湯タンク26の上方側に貯湯された高温の給湯水は、温度調整弁にてユーザの所望の温度に調整されて、各給湯端末から出湯される。
以上の如く、本実施形態のヒートポンプ式給湯システム1によれば、ユーザの所望の温度に調整された給湯水を各給湯端末から出湯することができる。この際、電力管理装置10が、深夜電力時間帯には、安価な商用電力によってヒートポンプサイクル20を作動させるように消費指示電力量Eo1を出力するので、給湯水を加熱するために必要な電力コストを低減させることができる。
さらに、深夜電力時間帯以外の時間帯であっても、電力管理装置10が、余剰電力量Eexに応じて消費指示電力量Eo1を出力するので、余剰電力を有効に活用して、給湯水を加熱することができる。
これによれば、深夜よりも外気温が高くなる昼間にヒートポンプサイクル20を作動させることができるので、深夜電力時間帯よりも外気からの吸熱量を増加させてヒートポンプサイクルCOPを向上させることができる。さらに、深夜電力時間帯のヒートポンプサイクルの作動時間を短縮させることができる。従って、より一層、電力コストを低減させることができる。
ところが、太陽光発電装置12の発電量Ei2は日射条件の変化等によって変化しやすい。このため、電力管理装置10が、深夜電力時間帯以外の時間帯に出力する消費指示電力量Eo1も変化しやすい。従って、ヒートポンプサイクル20に消費指示電力量Eo1を確実に消費させるためには、消費指示電力量Eo1に応じて、ヒートポンプサイクル20の実際の消費電力量を速やかに変化させる必要がある。
さらに、ヒートポンプサイクル20の実際の消費電力量を速やかに変化させる手段として、圧縮機21の回転数(冷媒吐出能力)を変化させる手段が考えられるものの、圧縮機21の回転数(冷媒吐出能力)を急変させると、高圧側冷媒圧力Pdの異常上昇を招いてしまうことがある。その結果、ヒートポンプサイクル20の耐久寿命に悪影響を及ぼしてしまうおそれがある。
これに対して、本実施形態のヒートポンプ式給湯システム1では、給湯用制御装置40(具体的には、吐出能力制御手段40a)が、吐出能力制御ステップ(制御ステップS3)にて説明したように、消費指示電力量Eo1によって決定される目標冷媒吐出能力に近づくように圧縮機21の冷媒吐出能力を制御する。従って、電力管理装置10が決定した消費指示電力量Eo1の変化に応じて圧縮機21の冷媒吐出能力を速やかに変化させることができる。
さらに、消費指示電力量Eo1が変化した際に、給湯用制御装置40(具体的には、絞り開度制御手段40b)が、変化時絞り開度制御ステップ(制御ステップS8)にて説明したように、通常時絞り開度制御ステップ(制御ステップS7)よりも単位時間当たりの電気式膨張弁23の絞り開度の変化量を増加させる。従って、消費指示電力量Eo1が変化した際に、高圧側冷媒圧力Pdの変動を抑制するように、電気式膨張弁23の絞り開度を変更することができる。
このことを図6のタイムチャートを用いてより詳細に説明する。消費指示電力量Eo1が変化すると、消費指示電力量Eo1によって決定される目標冷媒吐出能力に近づくように圧縮機21の回転数も変化する。そして、この圧縮機21の回転数変化に応じて、電気式膨張弁23の開度も変化する。
この際、太実線で示す変化時絞り開度制御ステップでは、破線で示す通常時絞り開度制御ステップよりも、単位時間当たりの絞り開度の変化量を増加させるので、速やかに絞り開度が変化する。従って、変化時絞り開度制御ステップでは、通常時絞り開度制御ステップよりも高圧側冷媒圧力Pdの変動を抑制することができる。
その結果、本実施形態のヒートポンプ式給湯システム1(本実施形態のヒートポンプサイクルの制御方法)によれば、電力管理装置10が決定した消費指示電力量Eo1が変化しても、ヒートポンプサイクル20の耐久寿命に悪影響を及ぼすことなく、ヒートポンプサイクル20の実際の消費電力量を速やかに変化させることができる。
また、本実施形態のヒートポンプ式給湯システム1では、電力管理装置10から出力された消費指示電力量Eo1が変化してから基準経過時間KTmが経過するまで、変化時絞り開度制御ステップ(制御ステップS8)が実行される。従って、圧縮機21の単位時間当たりの回転数変動が比較的少ない時に、不必要に電気式膨張弁23の絞り開度の変化量を増加させてしまうことがない。
また、本実施形態のヒートポンプサイクル20では、冷媒として二酸化炭素を採用し、超臨界冷凍サイクルを構成しているので、高圧側冷媒圧力Pdが高くなりやすい。従って、本実施形態のように、消費指示電力量Eo1が変化した際に、高圧側冷媒圧力Pdの異常上昇を抑制できることは、ヒートポンプサイクル20の信頼性を確保するために極めて有効である。
(第2実施形態)
本実施形態では、第1実施形態に対して、図7に示すように、給湯用制御装置40が実行する制御処理を変更した例を説明する。図7は、第1実施形態で説明した図4に対応するフローチャートであり、第1実施形態と同一もしくは均等の制御処理が実行される制御ステップには、同一の符号を付している。このことは、以下のフローチャートにおいても同様である。
本実施形態の制御処理では、図7に示すように、ステップS2にて操作信号および検出信号を読み込んだ後、ステップS21にて、消費指示電力量Eo1の変化の有無を判定する。ステップS21にて、消費指示電力量Eo1の変化が有ったと判定された際には、ステップS22へ進み、高圧側冷媒圧力Pdが直前高圧側冷媒圧力Pd_OLDとして記憶されて、ステップS3へ進む。一方、ステップS21にて、消費指示電力量Eo1の変化が無かったと判定された際には、ステップS3へ進む。
ここで、ステップS21にて、消費指示電力量Eo1の変化が有ったと判定された際には、ステップS3における圧縮機21の回転数(冷媒吐出能力)の制御は実行されていない。従って、制御ステップS22にて記憶される直前高圧側冷媒圧力Pd_OLDは、消費指示電力量Eo1が変化する直前の高圧側冷媒圧力Pdに等しい。
また、本実施形態の制御処理では、ステップS6にて、経過時間Tmが基準経過時間KTm以上となっていると判定された際には、ステップS7へ進む。一方、ステップS6にて、経過時間Tmが基準経過時間KTm以上となっていないと判定された際には、ステップS81へ進む。
ステップS7では、第1実施形態と同様に、フィードバック制御手法等を用いて、ヒートポンプサイクル20の成績係数(COP)が極大値となるように、電気式膨張弁23の絞り開度の変化量が決定されてステップS9へ進む。ステップS81では、フィードバック制御手法等を用いて、高圧側冷媒圧力Pdが直前高圧側冷媒圧力Pd_OLDに維持されるように、電気式膨張弁23の絞り開度の変化量が決定されてステップS9へ進む。
つまり、本実施形態では、制御ステップS81が、特許請求の範囲に記載された変化時絞り開度制御ステップを構成している。その他のヒートポンプ式給湯システム1の構成および作動は、第1実施形態と同様である。
従って、本実施形態のヒートポンプ式給湯システム1を作動させても、第1実施形態と同様に、ユーザの所望の温度に調整された給湯水を各給湯端末から出湯することができる。さらに、給湯水を加熱するために必要な電力コストを低減させることができる。
また、本実施形態のヒートポンプ式給湯システム1によれば、変化時絞り制御ステップ(制御ステップS81)にて、高圧側冷媒圧力Pdが直前高圧側冷媒圧力Pd_OLDに維持されるように、給湯用制御装置40が電気式膨張弁23の絞り開度の変化量を決定する。従って、高圧側冷媒圧力Pdの変動を抑制するように、電気式膨張弁23の絞り開度を変更することができる。
その結果、第1実施形態と同様に、電力管理装置10が決定した消費指示電力量Eo1が変化しても、ヒートポンプサイクル20の耐久寿命に悪影響を及ぼすことなく、ヒートポンプサイクル20の実際の消費電力量を速やかに変化させることができる。
(第3実施形態)
本実施形態では、第1実施形態に対して、図8に示すように、給湯用制御装置40が実行する制御処理を変更した例を説明する。図8は、第1実施形態で説明した図4に対応するフローチャートである。
本実施形態の制御処理では、図8に示すように、ステップS6にて、経過時間Tmが基準経過時間KTm以上となっていると判定された際には、ステップS71へ進む。一方、ステップS6にて、経過時間Tmが基準経過時間KTm以上となっていないと判定された際には、ステップS82へ進む。
ステップS71では、第1実施形態と同様に、フィードバック制御手法等を用いて、ヒートポンプサイクル20の成績係数(COP)が極大値となるように、電気式膨張弁23の絞り開度の変化量が決定されるとともに、待ち時間Aが10カウントに設定されてステップS83へ進む。ステップS82では、ステップS71と同様に、電気式膨張弁23の絞り開度の変化量が決定されるとともに、待ち時間Aが1カウントに設定されてステップS83へ進む。
ステップ83では、制御周期τが待ち時間Aより大きくなっているか否かを判定する。ステップ83にて、制御周期τが待ち時間Aより大きくなっていると判定された際には、ステップS85へ進む。ステップS85では、電気式膨張弁23の電動アクチュエータへ制御信号を出力するとともに、制御周期τ=0に設定してステップS91へ進む。
一方、ステップ83にて、制御周期τが待ち時間Aより大きくなっていないと判定された際には、ステップS84へ進む。ステップS85では、制御周期τに1カウントを加えてステップS91へ進む。ステップS91では、ステップS3〜S5にて決定された制御信号および制御電圧が、電気式膨張弁23を除く制御対象機器へ出力される。
つまり、本実施形態では、制御ステップS71が、特許請求の範囲に記載された通常時絞り開度制御ステップを構成しており、制御ステップS82が、特許請求の範囲に記載された変化時絞り開度制御ステップを構成している。その他のヒートポンプ式給湯システム1の構成および作動は、第1実施形態と同様である。
従って、本実施形態のヒートポンプ式給湯システム1を作動させても、第1実施形態と同様に、ユーザの所望の温度に調整された給湯水を各給湯端末から出湯することができる。さらに、給湯水を加熱するために必要な電力コストを低減させることができる。
また、本実施形態のヒートポンプ式給湯システム1によれば、変化時絞り制御ステップ(制御ステップS82)にて説明したように、通常時絞り制御ステップ(制御ステップS71)よりも、待ち時間Aを短縮させる。従って、消費指示電力量Eo1が変化した際に、高圧側冷媒圧力Pdの変動を抑制するように、電気式膨張弁23の絞り開度を変更することができる。
このことを図9のタイムチャートを用いてより詳細に説明する。消費指示電力量Eo1が変化すると、消費指示電力量Eo1によって決定される目標冷媒吐出能力に近づくように圧縮機21の回転数も変化する。そして、この圧縮機21の回転数変化に応じて、電気式膨張弁23の開度も変化する。
この際、太実線で示す変化時絞り開度制御ステップでは、破線で示す通常時絞り開度制御ステップよりも、待ち時間Aが短いので、速やかに絞り開度が変化する。つまり、変化時絞り開度制御ステップでは、電気式膨張弁23の絞り開度を変化させる制御周期τを、通常時絞り開度制御ステップよりも短縮させることができる。
換言すると、変化時絞り開度制御ステップでは、電気式膨張弁23の絞り開度を変化させる制御周期τを、消費指示電力量Eo1が変化する直前よりも短縮させることができる。従って、通常時絞り開度制御ステップよりも高圧側冷媒圧力Pdの変動を抑制することができる。
その結果、本実施形態のヒートポンプ式給湯システム1よれば、第1実施形態と同様に、電力管理装置10が決定した消費指示電力量Eo1が変化しても、ヒートポンプサイクル20の耐久寿命に悪影響を及ぼすことなく、ヒートポンプサイクル20の実際の消費電力量を速やかに変化させることができる。
(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(1)上述の実施形態では、電力管理装置10から出力された電力管理用制御信号(消費指示電力量Eo1)が変化してから基準経過時間KTmが経過するまで、変化時絞り開度制御ステップを実行させる例を説明したが、変化時絞り開度制御ステップの実行はこれに限定されない。
例えば、圧縮機21の回転数を検出する回転計を備え、電力管理用制御信号(消費指示電力量Eo1)が変化してから、回転計の検出値の単位時間当たりの変動量が予め定めた基準変動量以下となるまで、変化時絞り開度制御ステップを実行するようにしてもよい。
(2)上述の実施形態の制御ステップS7等では、ヒートポンプサイクル20のCOPが極大値となるように目標高圧Pdoを決定し、高圧側冷媒圧力Pdが目標高圧Pdoに近づくように、電気式膨張弁23の絞り開度を制御した例を説明したが、電気式膨張弁23の制御はこれに限定されない。
例えば、外気温Tamおよび圧縮機21から吐出された冷媒の吐出冷媒温度Tdに基づいて、制御マップを参照してヒートポンプサイクル20のCOPが極大値となるように目標温度Tdoを決定し、吐出冷媒温度Tdが目標温度Tdoに近づくように、電気式膨張弁23の絞り開度を制御してもよい。
(3)上述の実施形態では、電力管理装置10からヒートポンプサイクル20の給湯用制御装置40へ出力される電力管理用制御信号として、消費指示電力量Eo1を用いた例を説明したが、電力管理用制御信号はこれに限定されない。
すなわち、電力管理用制御信号は、消費指示電力量Eo1に相関を有する信号であって、給湯用制御装置40が圧縮機21の目標回転数(目標冷媒吐出能力)を決定可能な信号であればよい。例えば、消費指示電力量Eo1の大きさを段階的に区切ったレベル値に変換し、このレベル値を、電力管理用制御信号として用いてもよい。
(4)上述の実施形態では、電力管理装置10が別の制御ルーチンで決定する売電量Esの詳細については説明していないが、売電量Esについては、余剰電力量Eexの不必要な変動を抑制するように、発電量Ei2の変化に応じて決定してもよい。これによれば、圧縮機21の頻繁な回転数変化や電気式膨張弁23の頻繁な絞り開度変化を抑制することができ、より一層、ヒートポンプサイクル20の耐久寿命を向上させることができる。
(5)上述の実施形態では、加熱対象流体として給湯水を加熱する加熱システム(ヒートポンプ式給湯システム1)について説明したが、本発明の加熱システムは、これに限定されない。例えば、加熱対象流体として室内送風空気を加熱する空調システムとして構成されていてもよい。
(6)上述の実施形態では、電力管理装置10に接続される発電装置として、太陽光発電装置12を採用した例を説明したが、発電装置はこれに限定されず、風力発電装置等を採用してもよい。
また、上述の実施形態では、電力管理装置10に接続される電動装置として、ヒートポンプサイクル20、空調装置30を採用した例を説明したが、電動装置はこれに限定されない。例えば、電動装置として、冷蔵・冷凍装置等を採用してもよい。さらに、電動装置は、必ずしも複数設けられている必要はなく、1つの電動装置(例えば、ヒートポンプサイクル20)が接続されていてもよい。
また、上述の実施形態では、電力管理装置10として、売電機能を有するもの採用した例を説明したが、売電機能は本発明の効果を得るために必須の機能ではない。さらに、電力管理装置10に、発電装置にて発電された電力のうち余剰電力を蓄える蓄電手段を接続してもよい。
例えば、売電機能を有しておらず、かつ、1つの電動装置が接続されている電力管理装置10では、図5で説明したように消費指示電力量を決定することができない。そこで、電力管理装置10が、商用電力の消費電力のピーク値(瞬間的な最大消費電流)が予め定めた基準値を超えないように、消費指示電力量を決定するようになっていてもよい。
(7)上述の実施形態のヒートポンプサイクル20では、冷媒として二酸化炭素を採用し、超臨界冷凍サイクルを構成しているが、これに限らず、冷媒としてフロン系冷媒、HC系冷媒等を採用して、サイクルの高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成してもよい。
10 電力管理装置
12 太陽光発電装置(発電装置)
20 ヒートポンプサイクル
21 圧縮機
22 水−冷媒熱交換器(加熱用熱交換器)
23 電気式膨張弁(減圧装置)
40 給湯用制御装置
40a 吐出能力制御手段
40b 絞り開度制御手段

Claims (11)

  1. 冷媒を圧縮して吐出する圧縮機(21)と、
    前記圧縮機(21)から吐出された高圧冷媒と加熱対象流体とを熱交換させて前記加熱対象流体を加熱する加熱用熱交換器(22)と、
    前記加熱用熱交換器(22)から流出した冷媒を減圧させる減圧装置(23)と、を備えるヒートポンプサイクルの制御方法であって、
    前記ヒートポンプサイクル(20)には、前記ヒートポンプサイクル(20)に消費させる消費指示電力量(Eo1)に相関を有する電力管理用制御信号を出力する電力管理装置(10)が接続されており、
    前記電力管理用制御信号に応じて決定される目標冷媒吐出能力に近づくように、前記圧縮機(21)の冷媒吐出能力を制御する吐出能力制御ステップ(S3)と、
    前記電力管理用制御信号の変化があった後に、前記圧縮機(21)の吐出口側から前記減圧装置(23)の入口側へ至る冷媒流路を流通する高圧側冷媒の高圧側冷媒圧力(Pd)の変動を抑制するように、前記減圧装置(23)の絞り開度を制御する変化時絞り開度制御ステップ(S8、S81、S82)と、を有することを特徴とするヒートポンプサイクルの制御方法。
  2. 冷媒を圧縮して吐出する圧縮機(21)と、
    前記圧縮機(21)から吐出された高圧冷媒と加熱対象流体とを熱交換させて前記加熱対象流体を加熱する加熱用熱交換器(22)と、
    前記加熱用熱交換器(22)から流出した冷媒を減圧させる減圧装置(23)と、を備えるヒートポンプサイクルの制御方法であって、
    前記ヒートポンプサイクル(20)には、前記ヒートポンプサイクル(20)に消費させる消費指示電力量(Eo1)に相関を有する電力管理用制御信号を出力する電力管理装置(10)が接続されており、
    前記電力管理用制御信号に応じて決定される目標冷媒吐出能力に近づくように、前記圧縮機(21)の冷媒吐出能力を制御する吐出能力制御ステップ(S3)と、
    前記電力管理用制御信号が変化した際に、前記圧縮機(21)の吐出口側から前記減圧装置(23)の入口側へ至る冷媒流路を流通する高圧側冷媒の高圧側冷媒圧力(Pd)の変動を抑制するように、前記減圧装置(23)の絞り開度を制御する変化時絞り開度制御ステップ(S8、S81、S82)と、を有し、
    前記変化時絞り開度制御ステップ(S8、S81、S82)は、前記電力管理用制御信号が変化してから、前記圧縮機(21)の単位時間当たりの回転数の変動量が予め定めた基準変動量以下となるまで、実行されることを特徴とするヒートポンプサイクルの制御方法。
  3. 冷媒を圧縮して吐出する圧縮機(21)と、
    前記圧縮機(21)から吐出された高圧冷媒と加熱対象流体とを熱交換させて前記加熱対象流体を加熱する加熱用熱交換器(22)と、
    前記加熱用熱交換器(22)から流出した冷媒を減圧させる減圧装置(23)と、を備えるヒートポンプサイクルの制御方法であって、
    前記ヒートポンプサイクル(20)には、前記ヒートポンプサイクル(20)に消費させる消費指示電力量(Eo1)に相関を有する電力管理用制御信号を出力する電力管理装置(10)が接続されており、
    前記電力管理用制御信号に応じて決定される目標冷媒吐出能力に近づくように、前記圧縮機(21)の冷媒吐出能力を制御する吐出能力制御ステップ(S3)と、
    前記電力管理用制御信号が変化した際に、前記圧縮機(21)の吐出口側から前記減圧装置(23)の入口側へ至る冷媒流路を流通する高圧側冷媒の高圧側冷媒圧力(Pd)の変動を抑制するように、前記減圧装置(23)の絞り開度を制御する変化時絞り開度制御ステップ(S8、S81、S82)と、を有し、
    前記変化時絞り開度制御ステップ(S8、S81、S82)は、前記電力管理用制御信号が変化してから、予め定めた基準経過時間(KTm)が経過するまで、実行されることを特徴とするヒートポンプサイクルの制御方法。
  4. サイクルの成績係数(COP)が極大値に近づくように、前記減圧装置(23)の絞り開度を制御する通常時絞り開度制御ステップ(S7)を有し、
    前記変化時絞り開度制御ステップ(S8)では、前記通常時絞り開度制御ステップ(S7)よりも、単位時間当たりの前記絞り開度の変化量を増加させることを特徴とする請求項1ないし3のいずれか1つに記載のヒートポンプサイクルの制御方法。
  5. 前記ヒートポンプサイクル(20)は、前記高圧側冷媒圧力(Pd)を検出する高圧側冷媒圧力検出手段(46)を備え、
    前記電力管理用制御信号が変化する直前の高圧側冷媒圧力(Pd)を直前高圧側冷媒圧力(Pd_OLD)としたときに、
    前記変化時絞り開度制御ステップ(S81)では、前記高圧側冷媒圧力(Pd)が前記直前高圧側冷媒圧力(Pd_OLD)に維持されるように、前記減圧装置(23)の絞り開度を変化させることを特徴とする請求項1ないし3のいずれか1つに記載のヒートポンプサイクルの制御方法。
  6. 前記変化時絞り開度制御ステップ(S82)では、前記減圧装置(23)の絞り開度を変化させる制御周期(τ)を、前記電力管理用制御信号が変化する直前よりも短縮させることを特徴とする請求項1ないし3のいずれか1つに記載のヒートポンプサイクルの制御方法。
  7. 前記電力管理用制御信号は、前記ヒートポンプサイクル(20)に消費させる消費指示電力量(Eo1)であることを特徴とする請求項1ないし6のいずれか1つに記載のヒートポンプサイクルの制御方法。
  8. 前記ヒートポンプサイクル(20)は、前記高圧側冷媒圧力(Pd)が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成していることを特徴とする請求項1ないし7のいずれか1つに記載のヒートポンプサイクルの制御方法。
  9. 前記冷媒は、二酸化炭素であることを特徴とする請求項8に記載のヒートポンプサイクルの制御方法。
  10. 前記電力管理装置(10)には、電力を生じさせる発電装置(12)が接続されており、
    前記電力管理装置(10)は、前記発電装置(12)の発電量に基づいて、前記電力管理用制御信号を決定するものであることを特徴とする請求項1ないし9のいずれか1つに記載のヒートポンプサイクルの制御方法。
  11. 電力を生じさせる発電装置(12)と、
    電力を供給されることによって作動するヒートポンプサイクル(20)と、
    前記発電装置(12)にて発電された電力のうち前記ヒートポンプサイクル(20)に消費させる消費指示電力量(Eo1)に相関を有する電力管理用制御信号を出力する電力管理装置(10)と、を備え、
    前記ヒートポンプサイクル(20)は、冷媒を圧縮して吐出する圧縮機(21)、前記圧縮機(21)から吐出された高圧冷媒と加熱対象流体とを熱交換させて前記加熱対象流体を加熱する加熱用熱交換器(22)、前記加熱用熱交換器(22)から流出した冷媒を減圧させる減圧装置(23)、前記圧縮機(21)の作動を制御する吐出能力制御手段(40a)、および前記減圧装置(23)の作動を制御する絞り開度制御手段(40b)を有し、
    前記吐出能力制御手段(40a)は、前記電力管理用制御信号に応じて決定される目標冷媒吐出能力に近づくように、前記圧縮機(21)の冷媒吐出能力を制御するものであり、
    前記絞り開度制御手段(40b)は、前記電力管理用制御信号の変化があった後に、前記圧縮機(21)の吐出口側から前記減圧装置(23)の入口側へ至る冷媒流路を流通する高圧側冷媒の高圧側冷媒圧力(Pd)の変動を抑制するように、前記減圧装置(23)の絞り開度を制御するものであることを特徴とする加熱システム。
JP2014260333A 2014-12-24 2014-12-24 ヒートポンプサイクルの制御方法、および加熱システム Expired - Fee Related JP6380088B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014260333A JP6380088B2 (ja) 2014-12-24 2014-12-24 ヒートポンプサイクルの制御方法、および加熱システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014260333A JP6380088B2 (ja) 2014-12-24 2014-12-24 ヒートポンプサイクルの制御方法、および加熱システム

Publications (2)

Publication Number Publication Date
JP2016121818A JP2016121818A (ja) 2016-07-07
JP6380088B2 true JP6380088B2 (ja) 2018-08-29

Family

ID=56326634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014260333A Expired - Fee Related JP6380088B2 (ja) 2014-12-24 2014-12-24 ヒートポンプサイクルの制御方法、および加熱システム

Country Status (1)

Country Link
JP (1) JP6380088B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6847023B2 (ja) * 2017-11-22 2021-03-24 大阪瓦斯株式会社 ヒートポンプ装置の制御方法、及びヒートポンプ装置
JP6847022B2 (ja) * 2017-11-22 2021-03-24 大阪瓦斯株式会社 ヒートポンプ装置の制御方法、及びヒートポンプ装置
FR3079101B1 (fr) 2018-03-16 2020-11-06 Frecnsys Structure de transducteur pour suppression de source dans les dispositifs de filtres a ondes acoustiques de surface
CN110345604B (zh) * 2019-07-12 2020-12-08 四川虹美智能科技有限公司 一种中央空调监控方法及装置
JP7401810B1 (ja) * 2022-09-20 2023-12-20 ダイキン工業株式会社 熱源ユニットおよび冷凍装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215434A (ja) * 1991-12-12 1993-08-24 Hitachi Ltd 空調装置
JP3622817B2 (ja) * 1997-02-28 2005-02-23 株式会社富士通ゼネラル 空気調和機の制御方法
JP2002340440A (ja) * 2001-05-18 2002-11-27 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
JP2004053118A (ja) * 2002-07-19 2004-02-19 Matsushita Electric Ind Co Ltd ヒートポンプ風呂給湯機
JP4465986B2 (ja) * 2003-06-06 2010-05-26 株式会社デンソー ヒートポンプ式給湯装置

Also Published As

Publication number Publication date
JP2016121818A (ja) 2016-07-07

Similar Documents

Publication Publication Date Title
JP6380088B2 (ja) ヒートポンプサイクルの制御方法、および加熱システム
JP4158820B2 (ja) 電力量制御装置
JP5642207B2 (ja) 冷凍サイクル装置及び冷凍サイクル制御方法
JP4161968B2 (ja) ヒートポンプ給湯装置
JP5400177B2 (ja) ヒートポンプシステム
US8286438B2 (en) System and method for controlling a refrigeration desuperheater
WO2012039153A1 (ja) 冷房給湯装置及び冷房給湯方法
CN102449408A (zh) 空调装置
JP2010127568A (ja) 異常検出装置およびそれを備えた冷凍サイクル装置
EP3252382A1 (en) Apparatus for space heating and warm water supply
CN105823213A (zh) 热泵热水器
EP3252383A1 (en) Apparatus for space heating and warm water supply
JP2010243111A (ja) ヒートポンプ式給湯機
JP2011099591A (ja) 冷凍装置
JP2002147846A (ja) 貯湯式ヒートポンプ給湯機
JP6589946B2 (ja) 冷凍装置
JP6576566B2 (ja) 空気調和装置
JP6137016B2 (ja) ヒートポンプ式給湯機、およびヒートポンプ式給湯機の制御方法
US20220128285A1 (en) Water regulator
CN112283895B (zh) 一种空调器和净化器自启动噪声的控制方法
WO2018163347A1 (ja) 地熱ヒートポンプ装置
JP5772665B2 (ja) ヒートポンプ式給湯装置
JP6507598B2 (ja) 空調システム
JP6394813B2 (ja) 冷凍サイクルシステム
JP5842718B2 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R151 Written notification of patent or utility model registration

Ref document number: 6380088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees