WO2018163347A1 - 地熱ヒートポンプ装置 - Google Patents

地熱ヒートポンプ装置 Download PDF

Info

Publication number
WO2018163347A1
WO2018163347A1 PCT/JP2017/009420 JP2017009420W WO2018163347A1 WO 2018163347 A1 WO2018163347 A1 WO 2018163347A1 JP 2017009420 W JP2017009420 W JP 2017009420W WO 2018163347 A1 WO2018163347 A1 WO 2018163347A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
refrigerant
heat exchanger
hot water
evaporation capacity
Prior art date
Application number
PCT/JP2017/009420
Other languages
English (en)
French (fr)
Inventor
慶郎 青▲柳▼
一隆 鈴木
耕司 松澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP17899277.2A priority Critical patent/EP3594588B1/en
Priority to PCT/JP2017/009420 priority patent/WO2018163347A1/ja
Priority to JP2019504218A priority patent/JPWO2018163347A1/ja
Publication of WO2018163347A1 publication Critical patent/WO2018163347A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1072Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/238Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/45Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based remotely accessible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/08Electric heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/11Geothermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/227Temperature of the refrigerant in heat pump cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/281Input from user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/002Compression machines, plants or systems with reversible cycle not otherwise provided for geothermal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/004Outdoor unit with water as a heat sink or heat source

Definitions

  • the present invention relates to a geothermal heat pump device that uses a ground as a heat source, circulates a heat medium in an underground heat exchanger, collects heat with a heat pump, and supplies hot water to a load side.
  • a geothermal heat pump system that uses ground and lakes as a heat source, circulates a heat medium through a ground heat exchanger, collects and dissipates heat with a heat pump, and supplies hot water for daily use or heating to the load side is a device that uses renewable energy.
  • geothermal heat which is stable throughout the year, is used, it is considered to be a device that is highly efficient, has a low running cost, and can reduce CO2 emissions, and has attracted attention in recent years.
  • the underground heat exchanger for heat collection buried in the ground may be frozen and broken. Therefore, the outlet temperature of the heat medium water can be measured by the temperature sensor, the underground temperature can be calculated from the outlet temperature of the heat medium water, and the limit value of heat extraction / radiation by the underground heat exchanger can be set. Further, the operation of the heat pump can be stopped or suppressed so as not to exceed the set limit value (see, for example, Patent Document 1).
  • the limit value is set by measuring the outlet temperature of the heat transfer medium with a temperature sensor and calculating the underground temperature from the outlet temperature of the heat transfer medium using a control device that incorporates a program and pre-input data. Then, the limit value of heat extraction is set. Furthermore, the limit value is determined based on the underground temperature of the previous year. And the technique which grasps
  • the above-mentioned conventional system requires a huge amount of programs and a large amount of data in order to cope with environmental conditions such as the location where the device is used, climate, and various ground and underground heat exchangers. Therefore, a complicated control device is required. And when appropriate control was not possible, there was a problem of causing a non-warming complaint that the underground heat exchanger would not freeze and be warmed.
  • the present invention has been made to solve the above-described problems, and sets a limit value for heat collection from the ground by a simple method using detection data obtained from the geothermal heat pump device and its specifications.
  • An object of the present invention is to provide a comfortable air-conditioning hot water supply that satisfies the user's request without causing freezing and breaking of the underground heat exchanger.
  • the geothermal heat pump device is sequentially connected to a compressor, a water refrigerant heat exchanger, an expansion valve, and a refrigerant brine heat exchanger in which a heat medium from a ground heat exchanger embedded in the ground is circulated and connected.
  • Unit required evaporation calculated from information of heat pump heat source unit having a refrigerating circuit, hot water heating unit that circulates hot water heated by water refrigerant heat exchanger to heating air conditioning and hot water supply, and underground heat exchanger Controls the upper limit of the operating frequency of the compressor based on the limit value of heat collection set by comparing the capacity, the inlet / outlet temperature of the heat medium circulating to the refrigerant brine heat exchanger, and the unit actual evaporation capacity calculated from the circulation flow rate And a control device.
  • a compressor, a water refrigerant heat exchanger, an expansion valve, and a refrigerant brine heat exchanger in which a heat medium from a ground heat exchanger embedded in the ground is circulated and connected are sequentially connected.
  • Unit required evaporation capacity calculated from the information of the heat pump heat source unit with the refrigerant circuit, the hot water heating unit that circulates the hot water heated by the water refrigerant heat exchanger to the heating air conditioning and hot water supply, and the underground heat exchanger
  • the upper limit of the operating frequency of the compressor based on the limit value of heat collection set by comparing the inlet / outlet temperature of the heat medium circulating to the refrigerant brine heat exchanger and the unit actual evaporation capacity calculated from the circulation flow rate Because it is equipped with a control device, a simple method is used to set the limit value for heat collection from the ground, and the user can satisfy the user's requirements without causing freezing destruction of the underground heat exchanger and comfortable air conditioning Can provide hot water The effect say.
  • FIG. 1 is a circuit diagram showing a schematic configuration of a geothermal heat pump device according to Embodiment 1 of the present invention
  • FIG. 2 is a block diagram showing an electrical configuration of a control device of the thermal heat pump device. The overall configuration will be described with reference to FIGS.
  • the geothermal heat pump device 15 in FIG. 1 is a geothermal heat pump type hot water supply system that circulates a heat medium in a ground heat exchanger, collects heat with a heat pump, and supplies hot water for heating or daily life to a load side.
  • the underground heat exchanger 18 or 19 buried in the ground is connected to the heat pump heat source unit 22, and heat is collected by the heat pump by circulating the heat medium.
  • the geothermal heat pump device 15 of the present invention performs heat exchange between the refrigerant in the refrigerant circuit of the heat pump heat source unit 22 that performs the heat pump cycle (refrigeration cycle) operation and the heat medium (for example, brine) of the circulation circuit by the underground heat exchanger.
  • Heat exchange is performed between the refrigerant in the refrigerant circuit of the heat pump heat source unit 22 and the water in the water circuit connected to the hot water heating unit 23, and this water is circulated to bring warm water for heating into the room.
  • This is a heat pump type air-conditioning hot water supply system that can supply and perform a heating operation, and further heat the water stored in the hot water storage tank 12 to perform a hot water supply operation.
  • the underground heat exchangers 18 and 19 will be described.
  • the borehole system is shown as an underground heat exchanger 18, and the horizontal loop system is shown as an underground heat exchanger 19.
  • the refrigerant used in the refrigeration cycle of the heat pump heat source unit 22 is, for example, a single HFO refrigerant such as HFO-1234yf, a mixed refrigerant of an HFO refrigerant and an HFC refrigerant such as R32, hydrocarbon, helium, carbon dioxide, or the like. Natural refrigerant.
  • the heat pump heat source unit 22 includes a refrigerant brine heat exchanger (for example, a plate heat exchanger) 4 that exchanges heat between the underground heat medium and the refrigerant, and water refrigerant heat that exchanges heat between the water on the hot water heating side and the refrigerant.
  • a refrigerant brine heat exchanger for example, a plate heat exchanger
  • water refrigerant heat that exchanges heat between the water on the hot water heating side and the refrigerant.
  • Components such as an exchanger (for example, a plate heat exchanger) 2, a compressor 1 for compressing refrigerant, and an expansion valve 3 are mounted on the refrigerant circuit.
  • the heat pump heat source unit 22 includes a heat collecting pump 5 that circulates the heat medium in the underground heat exchangers 18 and 19, a heat collecting flow sensor 6 that detects the flow rate of the heat collecting heat medium, A heat recovery return sensor 7 and a heat recovery sensor 8 are mounted for control protection.
  • a pump 9 that circulates water in the water circuit that has exchanged heat with the refrigerant in the refrigerant circuit in the water refrigerant heat exchanger (for example, plate heat exchanger) 2.
  • an electric heater 10 capable of supplementarily heating the hot water heated by the water-refrigerant heat exchanger 2 during heating, and a flow path for switching the circulation destination of the water exchanged by the water-refrigerant heat exchanger 2
  • the water temperature sensors 11 and 13 used in the above are mounted.
  • the direction of the arrow indicates the direction in which the refrigerant flows during heating, the direction in which water flows, and the direction in which the heat medium flows in the ground.
  • the refrigerant is discharged from the compressor 1 in the direction of the arrow in FIG. Then, water is heated by the refrigerant in the water / refrigerant heat exchanger 2 to generate hot water (hot water). Thereafter, the refrigerant is decompressed by the expansion valve 3, and exchanges heat with the heat medium circulating in the underground heat exchangers 18 and 19 buried in the ground in the refrigerant brine heat exchanger 4, and the refrigerant is overheated. Then, it returns to the compressor and is recompressed and discharged. This operation cycle is continued during the heating operation.
  • Hot water obtained from the heat pump heat source unit 22 reaches the three-way valve 21 via the electric heater 10.
  • the three-way valve 21 can switch the hot water circulation destination to the water supply path to the indoor air conditioner and the hot water storage tank 12 side. Heating can be performed by switching the three-way valve 21 to the indoor side and circulating hot water to the indoor radiator.
  • the water stored in the hot water storage tank 12 can be heated by switching the three-way valve 21 to the tank 12 side and circulating the hot water in the tank.
  • the water whose temperature has dropped through the room or the hot water storage tank 12 returns to the water-refrigerant heat exchanger 2 via the hot water circulation pump 9 and circulates again.
  • the hot water storage tank 12 has a substantially cylindrical shape, and at least its outer shell is made of a metal material such as stainless steel.
  • a water supply pipe for supplying water from a water supply or the like outside the system is connected to the lower part of the hot water storage tank 12. Water supplied from the water supply pipe flows into the hot water storage tank 12 and is stored. By performing the heating operation described above, the water stored in the hot water storage tank 12 is heated and hot water is generated. In the hot water storage tank 12, temperature stratification is formed so that the upper side is hot and the lower side is low temperature to store hot water.
  • a hot water supply pipe for taking out hot water generated in the hot water storage tank 12.
  • the hot water generated in the hot water storage tank 12 is supplied to the outside of the geothermal heat pump system 12 through a hot water supply pipe and used as domestic water or the like.
  • the hot water storage tank 12 is covered with a heat insulating material in order to suppress heat dissipation of the stored hot water.
  • the compressor 1 is a type in which the number of revolutions is controlled by an inverter and capacity control is possible, and the refrigerant 1 is sucked and compressed to be in a high temperature and high pressure state.
  • the expansion valve 3 is an electronic expansion valve whose opening degree is variably controlled.
  • the water-refrigerant heat exchanger 2 exchanges heat between water and the refrigerant by a hot water circulation pump 9 or the like.
  • the refrigerant brine heat exchanger 4 exchanges heat between the heat medium flowing in the underground heat exchangers 18 and 19 and the refrigerant by a heat collecting pump 5 or the like.
  • FIG. 2 is a control block diagram according to Embodiment 1 of the present invention.
  • the control apparatus 16 which performs various measurement control of the geothermal heat pump apparatus 15 of this Embodiment 1, the operation information connected to this, and the connection structure of actuators are shown.
  • the control device 16 of the geothermal heat pump device 15 is based on the measurement information of the temperature sensors 7, 8, 11, and 13 and the operation content instructed and set by the user of the geothermal heat pump device 15. 1 operating frequency, the opening degree of the expansion valve 3 and the like are controlled.
  • the heat pump heat source unit 22 The operation of the heat pump heat source unit 22 will be described.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the water-refrigerant heat exchanger 2 in the refrigerant circuit of the heat pump cycle. Then, it condenses and liquefies while dissipating heat in the water refrigerant heat exchanger 2 serving as a condenser, and becomes a high-pressure and low-temperature liquid refrigerant. Water is warmed by giving heat radiated from the refrigerant to the load-side water.
  • the high-pressure and low-temperature refrigerant that has exited the water-refrigerant heat exchanger 2 then flows into the refrigerant brine heat exchanger 4 that serves as an evaporator, where it absorbs heat and is gasified. Thereafter, it is sucked into the compressor 1 and circulated.
  • this geothermal heat pump device 15 When installing the main body of the apparatus on the site, the remote controller 17 provides information such as the required heating capacity estimated from the set load on the use side and the conditions of the underground heat exchangers 18 and 19 or the ground side. Input from and register settings. For example, in the underground heat exchanges 18 and 19, data such as the total length of the vertical hole is input in the case of the borehole method, and data such as a tube buried area is input in the case of the horizontal loop method. Also, information on the total amount of heat collected that has been designed and estimated by the underground heat exchanger to be used is also input via the remote controller 17.
  • the heat stored by excessive heating operation in winter is used up before the end of winter, and a ground heat exchanger for collecting heat is used.
  • the limit value of heat collection calculated from the calculation using each detected temperature data is set by the control device 16 so as not to cause freezing and breaking.
  • the operation of the heat pump is stopped or suppressed so as not to exceed the set limit value.
  • control device 16 sets a limit value for heat collection and controls the upper limit of the operating frequency of the compressor. This control will be described below together with a flowchart showing the control flow of FIG.
  • the required evaporator is obtained by subtracting the compressor input Wcomp in the heat pump cycle from the ground side information inputted from the remote controller 17, for example, in the case of the borehole system, the total length Dinput of the vertical hole and the required heating capacity Q1 required (step S1). Capability Q2required is calculated. The unit required evaporation capacity QDrequired per unit length is calculated from the required evaporator capacity Q2required and the total length Dimput of the vertical hole to be buried in connection with the underground heat exchanger 18 (step S2).
  • the actual evaporation capacity Qactual is calculated from the flow rate of the actually flowing heat medium and the inlet / outlet temperature difference of the refrigerant brine heat exchanger.
  • the flow rate of the heat medium that actually flows is measured by the heat collection flow sensor 6, and the inlet / outlet temperature difference of the refrigerant brine heat exchanger is calculated from the measured values of the heat collection return sensor 7 and the heat collection sensor 8.
  • the unit actual evaporation capacity QDactual per unit length is calculated from the calculated actual evaporation capacity Qactual by calculating the total length Dactual of the actual vertical hole of the underground heat exchanger 18 for heat collection actually used.
  • the full length length Dactual of the actual vertical hole it is calculated from the flow rate of the actually flowing heat medium and the time taken to reach the outlet from the inlet of the refrigerant brine heat exchanger.
  • the flow rate of the actually flowing heat medium is measured by the heat collecting flow sensor 6, and the time taken to reach the outlet from the inlet of the refrigerant brine heat exchanger is measured by the control device 16 (step S3).
  • control device 16 compares the unit required evaporation capacity QDrequired per unit length and the unit actual evaporation capacity QDactual per unit length calculated so far (step S4).
  • the calculated unit required evaporation capability QDrequired Is set as the limit value for heat collection from the ground and used for compressor operation of the heat pump refrigeration cycle (step S5).
  • the heat pump heat source unit 22 of the geothermal heat pump device 15 can be operated all year round (the geothermal heat stored in the summer is not used up before the end of winter), and the electric heater is not used. The effect that it is high is acquired.
  • the controller 16 controls the operation so that the difference between the unit required evaporation capacity QDrequired and the calculated unit actual evaporation capacity QDactual is the heating operation by the electric heater 10.
  • the calculated unit actual evaporation capacity QDactual is set as the limit value of heat collection in the operation of the heat pump device.
  • the operation control is performed so that the difference is supplemented by additional heating by the electric heater 10 that can be supplementarily heated.
  • the cumulative limit value of heat collection and the cumulative evaporation The upper limit of the operating frequency of the compressor is limited by the capacity and the temperature of the heat medium circulating in the underground heat exchanger.
  • the cumulative limit value of heat collection based on the cumulative evaporation capacity calculated from the unit actual evaporation capacity so far from the operation time and the flow rate of the heat medium, and the heat circulating in the underground heat exchanger
  • the upper limit of the operating frequency of the compressor is limited from the temperature of the medium.
  • the vertical axis represents the heat collection limit value
  • the horizontal axis represents the compressor operating frequency upper limit value.
  • the difference between the cumulative limit value of heat collection and the cumulative evaporation capacity is calculated at any time, and the temperature flowing into the refrigerant brine heat exchanger 4 at half the difference and the temperature of the heat medium circulating in the underground heat exchanger When the temperature falls below the predetermined temperature T1, the upper limit value of the compressor operation frequency is limited.
  • the compressor operating frequency upper limit value is limited and decreases as the difference between the cumulative limit value of heat collection and the cumulative evaporation capacity becomes smaller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Computer Hardware Design (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

地熱ヒートポンプ装置は、圧縮機、水冷媒熱交換器、膨張弁、及び地中に埋設された地中熱交換器からの熱媒体が循環接続された冷媒ブライン熱交換器が順次接続された冷媒回路を有したヒートポンプ熱源ユニットと、水冷媒熱交換器にて加熱された温水を暖房空調や給湯に循環供給する温水暖房ユニットと、地中熱交換器の情報から算出した単位必要蒸発能力と、冷媒ブライン熱交換器へ循環する熱媒体の出入り口温度と循環流量から算出した単位実蒸発能力との比較から設定される採熱の限界値を基に圧縮機の運転周波数上限値を制御する制御装置とを備えたものである。

Description

地熱ヒートポンプ装置
 この発明は、地盤を熱源として、地中熱交換器に熱媒体を循環させてヒートポンプにより採熱し、負荷側に温水を供給する地熱ヒートポンプ装置に関する。
 地盤や湖を熱源として、地中熱交換器に熱媒体を循環させてヒートポンプにより採放熱し、負荷側に暖房用または生活用温水を供給する地熱ヒートポンプシステムは、再生可能エネルギーを利用した機器であり、特に1年通して温度が安定している地中熱を利用するため、高効率、低ランニングコスト、CO2排出量削減可能な機器とされ、近年注目が高まってきている。
 地熱ヒートポンプシステムを1年中使い続けるためには、夏場に地盤に熱を貯えさせ、貯えた熱を冬場に有効に使う必要がある。貯えた熱は有限であるため、冬場に過剰な暖房運転をさせた場合、熱の消費量が大きくなり、冬が終わる前に、貯えた熱を消費してしまい、暖房運転ができなくなり、最終的には地盤に埋没されている採熱用の地中熱交換器を凍結破壊させてしまう可能性がある。そのため、温度センサで熱媒体水の出口温度を測定可能とし、熱媒体水の出口温度から地中温度を算出し、地中熱交換器による採放熱の限界値を設定可能としている。また、この設定された限界値を超えないようにヒートポンプの運転を停止または抑制可能としている(例えば、特許文献1参照)。
 また、限界値の設定方法としては、温度センサで熱媒体水の出口温度を測定し、プログラムや予め入力されたデータが組み込まれた制御装置によって、熱媒体水の出口温度から地中温度を算出して、採放熱の限界値を設定している。さらに、前年の地中温度も基にして限界値を決めている。そして、運転状況と地盤熱特性を随時把握して、それに基づいて運転、性能予測を行い、システムの運転時間や採放熱量を調整する技術が開示されている(例えば、特許文献2参照。)。
特開2006-292310号公報 特開2012-233669号公報
 しかしながら、従来の上述のシステムでは、その装置が使用されている場所や気候などの環境条件や多種多様な地盤と地中熱交換器に対応するためには、膨大なプログラムや多数のデータが必要であり、複雑な制御装置が要求されることになる。そして、適切な制御ができない場合は、地中熱交換器の凍結破壊や暖まらないという不暖クレームを引き起こす原因にもなるといった問題があった。
 この発明は、上記のよう課題を解決するためになされたもので、地熱ヒートポンプ装置から得られる検出データやその仕様などを用いて簡易的な方法で地中からの採熱の限界値を設定し、地中熱交換器の凍結破壊を発生させることなく、ユーザーの要求を満足させて快適な空調給湯を提供することを目的とするものである。
 この発明に係る地熱ヒートポンプ装置は、圧縮機、水冷媒熱交換器、膨張弁、及び地中に埋設された地中熱交換器からの熱媒体が循環接続された冷媒ブライン熱交換器が順次接続された冷媒回路を有したヒートポンプ熱源ユニットと、水冷媒熱交換器にて加熱された温水を暖房空調や給湯に循環供給する温水暖房ユニットと、地中熱交換器の情報から算出した単位必要蒸発能力と、冷媒ブライン熱交換器へ循環する熱媒体の出入り口温度と循環流量から算出した単位実蒸発能力との比較から設定される採熱の限界値を基に圧縮機の運転周波数上限値を制御する制御装置とを備えたものである。
 この発明の地熱ヒートポンプ装置は、圧縮機、水冷媒熱交換器、膨張弁、及び地中に埋設された地中熱交換器からの熱媒体が循環接続された冷媒ブライン熱交換器が順次接続された冷媒回路を有したヒートポンプ熱源ユニットと、水冷媒熱交換器にて加熱された温水を暖房空調や給湯に循環供給する温水暖房ユニットと、地中熱交換器の情報から算出した単位必要蒸発能力と、冷媒ブライン熱交換器へ循環する熱媒体の出入り口温度と循環流量から算出した単位実蒸発能力との比較から設定される採熱の限界値を基に圧縮機の運転周波数上限値を制御する制御装置とを備えたので、簡易的な方法で地中からの採熱の限界値を設定し、地中熱交換器の凍結破壊を発生させることなく、ユーザーの要求を満足させて快適な空調給湯を提供できるという効果を奏する。
本発明の実施の形態1に係る地熱ヒートポンプ装置の概略構成を示す回路図である。 本発明の実施の形態1に係る地熱ヒートポンプ装置の制御装置の電気的な構成を示すブロック図である。 本発明の実施の形態1に係る地熱ヒートポンプ装置の制御動作を示すフローチャートである。 本発明の実施の形態1に係る地熱ヒートポンプ装置の圧縮機運転周波数制御を示す特性図である。
実施の形態1.
 図1は、本発明の実施の形態1に係る地熱ヒートポンプ装置の概略構成を示す回路図であり、図2は熱ヒートポンプ装置の制御装置の電気的な構成を示すブロック図である。図1及び図2に基づいて全体構成を説明する。
 図1の地熱ヒートポンプ装置15は、地中熱交換器に熱媒体を循環させてヒートポンプにより採熱し、負荷側に暖房用または生活用温水を供給する地熱利用のヒートポンプ式給湯システムである。冷媒回路を用いたヒートポンプサイクル(冷凍サイクル)の運転を行うヒートポンプ熱源ユニット22と、暖房用温水を室内に供給する機能と湯水を貯留する貯湯タンク12等の機器を搭載している温水暖房ユニット23とで構成されている。そして、地中に埋没されている地中熱交換器18または19がヒートポンプ熱源ユニット22に接続されており、熱媒体を循環させてヒートポンプにより採熱されている。
 本発明の地熱ヒートポンプ装置15は、ヒートポンプサイクル(冷凍サイクル)運転を行うヒートポンプ熱源ユニット22の冷媒回路内の冷媒と地中熱交換器による循環回路の熱媒体(たとえばブラインなど)とで熱交換を行い、ヒートポンプ熱源ユニット22の冷媒回路内の冷媒と温水暖房ユニット23に接続された水回路内の水との間で熱交換を行い、この水を循環させることによって、暖房用途の温水を室内へ供給して暖房運転を行い、さらには貯湯タンク12内に貯留された水を加熱して給湯運転を行うことのできるヒートポンプ式空調給湯システムである。
 ここで、地中熱交換器18、19について説明する。採熱方式には2種類の形態があり、地中に100m~150mの縦穴のボーリングを実施し、熱交換用のパイプを入れるボアホール方式と、浅層(1m~2.5m)の地中に熱交換用のチューブを水平に埋没し採熱する水平ループ方式がある。図1において、ボアホール方式を示すのが地中熱交換器18であり、水平ループ方式を示すのが地中熱交換器19として示す。
 また、ヒートポンプ熱源ユニット22の冷凍サイクルで用いる冷媒は、例えば、HFO-1234yfなどのHFO単体冷媒、又はHFO冷媒とR32などのHFC冷媒との混合冷媒、もしくは炭化水素やヘリウム、二酸化炭素等のような自然冷媒などである。
 ヒートポンプ熱源ユニット22には、地中側熱媒体と冷媒との熱交換を行う冷媒ブライン熱交換器(たとえばプレート熱交換器)4、温水暖房側の水と冷媒との熱交換を行う水冷媒熱交換器(たとえばプレート熱交換器)2、冷媒を圧縮する圧縮機1、膨張弁3等の冷媒回路の構成機器が搭載されている。
 また、ヒートポンプ熱源ユニット22には、地中熱交換器18、19に熱媒体を循環させる採熱用ポンプ5、採熱用の熱媒体の流量を検出する採熱用流量センサ6、採熱の制御用保護用に採熱戻りセンサ7や採熱往きセンサ8が搭載されている。
 温水暖房ユニット23には、貯湯タンク12のほかに、水冷媒熱交換器(たとえばプレート熱交換器)2にて冷媒回路内の冷媒と熱交換を行った水回路内の水を循環させるポンプ9と、暖房時に水冷媒熱交換器2にて加熱された後の温水を更に補助的に加熱可能な電気ヒータ10と、水冷媒熱交換器2にて熱交換した水の循環先を切り替える流路切替え手段としての三方弁21、水流量検出用の温水循環用流量センサ14、全体の運転制御を行う制御装置16、ユーザーが設定操作可能なリモートコントローラ17、暖房運転や給湯運転の制御用保護用に用いられる水温センサ11や13が搭載されている。
 図1中、矢印の向きは暖房時の冷媒の流れる方向、水の流れる方向、地中の中を熱媒体が流れる方向をそれぞれ表している。
 この温水暖房ユニット23での暖房運転時、あるいは貯湯タンク12内に貯留された水を加熱する給湯運転時には、ヒートポンプ熱源ユニット22の中で、図1中の矢印方向に圧縮機1から冷媒が吐出され、水冷媒熱交換器2にて冷媒により水が加熱されて温水(湯)が生成される。その後、冷媒は、膨張弁3で減圧され、冷媒ブライン熱交換器4にて地中に埋没されている地中熱交換器18や19に循環されている熱媒体と熱交換し、冷媒は過熱され圧縮機に戻り、再圧縮され吐出される。暖房運転中はこの運転サイクルを継続する。
 ヒートポンプ熱源ユニット22から得られた温水は、電気ヒータ10を経由して、三方弁21に至る。三方弁21は、温水の循環先を室内側の空調放熱器への送水路と、貯湯タンク12側に切り替え可能になっている。三方弁21を室内側に切り替えて温水を室内放熱器に循環させることにより、暖房を行うことができる。また、三方弁21をタンク12側に切り替えて温水をタンク内に循環させることにより、貯湯タンク12に貯留された水を加熱することができる。室内または貯湯タンク12を通過して温度低下した水は、温水循環用ポンプ9を経由して水冷媒熱交換器2に戻り、再び循環する。
 貯湯タンク12は、略円筒形状をなしており、少なくともその外郭は例えばステンレス鋼等の金属材料で構成されている。貯湯タンク12の下部には、システム外部の水道等から水を供給する給水配管が接続されている。給水配管から供給される水は、貯湯タンク12内に流入して貯留される。上述した加熱運転を行うことにより、貯湯タンク12内に貯留された水が加熱され、温水が生成される。貯湯タンク12内では、上側が高温で下側が低温となるように温度成層が形成されて湯水が貯留される。貯湯タンク12の上部には、貯湯タンク12内に生成した温水を取り出すための出湯配管が接続されている。貯湯タンク12内に生成した温水は、出湯配管を通って地熱ヒートポンプシステム12外部に供給され、生活用水等として利用される。貯湯タンク12は、貯留した温水の放熱を抑制するため、断熱材により覆われている。
 次に、ヒートポンプ熱源ユニット22について説明する。圧縮機1はインバータにより回転数が制御され容量制御を可能とするタイプであり、冷媒を吸入、圧縮して高温高圧状態とするものである。膨張弁3は開度が可変に制御される電子膨張弁である。水冷媒熱交換器2は温水循環用ポンプ9などで水と冷媒を熱交換する。冷媒ブライン熱交換器4は採熱用ポンプ5などで地中熱交換器18、19の中をながれている熱媒体と冷媒を熱交換する。
 図2は本発明の実施の形態1に係る制御ブロック図である。
 図2には、本実施の形態1の地熱ヒートポンプ装置15の各種の計測制御を行う制御装置16及びこれに接続される運転情報、アクチュエータ類の接続構成を示している。
 この地熱ヒートポンプ装置15の制御装置16は、温度センサ7、8、11、13の計測情報や、地熱ヒートポンプ装置15の使用者から指示設定される運転内容に基づいて、ヒートポンプ熱源ユニット22の圧縮機1の運転周波数、膨張弁3の開度などを制御する。
 このヒートポンプ熱源ユニット22の運転動作について説明する。暖房給湯運転時には、ヒートポンプサイクルの冷媒回路において、圧縮機1から吐出された高温高圧のガス冷媒は水冷媒熱交換器2に流入する。そして、凝縮器となる水冷媒熱交換器2で放熱しながら凝縮液化し高圧低温の液冷媒となる。冷媒から放熱された熱を負荷側の水に与えることで水を温める。水冷媒熱交換器2を出た高圧低温の冷媒は、その後蒸発器となる冷媒ブライン熱交換器4に流入し、そこで吸熱蒸発し、ガス化される。その後、圧縮機1に吸入され循環する。
 地熱ヒートポンプ装置を多種多様な地盤や地中熱交換器に対応させて1年中使い続け、夏場に貯えた地中熱を冬が終わる前に使い切らないようにするため、この地熱ヒートポン装置15では、この装置本体を現地に据え付ける際に、施工据付工事者が、利用側の設定負荷から見積もった必要暖房能力と、地中熱交換器18、19または地盤側の条件等の情報をリモートコントローラ17から入力し設定登録する。例えば、地中熱交換18、19では、ボアホール方式の場合には縦穴の全長長さ、水平ループ方式の場合にはチューブ埋没面積などのデータを入力する。また、使用する地中熱交換器が有する予め設計されて見積もられた総採熱量の情報もリモートコントローラ17を介して入力する。
 本発明の地熱ヒートポンプ装置では、地熱ヒートポンプシステムを1年中使い続けるために、冬場の過剰な暖房運転により貯えた熱を冬が終わる前に使いきってしまい採熱用の地中熱交換器を凍結破壊させることが発生しないように、制御装置16により、検出した各温度データを用いた演算から算出する採熱の限界値を設定。この設定された限界値を超えないようにヒートポンプの運転を停止または抑制するものである。
 つまり、入力された地盤側の情報と必要能力情報をもとに、制御装置16が採熱の限界値を設定し、圧縮機の運転周波数の上限を制御する。この制御について、図3の制御の流れを示すフローチャートと共に、以下に説明をする。
 先ず、リモートコントローラ17から入力された地盤側の情報、例えばボアホール方式の場合には縦穴の全長Dinputと、必要暖房能力Q1required(ステップS1)とからヒートポンプサイクルにおける圧縮機入力Wcompを差し引いて必要蒸発器能力Q2requiredを算出する。この必要蒸発器能力Q2requiredと地中熱交換器18に関わり埋設するための縦穴の全長長さDimputから、単位長さあたりの単位必要蒸発能力QDrequiredを算出する(ステップS2)。
 次に、実際に流れる熱媒体の流量と冷媒ブライン熱交換器の出入り口温度差から、実蒸発能力Qacutualを算出する。実際に流れる熱媒体の流量は採熱用流量センサ6で測定し、冷媒ブライン熱交換器の出入り口温度差は採熱戻りセンサ7と採熱往きセンサ8の測定値から算出する。
 この算出した実蒸発能力Qacutualから、実際に使用する採熱用の地中熱交換器18の実縦穴の全長長さDactualで割り出して、単位長さあたりの単位実蒸発能力QDacutualを算出する。ここで、実縦穴の全長長さDactualを算出するには、実際に流れる熱媒体の流量と冷媒ブライン熱交換器の入口から出口に到達するまでにかかる時間から算出する。実際に流れる熱媒体の流量は採熱用流量センサ6で測定し、冷媒ブライン熱交換器の入口から出口に到達するまでにかかる時間は制御装置16で測定する(ステップS3)。
 そして、制御装置16において、これまでに算出された、単位長さあたりの単位必要蒸発能力QDrequired及び単位長さあたりの単位実蒸発能力QDacutualを比較する(ステップS4)。
 この比較から、予め設定された単位長さあたりの単位必要蒸発能力QDrequiredが、実際の採熱運転における単位長さあたりの単位実蒸発能力QDacutualよりも小さい場合は、算出された単位必要蒸発能力QDrequiredを地中からの採熱の限界値と設定して、ヒートポンプ冷凍サイクルの圧縮機運転に利用する(ステップS5)。これにより、地熱ヒートポンプ装置15のヒートポンプ熱源ユニット22を1年中運転し続けることができ(夏場に貯えた地中熱を冬が終わる前に使い切らない)、電気ヒータを使わないので、省エネ性が高いという効果が得られる。
 一方、単位長さあたりの単位必要蒸発能力QDrequiredが、単位長さあたりの単位実蒸発能力QDacutualよりも大きい場合、この算出された単位実蒸発能力QDacutualをヒートポンプ装置運転での採熱の限界値と設定し(ステップS6)、単位必要蒸発能力QDrequiredと算出された単位実蒸発能力QDacutualの差分を電気ヒータ10による暖房運転とするように、制御装置16で運転切り替えるように制御する。
 単位長さあたりの単位必要蒸発能力QDrequiredが単位長さあたりの単位実蒸発能力QDacutualよりも大きい場合には、この算出された単位実蒸発能力QDacutualをヒートポンプ装置運転での採熱の限界値と設定し、その差分を補助的に加熱可能な電気ヒータ10による付加加熱で補う暖房運転とするように運転制御するが、可能な限りヒートポンプ装置で運転させるために、採熱の累積限界値と累積蒸発能力と地中熱交換器を循環している熱媒体の温度で圧縮機の運転周波数上限値に制限を加えていく。
 図4に示すように、単位実蒸発能力からこれまでの運転時間や熱媒体の流量から累積算出される累積蒸発能力に基づく採熱の累積限界値と地中熱交換器を循環している熱媒体の温度から圧縮機の運転周波数上限値を制限させる。図4において、縦軸に採熱累積限界値、横軸に圧縮機運転周波数上限値とする。採熱の累積限界値と累積蒸発能力の差を随時算出し、その差の1/2、かつ地中熱交換器を循環している熱媒体の温度の冷媒ブライン熱交換器4に流入する温度が所定温度T1を下回った場合、圧縮機運転周波数上限値を制限していく。図4に示すように、採熱の累積限界値と累積蒸発能力の差が小さくなるにつれて、圧縮機運転周波数上限値が制限され、低下していく。ここで、所定温度T1はブライン熱媒体の凍結開始温度よりもαdeg高い温度であり、ブラインの特性による値であり、例えばプロピレングリコールではα=0℃である。
 つまり、採熱の累積限界値と累積蒸発能力の差の1/2に到達しても、冷媒ブライン熱交換器4に流入する温度がT1℃以上である場合は、運転周波数上限値は制限せずに運転をそのまま継続する。
 そして、採熱の累積限界値と累積蒸発能力の差が0に到達した場合、ヒートポンプ熱源ユニット22での運転を止め、完全に電気ヒータ10による運転に切り替える。このように採熱の累積限界値と累積蒸発能力の差が0に到達した場合には電気ヒータ10による運転に切り替わり暖房運転に対応するが、省エネ性が悪くなってしまうため、次の冬には、採熱の累積限界値と累積蒸発能力の差の1/2かつ冷媒ブライン熱交換器4に流入する温度が(T1+1)℃を下回った場合、圧縮機運転周波数上限値を制限していくように学習制御を行うことで、ヒートポンプによる暖房運転ができる期間を長くすることができる。
 このように年々学習制御を行うことによって最適化し、ヒートポンプで運転できる期間を長くし、かつ地熱ヒートポンプ装置を多種多様な地盤と地中水熱交換器の上で1年中使い続けるために、夏場に貯えた地中熱を冬が終わる前に使い切らないように、運転制御していくことが可能となり、地熱ヒートポンプ装置から得られる検出データやその仕様などを用いて簡易的な方法で地中からの採熱の限界値を設定し、地中熱交換器の凍結破壊を発生させることなく、ユーザーの要求を満足させて快適な空調給湯を提供できる効果がある。
 1 圧縮機
 2 水冷媒熱交換器
 3 膨張弁
 4 冷媒ブライン熱交換器
 5 採熱用ポンプ
 6 採熱用流量センサ
 7 採熱戻りセンサ
 8 採熱往きセンサ
 9 温水循環用ポンプ
 10 電気ヒータ
 11 温水循環用往き水温センサ
 12 貯湯タンク
 13 温水循環用戻り水温センサ
 14 温水循環用流量センサ
 15 地熱ヒートポンプ装置
 16 制御装置
 17 リモートコントローラ
 18 地中熱交換器(ボアホール方式)
 19 地中熱交換器(水平ループ方式)
 20 貯湯タンク用センサ
 21 三方弁
 22 ヒートポンプ熱源ユニット
 23 温水暖房ユニット

Claims (5)

  1. 圧縮機、水冷媒熱交換器、膨張弁、及び地中に埋設された地中熱交換器からの熱媒体が循環接続された冷媒ブライン熱交換器が順次接続された冷媒回路を有したヒートポンプ熱源ユニットと、前記水冷媒熱交換器にて加熱された温水を暖房空調や給湯に循環供給する温水暖房ユニットと、前記地中熱交換器の情報から算出した単位必要蒸発能力と、前記冷媒ブライン熱交換器へ循環する熱媒体の出入り口温度と循環流量から算出した単位実蒸発能力との比較から設定される採熱の限界値を基に前記圧縮機の運転周波数上限値を制御する制御装置と、を備えたことを特徴とする地熱ヒートポンプ装置。
  2.  前記地中熱交換器と前記冷媒ブライン熱交換器との間に循環する熱媒体の流量を測定する採熱用流量センサを備え、前記採熱用流量センサにより検出された循環流量を用いて前記単位実蒸発能力を算出することを特徴とする請求項1記載の地熱ヒートポンプ装置。
  3.  前記制御装置に接続されたリモートコントローラを有し、地中に埋設された前記地中熱交換器の配管長さと予め設定された必要暖房能力は前記リモートコントローラを介して登録されることを特徴とする請求項1または2記載の地熱ヒートポンプ装置。
  4.  前記単位必要蒸発能力が前記単位実蒸発能力より小さい場合は、前記単位必要蒸発能力から地中採熱の上限値を設定し、前記単位必要蒸発能力が前記単位実蒸発能力より大きい場合は、前記単位実蒸発能力から地中採熱の上限値を設定するとともに、差分の不足熱量を前記温水暖房ユニットの温水回路に設けた電気ヒータによる追加加熱の運転制御を行うことを特徴とする請求項1から3のいずれかに記載の地熱ヒートポンプ装置。
  5.  前記単位実蒸発能力からこれまでに採熱した累積蒸発能力と採熱累積限界値との差を用いて、前記圧縮機の運転周波数上限値に制限をかけることを特徴とする請求項1から3のいずれかに記載の地熱ヒートポンプ装置。
PCT/JP2017/009420 2017-03-09 2017-03-09 地熱ヒートポンプ装置 WO2018163347A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17899277.2A EP3594588B1 (en) 2017-03-09 2017-03-09 Geothermal heat pump device
PCT/JP2017/009420 WO2018163347A1 (ja) 2017-03-09 2017-03-09 地熱ヒートポンプ装置
JP2019504218A JPWO2018163347A1 (ja) 2017-03-09 2017-03-09 地熱ヒートポンプ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/009420 WO2018163347A1 (ja) 2017-03-09 2017-03-09 地熱ヒートポンプ装置

Publications (1)

Publication Number Publication Date
WO2018163347A1 true WO2018163347A1 (ja) 2018-09-13

Family

ID=63448316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009420 WO2018163347A1 (ja) 2017-03-09 2017-03-09 地熱ヒートポンプ装置

Country Status (3)

Country Link
EP (1) EP3594588B1 (ja)
JP (1) JPWO2018163347A1 (ja)
WO (1) WO2018163347A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114234445A (zh) * 2021-12-14 2022-03-25 广东芬尼克兹节能设备有限公司 变频热泵恒温供水控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110878956B (zh) * 2019-12-23 2023-10-17 北京市热力集团有限责任公司 用于热泵系统的控制方法及热泵系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130494A (ja) * 2001-10-19 2003-05-08 Ohbayashi Corp 地中熱交換器を利用した空気調和システムおよびその空気調和システムの運転方法
JP2006292310A (ja) 2005-04-13 2006-10-26 Nippon Steel Engineering Co Ltd 地中熱利用ヒートポンプ装置、これを備えた地中熱利用装置、および地中熱利用ヒートポンプ装置の制御方法
US20110146317A1 (en) * 2009-12-21 2011-06-23 Trane International Inc. Bi-directional cascade heat pump system
JP2012233669A (ja) 2011-05-09 2012-11-29 Nippon Steel Engineering Co Ltd 土壌熱源ヒートポンプシステムにおける地盤熱特性解析方法及び装置、土壌熱源ヒートポンプシステムの運転調整方法及び装置、並びにプログラム
WO2014156895A1 (ja) * 2013-03-27 2014-10-02 三菱重工業株式会社 熱源システム及びその制御装置並びにその制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101116927B1 (ko) * 2010-03-15 2012-02-27 한밭대학교 산학협력단 지열 열펌프 시스템
JP5619698B2 (ja) * 2011-09-13 2014-11-05 株式会社コロナ 地中熱ヒートポンプ装置
JP6072813B2 (ja) * 2012-10-05 2017-02-01 三菱電機株式会社 ヒートポンプ装置
DE102013214063A1 (de) * 2013-07-16 2015-01-22 Robert Bosch Gmbh Verfahren zum Steuern eines Kompressors einer Wärmepumpe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130494A (ja) * 2001-10-19 2003-05-08 Ohbayashi Corp 地中熱交換器を利用した空気調和システムおよびその空気調和システムの運転方法
JP2006292310A (ja) 2005-04-13 2006-10-26 Nippon Steel Engineering Co Ltd 地中熱利用ヒートポンプ装置、これを備えた地中熱利用装置、および地中熱利用ヒートポンプ装置の制御方法
US20110146317A1 (en) * 2009-12-21 2011-06-23 Trane International Inc. Bi-directional cascade heat pump system
JP2012233669A (ja) 2011-05-09 2012-11-29 Nippon Steel Engineering Co Ltd 土壌熱源ヒートポンプシステムにおける地盤熱特性解析方法及び装置、土壌熱源ヒートポンプシステムの運転調整方法及び装置、並びにプログラム
WO2014156895A1 (ja) * 2013-03-27 2014-10-02 三菱重工業株式会社 熱源システム及びその制御装置並びにその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3594588A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114234445A (zh) * 2021-12-14 2022-03-25 广东芬尼克兹节能设备有限公司 变频热泵恒温供水控制方法

Also Published As

Publication number Publication date
JPWO2018163347A1 (ja) 2019-11-07
EP3594588B1 (en) 2022-07-13
EP3594588A1 (en) 2020-01-15
EP3594588A4 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
JP4782462B2 (ja) 地中熱利用ヒートポンプ装置、これを備えた地中熱利用装置、および地中熱利用ヒートポンプ装置の制御方法
CN104704303B (zh) 热泵装置
KR101502378B1 (ko) 자동 제상 기능을 갖는 냉난방 히트펌프 전기보일러 및 제상 방법
KR100999400B1 (ko) 지열을 이용한 히트펌프 시스템
JP2010216783A (ja) 空気調和システム
KR101576366B1 (ko) 공기조화기 성능 검사장치
JP2010175136A (ja) 地中熱ヒートポンプ装置
JP2011141073A (ja) 空調装置の効率改善装置及び方法
JP2009293839A (ja) 冷凍装置の排熱利用システム
JP5775596B2 (ja) 給湯空調装置
JP2016142433A (ja) 空気調和装置
JP6053201B2 (ja) 冷凍装置
JP5831466B2 (ja) 暖房システム
WO2018163347A1 (ja) 地熱ヒートポンプ装置
JP4229881B2 (ja) ヒートポンプシステム
JP2011257098A (ja) ヒートポンプサイクル装置
KR20190075104A (ko) 공기 조화 장치의 제어 장치, 공기 조화 장치, 공기 조화 장치의 제어 방법, 및 공기 조화 장치의 제어를 위한 컴퓨터 프로그램이 저장된 기록 매체
JP2010216784A (ja) 空気調和システム
JP2013068370A (ja) 冷房システム
JP2015001348A (ja) 地中熱ヒートポンプ装置
JP6007455B1 (ja) 冷熱供給装置及び冷熱供給方法
CN103900217A (zh) 一种模块化数据中心的制冷控制方法、装置及系统
JP6367642B2 (ja) 空気調和機
JP2019128103A (ja) ヒートポンプシステム
KR101351826B1 (ko) 지하수를 이용한 온실용 히트펌프 냉난방 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899277

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504218

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017899277

Country of ref document: EP

Effective date: 20191009