JP6379985B2 - Heat recovery system - Google Patents

Heat recovery system Download PDF

Info

Publication number
JP6379985B2
JP6379985B2 JP2014212163A JP2014212163A JP6379985B2 JP 6379985 B2 JP6379985 B2 JP 6379985B2 JP 2014212163 A JP2014212163 A JP 2014212163A JP 2014212163 A JP2014212163 A JP 2014212163A JP 6379985 B2 JP6379985 B2 JP 6379985B2
Authority
JP
Japan
Prior art keywords
heat recovery
heat
heat exchanger
water
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014212163A
Other languages
Japanese (ja)
Other versions
JP2016080264A (en
Inventor
弘矩 安藤
弘矩 安藤
岡本 裕介
裕介 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2014212163A priority Critical patent/JP6379985B2/en
Publication of JP2016080264A publication Critical patent/JP2016080264A/en
Application granted granted Critical
Publication of JP6379985B2 publication Critical patent/JP6379985B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、オイルフリー式の空気圧縮機で生じた圧縮熱を回収できる熱回収システムに関するものである。   The present invention relates to a heat recovery system capable of recovering compression heat generated by an oil-free air compressor.

従来、下記特許文献1の図2に開示されるように、圧縮機(2)からエアクーラ(8)への空気路(12)に熱回収用熱交換器(9)を設ける一方、この熱回収用熱交換器(9)をバイパス路(25)でバイパス可能とした熱回収システムが知られている。熱回収用熱交換器(9)では、圧縮空気と通水とを熱交換して、圧縮空気を冷却する一方、通水を加温できる。これにより、圧縮機(2)で生じた圧縮熱を、熱回収用熱交換器(9)において、給水タンク(5)への給水の加温に用いて、熱回収を図ることができる。   Conventionally, as disclosed in FIG. 2 of Patent Document 1 below, a heat recovery heat exchanger (9) is provided in an air passage (12) from the compressor (2) to the air cooler (8), while this heat recovery is performed. There is known a heat recovery system in which the heat exchanger (9) for use can be bypassed by a bypass passage (25). In the heat recovery heat exchanger (9), the compressed air and the water flow can be heat-exchanged to cool the compressed air, while the water flow can be heated. Thus, heat recovery can be achieved by using the compression heat generated in the compressor (2) in the heat recovery heat exchanger (9) for heating the water supplied to the water supply tank (5).

特開2012−87664号公報JP 2012-87664 A

上述の熱回収システムをオイルフリー式の圧縮機に適用した場合、圧縮機から吐出される圧縮空気の温度は200℃近くの高温であるため、熱回収用熱交換器への通水停止中に不都合を生じるおそれがある。すなわち、熱回収用熱交換器への通水停止中に圧縮機からの圧縮空気を熱回収用熱交換器に通すと、熱回収用熱交換器内に残った水を沸騰させるおそれがある。あるいは、熱回収用熱交換器の通水側に水がなければ、空焚き状態となり、熱回収用熱交換器における熱応力が増大し、熱回収用熱交換器を破損させるおそれがある。   When the above-described heat recovery system is applied to an oil-free compressor, the temperature of the compressed air discharged from the compressor is a high temperature close to 200 ° C., so during the stoppage of water flow to the heat recovery heat exchanger There is a risk of inconvenience. That is, if compressed air from the compressor is passed through the heat recovery heat exchanger while water flow to the heat recovery heat exchanger is stopped, the water remaining in the heat recovery heat exchanger may be boiled. Alternatively, if there is no water on the water flow side of the heat recovery heat exchanger, the water recovery state is caused, and the thermal stress in the heat recovery heat exchanger increases, which may damage the heat recovery heat exchanger.

そこで、圧縮機の作動中、熱回収用熱交換器への通水条件を満たすと、圧縮機からの圧縮空気を熱回収用熱交換器に通すと共に熱回収用熱交換器への通水を行う一方、熱回収用熱交換器への通水条件を満たさないと、圧縮機からの圧縮空気をバイパス路に通すと共に熱回収用熱交換器への通水を停止するよう制御することが考えられる。   Therefore, if the water flow condition to the heat recovery heat exchanger is satisfied during the operation of the compressor, the compressed air from the compressor is passed through the heat recovery heat exchanger and the water flow to the heat recovery heat exchanger is passed. On the other hand, if the water flow condition to the heat recovery heat exchanger is not satisfied, it is considered that the compressed air from the compressor is controlled to pass through the bypass and to stop the water flow to the heat recovery heat exchanger. It is done.

その際、圧縮機からの圧縮空気を、熱回収用熱交換器に通すかバイパス路に通すかの切替えは、バイパス路に設けたバイパス弁と、熱回収用熱交換器の入口側に設けた遮断弁とにより切り替えるとする。ところが、この切替時、一時的にも両方の弁が閉じられた状態になると、圧縮機に不具合を生じさせるおそれがある。   At that time, switching between whether the compressed air from the compressor is passed through the heat recovery heat exchanger or the bypass path is provided on the bypass valve provided in the bypass path and the inlet side of the heat recovery heat exchanger. It is assumed that switching is performed by a shutoff valve. However, at the time of this switching, if both valves are temporarily closed, there is a risk of causing problems in the compressor.

また、熱回収用熱交換器への通水を開始する前に、熱回収用熱交換器に圧縮空気を供給したり、逆に、熱回収用熱交換器への圧縮空気の供給を停止する前に、熱回収用熱交換器への通水を停止したりすると、前述したように、熱回収用熱交換器内の水を沸騰させたりするなどの不都合を生じさせるおそれがある。   Also, before starting water flow to the heat recovery heat exchanger, supply compressed air to the heat recovery heat exchanger, or conversely stop supplying compressed air to the heat recovery heat exchanger. If the water flow to the heat recovery heat exchanger is stopped before, there is a risk of causing inconvenience such as boiling water in the heat recovery heat exchanger as described above.

そこで、本発明が解決しようとする課題は、オイルフリー式の圧縮機の熱回収システムにおいて、圧縮機への不具合を防止しつつ、熱回収用熱交換器への通水の有無に応じて、圧縮空気の流路を切り替えることにある。また、好ましくはさらに、熱回収用熱交換器内の水の沸騰を防止すると共に、空焚きによる熱回収用熱交換器における熱応力の増大とそれによる破損を防止することにある。   Therefore, the problem to be solved by the present invention is an oil-free compressor heat recovery system, while preventing problems with the compressor, according to the presence or absence of water flow to the heat recovery heat exchanger, It is to switch the flow path of the compressed air. Further, preferably, it is to prevent boiling of water in the heat recovery heat exchanger and to prevent an increase in thermal stress in the heat recovery heat exchanger due to air blowing and damage caused thereby.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、オイルフリー式の圧縮機からの圧縮空気を、冷却塔との間の循環水で冷却するか、ファンによる通風で冷却するエアクーラと、前記圧縮機から前記エアクーラへの空気路に設けられ、圧縮空気と水とを熱交換して温水を製造する熱回収用熱交換器と、前記圧縮機から前記熱回収用熱交換器への熱交入口側空気路と、前記熱回収用熱交換器から前記エアクーラへの熱交出口側空気路とを接続するバイパス路と、前記バイパス路に設けられたバイパス弁、前記バイパス路との分岐部よりも下流の前記熱交入口側空気路と、前記バイパス路との合流部よりも上流の前記熱交出口側空気路との内、前記熱交入口側空気路にのみに開閉可能に設けられた遮断弁前記バイパス弁および前記遮断弁を制御する制御器と、を備え、前記制御器は、(i)前記圧縮機の作動中に、前記熱回収用熱交換器を通水状態にするときは、前記バイパス弁を閉止すると共に、前記遮断弁を開放し、(ii)前記圧縮機の作動中に、前記熱回収用熱交換器を通水停止状態にするときは、前記バイパス弁を開放すると共に、前記遮断弁を閉止し、(iii)前記熱回収用熱交換器通水状態から通水停止状態へ切り替える際、前記バイパス弁を開けてから、前記遮断弁を閉じ、(iv)前記熱回収用熱交換器通水停止状態から通水状態へ切り替える際、前記遮断弁を開けてから、前記バイパス弁を閉じることを特徴とする熱回収システムである。 The present invention has been made in order to solve the above-mentioned problems, and the invention according to claim 1 is a method in which compressed air from an oil-free compressor is cooled with circulating water between a cooling tower and An air cooler that is cooled by ventilation with a fan, a heat recovery heat exchanger that is provided in an air path from the compressor to the air cooler and that heat-exchanges compressed air and water to produce hot water, and from the compressor A bypass path connecting the heat exchange inlet side air path to the heat recovery heat exchanger, a heat exchange outlet side air path from the heat recovery heat exchanger to the air cooler, and a bypass provided in the bypass path The heat exchange inlet side of the heat exchange inlet side air passage downstream of the valve and the branch portion of the bypass passage and the heat exchange outlet side air passage upstream of the joining portion of the bypass passage a shutoff valve provided only openably air passage, wherein And a controller for controlling the bypass valve and the shutoff valve, wherein the controller (i) is configured to pass the bypass when the heat recovery heat exchanger is brought into a water state during operation of the compressor. The valve is closed, the shut-off valve is opened, and (ii) when the heat recovery heat exchanger is brought into a water stop state during operation of the compressor, the bypass valve is opened, and the the shut-off valve is closed, (iii) when switching the heat recovery heat exchanger from water passing state to water flow stopped from opening the bypass valve, closing the shut-off valve, (iv) for the heat recovery when switching the heat exchanger from the water passing the stopped state to the water flow state, from open the shut-off valve, a heat recovery system characterized by closing the bypass valve.

請求項1に記載の発明によれば、熱回収用熱交換器への通水状態と通水停止状態とを切り替える際、熱回収用熱交換器経由とバイパス路経由との双方に一時的に圧縮空気が流れるよう制御することで、弁の動作遅れによる不都合を防止することができる。具体的には、熱回収用熱交換器経由からバイパス路経由に切り替える際、熱回収用熱交換器経由を遮断する前にバイパス路を開けることで、圧縮空気の流れが遮断されるのを防止できる。逆に、バイパス路経由から熱回収用熱交換器経由に切り替える際、バイパス路を遮断する前に熱回収用熱交換器経由を開けることで、圧縮空気の流れが遮断されるのを防止できる。   According to the first aspect of the present invention, when switching between the water flow state and the water flow stop state to the heat recovery heat exchanger, both the heat recovery heat exchanger and the bypass path are temporarily used. By controlling so that the compressed air flows, inconvenience due to valve operation delay can be prevented. Specifically, when switching from a heat recovery heat exchanger to a bypass path, the flow of compressed air is prevented from being blocked by opening the bypass path before blocking the heat recovery heat exchanger. it can. Conversely, when switching from the bypass path to the heat recovery heat exchanger, the flow of the compressed air can be prevented from being blocked by opening the heat recovery heat exchanger before blocking the bypass path.

請求項2に記載の発明は、前記制御器は、(v)前記熱回収用熱交換器通水停止状態から通水状態へ切り替える際、前記熱回収用熱交換器への通水を開始してから、前記遮断弁を開け、(vi)前記バイパス弁を閉じると共に前記遮断弁を開けた状態で前記圧縮機を作動中、前記熱回収用熱交換器通水状態から通水停止状態へ切り替える際、前記遮断弁を閉じてから、前記熱回収用熱交換器への通水を停止することを特徴とする請求項1に記載の熱回収システムである。 Invention according to claim 2, wherein the controller, (v) when switching the heat recovery heat exchanger from water passing stopped state to the water flow state, start the water flow to the heat recovery heat exchanger from to, opening the shut-off valve, (vi) during operation of the compressor in a state in which opened the shut-off valve closes the bypass valve, passing water stopped the heat recovery heat exchanger from water passing state 2. The heat recovery system according to claim 1, wherein when switching to, the water shut-off to the heat recovery heat exchanger is stopped after the shut-off valve is closed.

請求項2に記載の発明によれば、熱回収用熱交換器への通水が停止中なのに熱回収用熱交換器へ圧縮空気が流入するのを防止して、熱回収用熱交換器内の水の沸騰を防止できると共に、空焚きによる熱回収用熱交換器における熱応力の増大とそれによる破損を防止できる。   According to the second aspect of the present invention, it is possible to prevent the compressed air from flowing into the heat recovery heat exchanger while the water flow to the heat recovery heat exchanger is stopped, Water can be prevented from boiling, and an increase in thermal stress in the heat recovery heat exchanger due to emptying and damage due to the heat can be prevented.

さらに、請求項3に記載の発明は、前記圧縮機として、低段圧縮機と高段圧縮機とを備え、前記エアクーラとして、インタークーラとアフタークーラとを備え、前記熱回収用熱交換器として、第一熱回収用熱交換器と第二熱回収用熱交換器とを備え、前記低段圧縮機からの圧縮空気は、前記インタークーラを介して前記高段圧縮機へ送られ、前記高段圧縮機においてさらに圧縮された後、前記アフタークーラへ送られ、前記低段圧縮機から前記インタークーラへの空気路に、前記第一熱回収用熱交換器が設けられる一方、前記高段圧縮機から前記アフタークーラへの空気路に、前記第二熱回収用熱交換器が設けられ、前記第一熱回収用熱交換器と前記第二熱回収用熱交換器とには、設定順序で直列に水が通されるか、並列に水が通され、前記各熱回収用熱交換器について、前記バイパス路、前記バイパス弁および前記遮断弁を設けたことを特徴とする請求項1または請求項2に記載の熱回収システムである。   Furthermore, the invention described in claim 3 includes a low-stage compressor and a high-stage compressor as the compressor, an intercooler and an aftercooler as the air cooler, and the heat recovery heat exchanger. A first heat recovery heat exchanger and a second heat recovery heat exchanger, compressed air from the low stage compressor is sent to the high stage compressor through the intercooler, After further compression in the stage compressor, the first stage heat recovery heat exchanger is provided in the air path from the low stage compressor to the intercooler, and sent to the after cooler, while the high stage compression The second heat recovery heat exchanger is provided in the air path from the machine to the aftercooler, and the first heat recovery heat exchanger and the second heat recovery heat exchanger are arranged in a set order. Water is passed in series or water is passed in parallel, For the heat-recovery heat exchanger, the bypass passage, a heat recovery system according to claim 1 or claim 2, characterized in that a said bypass valve and the shut-off valve.

請求項3に記載の発明によれば、二段のオイルフリー式圧縮機の各段の圧縮機について、上述した各請求項に記載の発明を適用することができる。   According to the invention described in claim 3, the invention described in each of the above-described claims can be applied to the compressor of each stage of the two-stage oil-free compressor.

本発明によれば、オイルフリー式の圧縮機の熱回収システムにおいて、圧縮機への不具合を防止しつつ、熱回収用熱交換器への通水の有無に応じて、圧縮空気の流路を切り替えることができる。また、好ましくはさらに、熱回収用熱交換器内の水の沸騰を防止すると共に、空焚きによる熱回収用熱交換器における熱応力の増大とそれによる破損を防止することも可能に構成できる。   According to the present invention, in the heat recovery system for an oil-free compressor, the flow path of the compressed air is set according to the presence or absence of water flow to the heat recovery heat exchanger while preventing problems with the compressor. Can be switched. Further, preferably, it is possible to prevent boiling of water in the heat recovery heat exchanger and to prevent an increase in thermal stress in the heat recovery heat exchanger due to air blowing and damage caused thereby.

本発明の熱回収システムの一実施例を示す概略図である。It is the schematic which shows one Example of the heat recovery system of this invention.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の一実施例の熱回収システム1を示す概略図である。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram showing a heat recovery system 1 according to an embodiment of the present invention.

本実施例の熱回収システム1は、二段のオイルフリー式の空気圧縮機に適用される。この場合、圧縮機として、低段圧縮機2と高段圧縮機3とを備え、各圧縮機2,3からの圧縮空気を冷却するエアクーラとして、インタークーラ4とアフタークーラ5とを備える。低段圧縮機2からの圧縮空気は、インタークーラ4を介して高段圧縮機3へ送られ、高段圧縮機3においてさらに圧縮された後、アフタークーラ5へ送られる。アフタークーラ5を通過後の圧縮空気は、所望によりエアドライヤやエアタンクを介して、各種の圧縮空気利用機器へ送られる。   The heat recovery system 1 of this embodiment is applied to a two-stage oil-free air compressor. In this case, a low-stage compressor 2 and a high-stage compressor 3 are provided as compressors, and an intercooler 4 and an aftercooler 5 are provided as air coolers for cooling the compressed air from the compressors 2 and 3. The compressed air from the low stage compressor 2 is sent to the high stage compressor 3 via the intercooler 4, further compressed in the high stage compressor 3, and then sent to the after cooler 5. The compressed air after passing through the aftercooler 5 is sent to various types of equipment using compressed air via an air dryer or an air tank as required.

低段圧縮機2および高段圧縮機3は、典型的には、モータにより駆動されると共にギアにより連動して発停される。低段圧縮機2は、外気を吸入し圧縮して吐出し、高段圧縮機3は、低段圧縮機2からインタークーラ4を介した圧縮空気をさらに圧縮して吐出する。   The low stage compressor 2 and the high stage compressor 3 are typically driven by a motor and started and stopped in conjunction with a gear. The low stage compressor 2 sucks outside air, compresses and discharges it, and the high stage compressor 3 further compresses and discharges compressed air from the low stage compressor 2 via the intercooler 4.

インタークーラ4およびアフタークーラ5は、それぞれ、圧縮空気と冷却水とを混ぜることなく熱交換する間接熱交換器である。そのために、インタークーラ4およびアフタークーラ5の冷却水路4a,5aには、冷却塔(クーリングタワー)との間で冷却水が循環される。この際、冷却塔からの冷却水は、インタークーラ4に通された後にアフタークーラ5に通されてもよいし、これとは逆に、アフタークーラ5に通された後にインタークーラ4に通されてもよい。あるいは、冷却塔からの冷却水は、インタークーラ4とアフタークーラ5とに並列に通されてもよい。   The intercooler 4 and the aftercooler 5 are indirect heat exchangers that exchange heat without mixing compressed air and cooling water, respectively. Therefore, cooling water is circulated between the cooling water passages 4a and 5a of the intercooler 4 and the aftercooler 5 with the cooling tower (cooling tower). At this time, the cooling water from the cooling tower may be passed through the intercooler 4 and then through the aftercooler 5. Conversely, after passing through the aftercooler 5, the cooling water is passed through the intercooler 4. May be. Alternatively, the cooling water from the cooling tower may be passed through the intercooler 4 and the aftercooler 5 in parallel.

このような二段のオイルフリー式の空気圧縮機において、本実施例の熱回収システム1は、各段の圧縮機2(3)からの圧縮空気をエアクーラ4(5)に通す前に熱回収用熱交換器6(7)に通して、圧縮熱を回収可能に構成される。具体的には、本実施例の熱回収システム1は、各段の圧縮機2,3で生じた圧縮熱を熱回収用熱交換器6,7において通水の加温に用いて、圧縮熱を回収する。熱回収用熱交換器として、第一熱回収用熱交換器6と第二熱回収用熱交換器7とを備える。第一熱回収用熱交換器6は、低段圧縮機2からインタークーラ4への第一空気路8に設けられ、第二熱回収用熱交換器7は、高段圧縮機3からアフタークーラ5への第二空気路9に設けられる。   In such a two-stage oil-free air compressor, the heat recovery system 1 of the present embodiment recovers heat before passing the compressed air from the compressor 2 (3) of each stage through the air cooler 4 (5). It is configured to be able to recover the compression heat through the heat exchanger 6 (7). Specifically, the heat recovery system 1 of the present embodiment uses the compression heat generated in the compressors 2 and 3 at each stage to heat the water in the heat recovery heat exchangers 6 and 7, thereby compressing heat. Recover. As the heat recovery heat exchanger, a first heat recovery heat exchanger 6 and a second heat recovery heat exchanger 7 are provided. The first heat recovery heat exchanger 6 is provided in the first air passage 8 from the low stage compressor 2 to the intercooler 4, and the second heat recovery heat exchanger 7 is supplied from the high stage compressor 3 to the aftercooler. In the second air passage 9 to 5.

第一熱回収用熱交換器6および第二熱回収用熱交換器7は、それぞれ、圧縮空気と水とを混ぜることなく熱交換する間接熱交換器である。そのために、第一熱回収用熱交換器6および第二熱回収用熱交換器7の通水路には、給水源(たとえば軟水器)から給水タンク10への給水が、給水路11を介して通される。この際、給水源からの水は、図示例のように、第二熱回収用熱交換器7に通された後に第一熱回収用熱交換器6に通されてもよいし、これとは逆に、第一熱回収用熱交換器6に通された後に第二熱回収用熱交換器7に通されてもよい。あるいは、給水源からの水は、第一熱回収用熱交換器6と第二熱回収用熱交換器7とに並列に通されてもよい。いずれにしても、各熱回収用熱交換器6,7において、圧縮空気と水とを熱交換して、圧縮空気を水で冷却できる一方、水を圧縮空気で加温できる。なお、給水タンク10内の貯留水は、その用途を特に問わないが、たとえばボイラへの給水として用いられる。   The first heat recovery heat exchanger 6 and the second heat recovery heat exchanger 7 are indirect heat exchangers that exchange heat without mixing compressed air and water, respectively. Therefore, in the water passages of the first heat recovery heat exchanger 6 and the second heat recovery heat exchanger 7, water is supplied from a water supply source (for example, a water softener) to the water supply tank 10 via the water supply path 11. Passed. At this time, the water from the water supply source may be passed through the second heat recovery heat exchanger 7 and then through the first heat recovery heat exchanger 6 as shown in the illustrated example. Conversely, after passing through the first heat recovery heat exchanger 6, it may be passed through the second heat recovery heat exchanger 7. Alternatively, the water from the water supply source may be passed through the first heat recovery heat exchanger 6 and the second heat recovery heat exchanger 7 in parallel. In any case, in each of the heat recovery heat exchangers 6 and 7, the compressed air and water can be heat-exchanged to cool the compressed air with water, while the water can be heated with the compressed air. In addition, although the use in particular is not ask | required, the stored water in the water supply tank 10 is used, for example as water supply to a boiler.

各熱回収用熱交換器6,7について、圧縮空気の入口側と出口側とが、バイパス路12,13で接続される。具体的には、低段圧縮機2から第一熱回収用熱交換器6への第一熱交入口側空気路8aと、第一熱回収用熱交換器6からインタークーラ4への第一熱交出口側空気路8bとが、第一バイパス路12で接続される。同様に、高段圧縮機3から第二熱回収用熱交換器7への第二熱交入口側空気路9aと、第二熱回収用熱交換器7からアフタークーラ5への第二熱交出口側空気路9bとが、第二バイパス路13で接続される。   About each heat recovery heat exchanger 6 and 7, the inlet side and outlet side of compressed air are connected by bypass paths 12 and 13. Specifically, the first heat exchange inlet-side air passage 8a from the low stage compressor 2 to the first heat recovery heat exchanger 6 and the first heat exchanger 6 to the intercooler 4 from the first heat recovery heat exchanger 6 The heat exchange outlet side air passage 8 b is connected by the first bypass passage 12. Similarly, the second heat exchange inlet-side air passage 9a from the high stage compressor 3 to the second heat recovery heat exchanger 7 and the second heat exchange from the second heat recovery heat exchanger 7 to the aftercooler 5 are used. The outlet side air passage 9 b is connected by the second bypass passage 13.

各バイパス路12,13には、バイパス弁14,15が設けられる。具体的には、第一バイパス路12には、第一バイパス弁14が設けられる一方、第二バイパス路13には、第二バイパス弁15が設けられる。   In each bypass passage 12, 13, bypass valves 14, 15 are provided. Specifically, the first bypass passage 12 is provided with a first bypass valve 14, while the second bypass passage 13 is provided with a second bypass valve 15.

また、本実施例では、各熱回収用熱交換器6,7について、バイパス路12,13との分岐部(接続部)よりも下流の熱交入口側空気路8a,9aに、遮断弁16,17が設けられる一方、バイパス路12,13との合流部(接続部)よりも上流の熱交出口側空気路8b,9bには、遮断弁は設けられない。具体的には、第一バイパス路12との分岐部よりも下流の第一熱交入口側空気路8aに、第一遮断弁16が設けられる一方、第一バイパス路12との合流部よりも上流の第一熱交出口側空気路8bには、遮断弁は設けられない。また、第二バイパス路13との分岐部よりも下流の第二熱交入口側空気路9aに、第二遮断弁17が設けられる一方、第二バイパス路13との合流部よりも上流の第二熱交出口側空気路9bには、遮断弁は設けられない。   In the present embodiment, the heat recovery heat exchangers 6 and 7 are connected to the shutoff valves 16 in the heat exchange inlet side air passages 8a and 9a downstream of the branch portions (connection portions) to the bypass passages 12 and 13, respectively. , 17 are provided, but the shutoff valve is not provided in the heat exchange outlet side air passages 8b, 9b upstream from the junction (connection portion) with the bypass passages 12, 13. Specifically, the first shutoff valve 16 is provided in the first heat exchange inlet side air passage 8a downstream from the branch portion with the first bypass passage 12, while the first shut-off valve 16 is provided with respect to the first bypass passage 12. A shutoff valve is not provided in the upstream first heat exchange outlet side air passage 8b. Further, the second shutoff valve 17 is provided in the second heat exchange inlet side air passage 9a downstream from the branch portion with the second bypass passage 13, while the second shutoff valve 17 is provided upstream of the joining portion with the second bypass passage 13. A shutoff valve is not provided in the two heat exchange outlet side air passage 9b.

給水路11を介した給水タンク10への給水の有無または流量は、変更可能である。本実施例では、給水路11には、各熱回収用熱交換器6,7よりも上流に、給水弁18が設けられている。給水弁18の開閉を切り替えることで、各熱回収用熱交換器6,7への通水の有無、ひいては給水タンク10への給水の有無を切り替えることができる。また、給水弁18の開度を調整することで、各熱回収用熱交換器6,7への通水流量、ひいては給水タンク10への給水流量を調整することができる。但し、このような給水弁18の制御に代えてまたはこれに加えて、給水路11に給水ポンプを設けて、その給水ポンプの発停または回転数を制御してもよい。   The presence or the flow rate of water supplied to the water supply tank 10 via the water supply channel 11 can be changed. In the present embodiment, the water supply passage 11 is provided with a water supply valve 18 upstream of the heat recovery heat exchangers 6 and 7. By switching the opening and closing of the water supply valve 18, it is possible to switch the presence / absence of water flow to each heat recovery heat exchanger 6, 7 and consequently the water supply to the water supply tank 10. Further, by adjusting the opening of the water supply valve 18, it is possible to adjust the water flow rate to each heat recovery heat exchanger 6, 7, and consequently the water supply flow rate to the water supply tank 10. However, instead of or in addition to such control of the water supply valve 18, a water supply pump may be provided in the water supply path 11 to control the start / stop or rotation speed of the water supply pump.

ところで、高段圧縮機3から圧縮空気が供給されるエアタンク(場合により管路でもよい)に圧力センサ(図示省略)を設けることで、圧縮空気の使用負荷を監視することができる。一方、給水タンク10に水位センサ19を設けることで、給水タンク10内の温水の使用負荷を監視することができる。   By the way, the use load of compressed air can be monitored by providing a pressure sensor (not shown) in an air tank (which may be a pipe line in some cases) to which compressed air is supplied from the high stage compressor 3. On the other hand, the use load of the hot water in the water supply tank 10 can be monitored by providing the water level sensor 19 in the water supply tank 10.

また、給水タンク10への給水路11の内、各熱回収用熱交換器6,7よりも下流に温度センサ20を設けることで、給水タンク10への給水温度を監視することができる。さらに、給水路11に流量計21を設けることで、各熱回収用熱交換器6,7への通水流量、ひいては給水タンク10への給水流量を監視することができる。図示例では、給水弁18のすぐ下流に、流量計21が設けられている。   Further, by providing the temperature sensor 20 downstream of the heat recovery heat exchangers 6 and 7 in the water supply path 11 to the water supply tank 10, the water supply temperature to the water supply tank 10 can be monitored. Furthermore, by providing the flow meter 21 in the water supply path 11, it is possible to monitor the flow rate of water flow to each heat recovery heat exchanger 6, 7, and consequently the water supply flow rate to the water supply tank 10. In the illustrated example, a flow meter 21 is provided immediately downstream of the water supply valve 18.

次に、本実施例の熱回収システム1の制御について説明する。以下に述べる一連の制御は、図示しない制御器により実行される。つまり、制御器は、圧縮機(より具体的にはそのモータ)2,3、バイパス弁14,15、遮断弁16,17、給水弁18の他、前述した圧力センサ、水位センサ19、温度センサ20および流量計21などに接続されており、各センサ19〜21の検出信号などに基づき圧縮機2,3および各弁14〜18などを制御する。   Next, control of the heat recovery system 1 of the present embodiment will be described. A series of controls described below is executed by a controller (not shown). That is, the controller includes the compressors (more specifically, the motors) 2 and 3, the bypass valves 14 and 15, the shutoff valves 16 and 17, the water supply valve 18, the pressure sensor, the water level sensor 19, and the temperature sensor described above. 20 and a flow meter 21 and the like, and the compressors 2 and 3 and the valves 14 to 18 are controlled based on detection signals of the sensors 19 to 21.

制御器は、圧縮機2,3の作動条件を満たすか否かと、熱回収用熱交換器6,7への通水条件を満たすか否かとに基づき、圧縮機2,3および各弁14〜18などを制御する。   The controller is based on whether or not the operating conditions of the compressors 2 and 3 are satisfied, and whether or not the water flow conditions to the heat exchangers 6 and 7 for heat recovery are satisfied. 18 etc. are controlled.

圧縮機2,3の作動条件を満たすか否かは、典型的には、高段圧縮機3からの圧縮空気が供給されるエアタンク(または管路)の空気圧に基づき判定される。具体的には、前記圧力センサの検出信号に基づき、エアタンク内の圧力が下限圧力を下回れば、圧縮機2,3の作動条件を満たすと判定する一方、エアタンク内の圧力が上限圧力を上回れば、圧縮機2,3の作動条件を満たさないと判定する。なお、圧縮機2,3の作動中、負荷に応じて圧縮機2,3を容量制御してもよい。   Whether or not the operating conditions of the compressors 2 and 3 are satisfied is typically determined based on the air pressure of the air tank (or pipe line) to which the compressed air from the high stage compressor 3 is supplied. Specifically, based on the detection signal of the pressure sensor, if the pressure in the air tank falls below the lower limit pressure, it is determined that the operating conditions of the compressors 2 and 3 are satisfied, while if the pressure in the air tank exceeds the upper limit pressure. It is determined that the operating conditions of the compressors 2 and 3 are not satisfied. In addition, during operation of the compressors 2 and 3, the capacity of the compressors 2 and 3 may be controlled according to the load.

熱回収用熱交換器6,7への通水条件を満たすか否かは、典型的には、給水タンク10内の水位に基づき判定される。具体的には、水位センサ19の検出信号に基づき、給水タンク10内の水位が下限水位を下回れば、通水条件を満たすと判定する一方、給水タンク10内の水位が上限水位を上回れば、通水条件を満たさないと判定する。   Whether or not the water flow condition to the heat exchangers 6 and 7 for heat recovery is satisfied is typically determined based on the water level in the water supply tank 10. Specifically, based on the detection signal of the water level sensor 19, if the water level in the water supply tank 10 falls below the lower limit water level, it is determined that the water flow condition is satisfied, while if the water level in the water supply tank 10 exceeds the upper limit water level, It is determined that the water flow condition is not satisfied.

制御器は、圧縮機2,3の作動条件を満たすと判定すると、圧縮機2,3を作動する一方、圧縮機2,3の作動条件を満たさないと判定すると、圧縮機2,3を停止する。そして、圧縮機2,3の作動中、熱回収用熱交換器6,7への通水条件を満たすと判定すると、熱回収用熱交換器6,7に通水する一方、熱回収用熱交換器6,7への通水条件を満たさないと判定すると、熱回収用熱交換器6,7への通水を停止する。熱回収用熱交換器6,7への通水中、バイパス弁14,15を閉じて遮断弁16,17を開ける一方、熱回収用熱交換器6,7への通水停止中、バイパス弁14,15を開けて遮断弁16,17を閉じる。   When the controller determines that the operating conditions of the compressors 2 and 3 are satisfied, the controller operates the compressors 2 and 3, while when it determines that the operating conditions of the compressors 2 and 3 are not satisfied, the controller stops the compressors 2 and 3 To do. When it is determined that the water flow condition to the heat recovery heat exchangers 6 and 7 is satisfied during the operation of the compressors 2 and 3, water is passed to the heat recovery heat exchangers 6 and 7, while the heat recovery heat If it determines with not satisfy | filling the water flow conditions to the exchangers 6 and 7, the water flow to the heat exchangers 6 and 7 for heat recovery will be stopped. During the flow of water to the heat exchangers 6 and 7 for heat recovery, the bypass valves 14 and 15 are closed and the shutoff valves 16 and 17 are opened, while the water flow to the heat exchangers 6 and 7 for heat recovery is stopped. 15 are opened and the shutoff valves 16 and 17 are closed.

具体的には、制御器は、圧縮機2,3の作動条件を満たし、且つ熱回収用熱交換器6,7への通水条件を満たすと判定する場合、圧縮機2,3を作動させると共に、給水弁18を開いて熱回収用熱交換器6,7に通水する。これにより、圧縮空気が製造されると共に、給水路11を介して給水タンク10へ給水される。この際、バイパス弁14,15を閉じる一方、遮断弁16,17を開ける。従って、低段圧縮機2からの圧縮空気は、第一バイパス路12を通らず第一熱回収用熱交換器6を介してインタークーラ4へ送られ、高段圧縮機3にてさらに圧縮された後、第二バイパス路13を通らず第二熱回収用熱交換器7を介してアフタークーラ5へ送られる。   Specifically, the controller operates the compressors 2 and 3 when determining that the operating conditions of the compressors 2 and 3 are satisfied and the water flow conditions to the heat exchangers 6 and 7 for heat recovery are satisfied. At the same time, the water supply valve 18 is opened and water is passed through the heat exchangers 6 and 7 for heat recovery. Thus, compressed air is produced and supplied to the water supply tank 10 through the water supply passage 11. At this time, the shutoff valves 16 and 17 are opened while the bypass valves 14 and 15 are closed. Therefore, the compressed air from the low stage compressor 2 is sent to the intercooler 4 through the first heat recovery heat exchanger 6 without passing through the first bypass 12, and further compressed by the high stage compressor 3. After that, it is sent to the aftercooler 5 through the second heat recovery heat exchanger 7 without passing through the second bypass 13.

給水タンク10への給水は、熱回収用熱交換器6,7において、圧縮空気と熱交換して、圧縮空気を冷却する一方、自身は加温される。温度センサ20の検出温度に基づき給水弁18の開度を調整すれば、給水タンク10への給水温度を調整することができる。なお、熱回収用熱交換器6,7において圧縮空気を所定温度まで冷却できない場合、熱回収用熱交換器6,7よりも圧縮空気流の下流に設けられたエアクーラ(インタークーラ4またはアフタークーラ5)において、各段の圧縮空気は所定温度まで冷却される。   The water supply to the water supply tank 10 is heat-exchanged with the heat recovery heat exchangers 6 and 7 by exchanging heat with the compressed air to cool the compressed air. If the opening degree of the water supply valve 18 is adjusted based on the temperature detected by the temperature sensor 20, the water supply temperature to the water supply tank 10 can be adjusted. When the compressed air cannot be cooled to a predetermined temperature in the heat recovery heat exchangers 6 and 7, an air cooler (intercooler 4 or after cooler) provided downstream of the heat recovery heat exchangers 6 and 7 in the compressed air flow. In 5), the compressed air at each stage is cooled to a predetermined temperature.

一方、制御器は、圧縮機2,3の作動条件を満たすが、熱回収用熱交換器6,7への通水条件を満たさないと判定する場合、圧縮機2,3を作動させるが、給水弁18を閉じて熱回収用熱交換器6,7への通水を停止する。これにより、圧縮空気が製造されるが、給水路11を介した給水タンク10への給水は停止される。この際、バイパス弁14,15を開ける一方、遮断弁16,17を閉じる。従って、低段圧縮機2からの圧縮空気は、第一熱回収用熱交換器6を通らず第一バイパス路12を介してインタークーラ4へ送られ、高段圧縮機3にてさらに圧縮された後、第二熱回収用熱交換器7を通らず第二バイパス路13を介してアフタークーラ5へ送られる。この場合、エアクーラ(インタークーラ4またはアフタークーラ5)において、各段の圧縮空気は所定温度まで冷却される。   On the other hand, if the controller satisfies the operating conditions of the compressors 2 and 3, but determines that the water flow conditions to the heat exchangers 6 and 7 for heat recovery are not satisfied, the controller operates the compressors 2 and 3, The water supply valve 18 is closed to stop water flow to the heat recovery heat exchangers 6 and 7. Thereby, although compressed air is manufactured, the water supply to the water supply tank 10 via the water supply path 11 is stopped. At this time, the bypass valves 14 and 15 are opened, while the shutoff valves 16 and 17 are closed. Therefore, the compressed air from the low stage compressor 2 is sent to the intercooler 4 through the first bypass 12 without passing through the first heat recovery heat exchanger 6 and further compressed by the high stage compressor 3. Then, the second heat recovery heat exchanger 7 is not passed through the second bypass passage 13 and sent to the aftercooler 5. In this case, in the air cooler (intercooler 4 or aftercooler 5), the compressed air at each stage is cooled to a predetermined temperature.

また、制御器は、圧縮機2,3の作動条件を満たさないと判定する場合、熱回収用熱交換器6,7への通水条件を満たすか否かに関わらず、圧縮機2,3を停止すると共に、給水弁18を閉じて熱回収用熱交換器6,7への通水を停止する。これにより、圧縮空気の製造が停止されると共に、給水路11を介した給水タンク10への給水も停止される。なお、圧縮機2,3の作動条件を満たさないが、熱回収用熱交換器6,7への通水条件を満たす場合、給水タンク10には、図示しない別の給水系統から給水可能としてもよい。あるいは、圧縮機2,3が停止しているので熱回収用熱交換器6,7において給水の加温はできないが、給水路11を介して給水タンク10へ給水可能としてもよい。   Further, when the controller determines that the operating conditions of the compressors 2 and 3 are not satisfied, the compressors 2 and 3 regardless of whether or not the water flow conditions to the heat exchangers 6 and 7 for heat recovery are satisfied. And the water supply valve 18 is closed to stop water flow to the heat recovery heat exchangers 6 and 7. Thereby, manufacture of compressed air is stopped and the water supply to the water supply tank 10 via the water supply path 11 is also stopped. If the operating conditions of the compressors 2 and 3 are not satisfied but the water flow conditions to the heat recovery heat exchangers 6 and 7 are satisfied, the water supply tank 10 can be supplied with water from another water supply system (not shown). Good. Alternatively, since the compressors 2 and 3 are stopped, the heat recovery heat exchangers 6 and 7 cannot heat the water supply, but may supply water to the water supply tank 10 via the water supply path 11.

ところで、圧縮機2,3からの圧縮空気を、熱回収用熱交換器6,7に通すかバイパス路12,13に通すかを切り替える際、次のように制御するのが好ましい。すなわち、圧縮機2,3からの圧縮空気を熱回収用熱交換器6,7に通している最中、バイパス路12,13に通すよう切り替える際には、バイパス弁14,15を開けてから遮断弁16,17を閉じるのがよい。逆に、圧縮機2,3からの圧縮空気をバイパス路12,13に通している最中、熱回収用熱交換器6,7に通すよう切り替える際には、遮断弁16,17を開けてからバイパス弁14,15を閉じるのがよい。   By the way, when switching whether the compressed air from the compressors 2 and 3 is passed through the heat exchangers 6 and 7 for heat recovery or the bypass passages 12 and 13 is preferably controlled as follows. That is, when the compressed air from the compressors 2 and 3 passes through the bypass passages 12 and 13 while passing through the heat exchangers 6 and 7 for heat recovery, the bypass valves 14 and 15 are opened. The shut-off valves 16, 17 are preferably closed. On the contrary, when the compressed air from the compressors 2 and 3 is being passed through the bypass passages 12 and 13, when switching to pass through the heat recovery heat exchangers 6 and 7, the shut-off valves 16 and 17 are opened. The bypass valves 14 and 15 are preferably closed.

より具板的には、圧縮機2,3の作動中、バイパス弁14,15を閉じると共に遮断弁16,17を開けた状態で、熱回収用熱交換器6,7への通水状態にある場合において、その通水状態から通水停止状態へ切り替える際、先にバイパス弁14,15を開けてから、遮断弁16,17を閉じるのがよい。同様に、圧縮機2,3の作動中、遮断弁16,17を閉じると共にバイパス弁14,15を開けた状態で、熱回収用熱交換器6,7への通水停止状態にある場合において、その通水停止状態から通水状態へ切り替える際、先に遮断弁16,17を開けてから、バイパス弁14,15を閉じるのがよい。熱回収用熱交換器6,7への通水状態と通水停止状態とを切り替える際、熱回収用熱交換器6,7経由とバイパス路12,13経由との双方に一時的に圧縮空気が流れるよう制御することで、弁の動作遅れによる不都合、具体的には圧縮空気の流れの遮断による圧縮機2,3の不具合を防止することができる。   More specifically, while the compressors 2 and 3 are in operation, the bypass valves 14 and 15 are closed and the shut-off valves 16 and 17 are opened so that the water is passed to the heat exchangers 6 and 7 for heat recovery. In some cases, when switching from the water flow state to the water flow stop state, it is preferable to first open the bypass valves 14 and 15 and then close the shutoff valves 16 and 17. Similarly, when the compressors 2 and 3 are in operation, the shutoff valves 16 and 17 are closed and the bypass valves 14 and 15 are opened and the water recovery to the heat recovery heat exchangers 6 and 7 is stopped. When switching from the water flow stop state to the water flow state, it is preferable to first open the shutoff valves 16 and 17 and then close the bypass valves 14 and 15. When switching between a water flow state and a water flow stop state for the heat exchangers 6 and 7 for heat recovery, compressed air is temporarily supplied to both the heat exchangers 6 and 7 for heat recovery and the bypass passages 12 and 13. Is controlled so that inconvenience due to valve operation delay, specifically, problems of the compressors 2 and 3 due to the blockage of the flow of compressed air can be prevented.

また、圧縮機2,3からの圧縮空気をバイパス路12,13に通すと共に熱回収用熱交換器6,7への通水を停止した熱回収停止状態と、圧縮機2,3からの圧縮空気を熱回収用熱交換器6,7に通すと共に熱回収用熱交換器6,7への通水を実行した熱回収実行状態とを切り替える際、次のように制御するのが好ましい。すなわち、熱回収停止状態から熱回収実行状態へ切り替える際には、熱回収用熱交換器6,7への通水を開始してから、熱回収用熱交換器6,7への圧縮空気の供給を開始するのがよい。逆に、熱回収実行状態から熱回収停止状態へ切り替える際には、熱回収用熱交換器6,7への圧縮空気の供給を停止してから、熱回収用熱交換器6,7への通水を停止するのがよい。   Further, the compressed air from the compressors 2 and 3 is passed through the bypass passages 12 and 13 and the water recovery to the heat exchangers 6 and 7 for heat recovery is stopped. When the air is passed through the heat recovery heat exchangers 6 and 7 and the heat recovery execution state in which the water is passed to the heat recovery heat exchangers 6 and 7 is switched, the following control is preferably performed. That is, when switching from the heat recovery stop state to the heat recovery execution state, the flow of heat to the heat recovery heat exchangers 6 and 7 is started, and then the compressed air to the heat recovery heat exchangers 6 and 7 is supplied. The supply should be started. Conversely, when switching from the heat recovery execution state to the heat recovery stop state, the supply of compressed air to the heat recovery heat exchangers 6 and 7 is stopped, and then the heat recovery heat exchangers 6 and 7 are supplied. It is recommended to stop the water flow.

より具体的には、圧縮機2,3の作動中、バイパス弁14,15を開けると共に遮断弁16,17を閉じた状態で、熱回収用熱交換器6,7への通水停止状態にある場合において、その通水停止状態から通水状態へ切り替える際、給水弁18を開けて熱回収用熱交換器6,7への通水を開始してから遮断弁16,17を開くのが好ましい。特に、給水弁18を開いて、流量計21で所定流量以上の通水を確認してから、遮断弁16,17を開くのが好ましい。これにより、熱回収用熱交換器6,7への通水が停止中なのに熱回収用熱交換器6,7へ圧縮空気が流入するのを防止して、熱回収用熱交換器6,7内の水の沸騰を防止できると共に、空焚きによる熱回収用熱交換器6,7における熱応力の増大とそれによる破損を防止できる。同様の理由で、圧縮機2,3の作動中、バイパス弁14,15を閉じると共に遮断弁16,17を開けた状態で、熱回収用熱交換器6,7への通水状態にある場合において、その通水状態から通水停止状態へ切り替える際、バイパス弁14,15を開ける一方、遮断弁16,17を閉じてから、給水弁18を閉じて熱回収用熱交換器6,7への通水を停止するのが好ましい。   More specifically, while the compressors 2 and 3 are in operation, the bypass valves 14 and 15 are opened and the shutoff valves 16 and 17 are closed to stop the water flow to the heat exchangers 6 and 7 for heat recovery. In some cases, when switching from the water flow stop state to the water flow state, the water supply valve 18 is opened and water flow to the heat exchangers 6 and 7 for heat recovery is started, and then the shutoff valves 16 and 17 are opened. preferable. In particular, it is preferable to open the water supply valve 18 and check the water flow of a predetermined flow rate or more with the flow meter 21 before opening the shutoff valves 16 and 17. This prevents the compressed air from flowing into the heat recovery heat exchangers 6 and 7 even though the water flow to the heat recovery heat exchangers 6 and 7 is stopped, and the heat recovery heat exchangers 6 and 7. It is possible to prevent boiling of the water in the inside, and to prevent an increase in thermal stress in the heat recovery heat exchangers 6 and 7 due to air blowing and damage caused thereby. For the same reason, when the compressors 2 and 3 are in operation, the bypass valves 14 and 15 are closed and the shut-off valves 16 and 17 are opened, and the water is being passed to the heat recovery heat exchangers 6 and 7. , When switching from the water flow state to the water flow stop state, the bypass valves 14 and 15 are opened, the shutoff valves 16 and 17 are closed, and then the water supply valve 18 is closed to the heat exchangers 6 and 7 for heat recovery. It is preferable to stop the water flow.

本発明の熱回収システム1は、前記実施例(変形例を含む)の構成に限らず適宜変更可能である。たとえば、前記実施例では、インタークーラ4およびアフタークーラ5は、圧縮機2,3からの圧縮空気を、冷却塔との間の循環水で冷却する水冷式としたが、インタークーラ4とアフタークーラ5との内、一方または双方は空冷式としてもよい。インタークーラ4および/またはアフタークーラ5を空冷式とする場合、その空冷式熱交換器において、圧縮機2,3からの圧縮空気をファンによる通風で冷却することになる。つまり、空冷式熱交換器において、圧縮機2,3からの圧縮空気と、ファンによる通風とを、混ぜることなく間接熱交換させてもよい。   The heat recovery system 1 of the present invention is not limited to the configuration of the above-described embodiment (including modifications), and can be changed as appropriate. For example, in the above-described embodiment, the intercooler 4 and the aftercooler 5 are of the water cooling type in which the compressed air from the compressors 2 and 3 is cooled by circulating water between the cooling tower and the intercooler 4 and the aftercooler. One or both of 5 may be air-cooled. When the intercooler 4 and / or the aftercooler 5 is air-cooled, in the air-cooled heat exchanger, the compressed air from the compressors 2 and 3 is cooled by ventilation with a fan. That is, in the air-cooled heat exchanger, indirect heat exchange may be performed without mixing the compressed air from the compressors 2 and 3 and the ventilation by the fan.

また、前記実施例では、熱回収用熱交換器6,7に、ボイラの給水タンク10への給水を通して、ボイラの給水の予熱を図る例を示したが、熱回収用熱交換器6,7に通す水の用途はこれに限らず適宜変更可能である。また、熱回収用熱交換器6,7への通水条件の有無は、場合により、熱回収用熱交換器6,7を通過後の温水を用いる温水使用設備からの信号を利用してもよい。   In the above-described embodiment, an example is shown in which the boiler water supply is preheated through the water supply to the boiler water supply tank 10 through the heat recovery heat exchangers 6 and 7, but the heat recovery heat exchangers 6 and 7 are used. The use of the water passed through is not limited to this and can be changed as appropriate. In addition, the presence or absence of water flow conditions to the heat recovery heat exchangers 6 and 7 may be determined by using a signal from a hot water use facility that uses hot water after passing through the heat recovery heat exchangers 6 and 7, depending on circumstances. Good.

さらに、前記実施例において、圧縮機2,3の段数は、適宜に変更可能である。たとえば、単段の圧縮機であってもよい。その場合、前記実施例において、二つの圧縮機2,3の内の一方の設置を省略し、それに伴い、その圧縮機2(3)の直後に設置された熱回収用熱交換器6(7)とエアクーラ4(5)の設置を省略すればよい。たとえば、図1において、高段圧縮機3、第二熱回収用熱交換器7およびアフタークーラ5の設置を省略することができる。逆に、図1において、圧縮機を三段以上としてもよく、それに伴い、圧縮機2(3)、熱回収用熱交換器6(7)およびエアクーラ4(5)のセットの設置台数を増やせばよい。そして、追加された熱回収用熱交換器についても、バイパス路、バイパス弁および遮断弁が設けられ、前記実施例と同様に制御される。   Furthermore, in the said Example, the number of stages of the compressors 2 and 3 can be changed suitably. For example, a single-stage compressor may be used. In that case, in the said Example, installation of one of the two compressors 2 and 3 is abbreviate | omitted, and in connection with it, the heat exchanger 6 (7 for heat recovery) installed immediately after the compressor 2 (3). ) And the air cooler 4 (5) may be omitted. For example, in FIG. 1, the installation of the high stage compressor 3, the second heat recovery heat exchanger 7 and the aftercooler 5 can be omitted. Conversely, in FIG. 1, the number of compressors may be three or more. Accordingly, the number of sets of the compressor 2 (3), the heat recovery heat exchanger 6 (7), and the air cooler 4 (5) can be increased. That's fine. The added heat recovery heat exchanger is also provided with a bypass path, a bypass valve and a shutoff valve, and is controlled in the same manner as in the above embodiment.

1 熱回収システム
2 低段圧縮機
3 高段圧縮機
4 インタークーラ(エアクーラ)
5 アフタークーラ(エアクーラ)
6 第一熱回収用熱交換器
7 第二熱回収用熱交換器
8 第一空気路(8a:第一熱交入口側空気路、8b:第一熱交出口側空気路)
9 第二空気路(9a:第二熱交入口側空気路、9b:第二熱交出口側空気路)
10 給水タンク
11 給水路
12 第一バイパス路
13 第二バイパス路
14 第一バイパス弁
15 第二バイパス弁
16 第一遮断弁
17 第二遮断弁
18 給水弁
19 水位センサ
20 温度センサ
21 流量計
1 Heat recovery system 2 Low stage compressor 3 High stage compressor 4 Intercooler (air cooler)
5 After cooler (air cooler)
6 heat exchanger for first heat recovery 7 heat exchanger for second heat recovery 8 first air path (8a: first heat exchange inlet side air path, 8b: first heat exchange outlet side air path)
9 second air passage (9a: second heat exchange inlet side air passage, 9b: second heat exchange outlet side air passage)
DESCRIPTION OF SYMBOLS 10 Water tank 11 Water supply path 12 1st bypass path 13 2nd bypass path 14 1st bypass valve 15 2nd bypass valve 16 1st shut-off valve 17 2nd shut-off valve 18 Water feed valve 19 Water level sensor 20 Temperature sensor 21 Flowmeter

Claims (3)

オイルフリー式の圧縮機からの圧縮空気を、冷却塔との間の循環水で冷却するか、ファンによる通風で冷却するエアクーラと、
前記圧縮機から前記エアクーラへの空気路に設けられ、圧縮空気と水とを熱交換して温水を製造する熱回収用熱交換器と、
前記圧縮機から前記熱回収用熱交換器への熱交入口側空気路と、前記熱回収用熱交換器から前記エアクーラへの熱交出口側空気路とを接続するバイパス路と、
前記バイパス路に設けられたバイパス弁
前記バイパス路との分岐部よりも下流の前記熱交入口側空気路と、前記バイパス路との合流部よりも上流の前記熱交出口側空気路との内、前記熱交入口側空気路にのみに開閉可能に設けられた遮断弁
前記バイパス弁および前記遮断弁を制御する制御器と、を備え、
前記制御器は、
(i)前記圧縮機の作動中に、前記熱回収用熱交換器を通水状態にするときは、前記バイパス弁を閉止すると共に、前記遮断弁を開放し、
(ii)前記圧縮機の作動中に、前記熱回収用熱交換器を通水停止状態にするときは、前記バイパス弁を開放すると共に、前記遮断弁を閉止し、
(iii)前記熱回収用熱交換器通水状態から通水停止状態へ切り替える際、前記バイパス弁を開けてから、前記遮断弁を閉じ、
(iv)前記熱回収用熱交換器通水停止状態から通水状態へ切り替える際、前記遮断弁を開けてから、前記バイパス弁を閉じる
ことを特徴とする熱回収システム。
An air cooler that cools the compressed air from the oil-free compressor with circulating water between the cooling tower or the ventilation by a fan;
A heat exchanger for heat recovery, which is provided in an air path from the compressor to the air cooler, and produces hot water by exchanging heat between the compressed air and water;
A bypass passage connecting a heat exchange inlet side air passage from the compressor to the heat recovery heat exchanger and a heat exchange outlet side air passage from the heat recovery heat exchanger to the air cooler ;
A bypass valve provided in the bypass passage,
Of the heat exchange inlet side air passage downstream of the branching portion with the bypass passage and the heat exchange outlet side air passage upstream of the junction with the bypass passage, the heat exchange inlet side air passage a shutoff valve disposed to open and close only,
A controller for controlling the bypass valve and the shutoff valve,
The controller is
(I) During operation of the compressor, when the heat recovery heat exchanger is made to flow, the bypass valve is closed and the shut-off valve is opened.
(Ii) During operation of the compressor, when the heat recovery heat exchanger is put into a water stop state, the bypass valve is opened and the shutoff valve is closed,
(Iii) when switching the heat recovery heat exchanger from water passing state to water flow stopped from opening the bypass valve, closing the shut-off valve,
(Iv) when switching the heat recovery heat exchanger from water passing stopped state to the water flow state, heat recovery system, characterized in that the opening the shut-off valve, closing the bypass valve.
前記制御器は、
(v)前記熱回収用熱交換器通水停止状態から通水状態へ切り替える際、前記熱回収用熱交換器への通水を開始してから、前記遮断弁を開け、
(vi)前記バイパス弁を閉じると共に前記遮断弁を開けた状態で前記圧縮機を作動中、前記熱回収用熱交換器通水状態から通水停止状態へ切り替える際、前記遮断弁を閉じてから、前記熱回収用熱交換器への通水を停止する
ことを特徴とする請求項1に記載の熱回収システム。
The controller is
(V) when switching the heat recovery heat exchanger from water passing stopped state to the water flow state, from the start of water flow to the heat recovery heat exchanger, opening the shut-off valve,
(Vi) during operation of the compressor in a state in which opened the shut-off valve closes the bypass valve, when switching the heat recovery heat exchanger from water passing state to water flow stopped, by closing the shutoff valve The heat recovery system according to claim 1, wherein water flow to the heat recovery heat exchanger is stopped.
前記圧縮機として、低段圧縮機と高段圧縮機とを備え、
前記エアクーラとして、インタークーラとアフタークーラとを備え、
前記熱回収用熱交換器として、第一熱回収用熱交換器と第二熱回収用熱交換器とを備え、
前記低段圧縮機からの圧縮空気は、前記インタークーラを介して前記高段圧縮機へ送られ、前記高段圧縮機においてさらに圧縮された後、前記アフタークーラへ送られ、
前記低段圧縮機から前記インタークーラへの空気路に、前記第一熱回収用熱交換器が設けられる一方、前記高段圧縮機から前記アフタークーラへの空気路に、前記第二熱回収用熱交換器が設けられ、
前記第一熱回収用熱交換器と前記第二熱回収用熱交換器とには、設定順序で直列に水が通されるか、並列に水が通され、
前記各熱回収用熱交換器について、前記バイパス路、前記バイパス弁および前記遮断弁を設けた
ことを特徴とする請求項1または請求項2に記載の熱回収システム。
As the compressor, comprising a low-stage compressor and a high-stage compressor,
As the air cooler, an intercooler and an aftercooler are provided,
As the heat recovery heat exchanger, it comprises a first heat recovery heat exchanger and a second heat recovery heat exchanger,
Compressed air from the low-stage compressor is sent to the high-stage compressor via the intercooler, further compressed in the high-stage compressor, and then sent to the aftercooler,
While the first heat recovery heat exchanger is provided in the air path from the low stage compressor to the intercooler, the second heat recovery is provided in the air path from the high stage compressor to the after cooler. A heat exchanger is provided,
In the first heat recovery heat exchanger and the second heat recovery heat exchanger, water is passed in series in a set order, or water is passed in parallel,
The heat recovery system according to claim 1, wherein the bypass passage, the bypass valve, and the shut-off valve are provided for each of the heat recovery heat exchangers.
JP2014212163A 2014-10-17 2014-10-17 Heat recovery system Active JP6379985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014212163A JP6379985B2 (en) 2014-10-17 2014-10-17 Heat recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014212163A JP6379985B2 (en) 2014-10-17 2014-10-17 Heat recovery system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017100655A Division JP6331239B2 (en) 2017-05-22 2017-05-22 Heat recovery system

Publications (2)

Publication Number Publication Date
JP2016080264A JP2016080264A (en) 2016-05-16
JP6379985B2 true JP6379985B2 (en) 2018-08-29

Family

ID=55958186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014212163A Active JP6379985B2 (en) 2014-10-17 2014-10-17 Heat recovery system

Country Status (1)

Country Link
JP (1) JP6379985B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6347407B2 (en) * 2014-08-27 2018-06-27 三浦工業株式会社 Heat recovery system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2651837B2 (en) * 1988-06-09 1997-09-10 北越工業株式会社 Oil-free screw compressor cooling system
JP3716188B2 (en) * 2001-04-10 2005-11-16 三菱重工業株式会社 Gas turbine combined plant
US20070101756A1 (en) * 2004-07-30 2007-05-10 Mitsubishi Heavy Industries, Ltd. Air-refrigerant cooling apparatus
JP5632700B2 (en) * 2010-10-19 2014-11-26 三浦工業株式会社 Heat recovery system
JP5425043B2 (en) * 2010-11-22 2014-02-26 株式会社神戸製鋼所 Oil-cooled compressor

Also Published As

Publication number Publication date
JP2016080264A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP2016079894A (en) Heat recovery system
JP5809872B2 (en) Heating device
KR102015689B1 (en) Thermal energy recovery device and control method
WO2012026317A1 (en) Oil-cooled gas compressor
JP4375171B2 (en) Refrigeration equipment
CN103842743B (en) Heat pump
JP2012211712A (en) Liquid cooling system
JP6331239B2 (en) Heat recovery system
JP2011174639A (en) Air conditioner
JP6379985B2 (en) Heat recovery system
JP2018063090A (en) Heat pump water heater with cooling/heating function
JP6323294B2 (en) Heat recovery system
JP6347407B2 (en) Heat recovery system
JP2018063091A (en) Heat pump water heater with cooling function
JP2016048142A (en) Heat recovery system
JP2008224155A (en) Ice heat storage type heat source machine device and its control method
JP6350815B2 (en) Heat recovery system
JP6767140B2 (en) Heat source system
JP6674155B2 (en) Heat recovery system
JP2016056686A (en) Compression device
JP5128267B2 (en) Heat pump type water heater
WO2019026234A1 (en) Refrigeration cycle device
WO2021053965A1 (en) Heat recovery device
JP5790675B2 (en) heat pump
US11066961B2 (en) Exhaust heat recovery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R150 Certificate of patent or registration of utility model

Ref document number: 6379985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250